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Preface

This volume contains the proceedings of the 18th International Conference on Software
Engineering and Formal Methods (SEFM 2020), which was originally planned to take
place during September 14–18, 2020, in Amsterdam, The Netherlands (hosted by the
Centrum Wiskunde & Informatica – CWI). Because of the COVID-19 pandemic,
SEFM 2020 could not take place physically but had to be replaced by a virtual event
(still held during September 14–18, 2020).

The general aim of the conference is to bring together leading researchers and
practitioners from academia, industry, and government to advance the state of the art in
formal methods, to facilitate their uptake in the software industry, and to encourage
their integration within practical software engineering methods and tools.

There were 58 full paper submissions, which were reviewed for quality, correctness,
originality, and relevance. Each submission was reviewed by four Program Committee
Members and an online post-reviewing discussion, open to the entire Program
Committee, was held to make the final decisions. The committee decided to accept 16
papers (27.6% acceptance rate). This volume contains the revised versions of those 16
papers, which cover a wide variety of topics, including testing, formal verification,
program analysis, runtime verification, meta-programming, and software development
and evolution. The papers address a wide range of systems, such as IoT systems,
human-robot interaction in healthcare scenarios, navigation of maritime autonomous
systems, and operating systems.

The conference program also featured three keynote talks by Paola Inverardi
(University of L’Aquila, Italy), Roberto Di Cosmo (Paris Diderot University, France),
and Eelco Visser (Delft University of Technology, The Netherlands). This volume
includes an extended abstract of Paola Inverardi’s talk titled “A Software Exoskeleton
to Protect Ethics and Privacy of Users in the Digital World” and a full paper of Eelco
Visser’s talk titled “Multi-Purpose Syntax Definition with SDF3” – co-authored by
Luís Eduardo de Souza Amorim.

We would like to thank Paola Inverardi, Roberto Di Cosmo, and Eelco Visser for
accepting our invitations to give keynote talks, and the authors who submitted their
work to SEFM 2020. We are grateful to the members of the Program Committee and
the external reviewers for providing timely and insightful reviews, as well as for their
involvement in the post-reviewing discussions. We would also like to thank the SEFM
Steering Committee for their advices and support, the workshop co-chairs Loek
Cleophas (TU/e, The Netherlands) and Mieke Massink (ISTI, Italy), Jacopo Mauro
(SDU, Denmark) for taking care of the publicity, and Hans-Dieter Hiep and Benjamin
Lion (CWI, The Netherlands) for setting up and maintaining the conference web pages.
We would like to thank all people involved in SEFM 2020 for their contributions in
these exceptional circumstances of the COVID-19 pandemic.



We greatly appreciated the convenience of the EasyChair system for handling the
submission and review processes, and for preparing these proceedings. Finally, we
gratefully acknowledge the technical support from CWI.

July 2020 Frank de Boer
Antonio Cerone
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A Software Exoskeleton to Protect Ethics
and Privacy of Users in the Digital World

(Abstract of a Keynote Talk)

Paola Inverardi

Università dell’Aquila, L’Aquila, Italy

Abstract. In recent years there has been an increasingly amount of interest on
the impact that the digital society can have on the fundamental rights of indi-
vidual, citizens and societies. Starting from the raising of the economy of data to
the appearance of the present and future AI fueled autonomous systems the level
of attention has lifted from privacy concerns to more general ethical ones [6, 7].
Although there is a general consensus on the vulnerability of users and societies
this perspective has been only followed by the regulatory approach that by
putting at work new regulations, notably GDPR has effectively enhanced the
protection of users. Differently, in research the approach is mainly focusing on
AI and concerns the systems/software developers and companies by proposing
code of ethics and guidelines for the development of trustworthy systems in
order to achieve transparency, accountability and explainability of decisions
[1, 5].
Therefore, despite the claim for a human centric AI and the recommendation

to empower the user, the user is left unpaired in her interactions with digital
systems beyond the basic choice of accepting or not accepting the interaction
with a system with all the consequences this might imply. From the case of
privacy preferences in the app domain [12] to the more complex case of
autonomous driving cars [4] the average user is unprotected and inadeguate in
her interaction with the digital world. In the talk I will present the approach and
preliminary results undertaken in the project EXOSOUL [2, 8–11] that stands on
the side of users. EXOSOUL aims at equipping humans with an automatically
generated exoskeleton, a software shield that protects and empowers them and
their personal data in all interactions with the digital world by mediating or
discarding those ones that would result in unacceptable or morally wrong
behaviors according to the user’s ethical and privacy preferences [3].

Keywords: Ethics • Privacy • Software exoskeleton

Supported by organization Università dell’Aquila.
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Multi-purpose Syntax Definition
with SDF3

Lúıs Eduardo de Souza Amorim1 and Eelco Visser2(B)

1 Australian National University, Canberra, Australia
2 Delft University of Technology, Delft, The Netherlands

e.visser@tudelft.nl

Abstract. SDF3 is a syntax definition formalism that extends plain
context-free grammars with features such as constructor declarations,
declarative disambiguation rules, character-level grammars, permissive
syntax, layout constraints, formatting templates, placeholder syntax, and
modular composition. These features support the multi-purpose inter-
pretation of syntax definitions, including derivation of type schemas for
abstract syntax tree representations, scannerless generalized parsing of
the full class of context-free grammars, error recovery, layout-sensitive
parsing, parenthesization and formatting, and syntactic completion. This
paper gives a high level overview of SDF3 by means of examples and pro-
vides a guide to the literature for further details.

Keywords: Syntax definition · Programming language · Parsing

1 Introduction

A syntax definition formalism is a formal language to describe the syntax of
formal languages. At the core of a syntax definition formalism is a grammar
formalism in the tradition of Chomsky’s context-free grammars [14] and the
Backus-Naur Form [4]. But syntax definition is concerned with more than just
phrase structure, and encompasses all aspects of the syntax of languages.

In this paper, we give an overview of the syntax definition formalism SDF3
and its tool ecosystem that supports the multi-purpose interpretation of syntax
definitions. The paper does not present any new technical contributions, but
it is the first paper to give a (high-level) overview of all aspects of SDF3 and
serves as a guide to the literature. SDF3 is the third generation in the SDF
family of syntax definition formalisms, which were developed in the context of
the ASF+SDF [5], Stratego/XT [10], and Spoofax [38] language workbenches.

The first SDF [23] supported modular composition of syntax definition,
a direct correspondence between concrete and abstract syntax, and parsing
with the full class of context-free grammars enabled by the Generalized-LR
(GLR) parsing algorithm [44,56]. Its programming environment, as part of the
ASF+SDF MetaEnvironment [40], focused on live development of syntax defi-
nitions through incremental and modular scanner and parser generation [24–26]
in order to provide fast turnaround times during language development.
c© The Author(s) 2020
F. de Boer and A. Cerone (Eds.): SEFM 2020, LNCS 12310, pp. 1–23, 2020.
https://doi.org/10.1007/978-3-030-58768-0_1
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2 L. E. de Souza Amorim and E. Visser

The second generation, SDF2 encompassed a redesign of the internals of
SDF without changing the surface syntax. The front-end of the implementation
consisted of a transformation pipeline from the rich surface syntax to a minimal
core (kernel) language [58] that served as input for parser generation. The key
change of SDF2 was its integration of lexical and context-free syntax, supported
by Scannerless GLR (SGLR) parsing [60,61], enabling composition of languages
with different lexical syntax [12].

SDF3 is the latest member of the family and inherits many features of its
predecessors. The most recognizable change is to the syntax of productions that
should make it more familiar to users of other grammar formalisms. Further,
it introduces new features in order to support multi-purpose interpretations of
syntax definitions. The goals of the design of SDF3 are (1) to support the defini-
tion of the concrete and abstract syntax of formal languages (with an emphasis
on programming languages), (2) to support declarative syntax definition so that
there is no need to understand parsing algorithms in order to understand defi-
nitions [39], (3) to make syntax definitions readable and understandable so that
they can be used as reference documentation, and (4) to support execution of
syntax definitions as parsers, but also for other syntactic operations, i.e to sup-
port multi-purpose interpretation based on a single source. The focus on multi-
purpose interpretation is driven by the role of SDF3 in the Spoofax language
workbench [38].

In this paper, we give a high-level overview of the features of SDF3 and how
they support multi-purpose syntax definition. We give explanations by means of
examples, assuming some familiarity of the reader with grammars. We refer to
the literature for formal definitions of the concepts that we introduce. Figure 1
presents the complete syntax definition of a tiny functional language (inspired
by OCaml [42]), which we will use as running example without (necessarily)
referring to it explicitly.

2 Phrase Structure

A programming language is more than a set of flat sentences. It is the struc-
ture of those sentences that matters. Users understand programs in terms of
structural elements such as expressions, functions, patterns, and modules. Lan-
guage designers, and the tools they build to implement a language, operate
on programs through their underlying (tree) structure. The productions in a
context-free grammar create the connection between the tokens that form the
textual representation of programs and their phrase structure [14]. Such produc-
tions can be interpreted as parsing rules to convert a text into a tree. But SDF3
emphasizes the interpretation of productions as definitions of structure [39].

A sort (also known as non-terminal) represents a syntactic category such as
expression (Exp), pattern match case (Case), or pattern (Pat). A production
defines the structure of a language construct. For example, the production

Exp.Add = Exp "+" Exp



Multi-purpose Syntax Definition with SDF3 3

module fun

imports lex

context-free start-symbols Exp

sorts Exp Case Bnd Pat

context-free syntax

Exp = <(<Exp>)> {bracket}

Exp.Int = INT

Exp.Var = ID

Exp.Min = [-[Exp]]

Exp.Sub = <<Exp> - <Exp>> {left}

Exp.Add = <<Exp> + <Exp>> {left}

Exp.Eq = <<Exp> == <Exp>> {left}

Exp.Fun = [fun [ID*] -> [Exp]]

Exp.App = <<Exp> <Exp>> {left}

Exp.Let = <

let <{Bnd "\n\n"}*>

in <Exp>

>

Exp.IfE = <

if <Exp> then

<Exp>

else

<Exp>

>

Exp.IfT = <

if <Exp> then

<Exp>

>

Exp.Match = <

match <Exp>

with <{Case "\n"}+>

> {longest-match}

Bnd.Bnd = <<ID> = <Exp>>

Case.Case = [| [Pat] -> [Exp]]

Pat.PVar = ID

Pat.PApp = <<Pat> <Pat>> {left}

Pat = <(<Pat>)> {bracket}

context-free priorities

Exp.Min > Exp.App

> {left: Exp.Sub Exp.Add}

> Exp.Eq > Exp.IfE > Exp.IfT

> Exp.Match > Exp.Fun > Exp.Let,

Exp.App <1> .> Exp.Min

template options

ID = keyword {reject}

keyword -/- [a-zA-Z0-9]

module lex

lexical sorts ID

lexical syntax

ID = [a-zA-Z] [a-zA-Z0-9]*

lexical restrictions

ID -/- [a-zA-Z0-9]

lexical sorts INT

lexical syntax

INT = [\-]? [0-9]+

lexical restrictions

INT -/- [0-9]

context-free restrictions

"-" -/- [0-9]

lexical sorts AST EOF

lexical syntax

LAYOUT = [\ \t\n\r]

LAYOUT = Com

Com = "/*"

(~[\*] | Ast | Com)*

"*/"

Ast = [\*]

LAYOUT = "//" ~[\n\r]*

([\n\r] | EOF)

EOF =

lexical restrictions

AST -/- [\/]

EOF -/- ~[]

context-free restrictions

LAYOUT? -/- [\ \t\n\r]

LAYOUT? -/- [\/].[\/]

LAYOUT? -/- [\/].[\*]

let // length of a list

len = fun xs ->

match xs

with | nil -> 0

| cons x xs -> 1 + len xs

in len (cons 1 (cons 2 nil))

Fig. 1. Syntax of a small functional language in SDF3 and an example program.
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defines that an addition expression is one alternative for the Exp sort and that
it is the composition of two expressions. A production makes the connection
with sentences by means of literals in productions. In the production above, the
two expressions making an addition are separated by a + operator. Finally, a
production defines a constructor name for the abstract syntax tree structure of
a program (Add in the production above). The pairs consisting of sort and con-
structor names should be unique within a grammar and can be used to identify
productions. (Such explicit constructor names are new in SDF3 compared to
SDF2.) A set of such productions is a grammar.

The productions of a grammar generate a set of well-formed syntax trees.
For example, Fig. 2 shows a well-formed tree over the example grammar. The
language defined by a grammar are the sentences obtained by taking the yields
of those trees, where the yield of a syntax tree is the concatenation of its leaves.
Thus, the sentence corresponding to the tree in Fig. 2 is (fun x -> x + 3) y.

The grammars of programming languages frequently feature lists, including
lists of statements in a block, lists of field declarations in a class, and lists of
parameters of a function. SDF3 supports direct expression of such list sorts by
means of Kleene star and plus operators on sorts. In Fig. 1 the formal parameters
of a Fun is defined as ID*, a list of zero or more identifiers. Other kinds of list
include A+ (one or more As), {A sep}* (zero or more As separated by seps),
and {A sep}+ (one or more As separated by seps). Lists with separators are
convenient to model, for example, the arguments of a function as {Exp ","}*,
i.e. a list of zero or more expressions separated by commas.

Exp.App

Exp

( Exp.Fun

fun ID*

x

-> Exp.Add

Exp.Var

x

+ Exp.Int

3

)

Exp.Var

y

Fig. 2. Concrete syntax tree

Exp.App

Exp.Fun

ID*

x

Exp.Add

Exp.Var

x

Exp.Int

3

Exp.Var

y

Fig. 3. Abstract syntax tree

Abstract Syntax. Concrete syntax trees contain irrelevant details such as key-
words, operator symbols, and parentheses (as identified by the bracket attribute
on productions). These details are irrelevant since the constructor of a produc-
tion of a node uniquely identifies the language construct concerned. Thus, from
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a concrete syntax tree we obtain an abstract syntax tree by omitting such irrele-
vant details. Figure 3 shows the abstract syntax tree obtained from the concrete
syntax tree in Fig. 2. Abstract syntax trees can be represented by means of first-
order terms in which a constructor is applied to a (possibly empty) sequence of
sub-terms. For example, the abstract syntax tree of Fig. 3 is represented by the
term.

App(Fun(["x"], Add(Var("x"), Int("3"))), Var("y"))

Note that lists are represented by sequences of terms between square brackets.

Signatures. A grammar is a schema for describing well-formed concrete and
abstract syntax trees. That is, we can check that a tree is well-formed by checking
that the subtrees of a constructor node have the right sort according to the
corresponding production, and a parser based on a grammar is guaranteed to
produce such well-formed trees. To further process trees after parsing, we can
work on a generic tree representation such as XML or ATerms [6], or we can
work with a typed representation. The schemas for such typed representations
can be derived automatically from a grammar. For example, the Statix language
for static semantics specification [3] uses algebraic signatures to describe well-
formed terms. The following signature in Statix defines the algebraic signature
of a selection of the constructors of the example language:

signature

sorts Exp

constructors

Fun : list(ID) * Exp -> Exp

Add : Exp * Exp -> Exp

App : Exp * Exp -> Exp

Var : ID -> Exp

Int : INT -> Exp

The SDF3 compiler automatically generates signatures for Statix [3], Strat-
ego [10], and DynSem [57].

3 Declarative Disambiguation

Multiple trees over a grammar can have the same yield. Or, vice versa, a sentence
in the language of a grammar can have multiple trees. If this is the case, the
sentence, and hence the grammar is ambiguous.

One strategy to disambiguate a grammar is to transform it to an unambigu-
ous grammar that describes the same language, but has exactly one tree per
sentence in the language. However, this may not be easy to do, may distort
the structure of the trees associated with the grammar, and changes the typ-
ing scheme associated with the grammar. SDF3 supports the disambiguation of
an ambiguous grammar by means of declarative disambiguation rules. In this
section we describe disambiguation by means of associativity and priority rules.
In the next section we describe lexical disambiguation rules.
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Disambiguation by Associativity and Priority Rules. Many language ref-
erence manuals define the disambiguation of expression grammars by means of
priority and associativity tables. SDF3 formalizes such tables as explicit asso-
ciativity and priority rules over the productions of an ambiguous context-free
grammar. While grammar formalisms such as YACC also define associativity
and priority rules, these are defined in terms of low-level implementation details
(e.g. choosing sides in a shift/reduce conflict.) The semantics of SDF3 associativ-
ity and priority rules has a direct formal semantics that is defined independently
of a particular implementation [53]. The semantics is defined by means of sub-
tree exclusion, that is, disambiguation rules are interpreted by rejecting trees
that match one of the subtree exclusion patterns generated by a set of disam-
biguation rules. If a set of rules is sound and complete (there is a rule for each
pair of productions), then disambiguation is sound and complete, i.e. assigns a
single tree to a sentence. (Read the fine print in [53].)

A priority rule A.C1 > A.C2 defines that (the production identified by the
constructor) A.C1 has higher priority than (the production identified by the
constructor) A.C2. This means that (a tree with root constructor) A.C2 cannot
occur as a left, respectively right recursive child of (a tree node with constructor)
A.C1 if A.C2 is right, respectively left recursive. A left associativity rule A.C1

left A.C2 defines that A.C1 and A.C2 are mutually left associative. This means
that A.C2 cannot occur as a right recursive child of A.C1. (Right associativity
is defined symmetrically.)

Figure 1 defines the disambiguation rules for the example language. Accord-
ing to these rules the expression a - b + c == d should be parsed as ((a - b)

+ c) == d (since Sub and Add are left associative and have higher priority than
Eq) and the expression match a with | b -> c + d should be parsed as match

a with | b -> (c + d) (since Add has higher priority than Match).
The semantics of priority shown above is particularly relevant for prefix and

postfix operators. A prefix operator (such as Match) may occur as right child
of an infix operator (such as Sub), even if it has lower priority, since such a
combination of productions is not ambiguous. For example, the expression a -

match b with | c -> d has only one abstract syntax tree.
This semantics is safe, i.e. it does not reject any sentences that are in the lan-

guage of the underlying context-free grammar. However, with the rules defined
so far the semantics is not complete. As an example consider two of the trees
for the sentence a - match b with | c -> d + e in Fig. 4. Both these trees are
conflict free according to the rules above; a Match may occur as right hand child
of a Sub and Sub and Add are left associative. The problem is that the conflict
between Match as a left child of Add is hidden by the Sub tree. To capture such
deep conflicts, the priority rule involving Add, Sub and Match is amended to
require that a right-most occurrence of a production A.C2 in the left recursive
argument of a production A.C1 is rejected if A.C1 > A.C2. (And symmetrically
for left-most occurrences in right recursive arguments.) Thus, the priority rules
of Fig. 1 select the left tree of Fig. 4.
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Sub

Var

a

- Match

match Var

b

with Case

| PVar

c

-> Add

Var

d

+ Var

e

Add

Sub

Var

a

- Match

match Var

b

with Case

| PVar

c

-> Var

d

+ Var

e

Fig. 4. Concrete syntax trees for the expression a - match b with | c -> d + e.

The longest-match attribute of the Match production is a short hand for deep
priority conflicts for lists. The Match construct gives rise to nested pattern match
clauses such as the following

match a with | d -> match e with | f -> g + h | i -> j + k

The longest match attributes disambiguates such nested lists by associating trail-
ing cases with the nearest match statement.

Afroozeh et al. [1] showed that semantics of disambiguation in SDF2 [7,61]
was not safe. They define a safe interpretation of disambiguation rules by means
of a grammar transformation. Amorim and Visser [53] define a direct semantics
of associativity and priority rules by means of subtree exclusion including prefix
and postfix operators, mixfix productions, and indirect recursion. They show that
the semantics is safe and complete for safe and complete sets of disambiguation
rules for expression grammars without overlap. They also discuss the influence
of overlap on disambiguation of expression grammars. For example, in Fig. 1,
the productions Min, Sub, and App have overlap. The expression x - y can be
parsed as App(Var("x"), Min(Var("y"))) or as Sub(Var("x"), Var("y")). This is
not an ambiguity that can be solved by means of safe associativity and priority
rules. The indexed priority rule Exp.App <1> .> Exp.Min solves this ambiguity
by forbidding the occurrence of Min as second argument of App. (The index is 0
based.)

Amorim et al. show that deep conflicts are not only an artifact of grammars,
but do actually occur in the wild, i.e. that they do occur in real programs [52].
One possible implementation of disambiguation with deep conflicts is by means
of data dependent parsers. Amorim et al. show that such parsers can have near
zero overhead when compared to disambiguation by grammar rewriting [55].

Parenthesization. In the previous section we saw that parentheses, i.e. pro-
ductions annotated with the bracket attribute, are omitted when transforming a
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concrete syntax tree to an abstract syntax tree (Fig. 3). Furthermore, by using
declarative disambiguation, the typing scheme for abstract syntax trees allows
arbitrary combinations of constructors in well-formed abstract syntax trees. This
is convenient, since it allows transformations on trees to create new trees without
regard for disambiguation rules. Before formatting such trees (Sect. 5), paren-
theses need to be inserted in order to prevent creating a sentence that has a
different (abstract) syntax tree when parsed. That is, we want the equation
parse(format(t)) = t to hold for any well-formed abstract syntax tree.

The advantage of declarative disambiguation rules is that they can be inter-
preted not only to define disambiguation during parsing, but can also be inter-
preted to detect trees that need disambiguation. For example, without parenthe-
sization the tree Add(Eq(Var("a"), Var("b")), Var("c")) would be formatted as
a == b + c, which would be parsed as Add(Var("a"), Eq(Var("b"), Var("c"))).
Parenthesization recognizes that the first tree has a priority conflict between
Add and Eq and inserts parentheses around the equality expression, such that
the tree is formatted as (a == b) + c, which has the original tree as its abstract
syntax tree. The implementation of SDF3 in Spoofax supports parenthesization
following the disambiguation semantics of Amorim and Visser [53].

4 Lexical Syntax

The lexical syntax of a language concerns the lexemes, words, or tokens of the
language and typically includes identifiers, numbers, strings, keywords, oper-
ators, and delimiters. In traditional parsers and parser generators, parsing is
divided into a lexical analysis (or scanning) phase in which the characters of a
program are merged into tokens, and a context-free analysis phase in which a
stream of tokens is parsed into phrase structure. Inspired by Salomon and Cor-
mack [45], SDF2 adopted character-level grammars using the single formalism
of context-free productions to define lexical and context-free syntax, supported
by scannerless parsing [60]. SDF3 has inherited this feature.

Character-Level Grammars. In character-level grammars, the terminals of
the grammar are individual characters. In SDF3, characters are indicated by
means of character classes. For example, the definition of identifiers uses the
character class [a-zA-Z0-9] comprising of lower and upper case letters and
digits. Tokens are defined using the same productions that we use for context-
free phrase structure, except that it is not required to associate a constructor
with a lexical production. For example, the syntax of identifiers is defined using
the production ID = [a-zA-Z] [a-zA-Z0-9]*, i.e. an identifier starts with a letter,
which is followed by zero or more letters or digits. In a production such as
Exp.Let = "let" Bind* "in" Exp it appears that "let" and "in" are terminals.
However, SDF3 defines such literals by means of a lexical production in which
the literal acts as a sort, which is defined in terms of character classes. Thus,
the use of the literal "let" implies a production "let" = [l] [e] [t]. SDF3
also supports case-insensitive literals; in this case, the literal ’let’ implies a
production ’let’ = [lL] [eE] [tT].
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Lexical Disambiguation. Just as phrase structure, lexical syntax may be
ambiguous, requiring lexical disambiguation. The root cause of lexical ambiguity
is overlap between lexical categories. For example, an identifier ab overlaps with
the prefix of a longer identifier abc and let may be an identifier or a keyword.
The two common lexical disambiguation policies are (1) prefer longest match,
and (2) prefer one category over another. In scanner specification languages such
as LEX [43] these policies are realized by (1) preferring the longest match and
by (2) ordering the definitions of lexical rules and selecting the first rule that
applies. This works well when recognizing tokens independent of the context in
which they appear.

In a character-level grammar that approach does not work, since tokenization
may depend on the phrase structure context (see also the discussion on language
composition below), and due to modularity of a syntax definition, there is no
canonical order of lexical rules. Thus, lexical disambiguation is defined anal-
ogously to subtree exclusion for phrase structure in the previous section, by
defining what is not allowed using follow restrictions and reject productions. We
discuss an example of each. The expression ab can be a single identifier or the
application of a to b, i.e. App(Var("a"),Var("b")). This ambiguity is solved by
means of the follow restriction ID -/- [a-zA-Z0-9] which states that an identi-
fier cannot be followed directly by a letter or digit. The expression if x then y

can be an if-then expression, i.e., IfT(Var("x"), Var("y")), or it can be the
application of the variable if to some other variables, i.e.,

App(App(App(Var("if"), Var("x")), Var("then")), Var("y"))

This ambiguity is solved by means of reject productions ID = "if" {reject}

and ID = "else" {reject} to forbid the use of the keywords if and else as
identifiers.

Layout. Another aspect of lexical syntax is the whitespace characters and com-
ments that can appear between tokens, which are known as ‘layout’ in SDF.
The definition of layout is a matter of lexical definition as that of any other
lexical category. Module lex in Fig. 1 defines layout as whitespace, multi-line
comments (delimited by /* and */), and single-line comments (starting with
//). The multi-line comments can be nested to enable commenting out code
with comments. This is not supported by scanner generators based on regular
expressions. Note the use of follow restrictions to ensure that an asterisk within
a multi-line comment is not followed by a slash (which should be parsed as the
end of the comment), and to characterize end-of-file as the empty string that is
not followed by any character (which is in turn defined as the complement of the
empty character class).

What is special about layout is that it can appear between any two ordinary
tokens. In a scanner-based approach layout tokens are just skipped by the scan-
ner, leaving only tokens that matter for the parser. A character-level grammar
needs to be explicit about where layout can appear. This would result in boiler-
plate code as illustrated by the following explicit version of the Fun production:
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syntax

Exp-CF.Var = ID-CF

Exp-CF.Add = Exp-CF LAYOUT?-CF "+" LAYOUT?-CF Exp-CF {left}

ID-CF = ID-LEX

ID-LEX = [\65-\90\97-\122] [\48-\57\65-\90\97-\122]*-LEX

"+" = [\43]

LAYOUT?-CF =

LAYOUT?-CF = LAYOUT-CF

LAYOUT-CF = LAYOUT-CF LAYOUT-CF {left}

LAYOUT-CF = LAYOUT-LEX

LAYOUT-LEX = [\9-\10\13\32]

restrictions

LAYOUT?-CF -/- [\9-\10\13\32]

ID-LEX -/- [\48-\57\65-\90\97-\122]

Fig. 5. Normalized syntax and restrictions for a selection of productions from Fig. 1.

Exp.Fun = "fun" LAYOUT? ID* LAYOUT? "->" LAYOUT? Exp

To avoid such boilerplate, the SDF3 compiler applies a transformation to pro-
ductions in context-free syntax sections in order to inject optional layout [61].
Figure 5 shows the result of that normalization to a small selection of produc-
tions from Fig. 1. Note that in lexical productions (such as for ID-LEX) no layout
is injected, since the characters of tokens should not be separated by layout. Note
the use of -LEX and -CF suffixes on sorts to distinguish lexical sorts from context-
free sorts (This transformation is currently applied to the entire grammar, which
may hinder grammar composition between modules specifying different layout.)

Layout Sensitive Syntax. In Sect. 3 we showed how associativity and priority
rules can be used to disambiguate an ambiguous grammar. For example, we saw
how longest match for Match ensures that a match case is always associated with
the nearest match. Similarly, Fig. 1 disambiguates the dangling-else ambiguity
between IfT and IfE such that an else branch is always associated with the
closest if.

An alternative approach to disambiguation is to take into account the layout
of a program. For that purpose, SDF3 supports the use of layout constraints,
which pose requirements on the two dimensional shape of programs [17,54]. We
illustrate layout constraints with layout-sensitive disambiguations of the Match
and IfE productions in Figs. 6 and 7.

The layout constraints in Fig. 6 require that the if and else keywords of
the IfE production are aligned. The examples in the figure show how the else
branch can be associated with either if by choosing the layout. In addition, the
indent constraints require that the conditions and branches of the IfT and IfE
constructs appear to the right of the if and else keywords. Figure 7 disam-
biguates the association of the match cases with a match by requiring that the
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Exp.IfE = "if" exp1:Exp "then" exp2:Exp "else" exp3:Exp {

layout(align "if" "else" && indent "if" "then"

&& indent "if" exp1 && indent "if" exp2 && indent "else" exp3)

}

Exp.IfT = "if" exp1:Exp "then" exp2:Exp {

layout(indent "if" "then" && indent "if" exp1 && indent "if" exp2)

}

if a then

if b then

c

else

d

IfT(

Var("a")

, IfE(Var("b"), Var("c"), Var("d"))

)

if a then

if b then

c

else

d

IfE(

Var("a")

, IfT(Var("b"), Var("c"))

, Var("d")

)

Fig. 6. Layout-sensitive disambiguation of dangling-else.

Exp.Match = "match" Exp "with" cases:Case+ {

layout(indent "match" "with" && indent "match" exp

&& align-list cases)

}

match a

with | d -> match e

with | f -> g

| i -> j

Match(

Var("a")

, [ Case(

PVar("d")

, Match(

Var("e")

, [ Case(PVar("f"),Var("g"))

, Case(PVar("i"),Var("j"))

]

)

)

]

)

match a

with | d -> match e

with | f -> g

| i -> j

Match(

Var("a")

, [ Case(

PVar("d")

, Match(

Var("e")

, [Case(PVar("f"),Var("g"))]

)

)

, Case(PVar("i"),Var("j"))

]

)

Fig. 7. Layout-sensitive disambiguation of longest match for nested match cases.
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Fig. 8. Syntax-aware editor for the fun-query language with syntax highlighting, parse
error recovery, error highlighting, and syntactic completion.

cases are aligned. Thus, one can obtain the non-longest match (second example)
without using parentheses.

Syntax Highlighting. The Spoofax language workbench [38,64] generates a
syntax-aware editor from a syntax definition. Based on the lexical syntax, it
derives syntax highlighting for programs by assigning colors to the tokens in the
syntax tree as illustrated in Fig. 8. The default coloring scheme assigns colors
to lexical categories such as keywords, identifiers, numbers, and strings. The
coloring scheme can be adjusted in a configuration file by associating colors with
sorts and constructors.

Language Composition. SDF3 supports a simple module mechanism, allow-
ing large syntax definitions to be divided into a collection of smaller modules,
and allowing to define a library with reusable definitions. For example, the lex
module provides a collection of common lexical syntax definitions. A module
may extend the definition of syntactic categories of another module. This can be
used, for example, to organize the syntax definition for a language as a collec-
tion of components (such as variables, functions, booleans, numbers) that each
introduce constructs for a common set of syntactic categories (such as types and
expressions).

Another application of the module mechanism is to compose the syntax def-
initions of different languages into a composite language. For example, Fig. 9
defines a tiny query language in module query and its composition with the
fun language of Fig. 1. The composition introduces the use of a query as an
expression, and a quoted expression as a query identifier. The languages have a
different lexical syntax, i.e. the keywords of the fun language are not reserved in
the query language, and vice versa. Thus, from can be used as a variable in a fun
expression, while it is a keyword in a query (see Fig. 8). Language composition
with SDF2/3 has been used for the embedding of domain-specific languages [12],
for the embedding of query and scripting languages [9], and for the organization
of composite languages such as AspectJ [11] and WebDSL [27,62].

A consequence of merging of productions for sorts with the same name and
injecting layout between symbols of a production, is that the layout of com-
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module query

sorts Query lexical sorts QID

lexical syntax

QID = [a-zA-Z0-9]+

lexical restrictions

QID -/- [a-zA-Z0-9]

context-free syntax

Query.Select = <

select <QID*> from <QID*> where <Cond>

>

Cond.Eq = <<QID> == <QID>>

template options

QID = keyword {reject}

keyword -/- [a-zA-Z0-9]

module fun-query

imports fun query

context-free syntax

Exp.Query = Query

QID.Exp = [~[Exp]]

ID = [select] {reject}

Fig. 9. Composition of languages with different lexical syntax.

posed languages is unified. It is future work to preserve the layout of composed
languages.

5 Formatting

Formatting is the process of mapping abstract syntax trees to text. This can be
used to improve the layout of a manually written program, or it can be used
to turn a generated or transformed abstract syntax tree into a program text.
Formatting is preceded by parenthesization to correctly insert parentheses such
that parsing the formatted text preserves the tree structure (see Sect. 3).

Template Productions. Formatting comes in two levels. The basic level of for-
matting, also known as ugly-printing, is concerned with inserting the ‘irrelevant’
notational details that were removed in the translation to abstract syntax. After
ugly-printing, parsing the generated text should produce the original abstract
syntax tree. This translation can be obtained from a grammar mechanically. For
example, the Stratego/XT transformation tool suite featured a ‘pretty-print’
table generator [35] that formalized for each constructor a mapping to these
notational details.

The second level of formatting, also known as pretty-printing, is concerned
with producing white space to make the generated program text readable. The
Box language [8,34] provides abstractions for horizontal and vertical composi-
tion and horizontal (e.g. indentation) and vertical (line breaks) spacing. This
is a useful intermediate representation for formatting, which allows the pretty-
printer writer to abstract from an actual pretty-print algorithm. (Libraries for
pretty-printing are built on the same principle [29].) Still, a mapping from
abstract syntax trees to Box expressions requires human judgement and can-
not be derived mechanically from a grammar. The pretty-print table generator
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mentioned above featured heuristics for associating Box expressions with lan-
guage constructs. However, in many cases, it was necessary to edit the table to
produce useful results, creating a bidirectional update problem to reflect changes
to the grammar. SDF3 solves this problem by means of template productions,
originally motivated to support syntactic completion (see below) [63]. (Template
productions are a signature feature of SDF3, as they changed the syntax of pro-
ductions from defined non-terminal on the right in SDF and SDF2, to defined
non-terminal on the left, and the template quotes have a distinct influence on
the typography of syntax definitions.)

A regular context-free grammar production (Sect. 2) such as

Exp.IfE = "if" Exp "then" Exp "else" Exp

combines sorts and literals. Sorts are identifiers referring to other productions
and become the sub-terms of an abstract syntax tree node. Literals are quoted
strings and are removed in the mapping to abstract syntax, needing to be
restored during pretty-printing. Sorts and literals are implicitly separated by
layout as discussed in Sect. 4.

Exp.IfE = <

if <Exp> then

<Exp>

else

<Exp>

>

Fig. 10. Template pro-
duction

In a template production the usual quotation is
inverted. Consider the template version of the IfE
production in Fig. 10. The outer quotes (<if ...>),
quote a literal piece of text. The inner quotes (<Exp>)
are escapes to sorts. A template not only captures
literals and sorts, but also captures a two dimen-
sional shape. For the purposes of parsing this shape
is ignored. That is, whitespace between symbols is
turned into optional layout analogous to the trans-
formation discussed in Sect. 4. (For the purpose of
layout-sensitive parsing it would be interesting to interpret the layout in a tem-
plate as layout constraints, but it is not easy to distinguish which layout should
be enforced, and which layout is incidental.)

Exp.Let = <

let <{Bnd "\n\n"}*>

in <Exp>

>

Fig. 11. Separator layout

For the purpose of pretty-printing, the two
dimensional shape is interpreted as horizontal and
vertical composition and spacing. That is, new-
lines are interpreted as vertical space and spaces
are interpreted as indentation (with respect to the
first non-whitespace character of the template). The
template in Fig. 11 shows how the spacing of list
elements can be configured with whitespace in the
separator.

Templates are translated to a transformation from abstract syntax terms to
Box expressions. Thus, after every change to the grammar, the pretty-printer
is automatically regenerated and up-to-date, without requiring a bidirectional
update process. Plain productions with quoted literals can also be obtained
automatically from template productions.

The formatters derived from SDF3 templates have some limitations, which
are partly due to (the interpretation of) the Box intermediate representation.
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First, formatting is fairly rigid. It does not take into account the composition and
size of expressions, but formats a language construct always in the same man-
ner. Furthermore, it is not customizable with user preferences, as is customary
in integrated development environments such as Eclipse. When formatting man-
ually written programs to improve their layout, or when formatting a program
after applying some transformation (e.g. a refactoring), it can be important to
preserve the layout (comments and/or whitespace) of the original program. De
Jonge and Visser [32] developed a layout preserving formatting algorithm with
heuristics for moving comment blocks. This algorithm is currently not integrated
in the SDF3 tool suite.

Completion. Formatting is also an issue when proposing and inserting syntac-
tic completions in an editor. The first version of Spoofax [38] featured syntactic
completion templates instructing the editor what to do on particular triggers,
which redundantly specified syntactic patterns. Vollebregt et al. [63] introduced
template productions with the goal to automatically generate completion tem-
plates and support a program completion workflow in the style of structured
editors. Amorim et al. [51] generate explicit placeholder syntax for all syntactic
sorts in order to explicitly represent incomplete programs. Syntactic completion
becomes a matter of generating completion proposals for placeholders based on
the productions of the grammar. The resulting editor behaves like a combination
of text editor and structure editor as illustrated in Fig. 8.

6 Parsing

Finally, we discuss the parsing strategy of SDF3. Character-level grammars do
not fit in restricted grammar classes such as LL or LR grammars; deciding which
alternative to take may require an unbounded number of characters of looka-
head [61]. Furthermore, only the full class of context-free grammars is closed
under composition [28], i.e. the composition of two LL or LR grammars is not
necessarily an LL or LR grammar. Thus, SDF3 uses a generalized parsing algo-
rithm that can deal with the full class of context-free grammars.

Lazy Parse Table Generation. The SDF3 compiler first transforms a mod-
ular syntax definition to a monolithic and normalized syntax definition, which
makes layout and deep priority conflicts explicit in the grammar [53,61]. A static
analysis checks whether all used sorts are defined and warns for missing asso-
ciativity and priority rules. A parser generation algorithm is used to generate a
shift/reduce parse table from the normalized grammar. The algorithm is based
on SLR parse table generation [28] adapted to deal with shallow priority con-
flicts [59]. Follow restrictions are implemented by restricting the follow set of
non-terminals in the parse table. Follow restrictions that are longer than one
character are added as dynamic checks. The resulting table may contain shift/re-
duce conflicts.
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a + b == c + d

amb([

Add(Var("a"), amb([ Add(Eq(Var("b"), Var("c")), Var("d"))

, Eq(Var("b"), Add(Var("c"), Var("d")))]))

, Add(amb([ Eq(Add(Var("a"), Var("b")), Var("c"))

, Add(Var("a"), Eq(Var("b"), Var("c")))]), Var("d"))

, Eq(Add(Var("a"), Var("b")), Add(Var("c"), Var("d")))

])

Fig. 12. Sentence and abstract syntax tree with (shared) ambiguities.

LR parse table generation is a non-local operation, requiring the entire gram-
mar, implying that separate compilation is not possible. If one module of the
syntax definition is changed, it needs to be recompiled entirely. This is a dis-
advantage for scenarios that depend on language extension [12,16]. Bravenboer
and Visser developed a representation and algorithm for parse table composition
that realized a form of separate compilation for syntax definitions [13]. However,
the algorithm did not support cross-module priority declarations and was not
adopted in practice. As a more pragmatic approach, Amorim et al. [52] adopted
lazy parse table generation [26], which starts with an empty parse table, and
only generates those states that are needed at parse time. This ensures fast
turnaround times during development of syntax definitions.

Scannerless Generalized LR Parsing with Error Recovery. The shift/re-
duce parse tables generated from SDF3 definitions are not deterministic, i.e. may
have shift/reduce conflicts due to proper ambiguities or unbounded lookahead.
To handle both these cases, SDF3 uses a Scannerless Generalized-LR (SGLR)
parsing algorithm [60].

The GLR algorithm handles conflicts in the parse table by forking off sepa-
rate parsers for each alternative of a conflict [44]. If the parser has encountered a
genuine ambiguity, the parallel parsers will eventually end up in the same parse
state, and the branches give rise to alternative parse trees. The result of parsing
is a parse forest, a compact representation of all possible parse trees. A language
engineer using SDF3 can inspect the ambiguities of a grammar by inspecting the
(abstract) syntax trees with ambiguities, instead of inspecting shift/reduce con-
flicts. Figure 12 shows an abstract syntax tree with ambiguities for an expression
in the example language using a syntax definition without disambiguation rules.

Another reason for shift/reduce conflicts is the limited lookahead of the
parser generator. For example, consider parsing the expression a == b /* a

comment */ + c. After reading the identifier b, the parser can reduce to create
Eq(Var("a"),Var("b")) or it can shift, expecting to eventually parse some sub-
expression of Eq, i.e. resulting in a term of the form Eq(Var("a"),?(Var("b"),

...)). This decision can only be made when parsing the + operator. But before
the parser sees that operator, it first needs to process the comment. Forking
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module matching

language mpsd-sdf3

start symbol Exp

test match longest match [[

match a with | b -> match c with | e -> f | g -> h

]] parse to [[

match a with | b -> (match c with | e -> f | g -> h)

]]

Fig. 13. Testing longest match disambiguation of the match-with expression.

the parser allows delaying the decision. Eventually only one of the parsers will
survive and produce a tree without ambiguities.

A GLR parser becomes a scannerless parser by reading characters as tokens
and handling lexical disambiguation such that invalid forks are prevented or
killed as early as possible [60]. Follow restrictions are handled by means of a
dynamic lookahead check on reductions. Reject productions are implemented by
rejecting states that are reached with a reject production. That requires postpon-
ing the reduction from rejectable states until it is certain no reject productions
will appear.

The SGLR algorithm is extended to support parse error recovery and pro-
duce a parse tree even if a program text contains syntactic errors [30,33,36]. This
is important in interactive settings such as editors in an integrated development
environment in order to enable editor services such as syntax highlighting and
type analysis for programs with errors, as arise during program development.
Error recovery is realized by an extension of SDF3 with recovery productions,
which are only used in case normal parsing fails. There are two main categories of
recovery rules. Inspired by island grammars [31], so called water productions turn
normal tokens into layout, which allows skipping some tokens when they cannot
be parsed otherwise. Productions such as ")" = {recover} allow the insertion of
missing literals (or complete sorts). The SDF3 normalizer automatically gener-
ates a permissive grammar with recovery rules, but such rules can also be added
manually. Error recovery is the basis for reporting syntax errors. Improving the
localization and explanation of error messages is a topic for future work.

An extension of SGLR to support incremental parsing based on the work of
Wagner et al. [65] is under development [49].

Testing. Testing SDF3 syntax definitions is supported by the Spoofax Testing
(SPT) language, a domain-specific language for testing various aspects of lan-
guage definitions, including parsing [37]. An SPT test quotes a language fragment
and specifies a test expectation. For testing syntax, the expectations are parse
succeeds, parse fails, and parse to a specific term structure. Figure 13 illus-
trates the testing of disambiguation in SPT by specifying the disambiguated
expression as parse result.
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7 Related Work

We have referred to previous and related work throughout this paper. The papers
that we cited about particular aspects of SDF3 provide extensive discussions of
related technical work, which is beyond the scope of this paper. Here we provide
a couple of high-level pointers to related efforts.

The design and implementation of SDF3 is motivated by its use in the
Spoofax language workbench [38,64]. Erdweg et al. [18,19] give an overview
of general concerns of the design and implementation of language workbenches.

SDF3 is bootstrapped, i.e. the syntax of SDF3 has been defined in SDF3.
Other significant applications of SDF3 are the NaBL2 [2] and Statix [3] languages
for type system specification, the IceDust language for data modeling [20–22],
and the FlowSpec language for data-flow analysis specification [50]. Many lan-
guages originally developed with SDF2 are being ported to SDF3, including the
Stratego transformation language [10].

Several syntax definition languages share aims with SDF3, in particular
regarding the support for language composition. The syntax definition sub-
language of the RASCAL meta-programming language [41] has a common root in
SDF2. RASCAL has adopted generalized GLL parsing [48] instead of GLR pars-
ing. The syntax definition language of the Silver [66] attribute grammar system
takes a different approach to language composition. Instead of relying on scan-
nerless generalized parsing, it relies on context-aware scanners and restrictions
on grammars in order to guarantee absence of ambiguities in composed gram-
mars [46]. Based on these restrictions it can support parse table composition
for language composition [47]. The Eco editor [15] supports language composi-
tion using language boxes, where the editor keeps track of transitions between
languages, avoiding the composition of grammars.

8 Conclusion

In this paper we have presented SDF3, a mature language for the definition of
syntax. The design and implementation of SDF3 are based on many years of
research and engineering, fed by the experience of numerous researchers, devel-
opers, and students. The multi-purpose interpretation of SDF3 specifications
allows quick prototopying of language designs and enables testing these designs
in a full-fledged environment with a syntax aware editor.
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Abstract. Go is an open-source programming language developed at
Google. In previous works, we presented formalizations for a weak mem-
ory model and a data-race detector inspired by the Go specification. In
this paper, we describe how our theoretical research guided us in the pro-
cess of finding and fixing a concrete bug in the language. Specifically, we
discovered and fixed a discrepancy between the Go memory model and
the Go data-race detector implementation—the discrepancy led to the
under-reporting of data races in Go programs. Here, we share our expe-
rience applying formal methods on software that powers infrastructure
used by millions of people.

1 Introduction

Go is an open-source programming language designed for concurrency. Devel-
oped at Google, the language has gained traction in the areas of cloud com-
puting [6], where it is used to implement various client-server applications and
container management systems, such as Docker [12] and Kubernetes [2].

One of the language’s main features are light-weight threads, called gorou-
tines, which are spawned during function invocation. Any function can be made
to execute asynchronously by simply prepending the keyword go to the function’s
name during invocation. Go’s approach to synchronization also stands out. Do
not communicate by sharing memory; instead, share memory by communicat-
ing [8]—is a catchphrase among Go programmers. The language’s feature-mix
encourages a style of programming where (1) variables are implicitly owned
by goroutines, and (2) variables are shared when this ownership is transferred
through direct communication. So, in contrast to locks, which favor synchroniza-
tion via mutual exclusion, Go has channels, which typically enforce a happens-
before relation [10] between a message sender and its receiver.

The discipline prescribed by Go’s share by communicating slogan is not,
however, enforced at compile time.1 It is, therefore, possible for programs to

1 There are good reasons why a type checker cannot enforce such a discipline without
seriously restricting the language.
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harbor data races. Since data races often lead to counter intuitive behavior,
the Go programming language comes with a data-race detector built into its
toolchain.

The Go memory model is relaxed and its specification describes the behavior
of well-synchronized programs. In [4], we gave a small-step operational semantics
of a memory model inspired by Go’s. There, we proved the DRF-SC guarantee,
which states that data-race free (DRF) program executions behave sequentially
consistently (SC) under the proposed model. Given the importance of flagging
data races, in [5] we explore the use of our semantics for the sake of data-
race detection. Armed with these formalisms, we turned our attention to Go’s
implementation. With that, we discovered that the Go data-race detector was
not strictly abiding by the rules of the Go memory model specification. This
oversight lead to the under-reporting of data races in Go programs. We then
proposed and implemented a fix in conjunction with the Go community. Here,
we discuss how the theoretical modeling of the language helped us find and
address this issue.

In Sects. 2 and 3, we will visit the Go memory model and explore examples
of synchronization via channel communication. Having covered this background,
we discuss how the Go data-race detector is built into the language (Sect. 4). In
Sect. 4.1, we show that the detector’s implementation inadvertently mismatched
rules governing channel communication. We address the issue in Sect. 5 and share
lessons we learned in Sect. 6.

2 Synchronization via Channel Communication

Two concurrent memory accesses constitute a data race if they reference the same
memory location and at least one of the accesses is a write. Data races can be
eliminated through synchronization, that is, the enforcement of an order between
conflicting memory accesses. In Go, synchronization is performed via channel
communication. Go channels assure FIFO communication from a sender to a
receiver sharing the channel’s reference. Channels can be dynamically created
and closed—their type and finite capacity are fixed upon creation.

When attempting to receive from an empty channel, a thread blocks until, if
ever, a value is made available by a sender. A thread also blocks when attempting
to send on a channel that is full. According to the Go memory model specifica-
tion [7], the following two main rules govern synchronization. Given a channel c
with capacity C:

I. A send on c happens-before the corresponding receive from c completes.
II. The kth receive from c happens-before the (k + C)th send on c completes.

The first rule establishes a causal relationship between a sender and its commu-
nicating partner. In contrast, the second rule establishes a relationship between
a sender and some past receiver, without there being any message transmission
between the two goroutines. Note also that the second rule accounts for channel
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capacity: a current sender is able to place a new message because some past
receiver, by taking an older message out, has made space in the channel’s buffer.

Figure 1a is an example of synchronization via rule (I), and Fig. 1b is an
example via rule (II). Throughout the paper, we will follow the syntax in [4],
which closely matches Go’s. The term c ← v, with the arrow pointing into c,
stand for the sending of value v over channel c. Let ← c, with the arrow pointing
away from c, stand for the reception of a value from the channel. Assuming a
channel of capacity one, Fig. 1a is the classic message passing example, while
Fig. 1b enforces mutual exclusion.

Fig. 1. Synchronization via channel communication (channels of capacity one).

In the message passing example, the goroutine T0 writes to a shared variable
z and, by sending a message over a channel, the routine transfers its implicit own-
ership of z. Goroutine T1 blocks until a message is ready to be received. Once a
message has been received, T1 proceeds to load from z. This program is properly
synchronized, which means T1 necessarily loads the value of 42 as opposed to
potentially observing an uninitialized variable value. Using the happens-before
(HB) rules of the Go memory-model specification, we can show that the memory
accesses are properly synchronized as follows:

z := 42 �hb c ← 0 via program order (1)
c ← 0 �hb ← c via channel rule (I) (2)
← c �hb load z via program order (3)

z := 42 �hb load z via (1), (2), (3) and transitivity of HB.

While Fig. 1a and rule (I) account for direct communication, Fig. 1b relies
on rule (II) and the use of channels as locks. The example in Fig. 1b involves
two threads attempting to write to the same shared variable. Before writing, a
thread sends a message onto a channel. Because the channel has capacity one, all
subsequent attempts to send again will block until the prior message is received.
Therefore, it is not possible for T0 and T1 to execute their critical sections at
the same time. The send is thus analogous to acquiring a lock, and the receive
to releasing the lock. Again, we can use the Go memory model to reason about
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this example. Without loss of generality, assume T0 sends its message first, then

z := 42 �hb ← c by T0 via program order (4)
← c by T0 �hb c ← 0 by T1 via channel rule (II) (5)

c ← 0 by T1 �hb z := 43 via program order (6)
z := 42 �hb z := 43 via (4), (5), (6) and transitivity.

While mutual exclusion is ensured, we cannot ascertain the final value of z. If
T0 sends a message before T1, then z equals 43; otherwise, z = 42. Note also
that, in this example, rule (I) is obviated by the program order; therefore, the
rule has no synchronization effect here.2

The Go memory model is described plain and succinctly in English [7]. The
word “completes,” present in both rules (I) and (II), can easily be overlooked.
By overlooking the distinction between an operation and its completion, the
Go data-race detector over-synchronizes and, therefore, fails to report certain
races. The bug, which we describe in detail in the next section, is related to
the following question: Is it possible for the detector to account for the mutex
paradigm (Fig. 1b) and, at the same time, observe the distinction between a
channel operation and its completion?

3 The Go Memory Model: Every Word Counts

The completion of a channel operation, in addition to the operation itself, is an
important part of the Go memory model. In rule (I), it is not the case that a
send happens-before the corresponding receive. Instead, the send happens-before
the completion of the corresponding receive. Similar for rule (II), involving a
past receive and the completion of a current send. To illustrate, consider Fig. 2,
where each vertical arrow represents the execution of a thread (flowing from top
to bottom). Both the top and the bottom diagrams depicts consecutive send
sd and receive rv operations on a channel of capacity one—the operations are
indexed as to show their order of execution.

According to the Go memory model, channel operations are related as shown
in Fig. 2a. The operations are broken into two halves of a circle: the top is the
operation and the bottom its completion. The arrows in the diagram represent
the happens-before relation—arrows are labeled with the memory-model rule
that justify their existence. According to rule (I), the 0th send happens-before the
completion of the 0th receive—this relation is captured by the arrow starting at
the top half-circle on the far left (sd0) and ending at the bottom half-circle to the
right (completion of rv0). The next arrow establishes the happens-before relation

2 The relation below can be derived by both program-order as well as by rule (I).
Similar for the send and receive operations performed by T1.

c ← 0 by T0 �hb ← c by T0

.



28 D. S. Fava

between receive rv0 and send sd1 according to rule (II), and so forth. Note from
Fig. 2a that an operation is related to its immediate predecessor. There is no
chain of happens-before starting from the “distant” past. For example, although
sd0 is related to the completion of rv0, and rv0 is related to the completion of
sd1, it is not the case that sd0 and sd1 are related to each other.

Fig. 2. The Go memory model specification, every word counts.

Figure 2b captures an alternative formulation of the happens-before rules (I)
and (II) where the word “completes” is left out. Sends and receives are not split
into the operation and the operation’s completion. Instead, sends and receives
happen-before each other. This formulation leads to a chain starting at the very
first send, and connecting every send and receive operation ever performed onto
the channel. From an application programmer’s perspective, this chain leads to
an accumulation of happens-before information: after interacting with a chan-
nel, a goroutine’s behavior is now dependent, not only on its communicating
partner but, on every thread that has previously interacted with the channel.
From the point of view of data races, this alternate formulation leads to over-
synchronization.

The Go data-race detector’s implementation matches the behavior of Fig. 2b
and, therefore, deviates from the Go memory model specification. Note that
the over-synchronization on the part of the detector is not the result of careful
deliberation, for example when false-negatives are accepted in exchange for lower
runtime overheads. Rather, the implementation springs from an interpretation
of synchronization from the perspective of locks rather than of channels. As will
be discussed in Sect. 5, addressing this issue not only eliminates false-negatives
but also yields lower runtime overhead.



Finding and Fixing a Mismatch 29

4 The Go Data-Race Detector

By adding -race to the command line, a Go program can be compiled and run
with data-race detection enabled. The Go data-race detector is based on TSan,
the Thread Sanitizer library [9]. The library is part of the LLVM infrastruc-
ture [11] and was originally designed to find races in C/C++11 applications.

When data-race detection is enabled, each thread becomes associated with
an additional data structure. This data structure keeps track of the operations
that are in happens-before from a thread’s point of view. In most data-race
detectors, including TSan, this data structure is a vector clock (VC) [10]. Vector-
clocks offer a compact representation of the relative order of execution between
threads. With this bookkeeping, data-race detectors are able to find synchroniza-
tion issues in programs—where synchronization means the transfer of happens-
before information between threads.

In the setting of locks, a thread performs an acquire operation in order to
“learn” the happens-before information stored in a lock. By performing a release
operation, a thread deposits its happens-before information onto a lock. In the
setting of channels, we can think of happens-before as being transferred via sends
and receives.

Fig. 3. Snippets of Go’s send and receive operations from runtime/chan.go.

Figure 3 contains snippets from Go’s implementation of the send and receive
operations. Unsurprisingly, Go implements a channel of capacity C as an array
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of length C. This array is contained in a struct called hchan. Struct member
sendx is the index where a new message is to be deposited, while recvx is the
index of the next message to be retrieved. Function chanbuf takes a channel
struct and an index—the function returns a pointer to the channel’s array at
the given index. Note from lines 19 to 22 that a channel array is treated as a
circular buffer.

When data-race detection is enabled, each channel array entry becomes asso-
ciated with a vector-clock. Also, when detection is enabled, a send operation
(Listing 1.1) generates calls to acquire and release—lines 11 to 14. The acquire
causes the sender to “learn” the happens-before (HB) information associated
with the channel entry at c.sendx. The release causes the thread’s HB infor-
mation to be stored back into that entry.3 The receive operation is similarly
implemented and shown in Listing 1.2.

In light of the implementation described above, we now revisit the message
passing and mutual exclusion examples of Sect. 2. In the case of message passing,
a thread sends a message onto a channel of capacity one, then another thread
receives this message before accessing a shared resource—see Fig. 1a. According
to the data-race detector’s implementation, the channel array entry at index 0
observes an acquire followed by release on behalf of the sender. Then, again, a
sequence of acquire followed by release on behalf of the receiver. In effect, the
happens-before information of the sender is transferred to the receiver: specifi-
cally, the release by T0 followed by the acquire by T1 places T0’s write opera-
tion in happens-before relation with respect to T1’s read operation. The message
passing example of Fig. 1 is thus deemed properly synchronized by the Go data-
race detector.

We can reason about the mutual exclusion example of Fig. 1b in similar
terms. A thread sends onto a channel, accesses a shared resource, and then
receives from the channel. With the receive operation, this thread deposits its
happens-before information onto the channel—line 13 of Listing 1.2. The second
thread then acquires this happens-before information when it sends onto the
channel—line 12 of Listing 1.1. Again, the Go data-race detector’s implementa-
tion correctly deems the example as properly synchronized.

4.1 The Bug

Although the Go data-race detector behaves correctly on the message-passing
and mutual-exclusion examples, the detector’s implementation does not reflect
the Go memory model specification. The acquire/release sequence performed on
behalf of send and receive operations follows the typical lock usage. Channel

3 In the implementation of the send operation, a message is moved from the sender’s
buffer to a receiver’s buffer ep on line 16. The index c.sendx is incremented in line 19
and the increment wraps around based on the length of the array—lines 20 to 22.
The number of elements in the array is incremented, the lock protecting the channel
is unlocked and the function returns—lines 23 to 25.
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programming is, however, different from lock programming. The current imple-
mentation of the detector leads to an accumulation of happens-before informa-
tion associated with channel entries. This monotonic growth of happens-before
information, however, is not prescribed by the Go memory model.

In the example that follows, we illustrate the mismatch between (1) the imple-
mentation of the data-race detector and (2) the memory model specification. We
show how this mismatch leads to over-synchronization and the under reporting
of data races.

Fig. 4. Example that highlights a mismatch between the Go memory model and the
Go data-race detector implementation. (Capacity of channel c equals one).

Let c in Fig. 4 be a channel of capacity one. The example is then a mix of
mutual exclusion and message passing: T0 is using the channel as a lock in an
attempt to protect its access to a shared variable,4 and we can interpret T1 as
using the same channel to communicate with T2.5 Now, consider the interleaving
in which T0 runs to completion, followed by T1, then T2—shown in Trace 7. Is
the write to z by T0 in a race with the read of z by T2?

(c ← 0)T0 (z := 42)T0 (← c )T0 (c ← 0)T1 (← c )T2 (load z)T2 (7)

The original Go data-race detector does not flag these accesses as racy:6 T0
releases its happens-before (HB) by sending on the channel. This HB is stored
in the vector-clock associated with c’s 0th array entry. The send by T1 performs
an acquire followed by a release, at which point the VC associated with the entry
contains the union of T0’s and T1’s happens-before. Finally, the receive by T2
performs an acquire and a release, causing T2 to learn the happens-before of
T0 and T1. Formally, the data-race detector derives a happens-before relation
between the write and the read as follows:

z := 42 �hb ← c by T0 via program order
← c by T0 �hb c ← 0 by T1 release by T0, acquire by T1

c ← 0 by T1 �hb ← c by T2 release by T1, acquire by T0
← c by T2 �hb load z via program order

z := 42 �hb load z via transitivity of HB

4 The send operation by T0 is analogous to acquire and the receive to release.
5 Recall that the mutual exclusion and message passing patterns were introduced in

Fig. 1 and discussed in Sect. 2.
6 GitHub issue https://github.com/golang/go/issues/37355.

https://github.com/golang/go/issues/37355
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According to the Go memory model specification, however, the receive from
c in T0 is not in happens-before relation to the send in T1. Instead, the receive is
in happens-before relation to the completion of the send! Information about the
write to z by thread T0 is transmitted to T1, but this information is only incor-
porated into T1 after the thread has transmitted its message to T2. Therefore,
T2 does not receive T0’s happens-before information. In other words, according
to the Go memory model, there is no chain of happens-before connecting T0 to
T2. The trace captured by Eq. (7) is thus racy, with the race depicted in Fig. 5.
Specifically, the race is captured by the absence of a path between the write to
z in T0 and the load of z in T2.

Fig. 5. Partial order on events according to the Go memory model. The HB relation is
represented by arrows labeled with the Go memory model rule justifying the arrow’s
existence. The top part of the half-circle corresponds to a channel operation and the
bottom to its completion.

The Go memory model calls for a mix between channel communication as
described by Lamport [10] and lock programming. Lamport [10] was studying
distributed systems in the absence of shared memory: the shared resources were
the channels themselves, and the absence of races (of channel races) was related
to determinism. In contrast, Go employs channels as a primitive for synchroniz-
ing memory accesses. In Go, some happens-before relations are forged solely
between communicating partners—these relations are derived from rule (I),
which is also present in [10]. Similar to lock programming, some happens-before
relations are the result of an accumulation of effects from past interactions on a
channel. This accumulation occurs when we incorporate rule (II), which is not
present in [10]. So, while the language favors a discipline where an implicit notion
of variable ownership is transferred via direct communication, as prescribed by
rule (I), by incorporating rule (II), Go also supports the use of channels as locks.
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5 The Fix: Capturing the Semantics of Channels

The repair to the Go data-race detector’s deviation from the memory model
specification comes from acknowledging that a primitive, different from acquire
and release, can better fit the semantics of synchronization via channel com-
munication. We propose the primitive depicted in Fig. 6, which we call release-
acquire-exchange or rea. Let Tt be the happens-before information of thread t,
m be the channel entry where a message will be deposited or retrieved, and Cm

be the happens-before information associated with m. The primitive is imple-
mented with a thread releasing onto a place-holder and then acquiring from Cm.
The happens-before in Cm is then overwritten with the HB information from
the place-holder.7 We added this new synchronization primitive into TSan, the
data-race detection library that powers the Go data-race detector. With the new
primitive in place, changes to the Go sources became trivial:8 it involved chang-
ing sequences of acquire/release calls with a call to release-acquire-exchange.

Fig. 6. Semantics of “release-acquire-exchange,” a new primitive added to TSan.

Given the addition of rea into TSan, let us revisit trace (7). While the orig-
inal implementation of the Go data-race detector did not flag this trace as racy,
the updated version does. Given the detector’s updated implementation, we can
reason about the race as follows. Let TT0, TT1, and TT2 be data-structures
storing happens-before information of threads T0, T1, and T2. Let Cc[0] be the
happens-before associated with the 0th array entry of channel c. We denote the
write event to z as !z and, for simplicity, we represent happens-before infor-
mation as a set of memory events. The race-detector state is then the tuple
[TT0,TT1,TT2,Cc[0]], with initial state [{}, {}, {}, {}]. The data-race detector
performs the following transitions as the program executes:

7 The place-holder is a variable local to a function in TSan, as opposed to an extra
memory region allocated in Go.

8 Changes in Go https://golang.org/cl/220419 and TSan https://reviews.llvm.org/
D76322.

https://golang.org/cl/220419
https://reviews.llvm.org/D76322
https://reviews.llvm.org/D76322
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CT0 CT1 CT2 Lc[0]

[ {}, {}, {}, {} ] ⇒(c←0)T0

[ {}, {}, {}, {} ] ⇒(z:=42)T0 (8)

[{!z}, {}, {}, {} ] ⇒(←c )T0 (9)

[{!z}, {}, {}, {!z}] ⇒(c←0)T1 (10)

[{!z}, {!z}, {}, {} ] ⇒(←c )T2 (11)

[{!z}, {!z}, {}, {} ] ⇒(loadz)T2 (12)

The write to z by T0 places !z into TT0—transition from Eq. (8) to (9). Sends and
receives are interpreted according to their formal semantics in Fig. 6. The receive
by T0 places the write event into the channel-entry’s happens-before—Eqs. (9)
and (10). The send by T1 places the write event into the thread’s happens-before
and overwrites the channel-entry’s happens-before with the empty set—Eqs. (10)
and (11). The receive by T2 retrieves the empty happens-before information—
Eqs. (11) and (12). Therefore, at the time T2 loads from the shared variable,
the write to z by T0 is not in happens-before with respect to T2. In conclusion,
the execution is racy.

Note that the fix to the Go data-race detector does not invalidate the use of
channels as locks. Without loss of generality, let the trace below be an execution
of the mutual exclusion example of Fig. 1b.

(c ← 0)T0 (z := 42)T0 (← c )T0 (c ← 0)T1 (z := 43)T1 (← c )T1 (13)

The detector’s execution, from initial state [TT0,TT1,Cc[0]] = [{}, {}, {}], is

TT0 TT1 Cc[0]

[ {}, {}, {} ] ⇒(c←0)T0

[ {}, {}, {} ] ⇒(z:=42)T0

[{!z}, {}, {} ] ⇒(←c )T0

[{!z}, {}, {!z}] ⇒(c←0)T1

[{!z}, {!z}, {} ]

Note that the event !z capturing the write by T0 is contained in TT1 before T1
attempts to write to z. In other words, the writes are ordered by happens-before
and the execution is properly synchronized. Thus, the answer to the question
raised at the end of Sect. 2, “is it possible to support the use of channels as locks
(as in the mutex example) and still avoid over-synchronization?” is yes.

We implement the new synchronization primitive rea in TSan with one
pass, as opposed to two passes, over the data-structure storing happens-before
information. Therefore, the updated data-race detector implementation provides
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better performance than the original sequence of acquire followed by release.
Another consequence of our fix is a potential reduction in the memory footprint
associated with data-race detection. This savings comes from the fact that vector
clocks associated with channel entries no longer observe as large of an accumu-
lation of happens-before information—this point was previously touched upon
in Sect. 3, Fig. 2. We include a short experimental evaluation in Appendix A.

5.1 From Small-Step Operational Semantics to rea

The release-acquire-exchange primitive comes from our previous formalizations
of Go channels. It is conceptually useful to distinguish between happens-before
information transmitted on behalf of rule (I) versus (II). In our earlier formaliza-
tion of a memory model inspired by the Go specification [4], a channel c is split
into two: a forward and a backward one. The forward channel cf holds messages
and thread-local information to be transmitted, as prescribed by rule (I), from a
sender to its corresponding receiver. The backward channel cb, which flows from
a prior receiver to a current sender, captures rule (II) of the memory model.9

In [4], threads or goroutines p〈σ, t〉 have a unique identifier p, contain thread-
local information σ, and a term t corresponding to the program under execution.
When it comes to data-race detection, thread-local information σ is composed
of happens-before data. This data could be stored in a vector-clock or, more
simply, it could be a set of read- and write-events that are in happens-before
with respect to the thread. Synchronization, therefore, entails the exchange of
thread-local information σ via channel communication.

Fig. 7. Send and receive reduction rules in the calculus of [4].

Configurations consist of the parallel composition of goroutines, memory
events, and channels. The semantics of [4] is operational. We give the reduc-
tion rules for sends and receives in Fig. 7—other rules are omitted and can be
found in the original paper. The let-construct in R-Rec is a binder for the local
variable r in a term t. In the case of R-Rec, the let-construct allows t to refer
to the value obtained when receiving from a channel.
9 As noted in [5], “the interplay between forward and backward channels can also be

understood as a form of flow control. Entries in the backward channel’s queue are
not values deposited by threads. Instead, [these entries] can be seen as tickets that
grant senders a free slot in the communication channel.”.
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According to reduction rule R-Send, when a thread sends a value v, the
thread’s local state σ is placed on the forward channel alongside v. The rule
captures captures the placement of the message (v, σ) onto the forward channel
as follows: if q2 is the content of the forward channel before transmission, (v, σ) ::
q2 are the contents after. The transmission of σ models rule (I) of the Go memory
model: a receiver who receives (v, σ) will learn about the sender’s actions up to
the given send operation.

Besides transmitting, a sender also learns HB information in accordance to
rule (II). Precisely, the (k + C)th sender obtains, from the backward channel,
thread-local state from the kth receiver. This is captured by the update σ′ =
σ+σ′′ with the state σ′′ coming from the backward channel. Thus, if the contents
of the backward channel were q1 :: σ′′ before the send, the channel is left with
q1 after the send. Note that the update to the sender state occurs on completion
of the send operation: the update “occurs after” the sender has deposited its
message onto the forward channel—concretely, the send transmits the thread
state σ as opposed to the updated thread state σ′.

When receiving, a goroutine obtains a value v as well as a state σ′′ from a
sender. As dictated by rule (I), the receiver updates its state given the corre-
sponding sender state: σ′ = σ + σ′′. The sender also deposits its state onto the
backward channel. Similar to R-Send, the original thread state σ is deposited
as opposed to the updated thread state σ′.

For both reduction rules R-Send and R-Rec, local thread state σ is
deposited onto a channel as opposed to the update thread state σ′. This dis-
cipline creates a distinction between an operation and its completion. In effect,
the reduction rules do not cause the over-synchronization observed by the Go
data-race detector.

5.2 Why Not acquire and release?

The formalization in [4] speaks of synchronization in terms of channel com-
munication. Since TSan operates at the level of locks, we might be tempted to
implement the reduction rules with acquire and release operations. The reduction
rule R-Send could be implemented with a thread releasing its happens-before
information into the forward queue, and then acquiring happens-before infor-
mation from the backward queue. Similarly, R-Rec can be implemented with a
release to the backward queue, followed by an acquire from the forward queue.

One invariant of the semantics in [4] is that the number of elements in the
forward and backward queues equals the capacity of the channel. Since a thread
must first release its HB into the channel before acquiring from the channel,
there would be more than C entries in the queues while a send or receive is in-
flight. In fact, when using acquire and release operations as primitives, the Go
data-race detector would need to allocate an array of length C + 2 for a channel
of capacity C. Given such an array, sends and receives can be implemented
with acquire/release operations as shown on Listings 1.3 and 1.4. Recall that
c.sendx and c.recvx are the indices into the array where the next message is
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to be deposited and retrieved respectively. Recall also that chanbuf returns a
pointer to a channel’s array at a given index.

Listing 1.3. Implementation of send.

1 idx := c.sendx+1
2 if idx == C+2
3 idx = 0
4 qf := chanbuf(c, c.sendx)
5 qb := chanbuf(c, idx)
6 racerelease (qf)
7 raceacquire(qb)

Listing 1.4. Implementation of receive.

1idx := c.recvx−1
2if c.recvx == 0
3idx = C+1
4qf := chanbuf(c, c.recvx)
5qb := chanbuf(c, idx)
6racerelease (qb)
7raceacquire(qf)

Although correct, there are major downsides to the solution of Listings 1.3
and 1.4. First, it requires additional memory allocation. Second, because the
Go runtime expects a channel of capacity C to be implemented with an array of
length C, the solution would require intrusive changes. Third, from a timing per-
spective, in order to implement a single channel operation, the solution performs
two passes over the data-structure storing happens-before information—we want
a solution that performs less passes.

Compared to acquire and release, the release-acquire-exchange primitive
requires no additional allocation in Go, involves minimal changes to the Go
runtime, and has lower overhead.

6 Lessons Learned

When we started looking at TSan’s source code, our goal was to improve Go’s
data-race detector by expressing synchronization in terms of channels as opposed
to locks [5]. We began reading the source code of Go and TSan in November
2019. In January 2020, we started experimenting by compiling the projects from
source and making modifications in order to gain experience and intuition. This
tinkering lead us to find, in early and mid February, a small Go compiler bug10

and a small performance bug in TSan.11 Shortly after, around late February, we
found the bug described in this paper.

Given our experience formalizing the calculus in [4], we could see similarities
between our reduction rules and the Go implementation.12 The implementations
of send and receive, however, stood out. The bug was thus found by inspection.
We created a test (Fig. 4) to showcase what we believed was discrepancy between
the detector and the memory model. From there, we filed an issue on GitHub
and started interacting with the Go community. With this interaction, which

10 https://github.com/golang/go/issues/37012.
11 https://reviews.llvm.org/D74831.
12 For example, the closing of channels in both [4] and in Go cause happens-before

information to be deposited onto the channel, regardless of whether the channel is
full.

https://github.com/golang/go/issues/37012
https://reviews.llvm.org/D74831


38 D. S. Fava

went until May, an initial patch was iteratively improved until being accepted
for future release.

In this section, we collect insights drawn from our experience in both (1)
formalizing aspects of the Go programming language and (2) interacting with
the TSan and Go communities.

Models Do Not Have to Be Right, They Have to Be Useful. In [4], we
developed a memory model based on the Go specification. Before embarking on
studying the Go source code, we found ourselves at cross-roads. Since our model
is not as relaxed as Go’s, more theoretical research remained to be done. We
pondered whether to continue working on formalizations or whether to investi-
gate how the current model fits the “real world.” Both avenues are interesting to
us. By taking, for now, the second avenue, we learned that models do not have
to be right, they have to be useful. Our memory model formalization in [4] is not
the memory model of Go, but it is close enough to allow us to reason about Go
and its implementation.

Mind the Gap. In one hand, we have the concept of a data-race according to
the synchronization rules of the Go memory model specification. The specifica-
tion is expressed in English. On the other hand, we have the Go data-race detec-
tor implementation, with thousands of lines of code spawning different projects
and repositories and involving at least three languages (Go, C/C++, and assem-
bly). These are two ends of a spectrum. Our model was useful, in part, because
of where it sits in this spectrum. When developing the model in [4], we followed
the English text of the Go memory model specification very closely. Our model,
however, is expressed in structural operational semantics—its rules form an exe-
cutable implementation. Our calculus, therefore, forms a bridge between source
code and the specification expressed in natural language.13

Bad News Is Good News. The effort in formalizing and proving a nontrivial
property of a software system is often high. Before finding the issue described in
this paper, we had been working on formalisms related to Go for over two years.
This high barrier of entrance is both good and bad. It is good, less obviously so,
because it opens opportunities for collaboration between industry and academia.
While industry excels at delivering software, academia can provide artifacts, such
as formalisms and proofs, which are still not as commonly produced in industry.14

13 Our observation about the representational different between specification and
implementation is not new. The idea of bridging specification and implementation
has been tackled by many fronts, for example [1].

14 Because of stigma, the “formal” qualifier has been de-emphasized when disseminat-
ing formal methods in industry [13]. This stance has shifted dramatically [3].
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7 Conclusion

The bug described in this paper evaded skilled developers for about six years,
nearly since the data-race detector was bolted onto the Go runtime. In this
paper, we share how formal methods played an integral role in bringing the
issue to light, and giving it closure.
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A Memory Footprint

Here we illustrate how our fix to the Go data-race detector leads to a smaller
memory foot-print. Consider an in-place parallel sorting algorithm where an
array is recursively split, up to some depth, in approximately half. Each region
of the array is assigned to a thread for sorting. When a thread completes sorting,
it signals its parent. The parent merges, in-place, the consecutive array regions
previously assigned to its children.
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Fig. 8. Number of VC entries associated with channels during the execution of an
in-place parallel sorting algorithm: before (solid line) and after (dashed line) the intro-
duction of release-acquire-exchange.

We tracked the number of entries in the vector-clocks associated with channel
array entries. Measurements of the number of VC entries were taken multiple
times during the program’s execution. For ease of collecting and plotting the
data, we modified TSan to call out to a reference data-race detector implemented
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in Python.15,16 Figure 8 shows the number of VC entries before and after the
fix to the data-race detector—meaning, with a race detector that performed an
acquire followed by release versus a race detector that implements the release-
acquire-exchange primitive. The x-axis is the number of instructions executed,
the y-axis is the number of vector-clock entries consumed so far in the execution.
As the program makes progress, more entries accumulate in the vector-clocks
associated with channel entries. This accumulation is much more accentuated
before the fix to the data-race detector. In fact, for this workload, the fix lead to
larger than 30% reduction in the number of VC entries after 12.5M instructions
were executed.
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Abstract. Along with the very actively progressing field of autonomous
ground and aerial vehicles, the advent of autonomous vessels has brought
up new research and technological problems originating from the specifics
of marine navigation. Autonomous ships are expected to navigate safely
and avoid collisions following COLREG navigation rules. Trustworthy
navigation of autonomous ships presumes applying provably correct nav-
igation algorithms and control strategies. We introduce the notion of
maritime game as a special case of Stochastic Priced Timed Game and
model the autonomous navigation using UPPAAL STRATEGO. Fur-
thermore, we use the refinement technique to develop a game model in a
correct-by-construction manner. The navigation strategy is verified and
optimized to achieve the goal to safely reach the manoeuvre target points
at a minimum cost. The approach is illustrated with a case study inspired
by COLREG Rule 15.

Keywords: Verification · Refinement · Maritime autonomous
systems · COLREG rules · Collisions avoidance · Navigation · Safety ·
Optimization · Game theory · UPPAAL STRATEGO

1 Introduction

The demand for unmanned ships has risen aiming at reducing operation costs
due to minimal crew on board and safety at sea but also promoting remote work.
Autonomous ships are expected to make more and more decisions based on their
current situation at sea without direct human supervision. This means that an
autonomous ship should be able to detect other vessels and make appropriate
adjustments to avoid collision by maintaining maritime traffic rules. However,
the existence of a ‘virtual captain’ from the shore control centre (SCC) is still
a must to perform critical or difficult operations [2] and there is a need for
reconfirmation when inconsistent or corrupted commands are detected by the
onboard system.
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The connectivity between ships and SCC has to guarantee sufficient commu-
nication for sensor monitoring and remote control [10] when SCC intervention
is needed. This connectivity also plays an important role for the safety of opera-
tions concerning collision avoidance in the remote-controlled scenarios for trans-
forming the data and receiving information regarding the decision from SCC.
Sub-second reaction time is, however, not critical regarding safe navigation in
the maritime sector as it takes up to minutes for the ship to change its course
in case of detection of another ship or an obstacle. In this paper the goal is to
model maritime autonomous systems so that the unmanned ships learn a safe
and optimal strategy for navigation pursuing collisions avoidance.

One of the most critical safety issues in the development of autonomous
vehicles and self-driving cars is their poor performance under adverse weather
conditions, such as rain and fog due to sensor failure [15]. However, when mod-
elling maritime specification, we do not take into account sensor inaccuracies
and possible transmission errors, since there are standard sensor redundancy
design and error correction measures applied on modern vessels to ensure that
ships notice each other in a timely manner. For safety assurance, a ship is able
to communicate with another ship or shore via VHF radio, satellite services, etc.

For unambiguous navigation protocol, the International Maritime Organiza-
tion (IMO) [11] published navigation rules to be followed by ships and other
vessels at sea which are called Convention On the International Regulations
(COLREG).

When developing the autonomous ship navigation system, quality assurance
via tool supported model-based control synthesis and verification is of utmost
importance. UPPAAL STRATEGO [9] is a branch of the UPPAAL [6] synthesis
and verification tool family. It uses machine learning and model checking tech-
niques to synthesize optimal control strategies. Hence, it is a good candidate for
control synthesis tool which satisfies above mentioned needs.

In our research, we aim at adapting formal modelling with UPPAAL STRAT-
EGO for verifying and synthesizing safe navigation of autonomous ships. As an
additional contribution, we improve the autonomous ships navigation perfor-
mance regarding its safety and security at the same time planning for optimal
route and scheduling maneuvers according to COLREG rules.

2 Related Work

There has been a variety of studies on autonomous ship navigation obey-
ing COLREG rules. Among these fuzzy logic [17], interval programming [7],
and 2D grid map [22] could be mentioned. However, the previous approaches
do not deal with verification for safe navigation. Moreover, (potentially) non-
deterministic behaviour of autonomous ships, communication delays, sensor fail-
ure and weather conditions are not considered in their models.
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Recently, in MAXCMAS project [23], COLREG rules have been implemented
in collision avoidance module (CAM) software where collision avoidance decision
is generated and action taken as soon as collision risk is detected. In spite of their
various simulation tools, verification methods are discussed only implicitly. Fur-
thermore, to the best of our knowledge, our work is the first one that synthesizes
a safe and optimal navigation strategy that also takes into account some of the
weather conditions.

There is a fair number of publications on autonomous navigation control
synthesis methods and tools that rely on various sets of assumptions - for exam-
ple continuous, discrete and hybrid dynamics, as well as piece-wise linear and
non-linear processes [12,16,18]. The main issue of the controller synthesis is the
scalability of synthesis methods in case of complex control objects. Hierarchi-
cal control architectures, e.g. in SCADA are addressing this issue. While low-
level control typically should tackle with continuous (often nonlinear) processes
the upper control layers deal with the abstract representation which typically
describes hybrid or discrete dynamics. In this work, we model the vessels dynam-
ics on a high level of abstraction using discrete state space and continuous time.

Among the tools that are oriented to timed discrete-state models and timed
game based control synthesis, UPPAAL STRATEGO has proven its relevance
in several case studies, where optimal strategies have been generated using Sta-
tistical Model Checking (SMC) and machine learning. Examples include, for
instance, adaptive cruise control [16], railway systems [13] and autonomous driv-
ing systems [4,5].

In [16] the authors synthesize a safe control strategy with the goal of main-
taining a safe distance between vehicles where one of them is considered to be
uncontrollable by the given controller. Railway control systems, are modelled as
a Stochastic Priced Timed Game in [13] by using game theory, where a set of
trains considered as an environment and lights, points and sections in the railway,
are assumed to be controllable. In [5] the authors also model a railway signalling
system with autonomously moving blocks as a Stochastic Priced Timed Game,
but in addition they consider stochastic delays in the communication. A safe and
optimal driving strategy for the model is synthesised in UPPAAL STRATEGO.
In [4], on the other hand, SMC has been used for formal modelling uncertainty in
autonomous positioning systems. The safety of the position of a tram is proved
with the levels of uncertainty and possible hazards induced by onboard satellite
positioning equipment.

In our work, we introduce the notion of a maritime game for control synthesis
that is based on navigation specification of the ship where weather conditions
are integrated. We model the navigation problem as a special case of Stochastic
Priced Timed Game with a goal of collisions avoidance between two ships. Fur-
thermore, we use the refinement technique [3] for a stepwise development of the
model for avoiding complexity and ambiguity in the modelling.
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3 Case Study and Navigation Specification

3.1 Overview of the Case Study

When modelling navigation manoeuvres of autonomous ships, we focus on stan-
dard situations, addressed in COLREG. As an example, let us consider a scenario
where two ships have intersecting courses as depicted in Fig. 1.

In this example, in spite of the existence of remote monitoring from the SCC,
we assume also that ships have autonomous navigation capability. According
to Rule 15 of COLREG [19]; when two power driven vessels have intersecting
courses with the risk of collision, the vessel which has the other on her own
starboard (right) side shall keep out of the way and avoid crossing ahead of the
other vessel. In this case the vessel giving way should adjust its speed and/or
course to pass behind the approaching vessel. The adjustment will therefore be
made to the starboard side. In the case depicted in Fig. 1, shipB should give way
while shipA maintains its direction and speed.

Fig. 1. Autonomous navigation of ships

The navigation control of shipB has a choice to slow down instead of altering
its path to pass shipA. By doing this, the expected arrival time might not be as
late as when following a redirected route. However, if for some reason shipA is
slowing down, then the controller should navigate shipB safely to another route
through a sequence of waypoints [1] (see Fig. 1).

3.2 Ship Waypoints (WP) and Path Plan

For safe navigation of vessels, we consider a set of waypoints along the route
which define the routing subgoals and that the ship has to traverse during the
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maneuver. When a vessel plans the voyage from the current position to its next
waypoint position, a course change may occur. In case of rerouting to a waypoint,
a new heading should be calculated. Figure 2 shows the heading relationship
between the ship and waypoint.

Fig. 2. Heading relation between ship and waypoint

Assume that (X0, Y0) is the initial position of the ship and (Xi, Yi) are the
coordinates of the targeted waypoint, the bearing angle ψ of the waypoint from
the ship is calculated as follows [1]:

θ′ = a tan 2
(Yi − Y0)
(Xi − X0)

(1)

ψ = θ′ − θ (2)

where θ is the heading of the ship, θ′ is the encountering angle of the waypoint
from the vertical axis. Here, if the value of ψ becomes negative, then 2π (360)
is added to make it positive.

To calculate the position of the ship after altering the course based on the
new heading of the ship (ψ), the following calculations should be performed:

X = X0 + V cos(ψ) Y = Y0 + V sin(ψ) (3)

where (X0, Y0) is the initial position of the ship, (X,Y ) are the coordinates of
the next position of the ship and V is the speed of the ship.

In our scenario with two ships assuming that (XA, YA) are the coordinates of
shipA and (XB , YB) are the coordinates of shipB, the distance between the two
ships is calculated as Euclidean distance. This could require an update of the
position of either one or both ships following Eqs. 1, 2 and 3. After the update,
the distance between the ships should be re-calculated to evaluate whether the
risk of collision still remains.



46 F. Shokri-Manninen et al.

3.3 Influence of Wind on the Ship Navigation

When the ship moves in the presence of wind in addition to navigating along
the true course (heading), it will also drift as a consequence of wind which is
called leeway [24]. Thus, leeway (α) is the angle between the heading (TC) and
the drift track (CG). Figure 3 shows the leeway angle with the presence of wind.

Fig. 3. Leeway angle (α)

If the wind pressure comes from portboard, it deviates the angle of the ship
heading to the right then α is positive ‘+’. In case of the pressure from starboard
the α is negative ‘-’. The leeway is calculated as follows [24].

α = K(
VW

VE
)2 sinQw (4)

where, VW is the speed of the wind and VE is the speed of the ship. In this formula
Qw is the relative bearing of the wind whereas K is the leeway coefficient. After
calculating the drift angle based on the wind conditions, the heading of the ship
should be corrected periodically.

4 Reinforcement Learning and Game Theory

To analyze the navigation options of autonomous ships, and more importantly,
to verify the navigation decisions, especially in combination with the other ships
we use game theory as a base formalism for modelling and for optimizing the
games.

Reinforcement learning (RL) is commonly used for solving Markov-decision
processes, where an agent interacts with the world and collects rewards [21]. RL
is a powerful method for learning an optimal strategy for the agent from trial and
error. UPPAAL STRATEGO [9] uses RL and model checking by combining the
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Fig. 4. An example of a timed game automaton in the UPPAAL STRATEGO

techniques to synthesize optimal control strategies. Any of the moves (modeled
as transitions) which the agent chooses in its current state, incurs a cost, e.g.
fuel consumption (fc). In Fig. 1, the first time derivative of fc is denoted fc’. In
this setting, the priced timed game [8] defines an infinite-state Markov (reward)
decision process with the goal of finding a strategy that will minimize the cost
to reach the goal state.

Reinforcement learning can be considered in the context of a game, often for
one player (agent) or as a two-player game in which the other player is typically
the environment. The agent playing against the environment tries to learn a
policy that maximizes the agent’s reward in the environment.

Our ship navigation control model is based on a game G = (S, E), consisting
of a set S of states and a set E of directed edges between those states, the state
transitions. Since there are two players in the considered game, where the agent
(player) plays against the environment (Agent vs. Env), we also have two types
of transitions, controllable and uncontrollable. As can be seen from the example
in Fig. 4, the driver as the playing agent can choose one of the two alternative
roads which are represented as controllable transitions (indicated by the solid
line). However, the actual travel-time depends on the intensity of traffic (envi-
ronment) on a particular day, which is reflected as the upper time-bounds in the
invariants of locations High road and Low road. Since the outgoing edges from
these locations are uncontrollable (indicated by the dashed line), leaving these
locations may occur latest at these time-bounds. Such a two-player (possibly
antagonistic) game is represented by a tuple G= (S, →, ���, s0, Bad, Goal)
where [13],

– →⊆ S × S: set of controllable transitions (Player).
– ���⊆ S × S: set of uncontrollable transitions (Environment).
– s0 ∈ S: initial state.
– Bad ⊆ S: set of states where player loses the game.
– Goal ⊆ S: set of states where player wins the game.

We assume that sets Bad and Goal do not intersect.

In game theory, a run is a finite or infinite sequence of states r =
(s0, s1, s2, . . . ). In case of a finite sequence of states, the player reaches its ter-
minal state that can be a goal state that is a winning state, or a bad state that



48 F. Shokri-Manninen et al.

corresponds to the winning state of the adversary. We call a run safe, if there is
no bad state (s ∈ Bad) in the run.

The player’s strategy is a complete algorithm for playing the game, telling
what move a player should do for every possible situation throughout the game.
In a state transition system setting a player decides depending on its current state
(s ∈ S) and strategy σ which transition to execute next. Formally, a strategy
for the player is a mapping,

σ : S → S such that ∀r ∈ ρ, r.s ∈ S : (r.s, σ(r.s)) ∈ E,

where ρ is a set of runs, such that from any state s of a run r in ρ, strategy σ
chooses the next state reachable by an outgoing edge of s.

A strategy is called safe if in the run, any of the outgoing transitions in the
state (s ∈ S) does not lead to bad states:

σsafe = {(si, sj) |si, sj ∈ S ∧ (si, sj) ∈ E ∧ sj �∈ Bad}.

A strategy is feasible if it is a safe strategy and reaches the goal state (s ∈
Goal) in the run:

σfeasible = {(si, sj) |(si, sj) ∈ σsafe ∧ (∃s : s ∈ S ∧ s = sj ∧ s ∈ Goal)}.

Similarly we define a feasible run. A run r is feasible if it is finite of length
|r|, safe and reaches a goal state (s ∈ Goal):

rfeasible = {r|(∀si : si ∈ r, i ∈ [1, |r| − 1] : si �∈ Bad)∧
(∃sj : sj ∈ r ∧ j = |r| ∧ sj ∈ Goal)}.

A run is called optimal, if it is feasible and reaches the goal state (s ∈ Goal) in
the run with a minimum cost:

roptimal = {r|r ∈ rfeasible ∧ cost(r) ≤ min(ran(cost))}.

where cost function cost : ρ → R assigns a real-valued number to each run.
A winning strategy is optimal, if it is a safe and feasible strategy and there

is a run ending up in goal state (Goal) with a minimum cost:

σoptimal = {(si, sj) |(si, sj) ∈ σfeasible ∧ (∃r : r ∈ roptimal ∧ si ∈ r ∧ sj ∈ r)}.

5 Maritime Game

To formally model the navigation problem, we formalise it in the game tuple
GM = (S,→, ���, s0, Bad,Goal) where,

– S: is a set of states of the ships. To grant the decidability of GM , we consider
S as a finite set.
In principle, S consists of as many partitions as there are ships involved in
the game. For the two ships in the paper we consider S = SA × SB , where
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SA denotes the state component of shipA and SB of shipB. Both SA and SB

are composed of the same set of variables and the state vector of a ship has
the following structure:

<P,WP,H,HS, V el,WW,WS>

where the state variables and their domains are defined as follows:
• P ∈ {(x, y)|x ∈ X ∧ y ∈ Y }: Position of the ship in the 2D coordinate

system. The position will be updated periodically based on the heading
and speed of the ship.

• WP ∈ {(xwp0, ywp0), (xwp1, ywp1), . . . , (xwpn, ywpn)}: Ordered set of way-
points of the ship in the coordinate system. The next waypoint for a ship
may change in case the ship changes course.

• H ∈ [0, 360]: Heading of the ship in the degree interval. Heading of the
vessel will be updated in case of rerouting.

• HS ∈ {initial, deviated}: Heading Status of the ship. Before changing
course, the value of the heading status is initial. As soon as the heading
becomes updated due to navigation to the waypoint, it will be assigned
to deviated. If the heading of the ship is deviated, the ship needs to do a
rerouting to go back to the initial path and original heading.

• V el ∈ [0, 10]: Velocity of the vessel in the normalized integer interval.
During navigation at sea, vessels can accelerate, decelerate or continue its
voyage with the same speed. The discrete interval [0, 10] is a reasonable
approximation for the speed, since we mainly consider big cargo ships
with a cruising speed of about 12 knots. Moreover, the approximated
speed has always been rounded up to the worst case.

In addition to the above state variables, we introduce new variables used in
the model refinement.

◦ (Refinement) WW ∈ BOOL: Windy Weather condition in boolean expres-
sions. If Windy Weather has the value true, it means that weather is
windy. It is introduced in the refinement step, we introduce environmen-
tal condition which affects the vessel course. We consider that the heading
of the ship is drifted due to the wind pressure.

◦ (Refinement) WS ∈ VW × Qw: Wind Specification of vessels. For calcu-
lation of drift angle by Eq. 4 when the wind pressure is present, we need
to know the wind speed (VW ) and angle of the wind (Qw) that comes to
the vessel.

Thus, at each time instant the state variables of the ships’ state vectors
acquire one value from their domain as determined by the transition relations,
either → or ���. We use the same navigation specifications for both ships in
the game, with the difference that shipA does not contain the controllable
navigation variables WP and HS that shipB has or weather features WW
and WS that affect the vessel. This is because we are interested in capturing
the behaviour of shipB as an agent under different circumstances.

– →, ���: The transition relations are defined as →⊆ S × G(V ) × Act × S and
���⊆ (S × G(V ) × Pr × Act × S) where,
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• G(V ): is the set of constraints in guards and V denotes the set of integer
and boolean variables.
• Act: is a sequence of assignment actions with integer and boolean expres-
sions. According to player preference, one of the enabled transitions will
be chosen in the current state. We define four functions that define the
effect of player actions. The functions for player transitions are as follows:

◦ Update Heading: (P,WP ) → H is a function that calculates a angle
for the ship’s heading angle H from the ship’s current position P and
its next waypoint WP .

◦ Update Speed: (V el, [−2, 2]) → V el is a function that assigns a new
velocity to the vessel based on the current velocity V el and a value
in the interval [−2, 2]. This interval indicates the acceleration/decel-
eration of 0-2 speed units.

◦ Update Position : (H,V el, P ) → P is a function that gives a new
position for the ship given its previous position P , heading H and
velocity V el.

◦ (Refinement) Leeway angle: (WS,V el) → H is a function that
assigns a calculated drift angle for the ships’s heading H, depend-
ing on the wind specification WS and velocity V el.

• Pr: denotes the set of integer-valued probabilities.
In this two-player game, we model shipB with its controller as a player. As
a consequence, all transition for this player are considered to be controllable.
However, we assume shipA as an Environment for shipB with the same func-
tionality except that shipA has some stochastic transitions with probability
(Pr) in addition to normal transitions.

– s0 ∈ sB0 × sA0: is initialized with random speed, initial position and heading
of ships. For analyzing concrete incidents these initial values could be based
on values from existing datasets.

– Bad: is the state where two ships get to collision zone (see Fig. 1).
– Goal: is the state that is reached when two ships have passed each other

within a safe distance.

6 Model Development in UPPAAL STRATEGO

We model the navigation problem1 as a Stochastic Priced Timed Game using the
tool UPPAAL STRATEGO where the controller of shipB should dynamically
plan its maneuver, while the opponent (shipA) moving according to its preset
trajectory forces shipB to change its route. In this game, we define the fuel
consumption (fc) as a the price to be minimized under the safe strategy. The
change in velocity of the ship is directly related to fc, so that the consumption
of fuel increases if the ship slows down and speeds up again rather than changes
the route, causing the price to increase.

The goal is that the ships move to their target positions in a safe way (without
the risk of a collision) while at the same time optimizing the fuel consumption.
1 The game model is found in: https://github.com/fshokri/Game-model.

https://github.com/fshokri/Game-model
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To avoid ambiguity, we use refinement [3], which enables the system to be
created in a stepwise manner gradually adding details into the model and proving
that each refinement step preserves the correctness of the previous steps. Models
can be refined either via superposition refinement [14,20], where new features
are added to the automaton, or by data refinement, where abstract features are
replaced by more concrete ones.

The current refinement process of the model consists of one abstract model
with one refinement step using both superposition and data refinement. The
abstract model presents the general view of safe navigation with given waypoints.
In the refinement step, we introduce weather conditions windy or clear for the
ship navigation. We assume that strong wind from shipB starboard increases fuel
consumption when turning right. The two step timed automata model introduced
here should be seen as a modeling step towards an implementation.

6.1 An Abstract Model of Autonomous Ships

For synchronizing the state transitions of the two ships, shipB and shipA
the scheduler template is created with two channels for each ship; ShipBgo!,
ShipAgo! as well as Update B! and Update A! (see Fig. 5). The first channel
enables each ship to move while the second one updates their positions after
moving action. We define two functions in this automaton namely initialize()
and UpdateDistance(). The former initializes two ships with initial headings and
positions in the coordinate system. The latter calculates the distance between
two ships after movement. If the distance becomes smaller than the defined safe
distance, it means that the ship collides with another ship and the game is over.
For restarting the game, we add one transition from state End to Init. In this
template, we also add exponential rates where the process may be delayed an
arbitrary long time in the worst case. The user-supplied rate (here 5) has been
chosen as an expert estimate for unbounded delays but it can be tuned according
to a particular situation.

Fig. 5. The scheduler in UPPAAL STRATEGO



52 F. Shokri-Manninen et al.

In the abstract model the behaviour of shipB is depicted in Fig. 6 where the
model is divided into ship (upper) and controller (lower) automata templates.
In the shipB template, we model the different states of a ship that are reachable
from the initial state (Moving), while in the controller we only consider events
for giving permissions to take actions. Since shipB is the player in this game, all
transitions for shipB and its controller are considered to be controllable.

Fig. 6. The abstract model of ShipB (upper) and ShipB controller (lower)

In Fig. 6, shipB starts its move in state Moving if it gets permission
via ShipBgo? If shipB already did adjustment after detection, it periodically
updates its position via the self-loop edge of state Moving that is synchronized
with the scheduler via channel Update B? (see Fig. 5). In state Adjustment
shipB sends the request to controller about detection (detection!) (see Fig. 6).
If the controller detects a ship by its sensor (distance <= sensor) then it
will non-deterministically change speed or change course. In case of rerout-
ing, the new heading will be calculated by functions Update Heading B() 1



Formal Verification of Maritime Autonomous Systems 53

and Update Heading B() 2 in the controller, and the new position of the ship
will be updated in shipB by Update Position B(). Note that the implementa-
tion of the two functions is the same, the only difference is that the function
Update Heading B() 1 uses waypoint1 for calculating the new heading, while
waypoint2 is used for the function Update Heading B() 2. Since the UPPAAL
tool has limited support for simulation of double values, we convert the integer
values to ones of double type by multiplying them by 1.0 (see Fig. 7) in the arc
tangent formula in the function Update Heading B() 1.

When shipB moves to the maneuver waypoint, it deviates from its original
path and the heading status becomes deviated. If the heading of the ship is
deviated, the ship needs to go back to its original path (waypoint2) by moving
to state Back route after the collision risk has been removed.

As can be seen from Fig. 6, we add the continuous variable (fc′) as a
hybrid clock in the invariant of the states having non zero duration, i.e. states
Change route, Back route and Changing Speed, to show how much fuel the
ship consumes for adjustment. As the value for the states Change route and
Back route are smaller than state Changing Speed, they will consume less
fuel. Function Update Heading B uses Eq. 1 and 2 to calculate the new head-
ing whereas we use Eq. 3 in function Update Position B(). Figure 7 shows the
implementation of function Update Heading B1 according to the Eq. 1 and 2.
While Fig. 8 shows the updating of the position of the ship according to Eq. 3
(left) and calculating the Euclidean distance between two ships (right).

Fig. 7. C function for updating the heading of the ship

We model shipA as an environment for shipB. For this reason, all transitions
in shipA automaton are uncontrollable. We follow the same structure as above for
the shipA template (see Fig. 9), except that in shipA both the ship template and
its controller template are integrated to one. Moreover, we consider a stochastic
behaviour for shipA. According to COLREG, shipA should maintain its direction
and speed. For this reason, shipA keeps moving straight on with the probability
weight = 8 to indicate that this should happen with a high probability. The
parameters for these probability distributions are defined from common practice.
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Fig. 8. C function for updating the position (left) and the distance (right) of the ship

Fig. 9. The abstract model of ShipA in UPPAAL STRATEGO

6.2 Introducing Weather Conditions

In the refinement step, we consider the impact of weather conditions on shipB
navigation using the boolean variable windy which is non-deterministically
assigned a value true or false in the scheduler template. For shipB, we add
two new states Change route drift and Back route drift where the rerouting
includes the drifting due to windy weather (see Fig. 10). We assume that the
fuel consumption for these states (fc′ == 5) is greater than in clear weather
(fc′ == 2) as strong wind from shipB starboard increases fuel consumption
when turning right. Changing course even in the windy weather is a better
choice than changing speed due to less fuel consumption. State Changing Speed
remains unchanged in windy weather, since wind cannot considerably change the
speed of the ship [24].

The correction of the ship heading under windy circumstances is performed
by functions Update HeadB wind1() and Update HeadB wind2() in the con-
troller by updating the heading of the ship from the new calculated drift angle
by function leeway angle() (Eq. 4). The difference between updating heading
functions in windy weather (Update HeadB wind1(), Update HeadB wind2())
and without wind (Update Heading B() 1, Update Heading B() 2) (see Fig. 7)
is only that leeway angle is added to the new heading of ship.

newHeading = deg − headingB + leeway;
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For the controller template, we add two new transitions in the Choose state
regarding windy weather where drift angle will be considered in case of changing
course.

Fig. 10. The refined model of ShipB and controller in UPPAAL STRATEGO

The weather conditions are superimposed as a new feature to the abstract
model by strengthening the guards in the model and adding assignments to the
variables of the new feature. The variables of the heading are data refined to
take the leeway into account but otherwise, the behaviour of the model remains
the same.

6.3 Verification and Validation

UPPAAL STRATEGO provides an extended query language, where strategies
can be verified and optimized (by reinforcement learning) for stochastic priced
timed games. The constructed strategies can be used as constraints in performing
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SMC of a game (like Query 3 and 4 in Table 1). Table 1 presents verified Queries
1 to 4.

The main objective of the maritime game model is to synthesise a safe strat-
egy such that shipB never collide with shipA. Furthermore, ShipB should choose
the action in case of collision avoidance that consumes less fuel in the windy
weather or without wind just under the safe circumstance. To satisfy require-
ments, a safe and optimal strategy needs to be synthesised.

Table 1. UPPAAL STRATEGO queries

Id Query Result

1 strategy Safe= control: A[] not Scheduler refined.End Satisfied

2 strategy OptSafe = minE(fc)[<=200]: <>
ShipB refined.Maneuver ended under Safe

Satisfied

3 Pr[<=200](<> ShipB refined.Change route) under OptSafe >=
Pr[<=200](<> ShipB refined.Changing Speed) under OptSafe

Satisfied

4 Pr[<=200](<> windy && ShipB refined.Change route drift) under
OptSafe >= Pr[<=200](<> windy &&
ShipB refined.Changing Speed) under OptSafe

Satisfied

Query 1 defines the Safe strategy where two ships never collide by checking
if for every possible path, the state End of the component Scheduler is never
visited. This particular state is reached only when two ships collide and the game
is over.

Query 2 synthesizes the optimal strategy with a goal of minimizing the value
of the hybrid clock fc within 200 time units under the safe strategy. Note that
this hybrid clock is used to measure the fuel consumption of shipB. The synthe-
sised strategy is, thus, both safe and it strives for an optimal fuel consumption
for shipB.

Query 3 presents the comparison of the selection of states Change route
and Changing Speed by shipB in case of adjustment after detecting the other
ship within 200 time units under the previously computed Opt (near-optimal)
strategy. The probability of state Change route to get selected are greater than
Changing Speed. This is because Change route has a lower fc′ rate compared
to other locations. UPPAAL STRATEGO executes this query for 62 runs and
estimates the probability to be true (value=1) with confidence 0.95.

Query 4 presents the same comparison as Query 3 with the difference that
weather conditions are taken into account. It states that the likelihood for shipB
to opt for action Change route drift in windy weather within 200 time units
under the safe and optimal strategy is higher than selection of Changing Speed.
UPPAAL STRATEGO executes this query for 582 runs and estimates the prob-
ability for it to be true with confidence 0.95.
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Note that Queries 1 to 3 are proved both in the abstract and the refined mod-
els. Query 4 is provable only in the refinement model, because of the new variable
windy and the new state Change route drift introduced in the refinement.

7 Conclusions and Future Work

The novelty of this paper is introducing the notion of maritime game as a special
case of Stochastic Priced Timed Game and constructing the respective model of
the autonomous navigation using UPPAAL STRATEGO. The practical usability
of our approach (maritime game) is to develop the theory of autonomous ships
safe navigation and for that purpose to analyze the navigation problem in a
rigorous state-based model setting. We use the refinement technique to develop
a game model in a correct-by-construction manner. The stepwise refinement
approach helps to avoid ambiguity in the modelling to verify the satisfiability of
the safety requirements of the model.

In this paper, the approach for the strategy synthesis of safe navigation has
been presented as a stochastic two players priced game with the goal of collision
avoidance. Taking into account several practically important side constraints
such as wind, currents, navigation mistakes by the vessel of the adversary, and
involvement of other obstacles (nautical signs, small boats) complicates the syn-
thesis task and presumes the validation of the approach under extra constraints
not studied in standard game-theoretic setting yet. Though limited with two
ships navigating in offshore scenarios, our work is the first attempt to synthe-
size a safe and optimal navigation strategy that also takes into account weather
conditions. The navigation problem is exemplified based on navigation specifica-
tion and COLREG Rule 15. Further developing the Maritime theory to capture
multi-vessel navigation situations in traffic-intensive harbour zones and integra-
tion of winter navigation remain as future work.
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Abstract. Manually designing control logic for reactive systems is time-
consuming and error-prone. An alternative is to automatically gen-
erate controllers using “correct-by-construction” synthesis approaches.
Recently, there has been interest in synthesis from Generalized Reactiv-
ity(1) or GR(1) specifications, since the required computational complex-
ity is relatively low, and several tools exist for synthesis from GR(1) spec-
ifications. However, while these tools implement synthesis approaches
that are theoretically “correct-by-construction,” errors in tool implemen-
tation can still lead to errors in synthesized controllers. We are there-
fore interested in “end-to-end” verification of synthesized controllers with
respect to their original GR(1) specifications. Toward this end, we have
modified Salty – a tool that produces executable software implementa-
tions of controllers from GR(1) specifications in a variety of programming
languages – to produce implementations in SPARK. SPARK is both a
programming language and associated set of verification tools, so it has
the potential to enable the “end-to-end” verification we desire. In this
paper, we discuss our experience to date using SPARK to implement con-
trollers and verify them against a subset of properties comprising GR(1)
specifications, namely system initial and system transition properties.
We also discuss lessons learned about how to best encode controllers syn-
thesized from GR(1) specifications in SPARK for verification, examples
in which verification found unexpected controller behaviors, and caveats
related to the interpretation of GR(1) specifications.
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1 Introduction

Reactive systems must be capable of correctly responding to various inputs, e.g.
originating from human users or events in the system’s operational environment.
The process of manually designing the control logic for such systems is both time-
consuming and error prone. An alternative is to use “correct-by-construction”
synthesis approaches to automatically generate a system’s control logic directly
from specifications, which can reduce both the amount of time needed for design
and the likelihood of errors [1,8,10,14]. In general, synthesis is the process of
automatically generating a design from a specification. More specifically, reac-
tive synthesis approaches generate designs in the context of an uncontrolled
environment, assumptions about which are encoded in the specification. Reac-
tive synthesis approaches tend to have high computational complexity, so there is
particular interest in synthesis from Generalized Reactivity(1) or GR(1) specifi-
cations, the complexity of which is only polynomial in the size of the game graph
encoded by the specification [3]. Synthesis from GR(1) specifications has been
used to generate digital circuits [5] and controllers for teams of unmanned vehi-
cles [2], ground robots [13], software-defined networks [16], and aircraft power
distribution systems [18], to name a few.

GR(1) is a fragment of linear temporal logic. A GR(1) specification ϕ takes
the form ϕ = ϕe → ϕs, where ϕe encodes assumptions about the environment
in which a system is to operate, and ϕs encodes guarantees the system should
make under those assumptions [6]. More specifically, ϕ takes the form ϕ =
(ϕe

i ∧ ϕe
t ∧ ϕe

l ) → (ϕs
i ∧ ϕs

t ∧ ϕs
l ), where ϕe

i and ϕs
i are initial properties, ϕe

t and
ϕs
t are transition or safety properties, and ϕe

l and ϕs
l are liveness properties.

For inputs in the set I controlled by the environment and outputs in the set O
produced by the system, terms are defined as:

ϕe
i , ϕs

i - Boolean formulas over I and O, respectively, that characterize the
initial state of the environment and system.

ϕe
t , ϕs

t - Formulas of the form
∧

j∈J �Bj , where each Bj is a Boolean combi-
nation of variables from I ∪ O and expressions of the form �v, where
v ∈ I for ϕe

t and v ∈ I ∪O for ϕs
t . These encode properties that should

always hold as well as rules for how inputs and outputs are allowed to
change based on most recent input and output values.

ϕe
l , ϕs

l - Formulas of the form
∧

j∈J �♦Bj , where each Bj is a Boolean formula
over I ∪ O. These encode properties that should hold infinitely often.

In this context, the temporal operators � “always,” ♦ “eventually,” and �

“next” have the following meanings. A formula of the form �b holds if b is true
at every time step, ♦b holds if b is eventually true at some future time step, �♦b
holds if b is true infinitely often in the future, and �b holds if b is true at the
next time step. It is assumed that at each time step, the environment chooses an
input from I, then the system chooses an output from O in response. Synthesis
from GR(1) specifications can therefore be viewed as a two-player game between
the system and the environment, where the goal is for the system to satisfy ϕs

as long as the environment satisfies ϕe. If this goal is achievable, then we say
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the specification is realizable, and the result is a control protocol or strategy for
the system that can be expressed as a Moore machine.

Several tools for synthesis from GR(1) specifications are available. For exam-
ple, RATSY [4] has a focus on circuit design and synthesizes designs encoded
in BLIF, Verilog, and HIF. Similarly, Anzu [12] produces circuit designs in Ver-
ilog. LTLMoP [9] is focused on control of robots modeled as hybrid systems,
and it synthesizes designs as hybrid controllers with handler modules to help
connect controllers to simulated or real-world systems. TuLiP [17] has a simi-
lar focus and can synthesize controller implementations in Python. Slugs [6] is
architected to allow users to tailor synthesis algorithms, e.g. to optimize crite-
ria such as quick response, cost-optimality, and error-resilience, and it produces
mathematical representations of controller designs. Salty [7] provides a front-end
to Slugs that makes specifications easier to write and debug and a back-end that
turns controller designs into executable software implementations in a variety
of programming languages, including Python, C++, Java, and now SPARK.
Though all of these tools implement synthesis algorithms that are theoretically
“correct-by-construction,” tool implementation errors could still result in errors
in synthesized controllers. We are therefore interested in “end-to-end” verifica-
tion of such controllers. Toward this end, we have extended Salty to produce
software implementations of synthesized controller designs in SPARK.

SPARK, which is based on the Ada programming language, is both a pro-
gramming language with a specification language and an associated verification
toolset [11]. Though SPARK aims to perform fully automated verification, man-
ual adaptation of the source code is in general necessary. For example, if one were
to translate source code originally written in Ada to SPARK, one would have to
remove unsupported features such as functions with side-effects, aliased variable
names, exception handlers, etc. Formal verification of user-specified properties
also requires manually writing specifications at the level of the source code in
the form of contracts, e.g. preconditions and postconditions that summarize the
assumptions and guarantees provided by individual subprograms.

There are different levels to which one can use SPARK to verify a program
[15]. Generally, the level of verification performed during development is incre-
mental, going from lowest to highest. Verification at the lowest level, colloquially
referred to as stone level, is achieved when code is accepted by SPARK, since
SPARK has stricter legality rules than Ada. Verification at the bronze level is
achieved when flow analysis returns with no error; flow analysis checks for errors
such as reads of uninitialized data or violations of user-specified data flow con-
tracts. Verification at the silver level ensures that there will be no runtime errors
when executing the program, e.g. division by zero or numeric overflow/under-
flow. Verification at the gold level consists of verifying key user specifications,
such as type invariants and subprogram preconditions and postconditions; how-
ever, at this level, the specifications only partially specify the desired behavior
of the code. Verification at the platinum level consists of verifying a complete set
of specifications. At the moment, the SPARK code generated by Salty proves at
gold level. In particular, SPARK is able to prove the system initial and system
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transition portions of the original GR(1) specification, where proof of system
transition properties requires also proving a type invariant on the underlying
Moore machine representation of the controller; this type invariant encodes that
each state is reached by a specific set of input values and produces a specific set
of output values. Platinum level would be reached if the liveness properties were
expressed and proved, which we leave for future work.

In what follows, in Sect. 2 we describe the structure of synthesized controller
implementations in SPARK by walking through a simple example involving a
traffic light. To evaluate whether verification of synthesized SPARK controllers
is feasible and has utility, we collected a corpus of examples from various sources.
In Sect. 3, we take a detailed look at one of these examples, a controller that
coordinates the actions of a team of unmanned air vehicles performing an escort
mission, and we describe how SPARK revealed an error in the controller’s spec-
ification. In Sect. 4, we give an overview of results for the rest of the examples,
with a focus on scalability. In Sect. 5, we discuss lessons learned, including how to
best structure synthesized controllers for proof. We end with concluding remarks
in Sect. 6, including a discussion of future work.

2 Implementation and Verification of Synthesized
Controllers in SPARK

We have extended the open source tool Salty1 to produce software implemen-
tations of controllers synthesized from GR(1) specifications in SPARK. Given
a GR(1) specification in Salty format, Salty does some preprocessing to sanity
check, optimize, and translate the specification to Slugs format. Salty then calls
Slugs to synthesize a controller design. Slugs provides the option of returning the
controller design as a Moore machine expressed in text format, which is what
Salty uses to create an executable software implementation of the controller.
This Moore machine encodes all the states of the controller. It also encodes the
transition relation between states, i.e. the controller’s next state given the cur-
rent state and the next set of input values. Every state then encodes a set of
output values to be produced each time the controller transitions to that state.
As in all Moore machines, each state produces exactly one set of output values.
Controllers synthesized from GR(1) specifications have the additional property
that for each state, there is a unique set of input values that brings the controller
into that state, regardless of what the previous state was.

If SPARK is chosen as the target programming language, Salty translates
this textual Moore machine representation of the controller to an implementa-
tion in SPARK. To give a brief overview, the Moore machine representing the
controller is encoded as a record (analogous to a struct in C) that stores the
controller’s current state and a copy of the current input and output values, i.e.
the values associated with the most recent transition. There is then a “move”
procedure that implements the transition relation. This procedure changes the

1 https://github.com/GaloisInc/salty/.

https://github.com/GaloisInc/salty/
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controller’s state based on the next set of input values, produces the next set of
output values, and updates its internal copy of current input and output values
based on these most recent input and output values. Salty also synthesizes all
of the annotations necessary to encode the specifications of interest and verify
that the controller satisfies those specifications. In terms of specifications, we
seek to prove that the controller satisfies the system initial properties ϕs

i and
system transition properties ϕs

t . Recall that GR(1) specifications take the form
(ϕe

i ∧ϕe
t∧ϕe

l ) → (ϕs
i ∧ϕs

t∧ϕs
l ). Note however that for controllers synthesized from

GR(1) specifications, system initial and transition properties should hold regard-
less of whether environment liveness properties hold. We are therefore interested
in showing that (ϕe

i ∧ ϕe
t ) → (ϕs

i ∧ ϕs
t ). For the SPARK implementation, Salty

therefore generates functions corresponding to ϕe
i and ϕe

t , which are used in the
precondition for the move procedure. It also generates functions corresponding
to ϕs

i and ϕs
t , which are used in the postcondition for the move procedure. If

SPARK can verify that the move procedure satisfies the postcondition given the
precondition, this verifies (ϕe

i ∧ ϕe
t ) → (ϕs

i ∧ ϕs
t ). In terms of additional anno-

tations needed to prove this property, Salty generates “state to input mapping”
and “state to output mapping” functions that encode which input and output
values are associated with each state; these are used to define a type invariant
on the controller. This is essentially all that is required to prove system initial
and system transition properties of synthesized controllers in SPARK.

To understand synthesized SPARK controllers and annotations in more
detail, consider a simple example involving a traffic light controller. Let the
controller’s single input be tick. Color changes occur in every state in which tick
is true. The traffic light’s color cycles infinitely over the sequence red → green →
yellow → red → . . .. Let the output variables then be red, yellow, and green.
The environment specifications are ϕe

i = �, ϕe
t = �, ϕe

l = �♦tick, i.e. tick can
be true or false in the initial state and has no constraints on how it transitions
from state to state, but it must be true infinitely often. The system initial and
liveness specifications are ϕs

i = red ∧ ¬yellow ∧ ¬green and ϕs
l = �♦green, i.e.

the light starts as red but should infinitely often be green. The system transition
specification is

�(�((red ∧ ¬yellow ∧ ¬green) ∨ (¬red ∧ yellow ∧ ¬green) ∨ (¬red ∧ ¬yellow ∧ green)) ∧ (1)

(red ∧ �tick → �green) ∧ (green ∧ �tick → �yellow) ∧ (yellow ∧ �tick → �red) ∧ (2)

(red ∧ �¬tick → red) ∧ (green ∧ �¬tick → green) ∧ (yellow ∧ �¬tick → yellow)) (3)

That is, the light should only be one color at a time (1); the color should change
from red → green → yellow → red → . . . whenever tick is true (2); and the color
should remain the same whenever tick is false (3).

In SPARK, subunits consist of a specification and a body. The package speci-
fication for this traffic light example is shown in Fig. 1. Type Controller encodes
a Moore machine representing the synthesized controller. In the public part of the
specification, Controller (line 2) is declared as a private type so that the user
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1 package Tra f f i cL i gh t with SPARK Mode i s
2 type Cont ro l l e r i s private ;
3
4 type System i s record
5 red : Boolean ; ye l low : Boolean ; green : Boolean ;
6 end record ;
7
8 function I s I n i t (C: Cont r o l l e r ) return Boolean ;
9 function Env In i t ( t i c k : Boolean ) return Boolean i s (True ) ;

10 function Sy s I n i t (S : System ) return Boolean i s
11 (S . red and not S . ye l low and not S . green ) with Ghost ;
12
13 function Env Trans (C: Con t r o l l e r ; t i c k : Boolean ) return Boolean
14 with Pre => (not I s I n i t (C) ) ;
15 function Sys Trans (C: Con t r o l l e r ; t i c k : Boolean ; S : System )
16 return Boolean with Pre => (not I s I n i t (C) ) , Ghost ;
17
18 procedure Move(C: in out Cont ro l l e r ; t i c k : in Boolean ; S : out System )
19 with
20 Pre => ( i f I s I n i t (C) then Env In i t ( t i c k ) else Env Trans (C, t i c k ) ) ,
21 Contract Cases =>
22 ( I s I n i t (C) => Sy s I n i t (S) and (not I s I n i t (C) ) ,
23 others => Sys Trans (C’ Old , t i ck , S ) and (not I s I n i t (C) ) ) ;
24
25 private
26 function State To Input Mapping (C: Cont r o l l e r ) return Boolean
27 with Ghost ;
28 function State To Output Mapping (C: Con t r o l l e r ) return Boolean
29 with Ghost ;
30
31 subtype State Num i s I n t eg e r range 1 . . 7 ;
32
33 type Cont ro l l e r i s record
34 State : State Num := State Num ’ Last ; t i c k : Boolean ; S : System ;
35 end record
36 with Type Invar iant => ( State To Input Mapping ( Con t r o l l e r ) and

etatS73 To Output Mapping ( Con t r o l l e r ) ) ;
38
39 end Tra f f i cL i gh t ;

Fig. 1. SPARK specification for a traffic light controller.

cannot arbitrarily manipulate its state. In the private part of the specification,
Controller (lines 33–37) is a record that stores the controller’s internal state
number, current input value(s), and current output value(s). The internal state
number is always initialized to the last possible state number, i.e. the largest
value for State_Num; this “controller initialization” state encodes the status of
the controller before any inputs are received, and the only transition(s) out of
this state are those allowed by ϕe

i . In this example, each input and output is of
type Boolean. (Salty also allows for enumerations and integers, to be discussed
later.) When there are multiple inputs or outputs, they are wrapped in a record
of type Environment (not used here) or System (lines 4–6), respectively. There
is only one input in this example, so it is not wrapped in a record, which is
why there is no Environment record in Fig. 1. Since Controller is a Moore
machine, for each internal state, there is exactly one set of output values pro-
duced in that state. Furthermore, recall that controllers synthesized from GR(1)
specifications have the additional property that there is exactly one set of input
values that brings the controller into each state. Controller therefore includes
a type invariant (lines 36–37) that captures this property, where functions
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State_To_Input_Mapping and State_To_Output_Mapping evaluate whether
the controller’s state corresponds to the expected input and output value(s),
respectively. Both of these functions are declared (lines 26–29) with aspect Ghost,
indicating that they are intended mainly for proof purposes, i.e. they will create
verification conditions related to type Controller but will not be executed in
the actual program, unless it is specified during compilation that they should be.
Executing ghost code is often used for debugging, e.g. to check an unproved prop-
erty through testing. In this case, removing the ghost code can save significant
memory, since State_To_Input_Mapping and State_To_Output_Mapping inter-
nally encode large lookup tables that have to store information on every state of
the controller, which is often thousands of states or even millions of states for the
largest example in our database. The logic for these functions is given in the body
(not shown), but for instance when C.State = 1, State_To_Input_Mapping(C)
returns True if and only if C.tick = False, since tick being false brings the sys-
tem into state 1; and State_To_Output_Mapping(C) returns True if and only
if C.S = System’(red => True, yellow => False, green => False), since
red is true and yellow and green are false in state 1.

The public function Is_Init (line 8) checks whether the controller is in
its initialization state, i.e. no inputs have yet been received. The public func-
tion Env_Init (line 9) checks whether input(s) satisfy ϕi

e. It is implemented
as an expression function, i.e. the implementation is given directly in the spec-
ification, because all terms needed to define it are visible in the public part
of the specification. In this example, since ϕi

e = � in the Salty specification,
this automatically generated function always simply returns True. The public
function Sys_Init (lines 10–11) checks whether outputs(s) satisfy ϕi

s. It is imple-
mented as an expression function for the same reason. From the Salty specifica-
tion, ϕs

i = red ∧ ¬yellow ∧ ¬green, so this function returns the value of the
expression S.red and not S.yellow and not S.green. But unlike Is_Init
and Env_Init, it is marked with aspect Ghost because it is mainly used for proof
and does not need to be executed. Is_Init and Env_Init are used for proof but
are also callable in functional code. We chose to make these functions non-ghost
functions for reasons related to the meaning of GR(1) specifications. Recall that
GR(1) specifications have the form ϕe → ϕs. If ϕe ever becomes false, i.e. if the
environment produces input value(s) that violate ϕe, then the specification as a
whole is satisfied regardless of whether the system produces output value(s) that
satisfy ϕs. In theory, the system could then produce arbitrary outputs and still
satisfy the overall specification. In practice, we believe a user would generally
want to know that the environment violated its specification, so that the user
could either choose the system output value(s) explicitly or fall back to some
other routine. Therefore, a user needs to be able to check inputs with Env_Init
if Is_Init returns true, which is why both are callable. At the moment, they
are not used in the code of the Move procedure. Public functions Env_Trans
and Sys_Trans (lines 13–16) check whether the next set of input value(s) and
output value(s) satisfy ϕt

e and ϕt
s, respectively. For the same reasons as above,

Sys_Trans is a ghost function but Env_Trans is not. Note that Env_Trans has
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a precondition that the controller must not be in its initialization state, since ϕt
e

can depend on both the current and next set of input value(s). This precondition
is similarly necessary for Sys_Trans, since it can depend on both current and
next input and output value(s). As with Env_Init and Sys_Init, the logic for
these functions is synthesized from the Salty specification and implemented in
the body (not shown), since they make use of input and output values stored in
the Controller, whose fields are private.

The public procedure Move (lines 18–23) transitions the Controller based
on its current internally stored values (i.e. state number and most recent input
and output values) and next set of input value(s), and it produces the next set of
output value(s). It has a precondition that if Controller is in its initialization
state (i.e. it has not yet received any inputs), inputs must satisfy ϕi

e; otherwise
they must satisfy ϕt

e. The aspect Contract_Cases specifies additional sets of
preconditions paired with postconditions, where the set of all preconditions must
be mutually exclusive and exhaustively cover the entire input space. The others
keyword can be used to cover the set of all input conditions not covered in any
explicit cases of the contract. Note that for the left-hand side of each case (i.e.
left of =>), variable names refer to values before evaluation of the subprogram; for
the right-hand side, they refer to values after evaluation. Therefore, the aspect
Old can be used on the right to reference the value of a variable before evaluation
of the subprogram. Combined with the previous precondition, Contract_Cases
asserts that if the controller is in its initialization state, then after execution
of Move, the first set of output value(s) produced should satisfy ϕi

s and the
controller should no longer be in its initialization state. If the controller is not
in its initialization state, then the output value(s) produced should satisfy ϕt

s,
which is evaluated based on the most recent input and output values stored in
C’Old, the next input value(s) just provided (in this case stored in tick), and
the next output values just generated (in this case stored in the record System).
This set of contract cases embodies our main proof goal, i.e. verification of system
initial and transition properties from the original GR(1) specification.

A fragment of the body of Move is shown in Fig. 2. Note that there are cases
that can lead to Program_Error. This is because case statements require all
possible cases to be covered, so we programmatically use others to cover all
possible input combinations that would not be allowed due to ϕi

e or ϕt
e. In the

traffic light example, these are unnecessary because all possible combinations
of input values are allowed out of each state. In any case, SPARK will prove
that such cases are not reachable if the preconditions of Move are met, i.e. if the
environment satisfies its specification.

We briefly note that Salty includes language features that can result in dif-
ferent constructs being used to represent inputs and outputs in synthesized con-
trollers, including enumerations and integers. For instance, enumerations encode
that an enumerated input or output can have exactly one of a set of values at a
time, as in the traffic light being exactly one color as expressed in ϕi

s and part
(1) of ϕt

s. In such cases, enumerations or integers can make both specifications
and code more compact and easier to read and understand. As a technical aside,
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procedure Move(C: in out Cont ro l l e r ; t i c k : in Boolean ; S : out System ) i s
begin

case C. State i s
when 1 =>

case t i c k i s
when False =>

C. State := 1 ;
C. S . red := True ; C. S . ye l low := False ; C. S . green := False ;

when True =>
C. State := 3 ;
C. S . red := False ; C. S . ye l low := False ; C. S . green := True ;

when others =>
raise Program Error ;

end case ;
. . .

when 7 =>
case t i c k i s

when False =>
C. State := 1 ;
C. S . red := True ; C. S . ye l low := False ; C. S . green := False ;

when True =>
C. State := 2 ;
C. S . red := True ; C. S . ye l low := False ; C. S . green := False ;

when others =>
raise Program Error ;

end case ;
end case ;
C. t i c k := t i c k ; S := C. S ;

end Move ;

Fig. 2. The body of the Move procedure.

during synthesis, enumerations and integers are translated to a bit vector repre-
sentation along with additional initial and transition specifications that encode
properties inherent to these types, such as values being mutually exclusive and
rules for addition and subtraction over integers. Once synthesis is complete, val-
ues are translated back to their original enumeration or integer representation.

3 Example Controller for a Team of UAVs

In order to evaluate the feasibility and utility of our approach, we collected GR(1)
specifications from a variety of sources. This includes the Salty repository, which
contains examples of GR(1) specifications for control of teams of unmanned air
vehicles (UAVs) performing different missions. One of these encodes the rules
for a “VIP Escort” mission, in which one UAV is designated as a “very impor-
tant person” (VIP) that must always be “escorted” by a friendly surveillance
UAV when it moves, and it must also be protected from an “enemy” UAV. The
VIP and surveillance UAVs are controlled by the system, while the enemy UAV
is controlled by the environment. The mission map contains regions that the
UAVs can move between. “Escorting” consists of ensuring that 1) the VIP only
enters regions previously visited by a surveillance UAV and 2) whenever the
VIP changes regions, a surveillance UAV “tracks” it, i.e. moves with it between
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regions. “Protection” consists of ensuring that the VIP is never in the same
region as the enemy UAV. Additional rules include constraints and liveness
requirements on how the UAVs can move between regions and which regions
they start in.

Fig. 3. A VIP escort multi-UAV mission as simulated in OpenAMASE using a Salty-
synthesized controller that issues commands to the UAVs through OpenUxAS.

A particular instantiation of this mission is shown in Fig. 3, as depicted
in the open source Aerospace Multi-Agent Simulation Environment (OpenA-
MASE)2. It includes the VIP, two surveillance UAVs numbered 1 and 2, one
enemy UAV, and five regions numbered 1 to 5. Environment inputs include inte-
ger variable loce ∈ {1 . . . 5}, which encodes the current region of the enemy
UAV, and Boolean variables sri for i = {1 . . . 5}, where sri is true if and only
if region i has been visited at some point by a surveillance UAV. System out-
puts include integer variables locv, locs1, locs2 ∈ {1 . . . 5}, which indicate the
current region of the VIP and surveillance UAVs 1 and 2, and Boolean variables
vTrack1 and vTrack2, which indicate whether surveillance UAVs 1 and 2 are exe-
cuting a behavior to follow the VIP. Note that low-level control, e.g. waypoint
planning and sensor steering, is implemented by the open source Unmanned
Systems Autonomy Services (OpenUxAS)3. The controller synthesized by Salty
implements high-level decision logic, and OpenUxAS monitors the state of the
controller and translates its current output values to a set of UAV commands
that are simulated in OpenAMASE. For example, when locv changes value to
2, OpenUxAS commands the VIP to follow a path from its current region to
region 2, or when vTrack1 changes from false to true, OpenUxAS commands
surveillance UAV 1 to fly next to the VIP. The high-level controller synthesized

2 https://github.com/afrl-rq/OpenAMASE.
3 https://github.com/afrl-rq/OpenUxAS.

https://github.com/afrl-rq/OpenAMASE
https://github.com/afrl-rq/OpenUxAS
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by Salty makes some assumptions about the low-level behaviors implemented
by OpenUxAS, in this case, mainly that all UAVs move at the same speed and
transition to new regions at the same time. A workflow for connecting Salty-
implemented controllers with OpenUxAS and OpenAmase is described in [7],
and all of the scripts, configuration files, etc. needed to run this example are
available on the Salty repository.

For this mission, the GR(1) specifications for the environment are:

ϕi
e = (loce = 4) ∧ ¬sr1 ∧ ¬sr2 ∧ sr3 ∧ ¬sr4 ∧ sr5 (4)

ϕt
e =

∧

i={1...5}
�

(
(locs1 = i) ∨ (locs2 = i) → �sri

)
∧ (5)

∧

i={1...5}
�

((¬(locs1 = i) ∧ ¬(locs2 = i) ∧ ¬sri → �¬sri
) ∧ (6)

(
sri → �sri

)) ∧ (7)

�¬(loce = 1) ∧ �¬(loce = 2) (8)

ϕl
e = �♦¬(loce = 3) ∧ �♦¬(loce = 4) ∧ �♦¬(loce = 5). (9)

These express that (4) the enemy UAV starts in region 4, and regions 3 and 5
start as surveilled; (5) a region is considered to be surveilled after either one
of the surveillance UAVs is in it; (6) a previously unsurveilled region remains
unsurveilled if neither surveillance UAV is in it; (7) once a region is surveilled,
it remains surveilled; (8) the enemy UAV cannot go to regions 1 or 2; and (9)
the enemy UAV must infinitely often not be in each region 3, 4, and 5.

GR(1) specifications for the system are:

ϕi
s = (locv = 2) ∧ (locs1 = 3) ∧ (locs2 = 5) ∧ ¬vTrack1 ∧ ¬vTrack2 (10)

ϕt
s = �

(
¬(locv = �locv) → (�vTrack1 ∨ �vTrack2)

)
∧ (11)

∧

i={1...2}
�

(
vTracki → (sloci = locv)

)
∧ (12)

∧

i={1...5}
�

(
(locv = i) → ¬(loce = i)

)
∧ (13)

∧

i={v,s1,s2}
�

((
� (loci = 1) → (loci = 1) ∨ (loci = 2) ∨ (loci = 3)

) ∧ (14)

(
� (loci = 2) → (loci = 1) ∨ (loci = 2) ∨ (loci = 3)

) ∧ (15)

(
� (loci = 3) →

∨

j={1...5}
(loci = j)

) ∧ (16)
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(
� (loci = 4) → (loci = 3) ∨ (loci = 4) ∨ (loci = 5)

) ∧ (17)

(
� (loci = 5) → (loci = 3) ∨ (loci = 4) ∨ (loci = 5)

))
(18)

ϕl
s = �♦(locv = 1) ∧ �♦(locv = 5). (19)

These express that (10) the VIP starts in region 2, surveillance UAV 1 in
region 3, and surveillance UAV 2 in region 5, with neither surveillance UAV
tracking the VIP; (11) the VIP does not change regions unless a surveillance
UAV is tracking it; (12) a surveillance UAV can only track the VIP if they are in
the same region at the same time; (13) the VIP cannot be in the same region as
the enemy UAV at the same time; (14) and (15) the VIP and surveillance UAVs
can move from regions 1 or 2 to regions 1, 2, or 3; (16) the VIP and surveillance
UAVs can move from region 3 to any other region; (17) and (18) the VIP and
surveillance UAVs can move from regions 4 or 5 to regions 3, 4, or 5; and (19)
the VIP must go to regions 1 and 5 infinitely often.

We have chosen to describe this particular example in detail because during
the process of extending Salty to produce SPARK implementations, we dis-
covered a previously undetected problem with this example’s specification. As
written, the specification is realizable and produces what appears at a glance
to be a reasonable controller with 97 states. In fact, we had previously run this
example with OpenAMASE, OpenUxAS, and a Python controller synthesized
by Salty. However, we did not originally notice in the Python implementation
that 34 of the controller’s 97 states do not have successors. Since no special logic
was added to Salty to handle this situation, the generated SPARK code included
empty case statement alternatives in the Move procedure. For example, in state
2 the case statement alternative is simply when 2 =>, with no statements in the
body. This code failed to compile, since SPARK does not allow for fall-through
behavior in case statements (nor does Ada); explicit statements are expected for
each case statement alternative. In Python, this error went undetected; the tran-
sition relation for the controller is encoded as a map, and entries corresponding
to states without successors simply had an empty list of “next state” values. We
briefly note that if we had encoded the controller using a map in SPARK, the
error would still have been detected through SPARK analysis rather than a syn-
tactic check of the code; the case statement encoding was chosen for efficiency
reasons to be discussed in Sect. 5.

This error is the result of a subtlety of the semantics of GR(1) specifications.
Recall that GR(1) specifications take the form ϕe → ϕs. Obviously a specifica-
tion of this form is satisfied if ϕe and ϕs are both true, but it is also satisfied
if ϕe is false. Also recall from the introduction that GR(1) specifications are
interpreted in the context of a two-player game in which the environment takes
its turn first and the system takes its turn second. The issue here is that the
environment is able to take transitions that will necessarily cause it to violate ϕt

e

in the next time step. Note that ϕt
e contains terms of the form �¬p, specifically
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�¬(loce = i) for i = {1, 2} (8). Note that a term of the form �¬p is not the same
as a term of the form � � ¬p. The distinction is important. If the environment
chooses p for the “next” time step, this does not violate �¬p in the “current”
time step. However, once the next state is reached, p becomes the new “current”
value, and �¬p will now be violated no matter what the environment chooses.
Generally, specifications should follow the latter form � � ¬p, which prohibits
the environment from choosing p in the “next” time step. This was indeed an
error in these specifications, so we changed �¬(loce = 1) ∧ �¬(loce = 2) to
� � ¬(loce = 1) ∧ � � ¬(loce = 2) in (8). However, we also modified Salty
to raise Program_Error in cases with no successors and checked that we were
still able to prove ϕe → ϕs (since reaching these cases would require violating
the precondition ϕe). Such cases amount to instances in which the precondition
on Move would have to be violated, which is why we allow the user to execute
Env_Trans as discussed in Sect. 2. We also plan to have Salty issue a warning
when there are states with no successors, since such cases are likely unintended.

4 Results

To further evaluate the utility and feasibility of our approach, we pulled addi-
tional example GR(1) specifications from a variety of sources including Anzu,
LTLMoP, TuLiP, Slugs, and Salty, all of which make their examples publicly
available for download. GR(1) specifications in Salty format, synthesized SPARK
packages, and SPARK analysis results for all of these examples are available on
the Salty GitHub repository, including the traffic light example of the previous
section. We note that while some examples are small and simple, e.g. demos
along the lines of the traffic light example, there are many in our collection that
are more realistic. For instance, Anzu has controller specifications for a general-
ized IBM buffer and an AMBA bus. LTLMoP and TuLiP have specifications for
robot controllers that have been demonstrated on simulated and/or real robots.
And Salty has specifications for controllers to coordinate the actions of teams of
vehicles that have been demonstrated in simulation.

Figure 4 shows the amount of time needed to analyze examples as a function
of total number of transitions in the Moore machine representing the controller,
with examples that could not be analyzed due to memory errors set to 1. Results
were generated on a Linux VM given 24 GB RAM and 4 processors on a MacBook
Pro with a 2.9 GHz Intel Core i9 with 32 GB RAM. We ran 40 examples in total.
Results for 33 examples are plotted. On most examples with less than 4000
transitions, SPARK was able to completely verify/prove the synthesized code
complies with its specification. Examples that had more than 4000 transitions
(the 7 unplotted examples) required too much memory to analyze, resulting in
errors when attempting to verify them in SPARK.

Of examples with less than 4000 transitions, two resulted in errors. These two
examples had abnormally large specifications consisting of approximately 1000
atomic propositions each, whereas most other examples with a similar number
of transitions had 500 or less. Such cases occur, e.g. when systems include a
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Fig. 4. Timing results for example SPARK controllers as a function of number of
transitions in the controller. “Proven” examples were fully verified, “partial” examples
were partially verified, and “error” examples were too big to analyze.

large number of inputs and/or outputs but have very tight specifications on how
they can transition, leading to large specifications and therefore lengthy pre- and
postconditions but relatively small controllers.

Two examples with less than 4000 transitions could only be partially proven.
One was relatively large, with about 2000 transitions. The other had arithmetic
terms in its specification (Salty and Slugs support integer inputs and outputs);
we are investigating why this example does not fully prove, since we feel that
SPARK should be capable of fully proving this example.

5 Lessons Learned

Throughout the process of synthesizing and attempting to verify controllers in
SPARK, we learned several lessons, both about SPARK and about some of the
finer points of GR(1) specifications.

In terms of encoding SPARK controllers for verification, we originally tried
to mirror the approach taken in other Salty language targets by building a
static lookup table for state transitions. To do this, we tried to create an array
of Formal_Hashed_Maps indexed by State_Num, where keys were derived from
environment input values and used to look up the next State_Num and cor-
responding system output values. Ghost functions consisting of nested quanti-
fied expressions were used to check that in each state, specification properties
held using input and output values encoded by the current state and all states
reachable as contained in the hashed maps. These functions comprised the post-
condition of a function that initialized the controller’s lookup table. The body of
the Move procedure simply retrieved the outputs and next state from the lookup
table using its stored State_Num and Environment input. The public portion of
the SPARK specification was largely unchanged. This approach was only able
to prove the smallest of examples in a reasonable amount of time.

While the use of formal containers was intuitive, they are more complex to
reason about in terms of proof because they require reasoning about models of
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the containers. Encoding the lookup table as a case statement is more straight-
forward, because for instance, it is “obvious” to the underlying solvers that
state transitions are static and that a transition exists for every possible input,
since case statements must be exhaustive. Encoding the Move procedure as a
case statement still has some issues, mainly that (1) the generated code can be
quite long, leading to memory errors when trying to prove the subprogram with
SPARK, and (2) since the solvers prove all case statement alternatives at the
same time and the number of case statement alternatives grows exponentially
with the number of inputs, sometimes the solvers are not able to prove the post-
condition. A solution to both problems could be to split the Move procedure into
several smaller procedures. This would allow SPARK to apply modular analysis
on several smaller procedures, thus enabling the proof on larger files. We are
currently investigating ways to split up the procedure that does not accidentally
create more difficulties for the underlying solvers.

The process of encoding and analyzing controllers in SPARK did reveal some
unexpected behaviors. First, as discussed in Sect. 3, there were two example con-
trollers4 with specifications that resulted in states with no successors. As a result,
these controllers contained empty case statements in the Move procedure. We had
previously tested the Salty-synthesized controller in Python for the example in
Sect. 3 and had not noticed the error, though it would have resulted in an unhan-
dled runtime exception if one of the states without successors had been reached
in the Python implementation. Second, a meta-analysis of SPARK timing results
also revealed that other examples in our database did not have any inputs, i.e.
they amounted to synthesizing a system independent of an environment. In those
cases, we had specifications for a non-existent environment that were vacuous,
and this caused SPARK to take an abnormally long amount of time to verify
these controllers, given their relatively small size. These controllers did not have
errors per se, but they were inefficiently encoded. We plan to modify Salty to
handle such cases by removing the environment, functions over the environment,
and all references to the environment in all pre- and postconditions. This greatly
decreases verification time and also reduces the size and increases the efficiency
of the code.

6 Conclusions

We were able to successfully use SPARK to verify safety and transition properties
of moderately sized controllers synthesized by Salty from GR(1) specifications.
Encoding the controllers and all of the annotations necessary for these controllers
to prove automatically was relatively straighforward, and it was satisfying to be
able to generate proofs using a single tool rather than having to use multiple
tools to perform verification. Furthermore, the act of performing “end-to-end”
verification with SPARK on such controllers was valuable because (1) it revealed
a type of specification error in some examples that would result in runtime errors

4 Salty’s vip orig.salt and Anzu’s arbiter.salt.
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in other Salty target languages, and (2) it revealed cases in which controllers were
inefficiently encoded, i.e. when there is no environment.

In terms of future work, we can potentially improve the scalability of our
approach by decomposing the Move procedure into several subprocedures, as dis-
cussed in the previous section. We are also interested in expressing and proving
liveness properties. Liveness properties will be more challenging to verify because
they necessarily require reasoning about future states beyond the “next” state.
Verifying system liveness in SPARK will require something like encoding a looka-
head buffer and showing that certain states will inevitably be reached when the
environment satisfies its specification, which can itself also include liveness terms.
This is likely to result in complex first-order formulas with alternating quantifi-
cation over time, which are notoriously hard to handle in automated solvers,
so discharging the resulting proof obligations may prove to be a challenge. To
tackle this issue, collaboration with a model checker performing verification at
the level of the input language might be more appropriate.
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Abstract. We formalise mathematical components for solving affine
and linear systems of ordinary differential equations in Isabelle/HOL.
The formalisation integrates the theory stacks of linear algebra and anal-
ysis and substantially adds content to both of them. It also serves to
improve extant verification components for hybrid systems by increas-
ing proof automation, removing certification procedures, and decreasing
the number of proof obligations. We showcase these advantages through
examples.

Keywords: Hybrid systems · Formal verification · Proof assistants

1 Introduction

With the increased number of computers controlling physical mechanisms, also
known as cyber-physical systems, proofs of their correctness become more rel-
evant. An important approach is differential dynamic logic (dL) [21]. It is an
extension of dynamic logic with inference rules to reason about flows and invari-
ants of ordinary differential equations (ODEs). Numerous case studies apply
it and its domain-specific proof assistant, KeYmaera X [14,16]. Despite other
approaches to verification [1,2], we focus on dL-style deductive verification.

Our recent dL-inspired components allow the verification of hybrid programs
in the general purpose proof assistant Isabelle/HOL [7,17,19]. Using a shallow
embedding and Kleene algebras instead of dynamic logics, the implementation
of these components makes them modular and extensible. Their modularity has
been explored before in various ways, however their extensibility for the benefit
of proof performance has not yet been pursued. In particular, extensions of
Isabelle’s mathematical components for ordinary differential equations to specific
classes promises significant benefits in this regard.

Linear and affine systems of ODEs, for example, those described by linear
(resp. affine) transformations, are among the simplest and most studied variants.
They enjoy desirable mathematical properties like existence and uniqueness of
solutions to their associated initial value problems (IVPs), and come with various
methods for solving them. In particular, there is an explicit way to compute the
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general solution for their time-independent versions [10,22]. Although there is
much work in extending both the ODE libraries [11–13] and the linear algebra
libraries [6,23], there are no formalisations in Isabelle connecting both theory
stacks and this reverberates in the verification process with our components.
For instance, formalising existence and uniqueness results for affine and linear
systems reduces the proofs that users have to supply. Also, where users have to
find solutions to the time-independent versions, we can provide the general one.

Thus, inspired by the deductive approach to verification of hybrid systems,
our main contribution is the first formalisation of linear and affine systems of
ODEs in a proof assistant by combining the theory stacks of linear algebra and
ODEs. We add to this integration by extending these libraries with properties
about operator norms, diagonal matrices, and derivatives involving matrix-vector
multiplication. In addition, we provide evidence that the study and analysis of
these systems with a proof assistant is feasible.

Moreover, we extend the Kleene algebra verification components for hybrid
systems by improving their tactics for checking if a function is a derivative of
another one. We use these tactics to formalise the fact that all linear and affine
systems of ODEs have unique solutions, and we certify the general solution for
the time-independent case. In the cases where the linear transformation has
a diagonalisable representation, we also prove lemmas that include a simpler
representation of the general solution. Finally, we add proof automation for
operations with the list-representation of n× n matrices.

The Isabelle formalisation itself forms a major contribution of this paper.
It adds new mathematical components to an important field of analysis and
improves our verification components for hybrid systems. The formalisations are
available in the reviewed Archive of Formal Proofs [18].

2 Affine Systems of ODEs

We first review the mathematical definitions and results for differential equations
needed for our formalisation.

Dynamical systems describe the time dependency of points in a state space
S. Formally, they are monoid actions ϕ : T → S → S that satisfy

ϕ (t1 + t2) = ϕ t1 ◦ ϕ t2 and ϕ 0 = id ,

where the monoid (T,+, 0) represents time. A dynamical system is a flow or
continuous if T = R or T = R+, the non-negative real numbers. Flows emerge
from solutions to systems of ordinary differential equations as explained below.

In a system of ODEs X ′ t = f (t,X t), the function f : T × S → R
n is a

vector field ; it assigns a vector to each point in T × S with T ⊆ R and S ⊆ R
n,

it is continuous and it suffices to describe the system [10,22]. An initial value
problem then consists of a vector field f and an initial condition (t0, s) ∈ T × S,
where t0 and s represent the initial time and state of the system. Therefore, a
solution to this system is a continuously differentiable function X : T → S that
satisfies X ′ t = f (t,X t) for all t ∈ T . This function also solves the IVP if it
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satisfies X t0 = s. Finally, if for each s ∈ S there is a unique solution or trajectory
ϕf

s : T → S to the IVP given by f and (0, s), then the equation ϕ t s = ϕf
s t

defines the flow ϕ : T → S → S of f . Geometrically, the trajectory ϕf
s is the

only curve in S that passes through s and is always tangential to f .
Picard-Lindelöf ’s theorem guarantees local existence and uniqueness of solu-

tions for some IVPs [10,22]. It requires the domain T × S of f to be open with
(t0, s) ∈ T × S, and f to be locally Lipschitz continuous in S. That is, there must
be ε > 0 and � ≥ 0 such that for all t ∈ Bε(t0) ∩ T and all s1, s2 ∈ Bε(s) ∩ S,

‖f (t, s1) − f (t, s2)‖ ≤ � ‖s1 − s2‖ ,

where ‖−‖ denotes the euclidean norm in R
n and Bε(t) = {τ | ‖τ − t‖ ≤ ε}.

If these conditions are satisfied, then the theorem asserts the existence of an
interval Ts ⊆ T where a unique local solution ϕf

s : Ts → S for the IVP exists,
that is (ϕf

s )′ t = f (t, ϕf
s t) and ϕf

s t0 = s for all t ∈ Ts. If t0 = 0 and T =
⋃

s∈S Ts,
then the flow ϕ of f exists and is a monoid action [22].

An important class of vector fields with unique solutions are those represent-
ing affine systems of ODEs. They satisfy the equation

(ϕf
s )′ t = At · ϕf

s t + B t,

for matrix-vector multiplication ·, n × n matrices At and vectors B t, where A
and B are continuous functions on T . Equally important are the corresponding
linear systems where B t = 0 for all t ∈ T .

Affine systems of ODEs are Lipschitz continuous with respect to the operator
norm ‖M‖op = Sup {‖M · s‖ | ‖s‖ = 1}, where M is a matrix with real coeffi-
cients and Sup denotes the supremum of a set. Indeed, with Lipschitz constant
� = Sup {‖At‖op | t ∈ Bε(s)},

‖(At) · s1 − (At) · s2‖ = ‖(At) · (s1 − s2)‖ ≤ ‖At‖op ‖s1 − s2‖ ≤ � ‖s1 − s2‖ .

Constant � exists by continuity of A and ‖−‖, and compactness of Bε(s). Picard-
Lindelöf thus guarantees a unique local solution for the associated IVPs. In
particular, in the time-independent or autonomous case where A and B are
constant functions, their unique solutions are well-characterised and globally
defined. That is, flows ϕ for autonomous affine systems exist and satisfy

ϕ t s = exp (tA) · s + exp (tA) ·
∫ t

0

(exp (−τA) · B) dτ,

where exp is the matrix exponential exp A =
∑

i∈N

1
i!A

i.
Computing such exponentials may be computationally expensive due to the

iteration of matrix multiplication. Exceptions are diagonalisable matrices A
which are similar to a diagonal matrix D in the sense that there is an invertible
P such that A = P−1DP . For these matrices,

exp A = exp (P−1DP ) = P−1(exp D)P,
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where exp D in the right hand side is diagonal and easy to characterise: its
entries in the main diagonal are the exponential of those in D. Therefore, when
working with solutions of autonomous affine (or linear) systems, it is preferable
to work with those in diagonal form.

3 Isabelle Components for Affine Systems of ODEs

We describe our Isabelle formalisation of the mathematical concepts outlined in
Sect. 2. More specifically, we explain our addendum of definitions and lemmas
for an integration of the existing libraries for ODEs and linear algebra. We finish
with an instance of Picard-Lindelöf’s theorem for affine and linear systems.

As Isabelle only allows total functions, we formalise the type of vector fields
as real ⇒ ′a ⇒ ( ′a :: real-normed-vector), which by currying is isomorphic to
R × V → V , where V is a normed vector space over R. We then restrict domains
and codomains of solutions using our definition in [19].

definition ivp-sols :: (real ⇒ ′a ⇒ ( ′a :: real-normed-vector)) ⇒ real set ⇒ ′a set ⇒
real ⇒ ′a ⇒ (real ⇒ ′a) set (Sols)
where Sols f T S t0 s = {X |X . (D X = (λt. f t (X t)) on T) ∧ X t0 = s ∧ X ∈ T → S}

The first conjunct D X = (λt . f t (X t)) in the definiendum above translates
to X ′ t = f (t,X t), the second states that X :: real ⇒ ′a is a solution to the
associated IVP, and the third that X maps elements of T into S.

We use R
n, with n ≥ 0, as our default vector space. It is formalised using

Isabelle’s type (real , ′n) vec (abbreviated as realˆ ′n) of real valued vectors of
dimension n. Isabelle’s HOL-Library builds this type using a bijection to the type
of functions ′n ⇒ real with finite ′n. For s :: realˆ ′n, the expression s$i denotes
the ith coordinate of s. That is, $ is the bijection from realˆ ′n to ′n ⇒ real . Its
inverse is written with a binder χ that replaces λ-abstraction. Thus, χi. s$i = s
and (χi. c)$i = c for all s :: realˆ ′n and c :: real .

Matrices are then vectors of vectors—an m × n matrix A has type realˆ ′nˆ ′m.
The product of matrix A with vector s is denoted A ∗v s; the scaling of vector s
by real number c is written c ∗R s. In Isabelle, a solution X to an affine system
of ODEs with A :: real ⇒ realˆ ′nˆ ′n and B :: real ⇒ realˆ ′n then satisfies the
predicate D X = (λt . A t ∗v X t + B t) on T .

We use a formalisation of Picard-Lindelöf’s theorem from [19]. The locale
picard-lindeloef groups its assumptions. If picard-lindeloef f T S t0 holds, then
T and S are open, t0 ∈ T , s ∈ S, λ t. f t s is continuous on T , and f is
locally Lipschitz continuous. The context of the locale also contains the lemma
picard-lindeloef .unique-solution, stating that any two functions solving an IVP

(D X = (λt. f t (X t)) on {t0−−t}) X t0 = s X ∈ {t0−−t} → S

are equal at t ∈ T . Here, {t0−−t} is Isabelle notation for the set of all numbers
between t and t0 where t can be above or below t0. Our following lemma then
yields a generic instance of picard-lindeloef .unique-solution for affine systems.
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lemma picard-lindeloef-affine:
fixes A :: real ⇒ realˆ ′nˆ ′n
assumes Ahyp: matrix-continuous-on T A

and
∧

τ ε. τ ∈ T =⇒ ε > 0 =⇒ bdd-above {‖A t‖op |t. dist τ t ≤ ε}
and Bhyp: continuous-on T B and open S
and t0 ∈ T and Thyp: open T is-interval T

shows picard-lindeloef (λ t s. A t ∗v s + B t) T S t0
〈proof〉

Assumptions Ahyp and Bhyp state that functions A and B are continuous.
The second one requires that the image of Bτ (ε) for τ ∈ T under λ t. ‖At‖op

is bounded above. The remaining ones are direct conditions of Picard-Lindelöf’s
theorem. Continuity in Ahyp is different from that in Bhyp because Isabelle’s
default norm for matrices A :: realˆ ′nˆ ′m is the Euclidean norm, not the oper-
ator norm from Sect. 2. Thus, for the lemma above, we formalise the Lipschitz
continuity argument at the end of Sect. 2 starting with the following definition.

abbreviation op-norm :: ( ′a::real-normed-algebra-1)ˆ ′nˆ ′m ⇒ real (1‖-‖op)

where ‖A‖op ≡ onorm (λx . A ∗v x)

Function onorm lives in Isabelle’s HOL-Analysis library and it is an alter-
native definition of the operator norm onorm f = Sup {‖f x‖ / ‖x‖ | x ∈ V }.
However, for many proofs, the definition of ‖−‖op in Sect. 2 is more convenient.
Hence we formalise the equivalence as shown below.

lemma op-norm-def : ‖A‖op = Sup {‖A ∗v x‖ | x . ‖x‖ = 1}
〈proof〉

We omit its proof because lack of automation for suprema in Isabelle/HOL
makes it an 8-line script. We also show that ‖−‖op satisfies the norm axioms.

lemma op-norm-ge-0 : 0 ≤ ‖A‖op

using ex-norm-eq-1 norm-ge-zero norm-matrix-le-op-norm basic-trans-rules(23) by blast

lemma op-norm-zero-iff : (‖A‖op = 0) = (A = 0)

unfolding onorm-eq-0 [OF blin-matrix-vector-mult] using matrix-axis-0 [of 1 A] by fastforce

lemma op-norm-triangle: ‖A + B‖op ≤ (‖A‖op) + (‖B‖op)

using onorm-triangle[OF blin-matrix-vector-mult[of A] blin-matrix-vector-mult[of B ]]
matrix-vector-mult-add-rdistrib[symmetric, of A - B ] by simp

lemma op-norm-scaleR: ‖c ∗ R A‖op = |c| ∗ (‖A‖op)

unfolding onorm-scaleR[OF blin-matrix-vector-mult, symmetric] scaleR-vector-assoc ..

With this norm, we can define continuity for time-dependent matrix functions
and prove Lipschitz continuity.

definition matrix-continuous-on :: real set ⇒ (real ⇒ ( ′a::real-normed-algebra-1)ˆ ′nˆ ′m) ⇒ bool
where matrix-continuous-on T A = ∀ t∈T .∀ ε>0 .∃ δ>0 .∀ τ∈T . |τ − t|<δ −→ ‖A τ − A t‖op≤ε

lemma lipschitz-cond-affine:
fixes A :: real ⇒ realˆ ′nˆ ′m and T ::real set
defines L ≡ Sup {‖A t‖op |t. t ∈ T}
assumes t ∈ T and bdd-above {‖A t‖op |t. t ∈ T}
shows ‖A t ∗v x − A t ∗v y‖ ≤ L ∗ (‖x − y‖)
〈proof〉
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Using the constant UNIV , the universal set for a given type, we prove the
fact that solutions for the autonomous affine and linear case are globally defined.
The proofs are just an instantiation of picard-lindeloef-affine.

lemma picard-lindeloef (λ t s. A ∗v s + B) UNIV UNIV 0
using picard-lindeloef-affine[of - λt. A λt. B ] by (simp only: diff-self op-norm0 , auto)

lemma picard-lindeloef (λ t. (∗v) A) UNIV UNIV 0
using picard-lindeloef-affine-constant[of A 0 ] by force

All the lemmas and abbreviations displayed above are part of a new addition
to Isabelle’s Archive of Formal Proofs [18]. Our work in this section covers over 10
pages of proofs and definitions about matrix limits, norms, and operations. This
is equivalent to more than 600 lines of code. It also includes various tangential
concepts to affine systems of ODEs like the maximum norm for matrices and its
relation to the operator norm [22].

4 Flows for Affine Systems of ODEs in Isabelle

One part is still missing from our formalisation: the general solution for
autonomous affine and linear systems of ODEs. This is the focus of this section.
Moreover, we prove that these solutions are proper flows in the sense that they
are defined over the entire monoid R and state space R

n.
The general solution for autonomous affine systems was introduced in Sect. 2.

Similarly, the general solution for the respective autonomous linear systems of
ODEs is X t = (exp ((t − t0) A)) · s for s ∈ R

n. The exponential operation
exp x =

∑
n∈N

1
n!x

n, however, is available in Isabelle only within the type-class
real -normed -algebra-1 with an identity element 1 satisfying ‖1‖ = 1. As this is
not true for realˆ ′nˆ ′n, because ‖(χ i. 1)‖ �= 1, we define a sub-type of square
matrices and show that it is an instance of real -normed -algebra-1 and banach.

typedef ′m sq-mtx = UNIV ::(realˆ ′mˆ ′m) set
morphisms to-vec sq-mtx-chi by simp

instance sq-mtx :: (finite) real-normed-algebra-1
〈proof〉

instance sq-mtx :: (finite) banach
〈proof〉

The command morphisms introduces the bijection to-vec and its inverse
to-mtx between ′n sq-mtx and realˆ ′nˆ ′n. Both instantiations require proving
that matrices form normed vector spaces. Beyond that, the first instantiation
requires showing that they also form a ring. The second instantiation formalises
the fact that every Cauchy sequence of square matrices converges.

As many properties in previous sections apply to matrices as vectors of vec-
tors, we lift various operations from this type to our new type of square matrices.

lift-definition sq-mtx-ith :: ′m sq-mtx ⇒ ′m ⇒ (realˆ ′m) (infixl $$ 90) is ($).

lift-definition sq-mtx-vec-mult :: ′m sq-mtx ⇒ (realˆ ′m) ⇒ (realˆ ′m) (infixl ∗V 90) is (∗v).

lift-definition sq-mtx-inv :: ( ′m::finite) sq-mtx ⇒ ′m sq-mtx (-−1 [90 ]) is matrix-inv .
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This means that we can write $$ and ∗V instead of $ and ∗v respectively,
and we can convert proofs between the new and the old type. We thus obtain
the same results as before in the new type, including Picard-Lindelöf’s theorem.

lemma picard-lindeloef-sq-mtx-affine:
assumes continuous-on T A and continuous-on T B

and t0 ∈ T is-interval T open T and open S
shows picard-lindeloef (λt s. A t ∗V s + B t) T S t0

〈proof〉

Next we extend the derivative tactics in [19] that determine whether one
function is a derivative of another. We extend them by adding derivative rules
for (∗V ). This allows us to formalise the general solution for autonomous linear
and affine systems of ODEs.

lemma has-vderiv-on-sq-mtx-linear :
D (λt. exp ((t − t0) ∗R A) ∗V s) = (λt. A ∗V (exp ((t − t0) ∗R A) ∗V s)) on {t0−−t}
by (rule poly-derivatives)+ (auto simp: exp-times-scaleR-commute sq-mtx-times-vec-assoc)

lemma has-vderiv-on-sq-mtx-affine:
fixes t0::real and A :: ( ′a::finite) sq-mtx
defines lSol c t ≡ exp ((c ∗ (t − t0)) ∗R A)
shows D (λt. lSol 1 t ∗V s + lSol 1 t ∗V (

∫
t0

t (lSol (−1) τ ∗V B) ∂τ))

= (λt. A ∗V (lSol 1 t ∗V s + lSol 1 t ∗V (
∫

t0
t (lSol (−1) τ ∗V B) ∂τ)) + B) on {t0−−t}

〈proof〉

As no conditions on the parameter t are given, these general solutions are
flows. We formalise these results with the locale local-flow of [19].

lemma local-flow-sq-mtx-affine: local-flow (λs. A ∗V s + B) UNIV UNIV
(λt s. exp (t ∗R A) ∗V s + exp (t ∗R A) ∗V (

∫
0
t(exp (− τ ∗R A) ∗V B)∂τ))

〈proof〉

lemma local-flow-sq-mtx-linear :
local-flow ((∗V ) A) UNIV UNIV (λt s. exp (t ∗R A) ∗V s)
〈proof〉

As reasoning with general solutions is easier for diagonalisable matrices, we
formalise matrix invertibility, similarity and diagonal matrices from linear alge-
bra. We also characterise the exponential of a matrix in terms of these concepts.

lemma mtx-invertible-def : mtx-invertible A ←→ (∃ A ′. A ′ ∗ A = 1 ∧ A ∗ A ′ = 1)
〈proof〉

definition similar-sq-mtx :: ( ′n::finite) sq-mtx ⇒ ′n sq-mtx ⇒ bool (infixr ∼ 25)

where (A ∼ B) ←→ (∃ P. mtx-invertible P ∧ A = P−1 ∗ B ∗ P)

definition diag-mat f = (χ i j . if i = j then f i else 0)

lemma exp-scaleR-diagonal1 :
assumes mtx-invertible P and A = P−1 ∗ (diag i. f i) ∗ P

shows exp (t ∗R A) = P−1 ∗ (diag i. exp (t ∗ f i)) ∗ P
〈proof〉

The first three concepts and related properties are available for matrices of
type realˆ ′nˆ ′n and ′n sq-mtx . The exponential is only available for the latter.
For example, the notation (diag i . f i) is the ′n sq-mtx version of diag-mat f .
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Our development of the type ′m sq-mtx and the diagonalisation of square
matrices is over 16 pages long. It spans over 900 lines of code or more than 200
lemmas whose proofs are long due to the various convergence arguments and
instantiations. Yet, the substantial formalisation in this section is new and it
allows Isabelle users to prove facts involving derivatives of matrix operations.

5 Working with Linear Systems in Isabelle

The mathematical development so far supports several ways of proving prop-
erties of affine systems of ODEs in Isabelle/HOL. In this section, we discuss
various use cases of our components, including their limitations. Our classifica-
tion depends on whether users know a solution to an affine system

X ′ t = At · X t + B t. (1)

In the autonomous case At = A, it also depends on the diagonalisability of A.
Firstly, users may want to certify that a function ϕf : T → S solves

system (1), with T ⊆ R and S ⊆ R
n. If they formalise Eq. (1) in Isabelle

by substituting ϕf for X, then they can use tactic poly-derivatives to check
that both sides of the equation reduce to the same expression as in lemma
has-vderiv-on-sq-mtx-linear of Sect. 4.

Alternatively, users might want to relate two different characterisations
ϕf
1 , ϕf

2 of the solution to an IVP X ′ t = At · X t + B t with X t0 = s.
Using uniqueness, as provided by Picard-Lindelöf’s theorem, they can con-
vert easily between one characterisation to the other by firstly formalising
that ϕf

1 t = ϕf
2 t for all t ∈ T ⊆ R. Our most general uniqueness lemma is

picard-lindeloef .unique-solution of Sect. 3, but we have derived specific instances
for the autonomous affine case X ′ t = A · X t + B, linear case X ′ t = A · X t,
and the case when t0 = 0 and ϕf is the general solution in terms of the matrix
exponential.

A particular case where our uniqueness lemmas are useful is in dL-style veri-
fication of hybrid systems [21]. Its postconditions must hold for all the points in
all solutions of an IVP or along all points of the flow [7,19,20]. Uniqueness there-
fore simplifies the verification procedure by restricting it to only one solution.
We further explore this in Sects. 7 and 8.

So far we have covered cases where users have a solution to system (1). Oth-
erwise, our formalisation provides the general solution for autonomous affine
systems X ′ t = A · X t + B in terms of the matrix exponential with lem-
mas has-vderiv-on-sq-mtx-affine and has-vderiv-on-sq-mtx-linear for the type of
matrices ′n sq-mtx of Sect. 4.

A formalisation of the general solution for the non-autonomous case is harder
and left for future work. The difficulty resides in that one usually needs a solution
to the associated linear system X ′ t = At · X t [8] which can be difficult to find.
With this solution, one can use the variation of parameters method to generate
the corresponding solution to the affine system (1) [10]. An alternative approach
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consists in finding the solution to an equivalent linear system of ODEs in one
more dimension. Indeed, the system

(
X ′ t
1′

)

=
(

(At) (B t)
0� 0

)

·
(

X t
1

)

=
(

At · X t + B t
0

)

subsumes system (1) in its first entry. Here, 0� is a transposed zero-vector with
the same length as B t and 0, 1 ∈ R. Thus, if the solution to any of those two
linear systems is known, our components are the basis for solving the affine
system of interest.

Yet, working with the general solution might require the simplifications at
the end of Sect. 2 via the diagonalisation A = P−1DP provided that the associ-
ated diagonal D and change of basis P matrices are known. In Sect. 4, Lemma
exp-scaleR-diagonal1 includes the simplification based on this proviso.

If matrices are non-diagonalisable, the general solution is left for future work
as we need Jordan Normal forms to formalise this result [22]. However, many non-
diagonalisable matrices can still be tackled with our components. An example
of this are nilpotent matrices that satisfy the condition Ak = 0 for some k ≥ 0.
If k is small, the exponential is still easy to characterise as exp A =

∑k
i=0

1
i!A

i.
We exemplify how to use our components in such cases in Sects. 6 and 8.

Finally, users may want to work with the flow ϕ t s of the autonomous affine
system of ODEs X ′ t = A · (X t) + B with initial condition X 0 = s. For this,
they must use the type ′n sq-mtx and the locale local-flow applied to the general
solution. With this locale, users can change between characterisations of the flow
via uniqueness theorems or use the lemma that formalises the monoid-action
behaviour of the flow over R.

6 Examples

In this section, we analyse two systems of ODEs and characterise their flows with
our Isabelle formalisation. In the first example, we diagonalise the associated
matrix and use this to describe the general solution more conveniently. For the
second one, we construct the general solution by computing the associated matrix
exponential directly.

Example 1 (Diagonalizable Matrix). An ubiquitous second order ODE in
physics and engineering is

x′′ t = a(x t) + b(x′ t).

Fixing a = − k
m and b = − d

m yields the damped harmonic oscillator equation of
a mass m attached to a spring with constant k sliding along a horizontal track
with damping factor d. Alternatively, with a = 1

CL and b = R
L , we obtain an

ODE for modelling the current of a closed circuit where a resistor (R), inductor
(L) and capacitor (C) are in series with a source of constant voltage [10].
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Introducing variable y such that x′ t = y t yields the linear system
(

x′ t
y′ t

)

=
(

0 1
a b

)

·
(

x t
y t

)

.

In Isabelle, we use our function mtx that turns lists into the type ′n sq-mtx .

abbreviation mtx-hOsc :: real ⇒ real ⇒ 2 sq-mtx (A)
where A a b ≡ mtx
([0 , 1 ] #
[a, b] # [])

We use WolframAlpha R© to diagonalise it: generate its eigenvalues ι1, ι2 and
its change of basis matrix P . Then we formalise these entities and certify the
diagonalisation as follows.

abbreviation mtx-chB-hOsc :: real ⇒ real ⇒ 2 sq-mtx (P)
where P a b ≡ mtx
([a, b] #
[1 , 1 ] # [])

lemma mtx-hOsc-diagonalizable:
defines ι1 ≡ (b − sqrt (bˆ2+4∗ a))/2 and ι2 ≡ (b + sqrt (bˆ2+4∗ a))/2
assumes b2 + a ∗ 4 > 0 and a �= 0
shows A a b = P (−ι2/a) (−ι1/a) ∗ (diag i. if i = 1 then ι1 else ι2) ∗ (P (−ι2/a) (−ι1/a))−1

〈proof〉

Integrating a computer algebra system directly into Isabelle, so that inputs and
certification are done automatically, is beyond our research goals in this article.
Although we omit the proof, it is a simple 4-line script thanks to the addition
of our lemmas about standard matrix operations to Isabelle’s simplifier.

Finally, we use this diagonalisation to compute the general solution of the
ODEs generated by A a b and instantiate local-flow-sq-mtx-linear to this result.

lemma mtx-hOsc-solution-eq:
defines ι1 ≡ (b − sqrt (b2+4∗ a))/2 and ι2 ≡ (b + sqrt (b2+4∗ a))/2
defines Φ t ≡ mtx (
[ι2∗exp(t∗ι1) − ι1∗exp(t∗ι2), exp(t∗ι2)−exp(t∗ι1)]#
[a∗exp(t∗ι2) − a∗exp(t∗ι1), ι2∗exp(t∗ι2)−ι1∗exp(t∗ι1)]#[])
assumes b2 + a ∗ 4 > 0 and a �= 0
shows P (−ι2/a) (−ι1/a) ∗ (diag i. exp (t ∗ (if i=1 then ι1 else ι2))) ∗ (P (−ι2/a) (−ι1/a))−1

= (1/sqrt (b2 + a ∗ 4)) ∗R (Φ t)
〈proof〉

lemma local-flow-mtx-hOsc:
defines ι1 ≡ (b − sqrt (bˆ2+4∗a))/2 and ι2 ≡ (b + sqrt (bˆ2+4∗a))/2
defines Φ t ≡ mtx (
[ι2∗exp(t∗ι1) − ι1∗exp(t∗ι2), exp(t∗ι2)−exp(t∗ι1)]#
[a∗exp(t∗ι2) − a∗exp(t∗ι1), ι2∗exp(t∗ι2)−ι1∗exp(t∗ι1)]#[])
assumes b2 + a ∗ 4 > 0 and a �= 0
shows local-flow ((∗V ) (A a b)) UNIV UNIV (λt. (∗V ) ((1/sqrt (b2 + a ∗ 4)) ∗R Φ t))
〈proof〉

Our matrix operation lemmas make the proof of both results easy to tackle for
the experimented Isabelle user. The last lemma yields an automated certification
of the uniqueness and the monoid-action behavior of this flow. These results will
be useful later in the verification of a simple hybrid program.

Example 2 (Non-diagonalizable Matrix). To derive the equations for constantly
accelerated motion in one dimension, we start with the ODE x′′′ t = 0. This is
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equivalent to the linear system
⎛

⎝
x′ t
v′ t
a′ t

⎞

⎠ =

⎛

⎝
0 1 0
0 0 1
0 0 0

⎞

⎠ ·
⎛

⎝
x t
v t
a t

⎞

⎠ ,

where x, v and a represent the position, velocity and acceleration of the motion.
Although the matrix in this system is non-diagonalisable, it is nilpotent as for-
malised below.

abbreviation mtx-cnst-acc :: 3 sq-mtx (K )
where K ≡ mtx (
[0 ,1 ,0 ] #
[0 ,0 ,1 ] #
[0 ,0 ,0 ] # [])

lemma powN-scaleR-mtx-cnst-acc: n > 2 =⇒ (t ∗R K )ˆn = 0
〈proof〉

We can use this fact to obtain the general solution and the kinematics equa-
tions for constantly accelerated motion with initial state s = (s$1, s$2, s$3).

lemma exp-mtx-cnst-acc: exp (t ∗R K ) = ((t ∗R K )2/R 2) + (t ∗R K ) + 1
unfolding exp-def apply(subst suminf-eq-sum[of 2 ])
using powN-scaleR-mtx-cnst-acc by (simp-all add: numeral-2-eq-2)

lemma exp-mtx-cnst-acc-vec-mult-eq: exp (t ∗R K ) ∗V s
= vector [s$3 ∗ tˆ2/2 + s$2 ∗ t + s$1 , s$3 ∗ t + s$2 , s$3 ]

〈proof〉

Here, vector is a function that turns lists into vectors. From this, a simple
instantiation shows that the kinematics equations describe the flow of the ODE.

lemma local-flow-mtx-cnst-acc:
local-flow ((∗V ) K ) UNIV UNIV (λt s. ((t ∗R K )2/R 2 + (t ∗R K ) + 1) ∗V s)
using local-flow-sq-mtx-linear [of K ] unfolding exp-mtx-cnst-acc.

Throughout this section, formalisation and proofs are relatively simple. This
is because our lemmas about matrix operations, if added to Isabelle’s simplifier,
improve proof automation.

7 Applications in Hybrid Program Verification

To illustrate an application of our formalisation, we use our Isabelle verifica-
tion components for hybrid programs [17]. This approach starts with an algebra
(K,+, ; , 0, 1,∗ ) for simple while-programs that also supports a boolean subal-
gebra (B,+, ; , 0, 1,¬) of tests such as a Kleene algebra with tests or a modal
Kleene algebra [4,15]. With the interpretation of elements of K as programs, +
as nondeterministic choice, ; as sequential composition, ∗ as finite iteration, and
0 and 1 as the aborting and ineffective programs respectively, the equations

if p then α else β = p;α + ¬p;β,

while p do α = (p;α)∗;¬p
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model the behaviour of while-programs. These algebras allow us to write correct-
ness specifications via Hoare-triples {−} − {−} or weakest liberal preconditions
wlp [3,9]. This means that we can derive the rules of Hoare-logic and/or those
of the wlp-calculus. In Isabelle, this approach accelerates the verification process
as our Kleene algebra components automatically generate domain-specific con-
ditions by handling the program-structure without intervention from the user.

Moreover, these algebras have state transformer models where elements of
the algebra are interpreted as functions of type S → P S for a given set S. In
this setting, Kleisli composition (f ◦K g) s =

⋃ {g s′ | s′ ∈ f s} interprets ;, + is
pointwise union λ s. f s ∪ g s, 0 is λ s. ∅, 1 is the Kleisli unit ηS s = {s}, and ∗

is f∗K s =
⋃{fn s | n ≥ 0}, where f0 = ηS and fn+1 = fn ◦K f [19].

Given a finite set of program variables V , the isomorphism between R
n and

R
V allows us to work in the state transformer semantics of S ⊆ R

V , effectively
giving us hybrid stores. Defining f [a �→ b] a = b and f [a �→ b] t = f t if t �= a,
the function λ s. {s[x �→ e s]} is a state transformer. It maps a store s ∈ S to
the singleton of that store with variable x ∈ V updated to e s, for e : S → R. In
particular, it models program assignments

(x := e) s = {s[x �→ e s]}.

Similarly, for an interval U ⊆ T such that 0 ∈ U , the orbit map γϕ : S → P S
defined by γϕ s = P ϕf

s U is a state transformer. It sends each s ∈ S to the set of
all the points in the trajectory ϕf

s for the IVP induced by f and (0, s). However,
for modelling boundary conditions, an alternative G-guarded version is better.
For predicate G : S → B, we use the evolution command state transformer

(x′ = f &G) s = {ϕf
s t | t ∈ U ∧ (∀τ ∈↓ t. G (ϕf

s τ))},

where “x′ =” is syntactic sugar to resemble ODEs, and ↓ t = {τ ∈ U | τ ≤ t}.
By adding assignments and evolution commands to the language of these

algebras of programs, we get hybrid programs. In particular, we also have cor-
rectness specifications for these commands

{λ s. Q (s[x �→ e s])} x := e {Q},

{λ s ∈ S. ∀t ∈ U. (∀τ ∈↓ t. G (ϕf
s τ)) → Q (ϕf

s t)} x′=f &G {Q}.

The above definition of evolution commands requires uniqueness of the solu-
tion to the IVP X ′ = f (t,X t) and X 0 = s. For a more general definition
where this is not needed see [19]. Yet, affine and linear systems have unique
solutions for specific IVPs. Thus, our formalisation of affine and linear systems
is compositional with respect to the verification style described in [7,19].

8 Verification Examples

In this section, we verify two simple hybrid programs using the components
of [19] and our formalisation of linear systems of ODEs. Both verifications follow
directly from our results in Sect. 6.
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Example 3 (Overdamped Door-Closing Mechanism). We use the system of ODEs
(

x′ t
y′ t

)

=
(

0 1
a b

)

·
(

x t
y t

)

= (Aa b) ·
(

x t
y t

)

,

with a = − k
m and b = − d

m to model a damped harmonic oscillator as described
in Example 1. The expression b2 + 4 · a dictates the behaviour of the system. If
b2 + 4·a < 0, the damping factor is too big and there is no oscillation. Otherwise,
the oscillation continues. Overdamping is a desired property of some oscillators
inside door mechanisms where the engineer does not want the doors to slam or
open on the opposite side.

We use Isabelle’s s$1 and s$2 to formalise respectively the position (x) and
velocity (y) of one of these door-oscillators. We represent a closed door with the
equation s$1 = 0. Hence, an open door immediately after being pushed by a
person corresponds to the conjunction s$1 > 0 ∧ s$2 = 0. We can prove that
once this happens, the door will never open on the opposite side, that is s$1 ≥ 0,
if its oscillator is overdamped.

lemma overdamped-door :
assumes b2 + a ∗ 4 > 0 and a < 0 and b ≤ 0 and 0 ≤ t
shows PRE (λs. s$1 = 0)
HP (LOOP

(λs. {s. s$1 > 0 ∧ s$2 = 0});
(x´=(∗V ) (A a b) & G on {0 ..t} UNIV @ 0)

INV (λs. 0 ≤ s$1))
POST (λs. 0 ≤ s $ 1)
apply(rule fbox-loopI , simp-all add: le-fun-def )
apply(subst local-flow .fbox-g-ode-ivl[OF local-flow-mtx-hOsc[OF assms(1)]])
using assms apply(simp-all add: le-fun-def fbox-def )
unfolding sq-mtx-scaleR-eq UNIV-2 sq-mtx-vec-mult-eq
by (clarsimp simp: overdamped-door-arith)

Notation PRE P HP X POST Q is syntactic sugar for the Hoare triple
{P}X{Q}, meaning that if the system starts satisfying precondition P , then
after the execution of the hybrid program X, postcondition Q will hold. In the
lemma above we assume a < 0 and b ≥ 0 because a = − k

m , b = − d
m and,

in physics, the constants k, d and m are often positive. The condition t ≥ 0
guarantees the verification for a positive lapse of time.

The hybrid program is the finite iteration of a discrete door-opening, mod-
elled by the state transformer λ s. {s$1 > 0 ∧ s$2 = 0}, followed by the ODE
x′ t = A · (x t). The loop-invariant of this iteration is the same as the desired
postcondition. As we do not deal with boundary conditions, we use variable G
for the guard of the evolution command. The first two lines in the proof of this
lemma apply the Hoare-rules for loops and evolution commands respectively.
The remaining lines simplify the emerging proof obligations.

Example 4 (Automatic Docking). A space ship is aligned with its docking station
d and approaching it with velocity v0 > 0. The ship needs to stop exactly at
d and its current position is x0, where d > x0. In order to do this, the ship
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calculates that it needs a constant deceleration of a = − v2
0

2(d−x0)
. Its motion

follows the system of Example 2,
⎛

⎝
x′ t
v′ t
a′ t

⎞

⎠ =

⎛

⎝
0 1 0
0 0 1
0 0 0

⎞

⎠ ·
⎛

⎝
x t
v t
a t

⎞

⎠ = K ·
⎛

⎝
x t
v t
a t

⎞

⎠ .

We formalise the position, velocity and acceleration of the ship with state
s = (s$1, s$2, s$3) and its discrete behaviour with an assignment of s$3 to the
value of the safe acceleration. Under these assumptions, we need to guarantee
that the ship will stop (s$2 = 0) if and only if its position coincides with d
(s$1 = d). The formalisation is shown below.

lemma docking-station-arith:
assumes (d::real) > x and v > 0
shows (v = v2 ∗ t / (2 ∗ d − 2 ∗ x)) ←→ (v ∗ t − v2 ∗ t2 / (4 ∗ d − 4 ∗ x) + x = d)
〈proof〉

lemma docking-station:
assumes d > x0 and v0 > 0
shows PRE (λs. s$1 = x0 ∧ s$2 = v0)
HP ((3 ::= (λs. −(v0ˆ2/(2∗(d−x0))))); x´=(∗V ) K & G)
POST (λs. s$2 = 0 ←→ s$1 = d)

apply(clarsimp simp: le-fun-def local-flow .fbox-g-ode[OF local-flow-sq-mtx-linear [of K ]])
unfolding exp-mtx-cnst-acc-vec-mult-eq using assms by (simp add: docking-station-arith)

In the proof of this hybrid program, as before, the first line applies the Hoare-
rule for evolution commands. The second line simplifies the emerging proof obli-
gation by calling the lemma docking-station-arith which we proved separately.

9 Conclusion

We have developed new mathematical components for affine and linear systems
of ODEs that improve a modular semantic framework for verification of hybrid
programs based on Kleene algebras [19] in Isabelle. These extend the tactics of
the framework and simplify the verification procedure by eliminating uniqueness
and existence requirements for solutions to these systems of ODEs.

As many systems in physics and engineering are linear, our work impacts
a wide range of applications for our verification components. Furthermore, our
extension showcases the advantages of using a general purpose proof assistant.
It demonstrates that our components can handle exponentiation and other tran-
scendental functions beyond first-order real arithmetic, to which traditional
deductive verification of hybrid programs is confined [21].

Our work is also an extension to Isabelle’s HOL-Analysis library as it adds
lemmas from linear algebra and the theory of ODEs. Previous formalisations
in Isabelle/HOL intersect with our components in both fields, but none of
them combines them. For instance, there are two formalisations of Jordan Nor-
mal forms in Isabelle’s archive of formal proofs (AFP) [6,23]. They have been
combined and made executable in their exported versions to Standard ML or
Haskell [5,6]. An integration of this work and our verification components to
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handle more than just diagonalisable matrices is a pursuable endeavour. On the
other hand, there is much work in extending Isabelle’s libraries for ODEs [11–13].
The AFP contains a definition for bounded linear operators and a proof that lin-
ear systems expressed with these have unique solutions [13]. However, the affine
version of this result has not yet been formalised and it requires further work to
make it compatible with the type of vectors realˆ ′n and our components.

Yet, much work remains to make this approach widely-adoptable in current
practice. The general solution for non-autonomous linear systems of ODEs using
resolvent matrices remains to be formalised in a proof assistant. Also, our work
can only certify diagonalisations and solutions, but the generation of these is left
to the user. An alternative approach would automate our procedure in Example 1.
That is, a computer algebra system (CAS) would obtain the solution (or diagonal-
isation) and another tool would generate the Isabelle theory with a certification of
the solution provided. This is left for future work.

Acknowledgements. The author wishes to thank the reviewers for their insight-
ful comments. He also thanks Georg Struth, Harsh Beohar, Rayna Dimitrova, Kirill
Bogdanov and Michael Foster for discussions.
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Abstract. The recent active development of Internet of Things (IoT)
solutions in various domains has led to an increased demand for security,
safety, and reliability of these systems. Security and data privacy are
currently the most frequently discussed topics; however, other reliability
aspects also need to be focused on to maintain smooth and safe opera-
tion of IoT systems. Until now, there has been no systematic mapping
study dedicated to the topic of interoperability and integration testing
of IoT systems specifically; therefore, we present such an overview in
this study. We analyze 803 papers from four major primary databases
and perform detailed assessment and quality check to find 115 relevant
papers. In addition, recently published testing techniques and approaches
are analyzed and classified; the challenges and limitations in the field are
also identified and discussed. Research trends related to publication time,
active researchers, and publication media are presented in this study. The
results suggest that studies mainly focus only on general testing meth-
ods, which can be applied to integration and interoperability testing of
IoT systems; thus, there are research opportunities to develop additional
testing methods focused specifically on IoT systems, so that they are
more effective in the IoT context.
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1 Introduction

The Internet of Things (IoT) provides numerous advantages to its users in vari-
ous application domains. However, extensive development of IoT systems in the
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last decade has led to a number of reliability and security challenges [12,31,33].
One of the challenges frequently reported by researchers as well as industry prac-
titioners is the integration testing of IoT systems. In contemporary IoT projects,
software developers work with network specialists and electronic experts for test-
ing; however, these parties have different backgrounds and may be accustomed
to using different methods of system testing (e.g., low-level testing vs. high-level
functional testing). Moreover, different expectations may also play a role; for
example, in a standard software system, lower layers (e.g., network or operat-
ing systems) are usually considered to be already tested and reliable; therefore,
quality engineers focus on the application itself. In the case of an IoT system,
the situation might differ and lower levels might also need to be tested properly.
In addition, interoperability challenges are closely associated with integration
testing; different devices using a variety of protocols need to cooperate in an
appropriate manner, and this reliable cooperation has to be verified. Individual
devices can have numerous versions and variants, which increases the difficulty
of correct and seamless integration.

Integration testing and interoperability testing of IoT systems are considered
to overlap for several cases even though semantic differences and different defini-
tions can be pointed out. However, because these terms overlap in their common
usage, we decided to cover both interoperability and integration testing in
the scope of this study.

As mentioned earlier, there is an increased demand for more efficient inter-
operability and integration testing methods. Currently, the model-based test-
ing (MBT) discipline naturally covers the area of integration testing through
methods such as path-based testing [8,10,11], which is typical for E2E integra-
tion tests, or combinatorial [40] and constrained interaction testing [4], which
is useful in unit integration testing and optimization of system configurations.
Logically, in the recent period, researchers have attempted to tailor or apply
formal verification and MBT techniques for IoT systems to increase system effi-
ciency [3]. Interoperability and integration testing have significant importance
in the IoT context and mapping current methods for IoT integration testing
would provide valuable information to researchers for IoT and industrial quality
assurance. Unfortunately, no systematic mapping study has been conducted yet
in the field of integration testing for IoT systems. Hence, we attempt to bridge
this gap through this study.

The contributions of this study are as follows:

1. It gives an overview of research and development activity in this field, iden-
tifying the active parties and individuals;

2. It also provides an overview of methods and approaches that are available for
IoT integration testing;

3. It identifies research opportunities and discusses possible research directions.

This paper is organized as follows. Section 2 analyzes existing mapping stud-
ies and literature surveys in the fields of integration testing, IoT testing, qual-
ity assurance and IoT integration, which justifies the motivation of this study.
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Section 3 explains the methodology used in this study, defines the research ques-
tions (RQs) to be answered, and the stages through which relevant studies are
identified and analyzed. Section 4 presents the answers to individual RQs and
related discussions. The last section presents the analysis of the possible threats
to the validity of this study and concludes the paper.

2 Motivation and Related Work

The motivation of this study is twofold. The first is the importance of integration
testing in the quality assurance process of IoT solutions [12,33] and the second
is the fact that no previous systematic mapping study has addressed integration
testing methods for IoT systems specifically.

In the field of general integration testing, there are several systematic liter-
ature surveys and mapping studies.

In 2007, Rehman et al. published a survey of issues and available techniques
for general software integration testing [45]. Their study summarizes and classi-
fies a variety of integration testing approaches, covering the fields of MBT, test
automation frameworks, and methodological aspects; it also provides a good
overview of available approaches and concepts that can be used in the definition
of a test strategy. However, the study focuses on general software integration
testing and is not IoT-specific. Moreover, the study was published more than a
decade ago; new techniques and approaches might be available now. Moreover,
modern integrated software applications may change as the systems are becom-
ing more complex and demands for their real-time or almost real-time operation
have increased. This will also be reflected in integration testing methods; there-
fore, a state-of-the-art survey is required.

A more recent study by Shashank et al. from 2010 also focuses on the field
of integration testing of component-based software systems. However, the study,
published as a conference paper, is limited in terms of its sample size; rather
than an extensive classification, it provides an overview of available approaches
and selected examples of approaches [49]. Despite the limited extent of the study,
the brief classification of the state-of-the-art methods into established MBT and
software verification categories provided in this study is valid.

Another recent survey and analysis on model-based integration testing was
conducted by Haser et al. in 2014 [27]. Essentially, this study is not limited to
software systems; the authors discuss integration testing methods that can be
applied to a broader scope of cyber-physical systems, which also covers the IoT
domain. In the study, an extensive sample of 718 papers is analyzed, and con-
clusions are obtained for the defined research questions on software paradigms,
system assessment types, and usage of non-functional requirements. However, the
study is limited to model-based integration testing with limited scope of defined
research questions. For the field of IoT-specific integration testing methods, a
broader study is required.

In the field of testing techniques that specifically focus on IoT systems and
their specifics, a recent systematic mapping study by Ahmed et al. [3] focuses
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on general aspects of quality and quality assurance techniques designed for IoT
systems. The scope of this study is broader than the field of integration testing
and covers topics such as security, privacy, construction of testbeds, general
MBT, and formal verification techniques. Integration testing is not discussed in
depth in this study due to its general scope, and from this viewpoint, overlap
with the scope of this study is minimal.

Another recent conference paper by Dias et al. briefly summarizes current
testing tools for IoT systems; integration testing is included in the examined
aspects of the problem [18]. However, the discussion is brief, and regarding the
selected method in the study, all state-of-the-art methods in this field are not
covered.

In 2019, Cortes et al. conducted a mapping study on software testing meth-
ods used for IoT systems [15]. The study categorizes and analyses publications
discussing general testing approaches used in IoT systems. Unfortunately, the
discussion of integration testing is very brief in this paper.

Another study by Garousi et al. focuses on the testing methods for embedded
systems [23] (which may, to a certain extent, overlap with IoT systems discussed
in this study). However, besides the fact that the field of embedded systems is
not the same as the IoT field, the study focuses on general testing methods and
approaches and does not concentrate on interoperability and integration testing
specifically.

The most frequently addressed quality aspects of IoT systems in the last five
years are security and privacy [3]. This is also clear from the availability of pub-
lished literature surveys and systematic mapping studies. A meta-survey sum-
marizing and analyzing 32 available surveys on security, privacy, and defensive
mechanisms of cyber-physical systems (including IoT) was recently published by
Giraldo et al. [24]. The study provides a good overview of previous works and
motivates the reader to find relevant literature sources related to security and
privacy problems.

Regarding the integration of IoT systems, a mapping study focusing on inte-
gration techniques and styles as well as related architectural aspects of integra-
tion was published by Cavalcante et al. [14]. However, this study does not discuss
testing or quality assurance aspects of system integration.

To summarize, no current systematic mapping study is dedicated to inte-
gration testing techniques for IoT systems, discussing these techniques in the
context of IoT domain and from the viewpoint of IoT quality challenges, which
are frequent subjects of various reports [12,31,33]. This study aims to provide
the missing information in this specific field.

3 Methodology

This systematic mapping study follows the methodology recommendations pro-
vided by Kitchenham and Charters [34]. The process of collection and analysis
of relevant studies is divided into the following six stages:
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1. Research scope determination and definition of RQs to be answered in the
study.

2. Search for potentially relevant papers, which includes establishment of a
search strategy and acquisition of the identified papers.

3. Identification of truly relevant papers from the initial selection based on the
title, abstract, full-text, and quality assessments, which includes performing
snowball sampling of other relevant studies.

4. Data extraction from the remaining papers to allow further detailed analyses.
5. Classification of papers and analyses of the extracted data to answer defined

RQs.
6. Validity evaluation and discussion of the possible limitations of the study.

The main stages of the methodology are depicted in Fig. 1 and described in
this section.

Fig. 1. Stages of the systematic mapping study methodology followed in this study

In this study, we define seven RQs for analyzing the field of integration testing
methods for IoT systems from various viewpoints:

– RQ 1: What is the research trend in this field in terms of the number of
studies published in recent years?

– RQ 2: Which researchers are currently conducting active research in this
field?

– RQ 3: Which publication media (journals and conferences) publish papers
in the field of integration testing for IoT systems?

– RQ 4: What are the topics and subproblems currently being dealt with in
the field of IoT integration and interoperability testing?

– RQ 5: Which testing techniques and approaches are used in this field?
– RQ 6: What are the current challenges and limitations in the field of IoT

integration testing?
– RQ 7: What are the possible future research directions in this field?
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We do not limit the study to a particular class or type of subproblems, or
testing techniques. Hence, RQ 4 involves informal testing techniques as well as
formal and MBT techniques.

To search for relevant papers in the field of integration testing for IoT sys-
tems, we decided to use the following four established publication databases:
IEEE Xplore, ACM Digital Library, Springer Link, and Elsevier ScienceDirect.

To verify the completeness of the search strings, we randomly selected a set
of 30 papers as control samples, which discussed interoperability and integration
testing issues of IoT systems. These control papers had to be present in the set
of papers found using the search strings.

After a couple of refinement cycles, a general search string was finally estab-
lished as

(‘Integration Testing’ AND IoT) OR (‘Integration Testing’ AND ‘Internet of
Things’) OR (‘Interoperability Testing’ AND IoT) OR (‘Interoperability Testing’
AND ‘Internet of Things’)

where the expression in apostrophes denotes the exact string to be searched
at the same time. The general search string has been adopted based on particular
notations used by individual databases. The timespan was determined to be from
2009 to 2019.

Journal papers, book chapters, and conference papers were selected for down-
load. In the initial stage, we also downloaded conference posters and popular
magazine articles, which were subsequently filtered. The number of initially
downloaded papers is presented in Table 1, column Initial sample size.

Once the papers were downloaded, they were filtered in several steps. First,
we excluded conference posters, papers shorter than two pages, and articles
from popular magazines. Subsequently, two members of our research lab inde-
pendently analyzed the paper title, abstract, and full text to assess whether the
downloaded papers were relevant to the examined field. This process was con-
ducted in parallel and the results were compared; in the case of mismatch of
results, the relevance of the paper was assessed in a discussion until a consen-
sus was reached. This was the case for 11% of the analyzed studies on average.
The number of filtered papers for individual databases is presented in Table 1,
column After filtering.

In the next step, we followed the snowball sampling process; here, we analyzed
other relevant papers and articles found in the references of the filtered papers,
which were not already a part of the set of filtered papers. Studies and reports
found during this sampling underwent the same filtering and assessment process
as the downloaded set of papers; two lab members independently analyzed the
title, abstract, and full text of the papers.

The majority of the papers acquired by the snowballing process were obtained
from the four major databases employed in this study (IEEE Xplore, ACM
Digital Library, Springer Link, and Elsevier ScienceDirect) and two papers have
been obtained from other databases. The described filtering process has been
applied to the papers acquired by snowballing regardless of their source database.
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Those papers that were found relevant were added to the analyzed sample.
The number of papers found by individual databases after this step is presented
in Table 1, column After snowball.

Table 1. Numbers of papers after filtering and snowball sampling.

Source Initial sample size After filtering After snowball

IEEE Xplore 384 45 53

ACM Digital Library 87 10 12

Springer Link 199 32 32

ScienceDirect 133 15 16

Other databases 0 0 2

Total 803 102 115

During the data extraction and analysis phase, extracted data were inde-
pendently verified by a specialist, who analyzed the set of papers and matched
them with extracted metadata. A “two pair of eyes” approach was adopted for
paper classification. Two specialists classified the papers independently; in the
case of a mismatch, particular cases were discussed, papers were analyzed, and
the final decision was made based on the discussion results. During this analysis,
8% of the papers underwent mentioned discussion because of mismatch in the
classification. The final set after this phase contained 115 papers.

The narrowed selection of the papers was analyzed by publication year to
answer RQ1 and by author names and affiliations to answer RQ2. Publication
media were categorized by type (journal article, book chapter, conference paper,
and workshop paper) and name to answer RQ3. Then, to answer RQ4, we classi-
fied the papers by categories presented in Table 2. Categories were organized in
two levels: main category and subcategories. Subsequently, full text and detailed
analysis of the paper content were used to answer RQs 5 to 7.

The final set of 115 papers with their metadata including abstract, category,
source URL, source library, and BibTex string are available for download at
http://still.felk.cvut.cz/iot-integration-testing/. In the folder, the list is available
in CSV, OpenOffice spreadsheet, and MS Excel format.

4 Results

This section presents the results of the conducted analyses and answers to the
individual RQs. Answers to each RQ are provided in a separate subsection.

4.1 RQ1: Publication Trend in Time

In the recent decade, the number of publications discussing interoperability and
integration testing issues of IoT systems has constantly grown, as shown by the
data presented in Fig. 2.

http://still.felk.cvut.cz/iot-integration-testing/
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Table 2. Categories used in the paper classification

Main category Category short
name

Category description

– IoT quality
discussion

Interoperability/integration testing
included in a general IoT quality
discussion

Testing
methodology

Testing
methodology,
including

General testing methodology including
interoperability/integration testing as
its part

Focused testing
methodology

Methodology specially focused on
interoperability/integration testing

Formal techniques Formal testing/verification techniques
for interoperability/integration of IoT
systems

Testing
methodology,
applicable

General testing methodology applicable
to interoperability/integration testing

Literature review Literature review related to IoT testing
methods, which also includes
interoperability and integration aspects

Testing
frameworks, tools
and testbeds

Testing
frameworks,
supporting

General testing framework directly
supporting interoperability/integration
testing

Test automation
framework

Specialized test automation framework
directly supporting integration testing

Testbeds Report on IoT testbed directly
supporting interoperability/integration
testing

Testing
framework,
applicable

General testing framework applicable to
interoperability/integration testing

Frameworks and
tools overview

Overview of testing frameworks and
tools applicable to integration testing

Simulation
frameworks

Simulation
frameworks,
applicable

General IoT simulation frameworks
applicable to
interoperability/integration testing

Simulation
frameworks,
supporting

General IoT simulation framework
supporting interoperability/integration
testing

– Development
frameworks

IoT systems development
framework/approach/standard
including interoperability/integration
testing

A more significant number of publications started to appear since 2014. The
growth in publication numbers from 2016 to 2019 is almost constant. When
extrapolating the trend, we can expect similar growth of publications discussing
interoperability and integration testing of IoT systems in the following years.
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Fig. 2. Number of publications by years

4.2 RQ2: Active Researchers

In the final set of analyzed relevant studies, eight authors emerged to be actively
publishing in the field of interoperability and integration testing of IoT systems.
They were Brian Pickering (University of Southampton, UK), Bruno Lima (Uni-
versity of Porto, Portugal), Hamza Baqa (Institut Polytechnique Paris, France),
Koray Incki (Ozyegin University, Turkey), Mengxuan Zhao (France Telecom),
Michael Felderer (University of Innsbruck, Austria), Paul Grace (Aston Uni-
versity, UK), and Thomas Watteyne (Inria, France); they all published three
studies.

No author from the analyzed set published more than three studies from
2009 to 2019, 29 authors published two studies, and 431 authors published one
study. A total of 468 unique authors were found in the analyzed studies.

This analysis also points out the relative heterogeneity of the research com-
munity and absence of research mainstream in this field. However, this is a
contemporary situation and might change in the near future.

4.3 RQ3: Publication Media in IoT Integration Testing

During the analysis of the papers, we analyzed four main publication media
types: journal article, conference paper, workshop paper, and book chapter.
Papers of conference proceedings published in a book series (e.g., LNCS by
Springer) were considered as conference papers. Among the analyzed set of
papers, several have been published in conferences aggregating parallel work-
shops; such papers were also considered as conference papers. Most papers were
published in conference proceedings (61%), followed by journal articles (22%),
workshop papers (9%), and book chapters (9%). Figure 3 presents more details
on the publication media type by individual years of the analyzed period.

Among the media types of the published studies on interoperability and
integration testing, we will start by analyzing conference papers. The analyzed
studies were published in a wide variety of conferences spanning from estab-
lished conferences in system testing (e.g., IEEE Conference on Software Testing,
Validation and Verification (ICST), IFIP International Conference on Testing
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Fig. 3. Venue types by individual years

Software and Systems, and IEEE International Conference on Software Qual-
ity, Reliability and Security (QRS)) to various forums related to IoT technology
(e.g., IEEE World Forum on Internet of Things (WF-IoT), IEEE International
Conference on Future Internet of Things and Cloud Workshops (FiCloudW),
and European Conference on Wireless Sensor Networks).

However, the spectrum of the conferences publishing papers focusing on IoT
integration and interoperability testing is rather heterogenic, and apart from a
few exceptions, we have not found a leading conference publishing more than
three papers in the analyzed sample. The IEEE World Forum on Internet of
Things (WF-IoT) published three papers, and the Global Internet of Things
Summit (GIoTS) published two papers. The remainder of the analyzed papers
were published in various unique conferences.

Regarding the journals publishing IoT interoperability and integration test-
ing studies, the situation was found to be similar. Articles were published in a
relatively wide spectrum of journals dedicated to computer systems, networks,
software testing, and related areas. Three articles were published in IEEE Access
and two articles in the International Journal on Software Tools for Technology
Transfer. The remaining studies were published in various unique journals. The
details can be found in the complete list of analyzed papers available at http://
still.felk.cvut.cz/iot-integration-testing/.

To summarize, publication media for integration and interoperability testing
studies are relatively heterogenic. Even though integration and interoperability
testing are understood as established discipline in the industrial praxis, in the
research world, no major journal or conferences outlies as a venue especially
publishing in this specific field. This can be explained by the relative novelty of
the field. However, considering that the present industry calls for more effective
and systematic methods for interoperability and integration testing, the research
community will very likely react to these demands, and the situation will possibly
change in the coming years.

4.4 RQ4: Topics and Subproblems Being Addressed

Figure 4 presents the classification of analyzed relevant studies using the cate-
gories shown in Table 2. The complete list of individual papers assigned to each

http://still.felk.cvut.cz/iot-integration-testing/
http://still.felk.cvut.cz/iot-integration-testing/
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category are given in the link above. In the analyzed sample, two major groups
were found to be testing methodologies supporting or related to interoperabil-
ity and integration testing (main category Testing methodology with 31 papers
in total); and testing frameworks and testing tools, including test automation
tools and testbeds constructed for or supporting interoperability and integration
testing of IoT systems (main category Testing frameworks, tools, and testbeds
with 46 papers in total). The analyzed set of papers also includes various IoT
simulation frameworks applied to IoT interoperability and integration testing
(main category Simulation frameworks with 12 papers in total).

Fig. 4. Classification of analyzed studies

In the detailed categories, the largest number of analyzed studies include
discussions on various IoT testbeds supporting integration testing (21 papers),
followed by general IoT quality discussions (15 papers), and IoT testing method-
ologies applicable to integration and interoperability testing (15 papers). Inter-
operability and integration of IoT systems are discussed in 13 papers dedicated
to IoT test automation frameworks. This topic is also the subject of 11 studies
presenting various development frameworks for IoT solutions.

On the contrary, the presence of formal methods in the analyzed papers is
low; only two papers focus on this topic. Similarly, only five studies present a
directly focused integration testing methodology. We analyze the used techniques
and approaches in Sect. 4.5.

Two of the analyzed papers were also literature reviews relevant to the scope of
this paper: a literature review dedicated to testing methods for embedded systems
[23] and a study summarizing general testing methods for the IoT filed [16].
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4.5 RQ5: Used Testing Techniques and Approaches

In the studies relevant to interoperability and integration testing of IoT systems,
a variety of testing techniques and approaches have been researched and applied,
from formal verifications [13] to informal crowdsourcing techniques that can be
compared to exploratory testing [22].

In this study, by a testing approach, we mean (1) general approach to test
design and test execution, e.g., formal verifications, Model-based Testing or infor-
mal testing, and, (2) generic testing approaches based on various test levels as
unit testing, integration testing or acceptance testing, for instance. By testing
techniques, we mean techniques to create test cases; for instance, combinatorial
or constrained interaction testing, path-based testing, and data-flow testing.

Regarding established testing techniques, path-based testing using finite state
machines (or analogous structures) as a system under test (SUT) model is dis-
cussed in five studies [5,7,20,25,55]. In addition, an SUT model based on a timed
state machine has also been employed [35].

Datta et al. presented a prospective approach to semantic interoperability test-
ing of IoTdevices or services [17]. In their concept, theydistinguishbetween syntac-
tic and semantic interoperability to be verified during the tests. Semantic testing
is also employed in a test automation framework proposed by Kim et al. [32].

Regarding the established test case notations, TTCN-3 standard by ETSI
has been employed in six proposals [38,41,46,48,50,55].

Nevertheless, established testing techniques related to IoT integration test-
ing in the studied papers are few. In contrast, general testing approaches are
discussed more intensely.

The MBT approach, in general, is explicitly discussed in several studies
[1,2,5,9,20,25,29,36], which mostly describe a general concept; particular testing
technique, namely path-based testing, is discussed in the studies by Aicherning
et al. [5], Estivill-Castro et al. [20], and Grace et al. [25].

Suggestions of formal verifications [13] and runtime verifications [28] do
appear; however, for integration and interoperability testing of IoT systems,
these have to be further elaborated.

Mutation testing has been used by Lu et al. for verification of RFID devices
[37]; this technique can be expected to be used in future works to verify the
effectiveness of developed testing techniques.

Other testing approaches include use case testing [51,52], and, practically,
exploratory testing and error guessing [22].

Several studies suggest test strategies and approaches for IoT systems that
consist of general test levels (e.g., unit testing, integration testing, and accep-
tance testing) and approaching these test levels informally (e.g., testing of indi-
vidual sensors, testing or integration, and security testing) [19,21,26,30,39,42–
44,47,54,56]. These studies can be used as a basis for setting up a test strategy
for an IoT system.
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4.6 RQ6: Challenges and Limitations

After the analysis of the current studies in terms of interoperability and integra-
tion testing and comparing the state-of-the-art methods with the current indus-
try demand, several conclusions can be drawn and several prospective research
directions can be suggested.

The research community in the interoperability and integration testing of
IoT systems seems rather heterogenic; from the analyzed studies, there is no
clear leading publishing medium or author in this field focusing on this topic.
This heterogeneity can be explained by a combination of several factors:

1. The field of IoT testing and quality assurance is relatively novel; despite the
active production of innovative IoT solutions in the last five years, research
and development of IoT-specific testing methods is currently a developing
field.

2. General methods from the field of integration testing might be considered as
satisfactory for testing IoT systems; thus, demand for IoT-specific interop-
erability and integration testing methods is not specially recognized in the
research community.

3. In the research community, several research streams and subcommunities have
been established, covering path-based testing, combinatorial interaction test-
ing, constrained interaction testing, data-flow testing, and other individual
basic testing techniques that can be combined to establish comprehensive
integration testing methods. Hence, interoperability and integration testing
itself is not considered as a subject of primary research. Instead, the focus is
on primary testing approaches that can be employed for the interoperability
and integration testing process.

In particular, the second and third points deserve further analysis and dis-
cussion. Regarding the second point (hypothetical low necessity to develop IoT-
specific interoperability and integration testing methods, because there are gen-
eral testing methods for these cases already available), it is worthwhile to analyze
the situation in the current IoT systems briefly. Compared to standard software
systems or relatively isolated proprietary cyber-physical systems not connected
to the Internet, the situation in interconnected IoT systems might be different
for a number of cases. In these systems, a more extensive set of various pro-
tocols on different networks and application levels can be integrated together,
and seamless integration has to be maintained. These protocols might span from
standardized protocols like WiFi, Bluetooth, IEEE 802.15.4, Z-wave, or ZigBee
for low levels of the system; REST, MQTT, CoAP, or LWM2M protocols for
higher levels of the system [6]; to various proprietary protocols used by individ-
ual vendors. These proprietary protocols might also contain more defects than
established standards, and this fact makes smooth interoperability and integra-
tion of an IoT system more challenging.

This situation leads to the increased necessity to employ techniques testing
correct functionality of integration interfaces and interoperability with different
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configurations. It also leads us to suggest that the current testing methods shall
be revised in the IoT context to increase their potential to detect relevant defects.

The same applies to individual devices, where the level of standardization
might be relatively low. Several attempts to standardize IoT devices and allow
their interoperability have been made (e.g., ETSI GS CIM 009 or ISO/IEC
21823); however, no major standard is currently established. This is the reason
for significant integration and interoperability challenges.

Therefore, the capability of previous interoperability and integration testing
techniques should be revised, at the minimum; opportunities to create more
effective approaches based on IoT system specifics have to be examined. These
opportunities cover Combinatorial and Constrained Interaction Testing [4] as
well as path-based testing and data-flow testing [53] techniques for integration
testing (typically end-to-end integration tests).

Regarding the third point, the argument that interoperability and integration
testing itself might not be understood as a subject of primary research, rather as an
application of primary testing approaches, there are two counter-arguments worth
mentioning. First, in general system testing research, integration testing is under-
stood as a standalone research topic, as is documented in previous mapping stud-
ies [27,49]; in particular, the study by Haser et al. documents the broad extent
of studies dedicated to integration testing of software and cyber-physical systems
[27]. Moreover, another finding by a recent study conducted by Ahmed et al. [3]
should be considered. Even in the discussed primary testing approaches such as
path-based testing, combinatorial interaction testing, constrained interaction test-
ing, or data-flow testing, no specific variants of these techniques are published for
IoT systems to a large extent.

Hence, to summarize, relative heterogeneity of the IoT interoperability and
integration testing approaches might be explained as a result of the relative
novelty of the field. Further development of IoT-specific testing techniques to
cover these areas is a prospective future research direction. We analyze potential
research directions further in Sect. 4.7.

4.7 RQ7: Future Research Directions

Regarding interoperability and integration testing methods for IoT systems, sev-
eral prospective future research directions can be discussed considering the indus-
trial needs and specifics of IoT systems.

First, specific techniques for integration and interoperability testing of IoT
systems have not yet been studied extensively in the literature. The techniques
might have been published under different names; for experts in the field, it might
be an easy task to get an overall picture. However, for testing practitioners and
researchers from other fields, getting such a picture might be more difficult.

The first future research area is handling possible combinatorial explosion
problems in integration testing when considering possible configurations to test
large-scale IoT systems. When various devices are integrated together in IoT
systems, where these devices may vary in versions, many different system config-
urations can be established; flawless interoperability of devices in these variants
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need to be tested. The current combinatorial [40] and constrained [4] testing
disciplines handle the problem on a general level. However, IoT-specific support
regarding the modelling of the problem and application of general combinatorial
techniques to IoT and integration testing using specific metadata from an IoT
system might represent another perspective direction for future research.

Another relevant field is testing the seamless integration of various devices
in an IoT system operating with limited network connectivity. Transmission of
data from sensors and between actuators operating in areas with weak network
signal coverage might be disrupted during the system run. Hence, in such situa-
tions, the overall functionality of an IoT system should be checked for functional
correctness and transaction processing of the data, if required. To the best of
our knowledge, in the testing of such reliability, current publications focus on
lower levels of the system (typically network layer), and systematic methods for
such tests on higher levels of an IoT system have yet to be provided.

In addition, to ensure more effective tests and also give the testing prac-
titioners better guidance on how to construct test cases, cross-over techniques
between path-based testing [8] and combinatorial interaction testing [40] for test-
ing of close APIs in IoT systems might be researched. Using specific information
and metadata from the tested system usually helps focus on the test cases more
effectively, and this direction can also be explored in the case of IoT systems.

5 Conclusion

In this study, we focused on the field of integration and interoperability testing
of IoT systems. The motivation was twofold: the importance of this field in the
current industry and the fact that this specific area has not yet been covered by
a focused, systematic literature mapping study.

In the study, we analyzed 803 papers from four major primary databases,
namely, IEEE Xplore, ACM Digital Library, Springer Link, and Elsevier Sci-
enceDirect and followed the current established recommendations for conducting
mapping studies by Kitchenham and Charters [34]. After a detailed assessment
of the papers and quality check, 115 papers were found to be relevant to the
field.

Our results suggest that currently there are general testing methods, which
can be applied to the field of integration and interoperability testing of IoT
systems; therefore, there is a research opportunity to evolve more specific testing
methods directly focused on IoT systems, which might work more effectively in
the IoT context.

On the other hand, a number of testing and test automation frameworks that
support interoperability and integration testing are being created already, and
we can also find examples of individual testbeds supporting this field.

There may be several concerns related to the validity of this study. The main
concern may be the exclusion of some relevant papers from the list. This possible
problem was effectively mitigated by multiple-stage paper filtering and snow-
balling process, as described in Sect. 3, which also includes a thorough validity
check phase.
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Another possible concern may be the inclusion of irrelevant papers in the
scope, which was also mitigated by the methodology (see Sect. 3) following well-
known methods for the selection criteria as well as the “two pairs of eyes” quality
check.

A limitation of this mapping study is that it analyzes papers published only in
the four primary major databases (IEEE Xplore, ACM Digital Library, Springer
Link and Elsevier ScienceDirect) and does not involve other possible sources such
as Google Scholar, Scopus, researchgate.net or arxxiv.org, which might contain
other relevant studies.

Despite these possible limitations, several prospective research directions
were suggested in this study.
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35. Larsen, K.G., Legay, A., Mikučionis, M., Nielsen, B., Nyman, U.: Compositional
testing of real-time systems. In: Katoen, J.-P., Langerak, R., Rensink, A. (eds.)
ModelEd, TestEd, TrustEd. LNCS, vol. 10500, pp. 107–124. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-68270-9 6

36. Lima, B.: Automated scenario-based integration testing of time-constrained dis-
tributed systems. In: 2019 12th IEEE Conference on Software Testing, Valida-
tion and Verification (ICST). IEEE, April 2019. https://doi.org/10.1109/icst.2019.
00060

37. Lu, A., Fang, W., Xu, C., Cheung, S.C., Liu, Y.: Data-driven testing methodology
for RFID systems. Front. Comput. Sci. China 4(3), 354–364 (2010). https://doi.
org/10.1007/s11704-010-0387-6

38. Makedonski, P., et al.: Test descriptions with ETSI TDL. Softw. Qual. J. 27(2),
885–917 (2018). https://doi.org/10.1007/s11219-018-9423-9

39. Medhat, N., Moussa, S., Badr, N., Tolba, M.F.: Testing techniques in IoT-based
systems. In: 2019 Ninth International Conference on Intelligent Computing and
Information Systems (ICICIS), pp. 394–401 (2019)

40. Nie, C., Leung, H.: A survey of combinatorial testing. ACM Comput. Surv. (CSUR)
43(2), 11 (2011)

https://doi.org/10.1007/s12243-015-0487-2
https://doi.org/10.1007/s12243-015-0487-2
https://doi.org/10.1016/j.compeleceng.2018.05.007
https://doi.org/10.1016/j.compeleceng.2018.05.007
https://doi.org/10.1007/978-3-319-93797-7_8
https://doi.org/10.1109/access.2018.2802489
https://doi.org/10.1007/978-3-319-68270-9_6
https://doi.org/10.1109/icst.2019.00060
https://doi.org/10.1109/icst.2019.00060
https://doi.org/10.1007/s11704-010-0387-6
https://doi.org/10.1007/s11704-010-0387-6
https://doi.org/10.1007/s11219-018-9423-9


Interoperability and Integration Testing Methods for IoT Systems 111

41. Park, H., Kim, H., Joo, H., Song, J.: Recent advancements in the internet-of-things
related standards: a oneM2M perspective. ICT Express 2(3), 126–129 (2016).
https://doi.org/10.1016/j.icte.2016.08.009

42. Pontes, P.M., Lima, B., Faria, J.A.P.: Izinto: a pattern-based IoT testing frame-
work. In: Companion Proceedings for the ISSTA/ECOOP 2018 Workshops, ISSTA
2018, pp. 125–131. ACM, New York (2018). https://doi.org/10.1145/3236454.
3236511

43. Pontes, P.M., Lima, B., Faria, J.A.P.: Test patterns for IoT. In: Proceedings of the
9th ACM SIGSOFT International Workshop on Automating TEST Case Design,
Selection, and Evaluation, A-TEST 2018, pp. 63–66. ACM, New York (2018).
https://doi.org/10.1145/3278186.3278196

44. Popereshnyak, S., Suprun, O., Suprun, O., Wieckowski, T.: IoT application testing
features based on the modelling network. In: 2018 XIV-th International Conference
on Perspective Technologies and Methods in MEMS Design (MEMSTECH), pp.
127–131, April 2018. https://doi.org/10.1109/MEMSTECH.2018.8365717

45. Jaffar-ur Rehman, M., Jabeen, F., Bertolino, A., Polini, A.: Testing software com-
ponents for integration: a survey of issues and techniques. Softw. Test. Verif. Reliab.
17(2), 95–133 (2007)

46. Rings, T., Poglitsch, P., Schulz, S., Serazio, L., Vassiliou-Gioles, T.: A generic
interoperability testing framework and a systematic development process for auto-
mated interoperability testing. Int. J. Softw. Tools Technol. Transf. 16(3), 295–313
(2013). https://doi.org/10.1007/s10009-013-0281-2

47. Sand, B.: IoT testing - the big challenge why, what and how. In: Mandler, B., et al.
(eds.) IoT360 2015. LNICST, vol. 170, pp. 70–76. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-47075-7 9

48. Schieferdecker, I., Kretzschmann, S., Rennoch, A., Wagner, M.: IoT-testware - an
eclipse project. In: 2017 IEEE International Conference on Software Quality, Reli-
ability and Security (QRS). IEEE, July 2017. https://doi.org/10.1109/qrs.2017.
59

49. Shashank, S.P., Chakka, P., Kumar, D.V.: A systematic literature survey of inte-
gration testing in component-based software engineering. In: 2010 International
Conference on Computer and Communication Technology (ICCCT), pp. 562–568.
IEEE (2010)

50. Sotiriadis, S., Lehmets, A., Petrakis, E.G.M., Bessis, N.: Testing cloud services
using the TestCast tool. In: Latifi, S. (ed.) Information Technology - New Gener-
ations. AISC, vol. 558, pp. 819–824. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-54978-1 101

51. de Souza, B.P., Motta, R.C., de O. Costa, D., Travassos, G.H.: An IoT-based
scenario description inspection technique. In: Proceedings of the XVIII Brazilian
Symposium on Software Quality, SBQS 2019, pp. 20–29. Association for Computing
Machinery, New York (2019). https://doi.org/10.1145/3364641.3364644

52. de Souza, B.P., Motta, R.C., Travassos, G.H.: The first version of SCENARI-
otCHECK: a checklist for IoT based scenarios. In: Proceedings of the XXXIII
Brazilian Symposium on Software Engineering, SBES 2019, pp. 219–223. Asso-
ciation for Computing Machinery, New York (2019). https://doi.org/10.1145/
3350768.3350796

53. Su, T., et al.: A survey on data-flow testing. ACM Comput. Surv. (CSUR) 50(1),
1–35 (2017)

https://doi.org/10.1016/j.icte.2016.08.009
https://doi.org/10.1145/3236454.3236511
https://doi.org/10.1145/3236454.3236511
https://doi.org/10.1145/3278186.3278196
https://doi.org/10.1109/MEMSTECH.2018.8365717
https://doi.org/10.1007/s10009-013-0281-2
https://doi.org/10.1007/978-3-319-47075-7_9
https://doi.org/10.1007/978-3-319-47075-7_9
https://doi.org/10.1109/qrs.2017.59
https://doi.org/10.1109/qrs.2017.59
https://doi.org/10.1007/978-3-319-54978-1_101
https://doi.org/10.1007/978-3-319-54978-1_101
https://doi.org/10.1145/3364641.3364644
https://doi.org/10.1145/3350768.3350796
https://doi.org/10.1145/3350768.3350796


112 M. Bures et al.

54. Tan, T.-B., Cheng, W.-K.: Software testing levels in internet of things (IoT) archi-
tecture. In: Chang, C.-Y., Lin, C.-C., Lin, H.-H. (eds.) ICS 2018. CCIS, vol.
1013, pp. 385–390. Springer, Singapore (2019). https://doi.org/10.1007/978-981-
13-9190-3 40

55. Tönjes, R., Reetz, E.S., Moessner, K., Barnaghi, P.M.: A test-driven approach
for life cycle management of internet of things enabled services. In: 2012 Future
Network Mobile Summit (FutureNetw), pp. 1–8, July 2012

56. Walker, M.A., Schmidt, D.C., Dubey, A.: Testing at scale of IOT blockchain appli-
cations (chap. 6). In: Kim, S., Deka, G.C., Zhang, P. (eds.) Role of Blockchain
Technology in IoT Applications, Advances in Computers, vol. 115, pp. 155–179.
Elsevier (2019). https://doi.org/10.1016/bs.adcom.2019.07.008

https://doi.org/10.1007/978-981-13-9190-3_40
https://doi.org/10.1007/978-981-13-9190-3_40
https://doi.org/10.1016/bs.adcom.2019.07.008


FRed: Conditional Model Checking
via Reducers and Folders

Dirk Beyer1 and Marie-Christine Jakobs1,2

1 LMU Munich, Munich, Germany
2 Department of Computer Science, TU Darmstadt,

Darmstadt, Germany

Abstract. There are many hard verification problems that are currently
only solvable by applying several verifiers that are based on complement-
ing technologies. Conditional model checking (CMC) is a successful solu-
tion for cooperation between verification tools. In CMC, the first verifier
outputs a condition describing the state space that it successfully veri-
fied. The second verifier uses the condition to focus its verification on the
unverified state space. To use arbitrary second verifiers, we recently pro-
posed a reducer-based approach. One can use the reducer-based approach
to construct a conditional verifier from a reducer and a (non-conditional)
verifier: the reducer translates the condition into a residual program that
describes the unverified state space and the verifier can be any off-the-
shelf verifier (that does not need to understand conditions). Until now,
only one reducer was available. But for a systematic investigation of the
reducer concept, we need several reducers. To fill this gap, we developed
FRed, a Framework for exploring different REDucers. Given an existing
reducer, FRed allows us to derive various new reducers, which differ in
their trade-off between size and precision of the residual program. For
our experiments, we derived seven different reducers. Our evaluation on
the largest and most diverse public collection of verification problems
shows that we need all seven reducers to solve hard verification tasks
that were not solvable before with the considered verifiers.

1 Introduction

Due to the undecidability of software verification, even after more than 40 years
of research on automatic software verification [31], some hard verification tasks
cannot be solved by a single verifier alone. To increase the number of solvable
tasks, one needs to combine the strengths of distinct verifiers. Several combina-
tions [3,8,9,20,23,25,32,33,37] were proposed in the literature. One promising
combination is conditional model checking (CMC) [9], which unlike others does
not modify the programs nor let the combined techniques know each other.

Replication package available on Zenodo [12].
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Fig. 1. Reducer-based CMC configuration (v2 ◦ r) ◦ v1 with FRed

CMC works as follows: If the first verifier gives up on the verification task, it
outputs a condition that describes the state space that it successfully verified.
The (conditional) second verifier uses the condition of the first verifier to focus its
work on the still-unverified state space. Note that one can easily extend the CMC
approach to more than two verifiers by letting all verifiers generate conditions.

To easily construct conditional verifiers (i.e., verifiers that understand con-
ditions) from existing off-the-shelf verifiers, a recent work proposed the concept
of reducer-based CMC [13]. Instead of making a verifier aware of conditions,
reducer-based CMC constructs a conditional verifier from an existing verifier by
plugging a reducer in front of the verifier. The reducer is a preprocessor that
given the original program and the condition as input, translates the condition
into a (residual) program, a format that is understandable by classic verifiers.

The construction of a reducer, especially proving its soundness, is complex
and so far there exists only one reducer. However, this reducer’s translation is
very precise, and therefore, may construct programs that are orders of magnitudes
larger than the original program. To solve this problem, and to support systematic
experimentation with different reducers, we propose the formal framework FRed,
which streamlines and simplifies the construction of new reducers from existing
ones. Its underlying idea is to construct a new reducer r = F ◦ R, a so-called
fold reducer, by sequentially composing an existing reducer R with a folder F .
A folder uses a heuristic that specifies how to modify the program constructed by
the existing reducer. More concretely, a folder defines which program locations of
the program constructed by the existing reducer are collapsed into a new location
and, thus, specifies how to coarsen the program. However, to avoid false alarms,
the specified coarsening must not add new program behavior.

New conditional verifiers CV can be constructed with FRed according to
the equation CV = V ◦ (F ◦ R), where r = (F ◦ R) is the fold-reducer composed
of the existing reducer R and a folder F , V is an arbitrary verifier, and ◦ is
the sequential composition operator. Figure 1 illustrates this construction in the
context of reducer-based CMC. We used this construction to build 49 conditional
verifiers, which use the already existing reducer, one of seven folders, and one of
seven verifiers. Our large experimental study revealed that using several reducers
(with different folders) can make the overall verification more effective.
Contributions. We make the following contributions:

– We introduce FRed, a framework for the composition of new reducers from
existing reducers and folding heuristics.

Condition-
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Fig. 2. Example program absPow, its CFA, and a condition for our example absPow

with accepting state qf and assumptions elided (all true)

– We prove that FRed derives valid reducers in case the existing reducer is
valid and the folding heuristic adheres to a correctness constraint.

– We use our framework FRed to derive seven new reducers from the existing
reducer ParComp [13] and use them in various conditional verifiers.

– We experimentally show that the overall effectiveness of reducer-based CMC
can be increased using various reducers.

– Our reducers and all experimental data are available for replication and to
construct further conditional model checkers (see Sect. 6).

2 Background

Program Representation. Following the literature [8,10], we model a program
by a control-flow automaton (CFA) C = (L, �0, G) consisting of a set L of loca-
tions, an initial location �0 ∈ L, and a set of control-flow edges G ⊆ L × Ops × L.
The set Ops describes all possible operations. In our presentation, we only consider
operations on integer variables that are either boolean expressions (so-called
assume operations) or assignments. However, our implementation supports C
programs. In the following, we use L for the superset of all location sets and C

for the set of all CFAs. A CFA C = (L, �0, G) is deterministic (i.e., representable
as a C program) if for all control-flow edges (�, op1, �1), (�, op2, �2) ∈ G either
op1 = op2 and �1 = �2, or op1 and op2 are assume operations with op1 ≡ ¬op2.

The left of Fig. 2 shows our example program absPow, which computes
f(N) = 2�log2 |N |� for N �= 0 and e.g., ensures the property f(N) �= 0. Next
to program absPow, its deterministic CFA is shown, which contains one edge
per assignment and two edges for each condition of an if- or while-statement.
The two edges per if- or while-statement are labeled with the condition and its
negation and represent the two evaluations of the condition.

0 if(N!=0)
1 if(N<0)
2 N=-N;
3 i=1;
4 while(i<N)
5 i=i+i;

else
6 i=-1;
7

`0

`1 `6
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`3

`4

`5

`7

N!=0 ¬N!=0

N<0

¬
N<

0

N=-N;

i=1;
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Program Semantics. We use an operational semantics and represent a pro-
gram’s state by a pair of location � (the value of the program counter) and
concrete data state c. In our representation, a concrete data state is a map-
ping from the program variables into the set of integer values. Now, a concrete
path π of a CFA C = (L, �0, G) is a sequence (�0, c0)

g1→ · · · gn→ (�n, cn) such
that for all 1 ≤ i ≤ n : gi = (�i−1, opi, �i) ∈ G and ci−1

opi→ ci, i.e., (a) in case
of assume operations, ci−1 |= opi and ci−1 = ci or (b) in case of assignments,
ci = SPopi

(ci−1) and SP is the strongest-post operator of the semantics. We let
paths(C) be the set of all concrete paths of a CFA C. Given a concrete path
π = (�0, c0)

g1→ · · · gn→ (�n, cn), we derive its execution ex(π) = c0c1 . . . cn. Finally,
we define ex(C) := {ex(π) | π ∈ paths(C)} to be the executions of a CFA C.
Condition. After an (incomplete) verification run, a condition sums up which
concrete paths of a program have been explored [9]. We model the condition as
an automaton describing the syntactical program paths that have been verified
and the assumptions that have been made on these paths (i.e., which concrete
data states were included). Thus, the condition’s edges are labeled by pairs of
program edges and assumptions. We model assumptions as state conditions,
letting Φ denote the set of all state conditions. Accepting states subsume explored
paths, i.e., if a path’s prefix is accepted by the condition, the path has been
explored. Non-explored paths either end in a non-accepting state or more often
have a prefix that ends in a state q from which no further transition is applicable.
Typically, the latter means that the verifier did not explore beyond the prefix.

The automaton on the right of Fig. 2 shows a condition for our example
program absPow. For the sake of presentation, we left out the assumptions,
which are all true. The condition states that the else-branch of the outermost
if-statement was explored and that the verifier performed a BFS alike exploration
of the if-branch, which split the exploration of the inner if-branch and which is
interrupted after one loop unrolling. Formally, a condition is defined as follows.1

Definition 1. A condition A = (Q,Σ, δ, q0, F ) consists of

– a finite set Q of states, an initial state q0 ∈ Q, and accepting states F ⊆ Q,
– an alphabet Σ ⊆ 2G × Φ, and
– a transition relation δ ⊆ Q × Σ × Q with ¬∃(qf , ·, q) ∈ δ : qf ∈ F ∧ q /∈ F .

We let A be the set of conditions.

As already said, a condition describes which paths of a program have been looked
at. The following definition formalizes this coverage property. Note that we use
c |= ϕ to describe that a concrete data state c satisfies a state condition ϕ.

Definition 2. A condition A = (Q,Σ, δ, q0, F ) covers a concrete path π =

(�0, c0)
g1→ · · · gn→ (�n, cn) if there exists a run ρ = q0

(G1,ϕ1)−−−−−→ . . .
(Gk,ϕk)−−−−−→ qk in

A such that (a) 0 ≤ k ≤ n, (b) qk ∈ F , and (c) ∀1 ≤ i ≤ k : gi ∈ Gi ∧ (ci |= ϕi).

1 This paper considers only conditions that are represented as automata, while CMC
in general [9] is not restricted to a particular representation.
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Reducer. The CMC approach suggests that after an incomplete verification run,
a second verifier should use the produced condition to explore only the uncovered
paths. However, many verifiers do not understand conditions. To overcome this
problem, reducer-based CMC [13] suggests to extend verifiers with a preprocessing
step that translates the condition into a residual program. A residual program
may overapproximate those program paths that are not covered by the condition,
but must not introduce additional program behavior. We follow reducer-based
CMC [13] and use reducers to compute residual programs.

Definition 3. A reducer is a function red : C × A → C satisfying the residual
property: ∀C ∈C,∀A∈A : ex(C)\{ex(π) |A covers π} ⊆ ex(red(C,A)) ⊆ ex(C).

First, a reducer for a specific class of conditions was proposed [26]. Then, reducer-
based CMC [13] generalized the first approach to use a reducer, namedParComp,
which supports all kinds of conditions, and showed that it is indeed a reducer [13].
To compute a residual program, the reducer ParComp performs a parallel
composition of the program and the condition. Starting in the initial location
and initial condition state, it matches CFA edges with condition transitions that
subsume the respective CFA edge. If no matching condition transition exists,
ParComp switches to consider CFA edges only. Additionally, it stops exploring
states containing a final state q ∈ F since the condition covers all longer paths.

However, the reducer ParComp has one drawback. Verifiers often unfold
the program, e.g., unroll loops or inspect branches separately. Due to partially
explored paths, some of the unfoldings become part of the condition and will
be encoded in the residual program generated by ParComp. Thus, the residual
program constructed by ParComp may become orders of magnitudes larger
than the original program resulting in increased parsing costs for the second
verifier. Additionally, a verifier v2 analyzing the residual program generated by
ParComp is forced to apply the same unfoldings on the non-covered paths as the
condition-generating verifier v1. However, it might be more effective or efficient
if verifier v2 would less often (or never) unfold certain program structures of the
original program. To tackle this problem, we present the framework FRed that
extends reducers like ParComp to let them compute smaller residual programs
with fewer unfoldings at the cost of adding more explored paths to the residual
program, i.e., computing less precise residual programs.

3 FRed: Fold-Reducers from Reducers

To assist a systematic exploration of the reducer design space, we present the
framework FRed. With FRed one can methodically derive new reducers from
existing ones, thereby controlling the precision and size of the produced residual
programs. One only needs to define how to compress the residual programs
computed by the original reducer. Currently, FRed is limited to the class of
path-preserving reducers. Path-preserving reducers have the advantage that they
keep the reference to the original program within the syntactical structure of
the residual program, i.e., except for location renaming they encode a subset
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of the syntactical paths of the original program. This makes it easier to derive
new reducers from them. Next, we formally define a path-preserving reducer,
where U is the universe of location markers (e.g., condition states).

Definition 4. A reducer ppr is path-preserving if for any generated residual
program ppr((L, �0, G), A) = (Lr, �0,r, Gr) it is valid that (a) Lr ⊆ L × U for
some U, (b) �0,r = (�0, ·), and (c) ∀((�, u), op, (�′, u′)) ∈ Gr : ∃(�, op, �′) ∈ G.

Given a path-preserving reducer like ParComp, the goal of FRed is to derive
new reducers that produce smaller, less precise residual programs. Our idea is that
the new reducers aggregate certain similar behavior of the residual program Cr

produced by the given path-preserving reducer. So far, the framework FRed
supports syntactical aggregations that unite location states of the program Cr.
These aggregations can be used to revert loop-unfoldings or separation of
branches, the main cause for large residual programs. Additionally, these aggrega-
tions are simple to compute. One needs to define only a partitioning of Cr’s loca-
tion states into equivalence classes. However, to get proper reducers, the derived
reducers must not introduce new program behavior. Transferred to our aggrega-
tions, this means that we must not combine location states of Cr that refer to dif-
ferent locations of the original program. We introduce the concept of a location-
consistent partitioner that computes partitions respecting this requirement.

Definition 5. A location-consistent partitioner is a function p that maps a set
Lr ⊆ L × U to a partition {L1, . . . , Ln} of Lr s.t. ∀1 ≤ i ≤ n : |{� | (�, ·) ∈ Li}|
= 1. We use P for the set of all location-consistent partitioners.

As examples, we consider the two extreme location-consistent partitioners cfa
and sep as defined in the following. Partitioner cfa groups all elements with the
same location and sep never groups elements.

cfa(Lr) =
{{(�, u)∈Lr | � = �′} ∣

∣ ∃(�′, ·)∈Lr

}
sep(Lr) =

{{(�, u)} ∣
∣ (�, u)∈Lr

}

All remaining location-consistent partitioners group subsets of elements with
same locations. Often, they are context dependent, i.e., they take into account
the structure of the original program or the program Cr generated by the path-
preserving reducer. For instance, we use the following partitioner that combines
locations referring to the same loop head in the original program. The partitioner
is parameterized by the loop heads L′ of the original program.

lhL′(Lr) = cfa
({(�, u) ∈ Lr | � ∈ L′}) ∪ sep

({(�, u) ∈ Lr | � /∈ L′})

A partioning of the nodes of a graph, e.g., a CFA, induces a coarser graph. Each
set of nodes becomes a node of the new graph and there exists an edge between
two sets of nodes if there exists an edge between two nodes in the original graph,
one in each set. A folder applies this principle to compress a residual program
computed by a path-preserving reducer. A location-consistent partitioner defines
the partitioning of location states. Furthermore, the new initial program location
is the set of location states that contains the original initial location. Due to
the partitioner’s properties, exactly one such set exists.
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Fig. 3. Five residual programs with increasing program sizes and varying program
structure, constructed by the seven fold-reducers considered in the evaluation

Definition 6. A folder fold : C × P → C compresses a CFA Cr = (Lr, �0,r, Gr)
with a location-consistent partitioner p such that

fold((Lr, �0,r, Gr), p) = (p(Lr), �0,p, Gp) with

�0,r ∈�0,p and Gp =
{
(�p, op, �′

p)
∣
∣ �p, �

′
p ∈ p(Lr)∧∃(�, op, �′)∈Gr : �∈�p ∧�′ ∈�′

p

}
.

We use folders to construct so called fold-reducers from an existing path-preserving
reducer. To this end, we concatenate the path-preserving reducer with a folder.

Definition 7. Let p be a location-consistent partitioner and ppr a path-
preserving reducer. The fold-reducer for p and ppr is

FoldRedppr
p (C,A) := fold(ppr(C,A), p).

Figure 3 shows five residual programs constructed from program absPow (Fig. 2,
left) and the condition for it (Fig. 2, right). The residual programs differ in
their program size and structure. They were constructed by the seven different
fold-reducers used in the evaluation, all of them using the reducer ParComp [13],
but we converted them into a better readable form using proper if- and while-
statements instead of gotos. Note that for this example, some fold-reducers
constructed the same residual program. To construct the residual programs in
Figs. 3a and 3e, the partitioners cfa and sep could be used, respectively. For
the residual program in Fig. 3b, we used partitioner lhL′ with L′ = {�4}. The
partitioner used to construct the program in Fig. 3c undoes unfoldings of if-
statements but keeps loop-unfoldings. Finally, the program in Fig. 3d is generated
with a partitioner that allows loop-unfoldings up to a given bound of ten and
then folds them. However, loop heads of the same iteration are always combined.

Above, we used fold-reducers to compute residual programs. In general, we
plan to use fold-reducers in the construction of conditional verifiers. Thus, we
must show that fold-reducers are reducers. Syntactically, fold-reducers look like
reducers. It remains to be shown that fold-reducers fulfill the residual property.

0 if(N!=0)
1 if(N<0)
2 N=-N;
3 i=1;
4 while(i<N)
5 i=i+i;

(a) CFA

0 if(N!=0)
1 if(N<0)
2 N=-N;
3 i=1;

else
4 i=1;
5 while(i<N)
6 i=i+i;

(b) LH, LHC

0 if(N!=0)
1 if(N<0)
2 N=-N;
3 i=1;
4 if(i<N)
5 i=i+i;
6 while(i<N)
7 i=i+i;

(c) NLH

0 if(N!=0)
1 if(N<0)
2 N=-N;
3 i=1;

else
4 i=1;
5 if(i<N)
6 i=i+i;
7 while(i<N)
8 i=i+i;

(d) LHB

0 if(N!=0)
1 if(N<0)
2 N=-N;
3 i=1;
4 if(i<N)
5 i=i+i;

else
7 i=1;
8 if(i<N)
9 i=i+i;
10 while(i<N)
11 i=i+i;

(e) LHBC, SEP
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Theorem 1. Every fold-reducer FoldRedppr
p is a reducer.

Proof. We need to show that ex(C)\{ex(π) |A covers π}⊆ ex(FoldRedppr
p (C,A))

⊆ ex(C). Since ppr is reducer, ex(C)\{ex(π) | A covers π} ⊆ ex(ppr(C,A)). Thus,
it suffices to show that ex(ppr(C,A)) ⊆ ex(FoldRedppr

p (C,A)) ⊆ ex(C).
In the following, let C = (Lo, �0,o, Go), ppr(C,A)) = (Lr, �0,r, Gr), and

FoldRedppr
p (C,A) = (Lf , �0,f , Gf ). Due to the requirements on p and the def-

inition of the fold-reducer, there exists a unique function h : Lr → Lf with
∀�r ∈ Lr : �r ∈ h(�r) and h(�0,r) = �0,f .

Part I) ex(ppr(C,A)) ⊆ ex(FoldRedppr
p (C,A)):

c0c1 . . . cn ∈ ex(ppr(C,A))

=⇒ there exists πr = (�0,r, c0)
gr
1→ · · · gr

n→ (�n,r, cn) s.t.
∀1 ≤ i ≤ n : gr

i = (�i−1,r, opi, �i,r) ∈ Gr ∧ ci−1
opi→ ci

=⇒ ∀1 ≤ i ≤ n : ∃gf
i = (h(�i−1,r), opi, h(�i,r)) ∈ Gf

=⇒ πf = (h(�0,r), c0)
gf
1→ · · · gf

n→ (h(�n,r), cn) is a concrete path
of FoldRedppr

p (C,A)
=⇒ c0c1 . . . cn ∈ ex(FoldRedppr

p (C,A))

Part II) ex(FoldRedppr
p (C,A)) ⊆ ex(C):

c0c1 . . . cn ∈ ex(FoldRedppr
p (C,A))

=⇒ there exists πf = (�0,f , c0)
gf
1→ · · · gf

n→ (�n,f , cn) s.t.
∀1 ≤ i ≤ n : gf

i = (�i−1,f , opi, �i,f ) ∈ Gf ∧ ci−1
opi→ ci

=⇒ ∀1 ≤ i ≤ n there exists gr
i = (�i,r, opi, �

′
i,r) ∈ Gr

with �i,r ∈ �i−1,f ∧ �′
i,r ∈ �i,f

=⇒ ∀1 ≤ i ≤ n there exists gi,o = (�i,o, opi, �
′
i,o) ∈ Go

with �i,r = (�i,o, ·) ∧ �′
i,r = (�′

i,o, ·)
=⇒ ∀1 ≤ i ≤ n : (i = 1 ∨ �i,o = �′

i−1,o) ∧ �1,o = �0,o

(since �′
i,r, �i+1,r ∈ �i,f , �1,r ∈ �0,f ,p location-consistent)

=⇒ (�1,o, c0)
g1,o→ (�′

1,o, c1)
g2,o→ · · · gn,o→ (�′

n,o, cn) ∈ path(C)
=⇒ c0c1 . . . cn ∈ ex(C)

In practice, arbitrary fold-reducers are unsatisfactory since they may produce non-
deterministic CFAs, which cannot be translated to C programs. Figure 4 shows
an example of a non-deterministic CFA generated by a fold-reducer. In the exam-
ple, the non-determinism is caused by the partitioner lh{�4}, which only combines
loop heads. Generally, also the condition may cause non-determinism.2 To solve
the non-determinism problem, we transform a fold-reducer into a deterministic
fold-reducer that generates deterministic residual programs from deterministic,
input programs. The basic idea is to adapt the partitioner to compute a coarser

2 Theoretically, the non-determinism may also be caused by a non-deterministic, orig-
inal program. However, we assume that the original program is deterministic.



FRed: Conditional Model Checking via Reducers and Folders 121

Fig. 4. Nondeterministic residual program built from program absPow, the condition
from Fig. 2, and a fold-reducer using reducer ParComp and partitioner lh{�4}

Algorithm 1 det
Input: CFA Cr = (Lr, �0,r, Gr), p // residual program, location-consistent parti-

tioner
Output: part // location-consistent partition of Lr

1: oldPart:=∅; part:=p(Lr);
2: while oldPart �= part do
3: oldPart:=part;
4: for each (Li, Lj , Lk) ∈ oldPart × part × part do
5: if Li ∈ part ∧Li �= Lj ∧ ∃(�k, op, �i), (�

′
k, op, �j) ∈ Gr :

�k, �′
k ∈ Lk ∧ �i ∈ Li ∧ �j ∈ Lj then

6: part:=(part\{Li, Lj}) ∪ {Li ∪ Lj};

7: return part

partitioning. The coarser partitioning combines all partition elements of the orig-
inal partition that would cause the residual program to be non-deterministic.

Algorithm 1 shows how to compute such a coarser partitioning from the orig-
inal partitioning. Starting with the original partitioning, it combines partitions
of its current partitioning as long as there exist two CFA edges causing non-
determinism, i.e., they consider the same operation and start in the same parti-
tion element, but end in different partition elements.

Attentive readers already noticed that Alg. 1 uses the program Cr generated
by the path-preserving reducer to adapt the partitioning. Since multiple pro-
grams may consider the same set of location states but different control-flow
edges, it is impossible to adapt the partitioner without knowledge of Cr. Thus,
a deterministic fold-reducer must use different adaptions of the partitioner p.
The correct adaption depends on the input program and the path-preserving
reducer. We use the following adaption, which depends on the original program
and the path-preserving reducer ppr used by the fold-reducer.

detppr(C,A),p(L) :=
{

det(ppr(C,A), p) if ppr(C,A) = (L, ·, ·) ∧ C deterministic
p(L) else

{(`0, q0)}

{(`1, q1)}

{(`6, qf )}

{(`2, q2)}

{(`3, q4)} {(`3, q3)}

{(`4, q5), (`4, q7), (`4, q8), (`4, q10), (`4, qr)}{(`5, q6)}

{(`5, q9)}

{(`5, qr)}

{(`7, qr)}

N!=0

¬N!=0

N<0
¬N<0

N=-N;

i=0; i=0; ¬i<N
i<N

i=i+1;

i<N
i=i+i;

i<N

i=i+i;
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The adapted partitioner returns the partitioning computed by the original parti-
tioner except for one case. When the original program C is deterministic and
the adapted partitioner is given the location states of the program computed
by the path-preserving reducer, the partition is adapted with Alg. 1. Note that
we neglect to apply Alg. 1 for non-deterministic original programs, because it
then may combine partitions considering different location states of the original
program, thus, resulting in a location-inconsistent partitioner. However, to use
the adapted partitioner in a fold-reducer, it must remain location-consistent.

Lemma 1. For a givenCFAC, conditionA, path-preserving reducer ppr, location-
consistent partitioner p, function detppr(C,A),p is a location-consistent partitioner.

Knowing that the adapted partitioner remains location-consistent, we explain
how to derive a deterministic fold-reducer from a fold-reducer. The idea is simple.
The deterministic fold-reducer uses for each input program a dedicated variant
of the original fold-reducer. This dedicated variant uses the prescribed adaption
det(ppr(C,A), p) of the original partitioner to the original program.

Definition 8. Let FoldRedppr
p be a fold-reducer. We define the deterministic

fold-reducer to be FoldReddet
p,ppr (C,A) := FoldRedppr

detppr(C,A),p
(C,A).

We already showed that the proposed adaption of the location-consistent parti-
tioner results in a location-consistent partitioner. Now, we can easily conclude
that deterministic fold-reducers guarantee the residual property and, thus, can
be used to construct conditional verifiers.

Corollary 1. Every deterministic fold-reducer FoldReddet
p,ppr is a reducer.

While the previous property is mandatory, we build deterministic fold-reducers
to produce deterministic programs when given deterministic programs. The
subsequent proposition certifies this property of deterministic fold-reducers.

Proposition 1. Given a deterministic fold-reducer FoldReddet
p,ppr, a determin-

istic control-flow automaton C, and a condition A, then the residual program
FoldReddet

p,ppr (C,A) is deterministic.

4 Evaluation

The main goals of our experiments are to systematically investigate different
(fold-)reducers and to find out whether fold-reducers can overcome the prob-
lem that reducer ParComp sometimes generates too large and precise residual
programs. Since ParComp was the only available reducer our goal was to
counteract on its weaknesses (i.e., the sometimes large residual programs), inves-
tigating whether one needs to settle for ParComp’s weakness is beyond the
scope of this evaluation. Another goal of our evaluation is to compare CMC
with fold-reducers against non-cooperative combinations, especially sequential
combinations. This leads us to three research questions:
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RQ 1. Do distinct fold-reducers generate different residual programs?
RQ 2. Can fold-reducer be better than reducer ParComp and is there a reducer

that dominates the others?
RQ 3. Can reducer-based CMC replace non-cooperative verifier combinations?

4.1 Experimental Setup

CMC Configurations. A reducer-based CMC configuration consists of (1) a
condition-generating verifier v1, (2) a reducer r, and (3) a second verifier v2
(cf. Fig. 1). For components v1 and r, we use CPAchecker [14] in revision r32965
since it already provides condition-generating verifiers and reducerParComp [13].

As in other works [9,13], we use a predicate analysis [15] and a value analy-
sis [16], both using a time limit of 100 s3, as condition-generating verifiers. If they
do not succeed within 100 s, they give up and output a condition. For verifier v2,
we use the three tools CPA-SEQ [29], ESBMC [34], and VeriAbs [30] that per-
formedbest on the reachability categories of SV-COMP20204 aswell as Symbiotic,
which performed best in the SoftwareSystems category of SV-COMP 2020. For all
four tools, we use their version submitted to SV-COMP 2020. Additionally, we
used three well-maintained analyses, kInduction [7], predicate analysis [15], and
value analysis [16], which are part of the award-winning sequential composition of
CPAchecker [29]. For them, we also use CPAchecker revision r32965.

We investigated seven fold-reducers r, which we implemented in the FRed
plug-in for CPAchecker. All fold-reducers inline functions and typically use the
deterministic fold-reducer variant of the reducers described in Sect. 3. Only the
CFA and the SEP reducers already generate deterministic, residual programs
and do not need to use the deterministic variant. The seven fold-reducers are:

CFA Fold-reducer that uses partitioner cfa, i.e., it combines elements with same
location states and, thus, reconstructs those parts of the original CFA that
have not been fully explored.

LH Fold-reducer that is based on partitioner lhL′ and undoes loop-unfoldings.
It combines all elements with the same loop-head location state from L′.

LHC Fold-reducer that also aims at reverting loop-unfoldings, but avoids to
combine loop executions started in different contexts, i.e., reached on different
syntactical paths ignoring finished loops.

LHB Fold-reducer that limits loop-unfoldings, i.e., keeps loop-unfoldings up to
a given bound (we use 10) and afterwards collapse the unfoldings.

LHBC Fold-reducer that like LHB limits loop-unfoldings up to a bound of 10,
but additionally separates loop executions with different contexts like LHC.

NLH Fold-reducer that undoes branch- but not loop-unfoldings (keeps different
loop iterations separated).

SEP Fold-reducer that never combines elements, uses partitioner sep (same
as ParComp [13]).

3 We chose a time limit of 100 s because a large proportion of the solvable tasks (>86%)
were solved in less than 100 s.

4 https://sv-comp.sosy-lab.org/2020/systems.php

https://sv-comp.sosy-lab.org/2020/systems.php
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Combining each fold-reducer r with all second verifiers v2 we obtain 49 con-
ditional verifiers v2 ◦ r. Combining the conditional verifiers with the condition-
generating verifier gives us 84 reducer-based CMC configurations.5

Tasks. For our evaluation, we considered the well-established benchmark
set6 from the competition on software verification [4]. We focused on the 6 907
tasks of the ReachSafety categories, because all considered analyses can verify
the property “no call to function VERIFIER error() is reachable”. For each
condition-generating verifier v1, we created a task set that excludes all tasks for
which all reducers reported an error (≈11%) as well as all easy tasks (≈45%).
A task is considered easy if it does not require CMC because it can be solved in
100 s by v1 or in 1 000 s7 by all verifiers v2. Thus, we only look at tasks for which
CMC can contribute additional value (2 949 tasks for CMC with v1 = predicate
analysis and 3 046 tasks for CMC with v1 = value analysis).

Execution Framework. We performed our experiments on machines with
33 GB of memory and an Intel Xeon E3-1230 v5 CPU (8 processing units and a
frequency of 3.4 GHz). The machines run a Ubuntu 18.04 operating system (Linux
kernel 4.15). We use BenchExec [17] to run our experiments. To ensure that all
CMC configurations with the same verifier v1 use the same conditions, we run
the condition-generating verifiers v1 once with a runtime limit of 100 s8 and a
memory limit of 15 GB. The generated conditions are then used when running the
conditional verifiers with a runtime limit of 900 s and a memory limit of 15 GB.
Replication Support. Our experimental data are available online (see Sect. 6).

4.2 Experimental Results

RQ1 (Different residual programs?) Already our example (Fig. 3) shows that
residual programs generated by different reducers can significantly differ in the
program size and the branching structure. To further investigate the difference of
residual programs, we searched our tasks for programs for which all seven reducers
generated residual programs with different numbers of program locations, and
selected the program sqrt Householder interval.c. Figure 5 shows graph shapes
of the CFAs of the residual programs generated by the seven fold-reducers. In a
graph shape, the width of line i is proportional to the number of CFA nodes with
a shortest path of length i from the initial location. We observe that the graph
shapes differ in their height and width. Thus, residual programs differ in their
branching structure. Finally, we looked at the size increase of the residual pro-
grams, i.e., number of locations of residual program (|Lresidual|) divided by num-
ber of locations of original program (|Loriginal|). Figure 6 shows boxplots depicting

5 We excluded the 14 combinations in which verifiers v1 and v2 are identical because
they do not describe a cooperation between different verifiers, but are basically
identical to a verification with a single verifier with some additional overhead.

6 https://github.com/sosy-lab/sv-benchmarks/tree/svcomp20
7 We grant CMC 1 000 s. We use a a standard time limit of 900 s for the conditional

verifier and, as already explained, 100 s for the condition-generating verifier v1.
8 To not interrupt condition writing, we applied the limit to the verification algorithm.

Imprecise enforcement or condition writing may result in runtimes larger than 100 s.

https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/float-benchs/sqrt_Householder_interval.c
https://github.com/sosy-lab/sv-benchmarks/tree/svcomp20


FRed: Conditional Model Checking via Reducers and Folders 125

Fig. 5. Shape graphs (indicating structure)
of residual programs constructed from
program sqrt Householder interval.c

by respective fold-reducer

Fig. 6. Boxplot for size increase of
residual programs

Table 1. Number of verification tasks solved correctly by each CMC configuration that
uses the predicate analysis (upper part) or the value analysis (lower part) for condition
generation; last column combines the previous columns

Verifier v2
r +CPASeq +ESBMC +Symbiotic +VeriAbs +kInd. +Val. +All

2949 1636 2949 1773 2949 1983 2949 730 2949 1928 2949 2082 2949 433

CFA 946 28 397 165 541 41 397 24 762 62 296 17 1342 38
LH 951 30 397 165 542 42 391 24 764 64 295 17 1342 38
LHC 949 30 397 165 541 41 395 24 761 63 295 17 1338 37
LHB 700 29 413 189 510 43 365 20 624 68 172 17 1129 41
LHBC 699 30 412 189 509 43 366 20 623 68 169 17 1122 41
NLH 722 27 447 212 508 42 367 22 634 78 169 17 1155 41
SEP 662 29 500 226 570 43 397 22 614 75 132 16 1195 42

All 997 41 558 277 609 46 479 26 783 76 298 17 1501 54

ID 1269 0 1003 0 709 0 2166 0 860 0 657 0 2446 0
Verifier v2

r +CPASeq +ESBMC +Symbiotic +VeriAbs +kInd. +Pred. +All
3046 1713 3046 1800 3046 2112 3046 758 3046 1610 3046 2123 3046 434

CFA 1018 51 492 178 536 70 600 41 937 78 697 114 1452 52
LH 955 49 481 176 515 72 573 41 870 77 682 115 1411 52
LHC 940 51 481 176 512 72 568 42 860 78 683 115 1402 52
LHB 822 44 458 143 511 75 503 41 761 73 677 147 1348 44
LHBC 824 45 458 143 508 75 499 41 754 75 674 144 1342 44
NLH 940 51 401 90 460 72 549 39 859 81 715 146 1310 44
SEP 610 43 488 123 410 75 440 36 588 70 509 124 957 35

All 1041 64 650 273 548 75 623 45 944 84 772 177 1525 61

ID 1228 0 1045 0 734 0 2210 0 1121 0 673 0 2482 0

for each reducer the distribution of the size increases of its residual programs. We
observe that the boxes differ in size, the median (middle line) and the whiskers,
which supports that residual programs from distinct reducers differ.
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https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/float-benchs/sqrt_Householder_interval.c
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RQ 2 (Better than ParCompand existence of dominating reducer?) To
answer this research question, we study the number of tasks solved correctly by
the CMC configurations. We focus on correctly solved tasks and exclude in-
correctly solved tasks, which are an unreliable source of information caused by
an unsound CMC configuration, e.g., due to an unsound verifier or a bug in one
of the CMC configurations. For each CMC configuration, we report the numbers
for the full task set9 and for a restricted task set that only considers those tasks
that cannot be solved by the two verifiers in the CMC configuration and, thus,
requires cooperation, e.g., via CMC. Table 1 shows the numbers for the CMC con-
figurations using the predicate analysis (upper part) and the value analysis (lower
part) for the condition-generating verifier v1. The total number of tasks considered
in each column are reported at the top. The CMC configurations are fixed by the
reducer (row) and the verifier v2 (columns). Column ‘+All’ displays the numbers
of correctly solved tasks by CMC configurations with any verifier v2, but excluding
tasks that one of the CMC configurations solved incorrectly.10 Similarly, row ‘All’
uses any reducer. The last row is discussed later.

Looking at Table 1, we first observe that there exist verifier combinations
for which the CMC configurations using the SEP reducer, which is identical to
reducerParComp, does not solve the most tasks (bold numbers). We also observe
that for some CMC configurations the best reducer differs when considering the
full or the restricted task set. Also, the best reducers differ when changing the
condition-generating verifier. Hence, the best reducer depends on (1) the task set,
and (2) the verifier combination. Additionally, we observe that the numbers in
row ‘All’ are often larger than in the previous rows. Thus, we are more effective
when using different reducers. Moreover, our raw data revealed that for all seven
reducers there exist tasks that can only be solved by a verifier combination when
using this particular reducer. Therefore, we need all seven reducers.
RQ 3 (Replacement for non-cooperative verifier combinations?) To
answer this question, we compare CMC with fold-reducers against a combination
that executes verifier v1 and v2 in sequence using the same program for both veri-
fiers and without exchanging any information. This combination is identical to
CMC with the identity reducer ID, which returns the input program. Row ID in
Table 1 shows the number of tasks solved correctly by the sequential composition.
Obviously, the sequential composition does not solve any task in the restricted
task set, which only contains tasks that cannot be solved by v1 and v2. To solve
these tasks, one needs cooperation approaches like reducer-based CMC. For the
full task set, we observe that except for one case row ID solves more tasks than the
other rows. Hence, reducer-based CMC should only be used for hard verification
tasks that cannot be solved by single verifiers and, thus, need cooperation.

4.3 Threats to Validity

In theory, our reducers fulfill the residual condition. However, in practice our
reducer implementation might contain bugs that lead to residual programs that
add or miss program behavior, i.e., violate the residual condition. In principle,

9 Remember that the full task set depends on the condition-generating verifier v1
because we only look at tasks for which CMC can contribute additional value.

10 For +All, the tasks in the restricted set are neither solved by v1 nor any verifier v2.
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such bugs can lead to residual programs fulfilling the same property as the origi-
nal program, but that are easier to verify. Hence, some of the correctly solved tasks
might come from such bugs. Furthermore, our results concerning the reducers may
not generalize. First, we considered a subset of the SV-COMP tasks and analyses
that are run in SV-COMP. The analyses are likely trained on the tasks. However,
also CMC configurations that unfold the original program a lot, and thus generate
residual programs that look differently from the original program, solved many
tasks. We are confident that our results apply to other programs. Second, we used
specific time limits for the condition-generating verifier v1 and the conditional veri-
fier (reducer plus verifier v2). While we chose common time limits, our results may
look differently when using different limits.

5 RelatedWork

Our work is based on the idea of conditional model checking (CMC) [9], which
combines analyses via condition passing. The early conditional model checkers [9]
used the condition to directly steer the exploration of the second analysis. Trans-
lating the condition into a residual program was first proposed in 2015 [26]. Besides
slicing, they construct the residual program from a parallel combination of con-
dition and program. Recently, reducer-based CMC [13] generalized the idea of
residual programs and introduced the concept of a reducer. The proposed reducer
was similar to the earlier parallel combination [26]. In this paper, we construct
multiple, new reducers from the original reducer [13].

Combination of Analyses. One type of combination testifies verifi-
cation results. These combinations try to confirm alarms [18,25,28,35,44,47]
or proofs [1,39,41,45], possibly excluding unconfirmed results. Violation and
correctness witnesses [5,6] provide a tool-independent exchange format for alarms
and proofs, enabling other tools to check a verifier’s result. Further combina-
tions join forces of different analyses. On the one hand, analysis domains are inte-
grated [8,10,23,24,33] to get more precise domains than the pure product. On the
other hand, interleavings of analysis algorithms are proposed [3,27,36,37] to bene-
fit from (intermediate) results of other algorithms. A third class of combinations
distributes the verification effort among different tools. CMC [9] and reducer-
based CMC [13], which we apply, belong to this class. Often, the program parts
that could not be verified by the first analyzer are encoded with programs. Some-
times annotations (assertions) are added [19–21,46], while program trimming [32]
adds assume statements to the original program. Reducer-based CMC [13] and
program partitioning [43] output a new program describing a subset of the original
program paths. Abstraction-driven concolic testing [27] interleaves concolic test-
ing and predicate abstraction to construct test cases for test goals. CoVeriTest [11]
recently generalized this approach. Conditional static analysis [49] splits the pro-
gram paths into subsets, runs one dataflow analysis on each subset and finally
combines the results of these restricted analyses.
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Program Transformation for Verification. Our work uses fold-reducers
to transform the original program to remove already-verified paths. Like any
reducer, fold-reducers may unfold the structure (execution paths) of the original
program. Moreover, fold-reducers use a folder that aims at reverting some of the
unfoldings introduced by the existing reducer used in the fold-reducer. Likewise,
verification refactoring [53] heuristically undoes compiler optimizations to ease
verification. Programs-from-proofs [42] pursues the same goal, but it unfolds the
program structure to ease verification. Program partitioning [43] and abstraction-
driven concolic testing [27] transform the original program to remove tested or
infeasible program paths. Unfolding the program structure is a common approach
to remove infeasible paths [2,38,48] or improve the analysis result [40,50,51]. In
contrast, folding is used less often. Examples are compiler optimizations like con-
stant propagation [52] and common-subexpression elimination [22].

6 Conclusion

One solution to the problem of verifying complex software systems is to improve
verification algorithms and theories. An orthogonal solution is to combine
existing techniques. Conditional model checking (CMC) is a promising approach
to combine the strengths of different verifiers. To construct new conditional
model checkers from existing model checkers in an implementation-less and config-
urable manner (off-the-shelf, plug-and-play), the concept of reducer-based CMC
was recently proposed [13]. Instead of spending developer resources on adapting
existing verifiers to make them understand conditions—the information exchange
format in CMC—, reducer-based CMC suggests to put reducers in front of
existing, off-the-shelf verifiers. The task of a reducer is to convert the condition
into a format that the verifier already understands, namely program code. Until
now, only one reducer existed. Our experiments revealed that there is a lot of
potential for improving the effectiveness by using different kinds of reducers.

Developing new reducers can be a laborious task. One must define how to
compute the residual program from the input condition and program. More-
over, one must prove that the reducer fulfills the residual property, a correctness
property for the reducer. To systematically study reducers, we developed the
frameworkFRed, which simplifies the development of new reducers.FRed allows
us to derive the new reducer from an existing one and a heuristic that describes
how to coarsen the residual program generated by the existing reducer. To prove
that the derived reducer is indeed a reducer, one only needs to show that the speci-
fied heuristic is a location-consistent partitioner, a property much simpler than the
residual property. Our experience with FRed is that developing and implement-
ing a new heuristic takes at most a few hours. In the future, algorithm selection
could be applied to choose the most suitable reducer for a task.

Data Availability Statement The reducers and all experimental data are pub-
licly available for replication on a web page 11 and as replication package [12].
11

https://www.sosy-lab.org/research/fred/

https://www.sosy-lab.org/research/fred/
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Abstract. Modern software-verification tools need to support develop-
ment processes that involve frequent changes. Existing approaches for
incremental verification hard-code specific verification techniques. Some
of the approaches must be tightly intertwined with the development pro-
cess. To solve this open problem, we present the concept of difference
verification with conditions. Difference verification with conditions is inde-
pendent from any specific verification technique and can be integrated
in software projects at any time. It first applies a change analysis that
detects which parts of a software were changed between revisions and
encodes that information in a condition. Based on this condition, an off-
the-shelf verifier is used to verify only those parts of the software that are
influenced by the changes. As a proof of concept, we propose a simple,
syntax-based change analysis and use difference verification with condi-
tions with three off-the-shelf verifiers. An extensive evaluation shows the
competitiveness of difference verification with conditions.

1 Introduction

Software changes frequently during its life-cycle: developers fix bugs, adapt exist-
ing features, or add new features. In agile development, software construction is
an intrinsically incremental process. Every change to a working system holds a
risk to introduce a new defect. Since software failures are often costly and may
even endanger human lives, it is an integral part of software development to find
potential failures and ensure their absence.

However, running a full verification after each change is inadequate: Changes
rarely affect the complete program behavior. For example, consider pro-
gram absSum (Fig. 1, middle). If the assignment of program variable r is changed
in the else-branch at location 5 (absSummod, Fig. 1, right), only program exe-
cutions that take that else-branch show different behavior. Program executions
that take the if-branch (highlighted in gray) are not affected by the change.
This is typical for program changes: A modified program P ′ exhibits some new
or changed program executions compared to an original program P , but some
executions also stay the same (Fig. 1, left). To ensure the safety of P ′, it is
sufficient to inspect only the changed behavior ex(P ′) \ ex(P ).
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Fig. 1. Relation between program executions of original and modified program (left)
and an example: Program absSum (middle) and its modified version absSummod (right).
The modification at location 5 is shown in blue. Program parts unaffected by the
modification are highlighted in gray.

Many incremental verification approaches [39,40] use this insight: Regression-
test selection [62] tries to only execute those tests in a test suite that are relevant
w.r.t. the change, and incremental formal verification techniques adapt exist-
ing proofs [33,49,53,54], reuse intermediate results [16,59], or skip the explo-
ration of unchanged behavior [21,47,60,61]. However, they (a) all focus on one
fixed verification approach, (b) require a strong coupling between the original
verification approach and the incremental technique, and (c) require an initial,
full verification run. Often, this inflexibility makes an approach prohibitive.

As an alternative, we define the concept of difference verification with con-
ditions: Given the original and the changed software, difference verification with
conditions first identifies all executions that are affected by changes and encodes
them in a condition, an exchange format already known from conditional model
checking [10]—we call this first part diffCond. Then, a conditional verifier uses
that condition to verify only the changed program behavior. For this step, any
existing off-the-shelf verifier can be turned into a conditional verifier with the
reducer-based approach [13].

Difference verification with conditions allows us to (a) use varying verifica-
tion approaches for incremental verification, (b) automatically turn any existing
verifier into an incremental verifier, and (c) skip an initial, costly verification run.
Contributions. We make the following contributions:

– We propose difference verification with conditions, which is an incremental
verification approach that combines existing tools and approaches.

– We provide the algorithm diffCond, an integral part of difference verification
with conditions, which outputs a description of the modified execution paths
in an exchangeable condition format. We also prove its correctness.

– We implemented diffCond in the verification framework CPAchecker and
combined it with existing verifiers to construct difference verifiers.

– To study the effectiveness and efficiency of difference verification with condi-
tions, we performed an extensive evaluation on more than 10 000 C programs.

– diffCond and all our data are available for replication and to construct
further difference verifiers (see Sect. 7).

ex(P ′)ex(P )

0 r=0;

1 if(a<0)

2 while(a<0)

3 r=r-a;

4 a=a+1;
else

5 r=a+a+1;

6 r=r/2;

0 r=0;

1 if(a<0)

2 while(a<0)

3 r=r-a;

4 a=a+1;
else

5 r=a*(a+1);

6 r=r/2;
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Fig. 2. CFA of absSum (Fig. 1), CFA of absSummod, and a condition that describes the
common executions of both programs, as created by our approach

2 Background

Programs. For ease of presentation, we consider imperative programs with
deterministic control-flow, which execute statements from a set Ops. Our im-
plementation supports C programs. Following literature [8,9,30], we model pro-
grams as control-flow automata.

Definition 1. A control-flow automaton (CFA) P = (L, �0, G) consists of

– a set L of program locations with initial location �0 ∈ L, and
– a set G ⊆ L × Ops × L of control-flow edges.
CFA P is deterministic if (�, op, �′), (�, op, �′′) ∈ G ⇒ �′ = �′′.

Figure 2 shows the CFA of the example program absSum from Fig. 1.
A sequence �0

op1→ �1 · · · opn→ �n is a syntactical path through CFA P = (L, �0, G),
if ∀i ∈ [1, n] : (�i−1, opi, �i) ∈ G. We rely on standard operational semantics
and model a program state by a pair of (1) the program counter, whose value
refers to a program location in the CFA, and (2) a concrete data state c, whose
shape we do not further specify [8]. We denote the set of all concrete data
states as C. The function spop : C → 2C describes the possible effects of
operation op ∈ Ops on concrete data state c ∈ C. Based on this, a sequence
(�0, c0)

op1→ (�1, c1) · · · opn→ (�n, cn) is a program path through CFA P = (L, �0, G), if
�0

op1→ �1 · · · opn→ �n is a syntactical path through P and ∀i ∈ [1, n] : ci ∈ spopi
(ci−1).

We denote the set of all program paths by paths(P ). Program executions are
derived from program paths. If p = (�0, c0)

op1→ (�1, c1) · · · opn→ (�n, cn) is a program
path, then ex(p) = c0

op1→ c1 · · · opn→ cn is a program execution. The executions
of a program P are defined as ex(P ) := {ex(p) | p ∈ paths(P )}.
Conditions. A condition describes which program executions were already veri-
fied, e.g., in a previous verification run. We use automata to represent conditions
and use accepting states to identify already verified executions [13].
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Definition 2. A condition A = (Q, δ, q0, F ) consists of:

– a finite set Q of states,
– a transition relation δ ⊆ Q×Ops×Q ensuring ∀(q, op, q′) ∈ δ : q∈F ⇒ q′ ∈F ,
– the initial state q0 ∈ Q, and a set F ⊆ Q of accepting states.1

The goal of absSum (left program in Fig. 2) is to compute r =
∑|a|

i=0. However,
the original program is buggy: In location �5, it must compute the product of a
and a+1, not the sum. The fixed program is shown in the middle of Fig. 2—the
fix is highlighted in blue. The original and modified version of the program only
differ in the else-branch. If we assume that the original program was already
verified, we know that program executions passing through the if-branch have
already been verified and do not need to be considered during a reverification.
In contrast, executions that pass through the else-branch and reach the modified
statement must be verified. The condition shown on the right of Fig. 2 encodes
this insight. Program executions that pass through the if-branch (a < 0) lead to
the accepting state q2—we say they are covered by the condition. In contrast,
program executions that pass through the else-branch (¬a < 0) never reach q2
—they are not covered by the condition, and must be analyzed.

Definition 3. A condition A = (Q, δ, q0, F ) covers an execution
π = c0

op1→ c1 · · · opn→ cn if there exists an index k ∈ [0, n] and a run
ρ = q0

op1→ q2 · · · opk→ qk, s.t. qk ∈ F and ∀i ∈ [1, k] : (qi−1, opi, qi) ∈ δ.

Next, we introduce a simple and efficient way to systematically compute a con-
dition that covers the common executions of an original and a modified program.

3 Component diffCond for Modular Construction

The ultimate goal of difference verification with conditions is to speed up reveri-
fication of modified programs. To achieve this goal, we aim at ignoring unmodified
program behavior during verification. Conditions are a well-fitting format to
describe the unmodified program behavior. However, to benefit from difference
verification with conditions, the construction of such conditions must be efficient,
i.e., consume only a small portion of the overall execution time of the verification.
Therefore, we use a syntactic approach to compute the condition, diffCond
(Alg. 1), which is linear in time regarding the size of the modified program.

diffCond gets as input the original program P and the modified program P ′.
In lines 1 to 11, diffCond traverses the modified and the original program in
parallel, stops traversal if the original and the modified program differ, and
remembers the edge that differs in the modified program.

It uses three data structures: Set E ⊆ L×L′×Ops×L×L′ stores all compared
edges (�1, op, �2) and (�′

1, op, �′
2) that are equal in both programs. These edges are

1 In general [10,13] the transition relation of a condition also specifies assumptions
on the program states. Since difference verification with conditions requires no
assumptions on the program states, we omit this additional characteristic.
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Algorithm 1 diffCond(P, P ′)
Input: CFA P = (L, �0, G) // original program
Input: CFA P ′ = (L′, �′

0, G
′) // modified program

Output: A = (Q, δ, q0, F ) // difference condition
Variables: Set E ⊆ L×L′ ×Ops×L×L′ of composite CFA edges equal in the original

and the modified program, set D ⊆ L × L′ × Ops × L′ of CFA edges that differ in
the modified program, set waitlist ⊆ L × L′ of program locations in original and
modified program for which to compare outgoing edges.

� Change detection
1: E := ∅; D := ∅
2: waitlist := {(�0, �′

0)}
3: while waitlist �= ∅ do
4: pop (�1, �

′
1) from waitlist

5: for each (�′
1, op, �′

2) ∈ G′ do
6: if ¬∃�2 ∈ L : (�1, op, �2) ∈ G then
7: D := D ∪ {((�1, �′

1), op, �′
2)}

8: else
9: E := E ∪ {((�1, �′

1), op, (�2, �
′
2))}

10: if (·, ·, (�2, �′
2)) /∈ E then

11: waitlist := waitlist ∪ {(�2, �′
2)}

� Condition Generation
12: Q := {q | ∃(·, ·, q) ∈ D}
13: waitlist := Q
14: while waitlist �= ∅ do
15: pop q′ from waitlist
16: for each (q, op, q′) ∈ E ∪ D with q /∈ Q do
17: Q := Q ∪ {q}
18: waitlist := waitlist ∪ {q}
19: if Q = ∅ then
20: � No difference edges, automaton always accepts
21: return ({(�0, �′

0)}, ∅, (�0, �
′
0), {(�0, �′

0)})
22: else
23: F := {q′ | ∃(q, op, q′) ∈ E ∧ q ∈ Q ∧ q′ /∈ Q}
24: Q := Q ∪ F
25: δ := {(q, op, q′) ∈ E ∪ D | q, q′ ∈ Q ∧ q /∈ F}
26:
27: return (Q, δ, (�0, �

′
0), F )

called standard edges. They are stored in the composite form ((�1, �′
1), op, (�2, �′

2)).
Set D ⊆ L×L′ ×Ops×L′ stores all edges (�′

1, op, �′
2) of the modified program P ′

that represent a change from the original program P at �1, called difference edges.
They are stored in the form ((�1, �′

1), op, �′
2). Set waitlist ⊆ L×L′ stores all pairs of

program locations (�1, �′
1) for which a program path with the same syntactic struc-

ture exist in P and P ′, and for which no outgoing edges have been considered yet.
Initially, E and D are empty—no edges were checked so far, and the algorithm
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Fig. 3. Parallel composition of absSum and absSummod as computed by diffCond

starts at the two initial program locations, i.e., waitlist = {(�0, �′
0)} (lines 1 and

2). As long as waitlist contains program locations, the algorithm picks one of them,
here depicted as (�1, �′

1) (line 4). It considers all outgoing edges (�′
1, op, �′

2) of �′
1 in

the modified program. If the same operation op does not exist at any outgoing
edge of �1, it is considered to be changed and the difference edge ((�1, �′

1), op, �′
2)

is stored in D before continuing with the next state in waitlist. However, if the
same operation op exists at an outgoing edge (�1, op, �2), it is considered to be
equal and the standard edge ((�1, �′

1), op, (�2, �′
2)) is stored in E before continuing

with the next state in waitlist. To this end, diffCond explores the syntactical
composition of the original and modified program. In addition, if the tuple (�2, �′

2)
of locations has not been detected before (line 10), it is added to the waitlist
for further exploration. Figure 3 shows the graph built from edges E (black) and
D (blue and dashed) when executing diffCond on absSum and absSummod.

To compute the condition, we first determine the condition’s states. Lines 12 to
18 compute all nodes that can reach a successor of a difference edge. Figure 3 high-
lights these nodes in green. Nodes that are not discovered in lines 12–18 cannot
lead to a difference edge and, thus, not to different program behavior. Conse-
quently, undiscovered nodes that are successors of nodes discovered in lines 12–18
become final states (line 23). Figure 3 highlights these nodes in gray (only
node (�2, �′

2)). The union of discovered and final states become our condition states.
To complete the construction, we use the pair of initial program locations as the
initial state (�0, �′

0) and add to the transition relation all transitions from E and D
that connect condition states. Figure 2c shows the condition created from Fig. 3.

Finally, note that lines 19–21 handle the special case that the set D of
difference edges is empty, thus resulting in Q = ∅ in line 19. The set D is
empty if the original and the modified program only differ in the names of their
program locations2 or if the modified program is empty ((�′

0, ·, ·) /∈ G′). In both
cases, all executions of the modified program are covered by the executions of
the original program. As a result, the condition covers all executions: its only
state is both initial and accepting state, and the condition has no transitions.

The purpose of algorithm diffCond is to compute a condition that supports
skipping unchanged behavior during reverification of a modified program.

2 In practice, this can happen if empty lines are added or removed from the program.
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To still have a sound reverification, the produced condition must not cover
executions that do not occur in the original program. The following theorem
states this property of algorithm diffCond.

Theorem 1. Let P = (L, �0, G) and P ′ = (L′, �′
0, G

′) be two CFAs.
diffCond(P, P ′) does not cover any execution from ex(P ′) \ ex(P ).

Proof. Assume ex(P ′) \ ex(P ) �= ∅. Hence, diffCond(P, P ′) = (Q, δ, q0, F ) is
returned in line 27. Let (Q, δ, q0, F ) = A, let π = c0

op1→ c1 · · · opn→ cn ∈ ex(P ′) \
ex(P ), and let ρ = q0

op1→ q1 · · · opk→ qk be a run through A, s.t. 0 ≤ k ≤ n and
∀1 ≤ i ≤ k : (qi−1, opi, qi) ∈ δ. By construction, (1) q0 /∈ F , (2) ∀1 ≤ i < k :
(qi−1, opi, qi) ∈ E ∧ qi /∈ F , and (3) (qk−1, opk, qk) ∈ E ∪ D. We need to show
that qk /∈ F . Case k = 0 follows from (1).

Next, consider the case k = n. If (qk−1, opk, qk) ∈ E, by construction there
exists syntactical path sp = �0

op1→ �2 · · · opn→ �n in P and due to program
semantics, π ∈ ex(P ). Since π ∈ ex(P ′) \ ex(P ), we infer (qk−1, opk, qk)∈ D and
thus qk /∈F .

Finally, consider the case k < n. If (qk−1, opk, qk) ∈ D, we infer qk /∈ F .
Assume (qk−1, opk, qk) ∈ E. By construction, there exists a syntactical path sp =
�0

op1→ �2 · · · opk→ �k in program P and a syntactical path sp′ = �′
0

op1→ �′
2 · · · opk→ �′

k in
program P ′, s.t. ∀0 ≤ i ≤ k : qi = (�i, �

′
i). Let �0

op1→ �2 · · · opk→ �k
opk+1→ �k+1 · · · opm→

�m be an extension of the syntactical path sp s.t. m = n or (�m, opm+1, ·) /∈ G.
Due to program semantics and π ∈ ex(P ′) \ ex(P ), we conclude k ≤ m < n.
Due to program semantics, P ′ being deterministic, and π ∈ ex(P ′), there exists
an extension �′

0
op1→ �′

2 · · · opk→ �′
k

opk+1→ �′
k+1 · · · opm→ �′

m of the syntactical path
sp′. By construction, ∀1 ≤ i ≤ m : ((�i−1, �

′
i−1), opi, (�i, �

′
i)) ∈ E and there

exists ((�m, �′
m), opm+1, ·) ∈ D. Hence, ∀0 ≤ i ≤ m : (�i−1, �

′
i−1) ∈ Q \ F . Since

qk = (�k, �′
k) and k ≤ m, qk /∈ F .

Theoretical Limitations. The effectiveness of difference verification with con-
ditions depends on the amount of program code potentially affected by a change,
which is determined by the diffCond component. diffCond only excludes
program parts that cannot be syntactically reached from a program change.
Therefore, difference verification is ineffective if some initial variable assign-
ments at the very beginning of the program or some global declarations change.
Moreover, the structure of a program strongly influences the effectiveness of
difference verification. For example, programs like absSum∞ (Fig. 4) that mainly
consist of a loop are problematic. Program absSum∞ (Fig. 4) is similar to absSum,
but has an additional, outer loop that dominates the program. So when loca-
tion �7 is changed in absSum∞, difference verification with conditions can only
exclude the if-branch for the very first iteration of the outer loop. Thereafter,
the change in location �7 may propagate into the if-branch.

In contrast, difference verification with conditions can be effective on pro-
grams that allow the exclusion of program parts, e.g., if the program is modular
and, thus, consists of multiple, loosely coupled parts. Examples for modularity
are the strategy design pattern, object-oriented software, or software applications
with multiple program features.
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Fig. 4. Example program absSum∞ with loop dominating the whole program

When designing our experiments, we will consider these limitations of differ-
ence verification with conditions. Before we get to our experiments, we must
describe the modular composition of the diffCond component with a verifier,
which specifies the difference verifier.

4 Modular Combinations with Existing Verifiers

The diffCond algorithm can be combined with any off-the-shelf conditional
verifier [10] to produce a difference verifier in a modular way. The goal of a
difference verifier is to verify only modified program paths. To this end, it first
uses diffCond to discover potentially modified program paths and then runs a
conditional verifier to explore only those paths identified by diffCond. Figure 5
shows the construction template for difference verification with conditions. diff-
Cond gets the original and modified program as input and encodes the modi-
fied paths in a condition. The constructed condition is forwarded to a conditional
verifier, which uses the condition to restrict its analysis of the modified program to
those paths that are not covered by the condition (i.e., the modified paths). Based
on this template, we can construct difference verifiers from arbitrary conditional
verifiers. Moreover, we can construct difference verifiers from non-conditional
verifiers by using the concept of reducer-based conditional verifiers [13]. The
idea of a reducer-based conditional verifier is shown on the right of Fig. 5. To
turn an arbitrary verifier into a conditional one, a reducer-based conditional
verifier puts a preprocessor (called reducer) in front of the verifier. The reducer
gets a program and a condition and outputs a new, residual program that
represents the program paths not covered by the condition. A full verification

0 while (1)

1 r=0;

2 a=input();

3 if(a<0)

4 while(a<0)

5 r=r-a;

6 a=a+1;
else

7 r=a+a+1;

8 r=r/2;
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Fig. 5. diffCond + conditional verifier = difference verifier

of this residual program is then equivalent to a conditional verification of the
original program with the produced condition. However, note that the existing
reducers are designed for model checkers and do not necessarily work with other
verification technologies like deductive verifiers.

In this paper, we transform three verifiers into difference verifiers: CPA-
Seq, UAutomizer, and Predicate. The first two are the best verifiers from
SV-COMP 2020 [5], and the third is a predicate-abstraction approach. We use
the off-the-shelf verifiers CPA-Seq and UAutomizer as non-conditional verifiers
and thus add a reducer, while we use Predicate as conditional verifier. Since
a difference verifier can now be built from any off-the-shelf verifier, we can also
combine difference verification with other incremental verification techniques.
As an example, we can use precision reuse [16]. This technique is implemented
in CPAchecker [16] and UAutomizer [49] and can be used with the previously
mentioned approaches. Next we explain the technologies of the selected verifiers.

CPA-Seq uses several different strategies from the CPAchecker verification
framework [6,11,14]. CPA-Seq first analyzes different features of the program
under verification. The program features considered are: recursion, concurrency,
occurrence of loops, and occurrence of complex data types like pointers and
structs. Based on these features, CPA-Seq uses one of five different verification
techniques (cf. [6]). For non-recursive, non-concurrent programs with a non-
trivial control flow, CPA-Seq uses a sequential combination of four different anal-
yses: It uses value analysis with and without Counterexample-guided Abstrac-
tion Refinement (CEGAR) [24], a predicate analysis similar to Predicate, and
k-induction with invariant generation [7]. Invariants are generated by numerical
and predicate analyses and are forwarded to the k-induction analysis.

UAutomizer is the automata-based approach from the Ultimate verification
framework [29,31]. It uses a CEGAR approach to successively refine an over-
approximation of the error paths, which is given in form of automata. In each
refinement step, a generalization of an infeasible error path is excluded from the
over-approximation. The generalization of the error path is described by a Floyd-
Hoare automaton [31], which assigns Boolean formulas over predicates to its states.
The predicates are obtained via interpolation along the infeasible error path [43].

Predicate is the predicate-abstraction approach from the CPAchecker
framework [14] with adjustable-block encoding (ABE) [15]. ABE is instructed
to abstract at loop heads only. CEGAR together with lazy refinement [34] and
interpolation [32] determines the necessary set of predicates.

diffCond Conditional Verifier

original program P

modified program P’

Reducer-Based
Conditional Verifier [13]

residual
program

Reducer Verifier
condition
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PrecisionReuse is a competitive incremental approach that avoids recom-
puting the required abstraction level [16]. The idea is to start with the abstrac-
tion level determined in a previous verification run. To this end, it stores and
reuses the precision, which describes the abstraction level, e.g., the set of predi-
cates to be tracked. We use the version as implemented in CPAchecker.

5 Evaluation

We systematically evaluate our proposed approach along the following claims:

Claim 1. Difference verification with conditions can be more effective than a
full verification. Evaluation Plan: For all verifiers, we compare the number of
tasks solved by difference verification with conditions and by the pure verifier.

Claim 2. Difference verification with conditions is more effective when using
multiple verifiers. Evaluation Plan: We compare the number of tasks solved by
each difference verifier with the union of tasks solved by all difference verifiers.

Claim 3. Difference verification with conditions can be more efficient than a
full verification. Evaluation Plan: For all verifiers, we compare the run time of
difference verification with conditions and of the pure verifier.

Claim 4. The run time of difference verification with conditions is dominated by
the run time of the verifier. Evaluation Plan: We relate the time for verification
to the time required by the diffCond algorithm and the reducer.

Claim 5. Difference verification with conditions can complement existing in-
cremental verification approaches. Evaluation Plan: We compare the results of
difference verification with conditions with the results of precision reuse [16],
a competitive incremental verification approach.

Claim 6. Combining difference verification with conditions with existing incre-
mental verification approaches can be beneficial. Evaluation Plan: We compare
the results of difference verification with the results of a combination of difference
verification with conditions and precision reuse.

5.1 Experiment Setup

Computing Environment. We performed all experiments on machines with an
Intel Xeon E3-1230 v5 CPU, 3.4GHz, with 8 cores each, and 33GB of memory,
running Ubuntu 18.04 with Linux kernel 4.15. We limited each analysis run to
15GB of memory, a time limit of 900 s, and 4 CPU cores. To enforce these limits,
we ran our experiments with BenchExec [17], version 2.3.

Verifiers. For our experiments, we use the software verifiers CPA-Seq3 [6,14] and
UAutomizer4 [29,31] as submitted for SV-COMP 2020, and CPAchecker [14,15]
3 https://gitlab.com/sosy-lab/sv-comp/archives-2020/-/raw/master/2020/cpa-seq.zip
4 https://gitlab.com/sosy-lab/sv-comp/archives-2020/-/raw/master/2020/uautomizer.zip

https://gitlab.com/sosy-lab/sv-comp/archives-2020/-/raw/master/2020/cpa-seq.zip
https://gitlab.com/sosy-lab/sv-comp/archives-2020/-/raw/master/2020/uautomizer.zip
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in revision 328645. CPA-Seq and UAutomizer are used as verifiers. CPAchecker
provides the verifier Predicate, but also the new diffCond component and the
Reducer component for reducer-based conditional verification. The difference
verifier based on Predicate is realized as a single run. In contrast, the difference
verifiers based on CPA-Seq and UAutomizer are realized as composition of two
separate runs. The first run executes the diffCond algorithm followed by the
reducer to generate the residual program. It is only executed once per task, i.e., the
same residual programs are given to CPA-Seq and UAutomizer. In a second run,
CPA-Seq andUAutomizer, respectively, verify the residual program. To deal with
residual programs, we increased the Java stack size forCPA-Seq andUAutomizer.

Existing Incremental Verifier. We use Predicate with precision reuse [16].

Verification Tasks. We use verification tasks from the public repository
sv-benchmarks (tag svcomp20)6, which is the most diverse, largest, and well-
established collection of verification tasks. Since difference verification with
conditions is an incremental verification approach, we require different program
versions. We searched the benchmark repository for programs that come with
multiple versions and for which at least one version is hard to solve, i.e., at least
one of the three considered verifiers takes more than 100 s for verification of
that version, but is successful. From these programs, we arbitrarily picked the
following: eca05 and eca12 (event-condition-action systems, both have 10 ver-
sions each), gcd (greatest common divisor computation, has 4 versions), newton
(approximation of sine, has 24 versions), pals (leader election, has 26 versions),
sfifo (second-chance FIFO replacement, has 5 versions), softflt (a software
implementation of floats, has 5 versions), square (square-root computation,
has 8 versions), and token (a communication protocol, has 28 versions). Unfor-
tunately, all of these programs are specialized implementations with a single
purpose. Thus, their implementation is strongly coupled and any reasonable pro-
gram change affects the complete program. As explained before, this prohibits
effective difference verification with conditions.

To get benchmark tasks that instead contain independent program parts,
we create new combinations from the selected programs. We choose two pro-
grams, e.g., eca05 and token. We then combine these two programs accord-
ing to the following scheme: We create a new program with all declarations
and definitions of both original programs, but a new main function. This new
main function randomly calls the main function of one of the two original pro-
grams. Name clashes are resolved via renaming. Figure 6 shows the conceptual
structure of each program created through this combination. For our experi-
ments, we consider the following combinations of programs: (1) eca05+token,
(2) gcd+newton, (3) pals+eca12, (4) sfifo+token, (5) square+softflt. To create
different versions of our combinations, we replace one of the two program
parts with a different version of that part. For example, to get a different

5 https://gitlab.com/sosy-lab/software/cpachecker/-/tree/230d2ca5
6 https://github.com/sosy-lab/sv-benchmarks/tree/svcomp20

https://gitlab.com/sosy-lab/software/cpachecker/-/tree/230d2ca5
https://github.com/sosy-lab/sv-benchmarks/tree/svcomp20
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Fig. 6. Conceptual example of combination of verification tasks

version of the original program eca05+token, we change the version of the eca05
part or the token part, but never both.

With this procedure, we get a large amount of different versions of our program
combinations. For our evaluation, we consider each pair (O,N) of versions O and N
of program combinations that fulfills the following two conditions: (1) N reflects
a change, i.e., the two programs are different. (2) Version O, version N , or both
versions are bug-free. This ensures that verification and difference verification can
only find the same bugs.With this construction of benchmark tasks for incremental
verification we get a total of 10 426 tasks that we use in our experiments.

5.2 Experimental Results

Claim 1 (Difference verification with conditions more effective).
Table 1 gives an overview of our experimental results. Each column represents
one task set. The rows refer to verifiers, i.e., pure verifiers (X) and difference
verifiers (XΔ). The last two rows are the union of the results of all three verifiers.
For each task set and verifier, the table provides the number of tasks for which
the verifier finds a proof (✓), finds a bug (!), and only the difference verifier gives
a conclusive answer (★). It also shows the number of tasks (◆) that cannot be
solved. Neither the pure nor the difference verifiers reported incorrect results.

The table shows that for each verifier there exist task sets on which the
number of solved correct tasks (✓) is higher for the difference verifier. Looking
at columns ★, we observe that typically there exist tasks that only the difference
verifier can solve. Thus, this shows that our new difference verification with
conditions can be more effective.

Difference verification with conditions is not always more effective. Especially,
CPA-SeqΔ andUAutomizerΔ sometimesperformworse.For example,CPA-SeqΔ

finds significantly less bugs than CPA-Seq for eca05+token. The reason for this
is the residual program constructed by the reducer, which is necessary to turn

0 extern int __VERIFIER_nondet_int();

1 int main1() { /* main method of task 1 ... */ }

2 /* other definitions of task 1 ... */

3 int main2() { /* main method of task 2 ... */ }

4 /* other definitions of task 2 ... */

5 int main() {

6 if (__VERIFIER_nondet_int())

7 main1();

8 else

9 main2();

10 }



Difference Verification with Conditions 145

Table 1. Experimental results for Predicate, CPA-Seq and UAutomizer, as pure
verifiers (X) and difference verifiers (XΔ) showing how many correct tasks (✓) and
tasks with a bug (!) are solved, how many tasks are only solved by the difference verifier
(★) and which are too hard to solve (◆)

eca05+token gcd+newton pals+eca12 sfifo+token square+softflt
(3 640) (1 924) (2 750) (1 872) (240)

✓ ! ★ ◆ ✓ ! ★ ◆ ✓ ! ★ ◆ ✓ ! ★ ◆ ✓ ! ★ ◆

PredicateΔ 1447 999 451 1194 48 572 48 1304 15 55 20 2680 655 494 98 723 81 75 70 84
Predicate 1080 944 1616 0 572 1352 0 50 2700 558 507 807 33 53 154
CPA-SeqΔ 966 671 350 2003 48 572 48 1304 183 50 233 2517 480 390 108 1002 61 69 61 110
CPA-Seq 755 1268 1617 0 572 1352 0 0 2750 372 619 881 0 75 165
UAutomizerΔ 270 260 270 3110 16 0 16 1908 0 0 0 2750 349 234 112 1289 61 45 49 134
UAutomizer 0 325 3315 0 520 1404 0 48 2702 341 258 1273 44 57 139
AllΔ 1527 999 448 1114 48 572 48 1304 183 95 228 2472 655 494 98 723 81 75 40 84
All 1080 1295 1265 0 572 1352 0 50 2700 558 626 688 55 75 110

CPA-Seq into the required conditional verifier. The created residual programs,
on which the off-the-shelf verifiers run, have a different structure than the original
program. They make heavy use of goto statements and deeply nested branching
structures. While semantically equivalent, this can have unexpected effects on
analyses: In the case of the tasks in eca05+token, CPA-Seq was not able to detect
required information about loops and thus aborts its verification. Note that this
is not a direct issue of difference verification with conditions, but an orthogonal
issue. To fix the problem, verification tools must be improved to better deal with
the generated residual programs or the structure of the residual program must be
improved. Despite of the problem with residual programs, difference verification
can solve many tasks that a full verification run cannot solve.

Since Predicate is already a conditional model checker, PredicateΔ does
not suffer from the residual program problem. Thus, the effectiveness of differ-
ence verification with conditions becomes even more obvious when comparing
Predicate with PredicateΔ. For the first three task sets, PredicateΔ solves all
tasks that Predicate solves plus a significant amount of additional tasks that
Predicate cannot solve. For the last two task sets PredicateΔ fails to solve a
few tasks that Predicate can solve. However, PredicateΔ still solves more tasks
in total. One reason for this is that the predicate abstraction used by Predicate
may compute different predicates (due to a slightly different exploration of the
state space), which may result in a more expensive abstraction, if the explored
state-space looks different. For some tasks, these different predicates may be less
suited to solve the task and thus require more time, which results in the analysis
hitting the time limit. Typically, we observe this phenomenon when Predicate
is expensive already (in our experiments, when it takes at least 700 s). While for
complicated tasks with large changes, difference verification may produce worse
results, PredicateΔ is still more effective than Predicate in all categories.

Claim 2 (Better with several verifiers). To study the usefulness of using
several verifiers in difference verification, we look at the tasks solved by the three
difference verifiers together. We observe that PredicateΔ solves the most tasks
in all task sets except for pals+eca12, in which CPA-SeqΔ is better. Moreover,
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Fig. 7. CPU time (in s) of full verification vs. difference verification, per task

when looking at AllΔ, which takes the union of all results, we observe that for
eca05+token multiple tasks without a property violation exist that cannot be
solved by the best difference verifier of this task set (PredicateΔ). Thus, the
difference verification is more effective when using several verifiers.

Claim 3 (Difference verification with conditions more efficient). We
compare the run times of the verifiers with the run times of the difference
verifiers. For all three verifiers, the scatter plots in Fig. 7 show the CPU time
required to check a task without (x-axis) and with difference verification (y-axis).
If a task was not solved, because the verifier either runs out of resources or
encountered an error, we assume the maximum CPU time of 900 s. Figures 7a
and 7b compare the two non-conditional verifiers CPA-Seq and UAutomizer,
for which we use the reducer-based conditional verifier approach. For a signifi-
cant number of tasks (below diagonal), the difference verifier is faster than
the respective verifier CPA-Seq and UAutomizer, and the tasks on the right
edge can only be solved by the difference verifier. There are tasks for which
difference verification is slower (above diagonal). Note that the problem is the
residual program, not our approach. For example, many tasks located at the
upper edge do not represent timeouts of the difference verification, but failures of
the verifier caused by the structure of the residual program. Figure 7c compares
the conditional verifier Predicate. For the majority of tasks, the CPU time
required by PredicateΔ is equal to or less than the time required by Predicate
(tasks below the line). Moreover, there are only few tasks for which PredicateΔ

is slower than Predicate (tasks above the line). The reason for this slow-down
is most likely the computation of worse predicates (see Claim 1). To sum up,
difference verification with conditions can successfully increase efficiency.

Claim 4 (Verifier dominates run time). We aim to show that the diff-
Cond component and the residual program construction (in the reducer-based
approach to construct conditional verifiers) require a negligible run time com-
pared to the complete verification run time. We show in Fig. 8a for each task
verified with CPA-SeqΔ and UAutomizerΔ, the CPU time required by the full
verification run (x-axis) and the CPU time of that run spent for diffCond plus
the reducer (y-axis). The time required by diffCond + reducer does not depend
on the run time of the verifier, and it is below 60 s for all tasks.
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Fig. 8. CPU time (in s) of (a) full difference-verification runs and the time spent
for the two diff. components diffCond + reducer, (b) Predicate with precision
reuse (Predicate���) vs. Predicate with difference verification (PredicateΔ), and
(c) PredicateΔ vs. PredicateΔ with precision reuse (PredicateΔ���)

Claim 5 (Difference verification with conditions complementary). To
show that difference verification with conditions complements existing incre-
mental verification, we need to compare difference verification with conditions
against an existing incremental approach. Looking at existing approaches that
are (1) available as replication artifact and (b) able to run on verification
tasks from sv-benchmarks, we identified two: both based on precision reuse,
one implemented in CPAchecker [16] and one in Ultimate [49]. We use the one in
CPAchecker. Figure 8b shows the CPU time of precision reuse with Predicate,
called Predicate��� (x-axis) against our difference verification with Predicate,
called PredicateΔ (y-axis). Many tasks are solved efficiently by both techniques
(large cluster in lower left). For the remaining hard tasks, difference verification
is often faster than precision reuse, or precision reuse cannot even solve the task
(points below the diagonal and on right edge). This shows that difference verifi-
cation with conditions can improve on precision reuse for a significant number
of tasks. It can thus complement existing incremental techniques.

Claim 6 (Combinations sometimes beneficial). We combined difference
verification with conditions with precision reuse, called PredicateΔ���. Figure 8c
shows that this combination rarely becomes faster than difference verification
PredicateΔ alone. In the worst case, the combination even slows down because
precision reuse tracks previously used predicates from the beginning while differ-
ence verification would only detect the necessary ones lazily. This more precise
abstraction leads to more, sometimes unnecessary computations. Nevertheless,
the combination can solve 29 tasks that neither Predicate, its difference veri-
fier, nor precision reuse can solve alone. Thus, while a combination of the two
incremental techniques is not beneficial in general, it can be.

5.3 Threats to Validity

External Validity. (1) Our benchmark tasks might not represent real program
changes, and thus, our results might not transfer to reality. However, we built
our tasks from a well-established collection of software-verification problems,
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which are considered relevant in the verification community. Moreover, many of
the combined programs implement known algorithms (greatest common divisor,
Newton approximation of a sine function, Taylor expansion of a square root) or
are derived from real applications (OpenSSL, SystemC design, leader election).
Also, our combination is not uncommon in practice. Such combination patterns
e.g. result from implementing the strategy pattern. Finally, our task set contains
pairs of programs whose only difference is a bug fix to eliminate the reachability
of the __VERIFIER_error() call. We believe that similar fixes are done in
practice to eliminate bugs. (2) We compared our approach only with a single
existing approach for incremental verification, and this comparison is restricted
to a single verifier. Our observations may not apply to different incremental
verification approaches or different verifiers. The same holds for the combination
of difference verification with orthogonal, incremental verification approaches.
Internal Validity. (3) The implementation of the diffCond algorithm may
contain bugs, and thus, produces conditions that also exclude modified paths. We
would expect that such a bug also excludes error paths. Since we never observed
false proofs, we assume this is unlikely. (4) Difference verification with CPA-Seq
and UAutomizer could appear improved simply because we separated verification
from the execution of diffCond+Reducer and granted both runs a limit of 900 s.
But the sum of the two times are always below 900 s for all correctly solved tasks.

6 Related Work

Equivalence Checking. Regression verification [27,28,55,56], SymDiff [23],
UC-Klee [48], and other approaches [4,26] check whether the input-output
behavior of the original and modified method or program is the same. Differential
assertion checking [38] inspects whether the original and modified program
trigger the same assertions when given the same inputs. Equivalence checking
does not need to be restricted to a simple yes or no answer. Semantic Diff [35]
reports all dependencies between variables and input values that occur either
in the original or modified program. Conditional equivalence [37] infers under
which input assumption the original and modified program produce the same
output. Over-approximation of the differences between the original and modi-
fied program was also investigated [45]. Differential symbolic execution [46]
compares function summaries and constructs a delta that describes the input
values on which the summaries are unequal. Partition-based regression verifi-
cation [19] splits the program input space into inputs on which original and
modified program behave equivalently and those on which the two programs
are unequal. Equivalence checking is not directly tailored to property verifi-
cation, but determining when the original and modified programs may behave
differently is similar to the goal of the diffCond algorithm.
Result Adaption. Incremental data-flow analysis [51], Reviser [3], and
IncA [57,58] adapt the existing data-flow solution to program modifications.
Similarly, incremental abstract interpretation [52] adapts the solution of the
abstract interpreter. Incremental model checking in the modal-μ calculus [54]
adapts a previous fixed point and restarts the fixed-point iteration. Other
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approaches [18,20] model data-flow analysis and verification as computation of
attributed parse trees. A change results in an update of the attributed parse
tree. Extreme model checking [33] reuses valid parts of the abstract reachability
graph (ARG) and resumes the state-space exploration from those nodes with
invalid successors. Incremental state-space exploration [41] reuses a previous
state-space graph to prune the current exploration. HiFrog [1] and eVolCheck [25]
implement an approach that reuses function summaries and recomputes invalid
summaries [53]. UAutomizer adapts a previous trace abstraction [49], a set of
Floyd-Hoare automata that describe infeasible error paths, to reuse it on the
modified program. While result adaption uses the same verification technique
for original and modified program, our approach may use different techniques.
Reusing Intermediate Results. Green [59], GreenTrie [36], and Recal [2] sup-
port the reuse of constraint proofs. Similarly, iSaturn [44] supports the reuse of
SAT results of Boolean constraints that are identical. Precision reuse [16] reuses
the precision of an abstraction, e.g., which variables or predicates to track, from
a previous verification run. These approaches are orthogonal to our approach.
In the experiments, we even combined precision reuse [16] with our approach.
Skipping Unaffected Verification Steps. Regression model checking [60]
stops exploration of a state as soon as no program change can be reached from
that state. Directed incremental [47,50] and memoized [61] symbolic execution
restrict the exploration to paths that may be affected by the program change.
Additionally, memoized symbolic execution does not check constraints as long
as the path prefix is unchanged. The Dafny verifier rechecks methods affected
by a change reusing unchanged verification conditions [42]. iCoq [21,22] detects
and only rechecks those Coq proofs that are affected by a change in the Coq
project. These ideas are similar to ours but are tailored to specific techniques.

7 Conclusion

Software is frequently changed during development. Verification techniques must
deal with repeatedly verifying nearly the same software again and again. To be
able to construct efficient incremental verifiers from off-the-shelf components,
we introduce difference verification with conditions, which steers an arbitrary
existing verifier to reverify only the changed parts. Compared to existing tech-
niques, our approach is tool-agnostic and can be used with arbitrary algorithms
for change analysis. We provide an implementation of a change analysis as
reusable component, which we combined with three existing verifiers. In a thor-
ough evaluation on more than 10 000 tasks, we showed the effectiveness and
efficiency of difference verification with conditions.

Data Availability Statement. diffCond and all our data are available for
replication and to construct further difference verifiers on our supplementary
web page7 and in a replication package on Zenodo [12].

7 https://www.sosy-lab.org/research/difference/

https://www.sosy-lab.org/research/difference/
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Abstract. The increasing dependability requirements and hardware
diversity of the Internet of Things (IoT) pose a challenge to developers.
New approaches for software development that guarantee correct imple-
mentations will become indispensable. Specially for Real Time Operating
Systems (RTOSs), automatic porting for all current and future devices
will also be required. As part of our framework for embedded RTOS
portability, based on formal methods and code generation, we present
our approach to formally model low-level operating-system functionality
using Event-B. We show the part of our RTOS model where the switch
into the kernel and back to a task happens, and prove that the model is
correct according to the specification. Hardware details are only intro-
duced in late refinements, which allows us to reuse most of the RTOS
model and proofs for several target platforms. As a proof of concept, we
refine the generic model to two different architectures and prove safety
and liveness properties of the models.

Keywords: Event-B · RTOS · Portability · Refinement · Verification

1 Introduction

The amount of devices in the Internet of Things (IoT) (e.g. autonomous vehicles,
smart infrastructures, automated homes and production facilities), is expected
to increase exponentially, along with the diversity on both the hardware and the
software side [15,20]. Operating System (OS) developers, who currently focus on
just a couple of different computing platforms, will face a huge variety of devices,
ranging from simple single-core to more complex multi or many-core systems,
including specialized ASIC or even reconfigurable FPGA components [12,18].

While high-level code can more easily be compiled for another hardware, low-
level functionality (i.e. context switches, system initialization routines, interrupt
handling) are still handwritten for each architecture. To support a new Instruc-
tion Set Architecture (ISA), for example, an OS must have many low-level parts
completely rewritten, which requires in-depth knowledge of both software and
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hardware, including a deep understanding of their interaction. From our own
experience and industry cooperations, supporting additional MCU families or
just variants is not straightforward, even if there are only a few differences to
existing ports. This increases the development time, often limiting OS support
to a low number of devices. Even though the code base of many OSs is modular,
there are noticeably often just a few complete and directly usable ports avail-
able. Especially when developed under time pressure, wrong implementations,
new bugs, and security breaches are common. Besides, changes in the logic of low-
level software must be manually introduced to all implementations, which also
hinders or slows down important improvements of the OS. Since dependability
is key for the IoT [4,15,36], we propose an approach to improve the portability
of embedded Real Time Operating Systems (RTOSs) based on formal models,
refinement, and code generation to target-specific code.

We report on the first part of the approach: the modeling and verification
of low-level functionality. Parts of the model of an RTOS are presented that
focus on the switch into the kernel and back to a task, detailing the operations
that happen in these transitions. We chose the context switch as demonstrating
example, because it is architecture-specific, requires reimplementation for each
architecture, and its correctness is crucial: corrupted task contexts, resulting
from incorrect implementations, may produce errors that are hard to find and
compromise the OS’s ability to properly interleave concurrently running tasks.

First, we model the OS execution flow and functionality incrementally
through formal refinements. Then, as a proof of concept, we further refine the
generic OS model to two different architectures: an MSP430 and a RISC-V. In
order to verify safety (something bad must not happen) and liveness (something
good should eventually happen) properties [25], we (1) prove that our RTOS
models do not corrupt any task’s context by properly saving and loading them,
even though the process for saving and restoring a context differs for different
MCU architectures; (2) prove that the kernel runs in the appropriate CPU state
and changes it as specified for task execution; (3) prove that the kernel executes
in the correct order and finishes execution. Since we only introduce hardware
details in late refinements, most of those proofs need only be done once, on the
generic RTOS model. The refinement to each architecture, as well as their proofs
follow and become much simpler, as we will show.

Contributions. To the best of our knowledge, this is the first time that OS low-
level functionality is formally modeled with focus on its portability. Our main
contributions in this paper are: (1) we decouple low-level functionality from
hardware specifics; (2) a generic formal RTOS model with context switches;
(3) safety and liveness verification of two instantiations of the generic model via
interactive theorem proving and model checking.

Structure. Section 2 discusses related work and Sect. 3 provides background on
the tools and the two target HW architectures. Section 4 presents the require-
ments and the modeled RTOS. Section 5 introduces the general idea of the mod-
eling process and our refinement strategy, while the model itself is detailed in
Sect. 6. Section 7 discusses verification. We conclude in Sect. 8.
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2 Related Work

Many works investigate how to formally model and verify OSs. Brandenburg [6]
introduces a new concept to develop RTOSs with time predictability. Craig [8,9]
specifies an OS using formal models, also showing it can be refined to executable
code. However, he either assumes several HW details or leaves further refinements
to be done, conceding that “the hardware specification poses a slight problem”.
Novikov and Zakharov [29] verify Linux to detect faults in the entire mono-
lithic kernel. Alkhammash et al. present modeling guidelines of FreeRTOS [2],
and Cheng et al. model FreeRTOS’ task model [7]. Stoddart et al. [33] model
an interrupt driven scheduler in B. Danmin et al. [11] also use B to model an
OS. Su et al. [34] design an RTOS memory manager in Event-B. With correct-
ness proofs from abstract kernel function specification down to the binary file,
seL4 [16] does not model the direct hardware instructions, assuming correct-
ness of hardware-specific code, such as handwritten assembly code, boot code,
etc [24]. Syeda and Klein [35] tackle the modeling of low-level cached address
translation, whose correctness is usually left as an assumption, aiming to even-
tually integrate their model into seL4’s verification. Baumann et al. [3] develop
a method to model the underlying hardware of embedded systems such that
the detailed modeling of each hardware component can be delayed, while still
allowing the verification of high level security properties. OpenComRTOS [37],
was designed with TLA+ and has been ported to several targets, however code
is always handwritten.

Others tried to generate code from models: Hu et al. [21] report on problems
found when trying to synthesize an OS. Fathabadi et al. [14] design a platform-
independent formal model of an OS module that interacts with the HW and
automatically generates C code. Dalvandi et al. [10] generate verifiable code from
formal models. Popp et al. [31] generate information about device properties and
addresses. Méry [28] presents formal modeling design patterns later translated to
software. The generated software in these works is semantically dependent on the
HW, but the syntax is pure C, not solving the problem of generating low-level OS
code, that must, at least partially, be handwritten in assembly. Wright [40,41]
formally specifies an entire ISA in Event-B and automatically generates a virtual
machine capable of simulating it. Borghorst et al. [5] generate code for low-
level OS functions using abstract assembly to describe the software and a HW
architecture description to generate code, but without formal methods.

These works advance the state of the art in model-based OS development
either by modeling and proving properties of high-level parts of the kernel (such
as scheduling, task management, or resource management), or assuming HW
characteristics that render the model HW-specific. Some code can often be gen-
erated for different programming languages, but the low-level code remains to
be ported manually, and the models are not usable for different HW platforms.
Our work aims at covering this gap on low-level software, providing an approach
for its modeling and automatic code generation.
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3 Background

Model Checking and ProB. Temporal logic [27,30] is a logic system that for-
mally describes properties of time. Linear Temporal Logic (LTL) is the most
popular and widely used temporal logic in computer science to specify and ver-
ify the correct behavior of reactive and concurrent programs [19]. It is particu-
larly useful for expressing properties such as safety (given a precondition, then
undesirable states that violate the safety condition will never occur), liveness
(given a precondition, then a desirable state will eventually be reached), and
fairness (involves combinations of temporal patterns of the form a predicate
holds “infinitely often” or “eventually always”). ProB is an animator, constraint
solver, and model checker for the B-Method [26] that integrates as a plugin-in
Rodin and can be easily used for LTL model checking of our RTOS models.

1 SETS // sets block
2 S
3 VARIABLES // variables block
4 x ⊆ S
5 f ∈ S � →DATA // f is a partial

function
6 b ∈ S �� DATA // b is a bijective

function
7 eventName // event block
8 ANY // parameter block
9 p ⊆ x

10 WHERE // guards block
11 p �= ∅

12 x �− b = x �− f // b and f are equal
for all domain elements not in x (

domain subtraction �−)
13 THEN // actions block.
14 f := f �− (p � b) // f is

overwritten (�−) by the pairs in b
whose first element is in p (domain
restriction �)

15 x := x \ p // set subtraction

Fig. 1. Event-B notation

Event-B and Rodin. Event-B is
a formal method for system-level
modeling and analysis [1,13]. The
Rodin Platform [23], an Event-
BIDE based on Eclipse, supports
the development and refinement of
models with automatic generation
and partial discharging of mathe-
matical Proof Obligations (POs).
Event-B is based on set theory
and state transitions. The two top
elements of a model are contexts
and machines. The term context is
overloaded in the domains of OSs
and formal methods. Hence, we will
always refer to a context in Event-
B as Event-B context. Event-B con-
texts describe all static information
about the system. They are composed by carrier sets, constants, and axioms.
Dynamic information is represented by the machines, which are composed of
variables, invariants, and events. Event-B machines can see Event-B contexts,
such that the machine can use their constants and axioms to relate static and
dynamic information as well as to discharge POs. Considering machine states
as sets of the variables’ values, each event represents a state transition. Events
are enabled if the state satisfies the corresponding guard condition and modify
the current state according to their actions, which are executed in parallel when
the event is enabled. When a machine refines another one, it must refine (or
keep) its events, adding details or more variables; POs are automatically gen-
erated by Rodin to e.g. guarantee that invariants always hold and that refined
events do not contradict the abstract ones. In order to ease the understanding
for readers not familiar with Event-B, Fig. 1 presents a summary of the Event-B
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notation used in our models. We assume the reader is familiar with basic set
theory notation.

Next, we present the main characteristics of the two HW architectures we use
as examples for the architecture-specific instantiations of our model in Sect. 6.

MSP430. The TI MSP430 [22] family of MCUs comprises a range of ultra-low
power devices featuring 16 and 20-bit RISC architectures with a large variation of
on-chip peripherals, depending on the model. Among its 16 registers are general
purpose registers, the program counter PC, the stack pointer SP, and the status
register SR, which stores status flags, such as interrupt enabled, overflow, etc.
The MSP430 offers a very simple architecture with only one execution mode and
a fully orthogonal instruction set. There is no privileged mode, nor any memory
protection or memory management unit. Once an interrupt occurs, the PC and
SR registers are pushed onto the stack. Then, further interrupt requests (IRQs)
are disabled and the PC is overwritten with the address of the first instruction of
the corresponding interrupt handler. The return from interrupt instruction, i.e.,
RETI, restores SR and PC from the stack and finally continues where the handler
has interrupted the regular execution flow.

RISC-V. The open RISC-V instruction set architecture [32] was originally devel-
oped by UC Berkeley and is meanwhile supported by a highly active commu-
nity of software and hardware innovators with more than 100 members from
industry and academia. The RISC-V is a load-store architecture, and its speci-
fication [39] defines privilege levels used to provide protection between different
components of the software stack. We refer to an implementation that supports
user and machine modes, with 32-bit integer and multiplication/division instruc-
tions (RV32IM) [38]. There are 32 registers available in all modes, including a
zero register and the program counter pc. The calling convention specification
assigns meanings to the other registers, such as a stack pointer sp, function argu-
ments and return values. Additionally, Control and Status Registers (CSRs) with
special access instructions are available for e.g. managing the CPU or accessing
on-chip peripherals in defined privilege levels. An IRQ switches the CPU into a
higher privilege level, while software can issue an ECALL instruction for that. In
both cases, returning to user level is done by the instruction URET.

4 Requirements

We modeled the MCSmartOS [17], an RTOS we have developed and used for
many years. This section presents its architecture and requirements. An impor-
tant concept to understand is the context (not in the sense of Event-B, but in the
sense of operating systems): A context is a set of information and configuration
of a CPU or a CPU core that is required to control the execution flow of soft-
ware, i.e. code sequences. Depending on the CPU state and external events, cores
can usually switch between different code sequences by loading their respective
context. To be able to continue an earlier code sequence from the interrupted
instruction, its context is saved before the switch. The actual switching process
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as well as the composition of the contexts is defined by the interrupt concept of
the CPU; in any case, the hardware automatically saves and loads the contexts.
If, in addition to interrupts of the hardware, an OS supports preemptive, i.e.
interleaved executable tasks (or threads or processes), the context is extended.
In order to switch between tasks, this extended information is saved (previous
task) and loaded (next task) by the kernel. Next, we describe our assumptions
about the computing platform and present MCSmartOS’s requirements.

4.1 Hardware Assumptions

Even though we aim on keeping the OS model initially independent from the
hardware, a target architecture must have certain features in order to be capable
of running an operating system. Focusing only on the relevant aspects for our
RTOS model, we define data storage and interrupt handling features as envi-
ronmental assumptions, numbering and labeling them env. Different OSs might
require other features, but that does not affect our general concept.

env1 The CPU provides means to store/load data to/from referable locations.
These locations can be, e.g., registers or memory addresses.

env2 The context is a well-defined subset of locations and their stored values
that the CPU requires for execution of a code sequence. It must be saved
when the code sequence is interrupted, so that it can later be resumed
from the same point.

env3 The CPU has an interrupt enabled flag. Interrupts will only be accepted
if the interrupt enabled flag is set.

env4 When an interrupt is accepted, the values of the context or a part of it
are automatically copied into other locations defined by the architecture.

env5 The CPU offers a “return from interrupt” instruction that automatically
loads the context with the values automatically saved when the interrupt
was accepted (env4).

env6 The saving process (env4) is allowed to modify the context values before
they are saved, according to a well-defined and CPU-specific function.

env7 The restoring process (env5) must reverse the modification of env6.

4.2 Software Specification

MCSmartOS provides, among many other features, a preemptive and priority-
based scheduler for concurrent tasks. The kernel is invoked when an interrupt
occurs or a syscall is called, and is divided into three parts: (1) the kernel entry
is responsible for stack management and context saving. It unites both entry
points, enters kernel mode, and continues to (2) the kernel body which handles
the actual interrupt or syscall request and runs the scheduler that selects the
task to be executed next. Finally, (3) the kernel exit executes a context switch
by loading the selected task’s context and returning to task mode.

In this work, we only model the context switches in kernel entry and exit ,
and the conditions required by the OS to execute its other functions. High-level
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kernel functionality, such as scheduling, task management, etc. is out of scope.
The requirements for correct context switches and kernel execution (os) are:

os1 (a) A task executes on the context defined in env2. When not running,
the values of its context are stored in locations reserved for context saving.
(b) Each element of the context has its correspondent in the saved context.

os2 (a) Once the kernel is invoked, kernel entry saves the old task’s context.
(b) On kernel exit the next task’s context is loaded into the CPU.

os3 (a) Each task has dedicated locations for context saving. (b) These loca-
tions with their stored values are the task’s saved context, where contexts
are saved to and loaded from (os2).

os4 The scheduler chooses the new task and is implemented in kernel body .
os5 The cause for kernel invocation, unambiguously identifying which inter-

rupt or syscall has occurred, must be recorded for use within kernel body .
os6 (a) The kernel body always runs in kernel mode, with interrupts disabled,

and on the OS stack. (b) Each task runs on its own stack, with the
interrupt flag the same as it was when that task was running last, and
never on kernel mode.

os7 A part of kernel entry context saving and CPU preparation is automat-
ically executed by the hardware (env4). The rest must be executed in
software after the automatic part.

os8 The kernel is exited with a return from interrupt instruction (env5). The
task selected by the scheduler shall continue execution and where it was
preempted before.

os9 A part of kernel exit context loading and CPU preparation is automati-
cally executed by the return from interrupt instruction (env5, os8). The
rest must be executed in software before the automatic part.

os10 (a) If the values copied on interrupt (env4) are copied into task-specific
locations, these locations and their data are considered a part of the saved
context. (b) Otherwise, it is the OS’s responsibility to save those values
into the task’s save context, and to copy them back where the CPU expects
them to be when returning from an interrupt (env5).

os11 If the architecture provides a privileged mode, kernel body runs in it, while
tasks run in less privileged modes. Switching the mode must be done on
kernel entry and kernel exit .

5 Refinement Strategy: From Abstraction to Detailed
Specification

The model has several refinements and showing all would be too cumbersome.
So, we divide it into 6 levels of abstraction (referred to as Level). Each Level
is composed of several refinements and addresses a new set of requirements
(Table 1). 1 Up to Level 4, the model remains generic, only requiring the generic
1 Model artifact at https://figshare.com/s/0f262342284eada236f5. The relationship

between refinements and levels can be found in the README file. Model elements
are referenced as [component.label].

https://figshare.com/s/0f262342284eada236f5
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hardware features described in Sect. 4.1. We only introduce further hardware
details in Level 5, where we instantiate the model for specific target architectures.
This section introduces the general idea of each Level, while Sect. 6 details how
each level was modeled. This model focuses on the interface between hardware
and software in order to model the kernel’s interleaved execution of concurrently
running tasks. The goal is to prove that the kernel does not corrupt any task’s
context by properly saving and loading them, as well as to guarantee that tasks
and kernel body run in the appropriate conditions described by the requirements
from Sect. 4.

Table 1. Model and requirements.

Level ENV OS

0 env1, env2 os1

1 – os2

2 env6, env7 os3, os4

3 env3 os5, os6

4 env4, env5 os7, os8, os9, os10

5 Target-specific os11

The state of an Event-B machine
is the set of its variables’ values, and
state transitions are represented by
the machine’s events. In our model,
these events represent the differ-
ent parts of the kernel, building a
state machine that starts with the
switch into the kernel and finishes
with the switch back to a task. The
events, therefore, are modeled such
that their order is well-defined, in
the order the kernel parts must run:

kernel entry executes first, then body , and finally exit ; and the automatic part of
entry executes before the manual part that must be executed in software (os7),
and in exit manual executes before automatic (os9).

Level 0 In this initial abstraction, we only present the expected result of the OS
execution, i.e., that an old context is saved and a new one is loaded, without
modeling how this will be achieved. We also define the basic Event-B sets
and their relations, used along the refinements.

Level 1 In the first refinements, we define the entry and exit parts of the kernel
simply as two context copies: one in kernel entry for saving a context, and
another one in kernel exit for loading a context. At this level, we do not yet
define where those contexts are copied from or to, nor do we have any notion
of tasks or conditions for proper task and kernel body execution.

Level 2 Next, we introduce tasks, their saved contexts, and kernel body . This
level also defines where the context is saved to and loaded from.

Level 3 Then, we introduce and set up the variables that control the conditions
for proper task and kernel body execution (interrupts disabled, kernel mode,
running on its own stack, and cause for the kernel execution).

Level 4 Refines the model to a generic hardware that automatically saves
and loads a subset of the context, and the software that complements the
switches.

Level 5 Finally, we refine the model into architecture-specific models from
which OS code can be generated (code generation is not in the scope of this
paper).
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6 Kernel Model

This section details the levels from Sect. 5. Please, refer to Fig. 1 for the Event-B
notation used in the following listings.

Level 0. First, we define the carrier set location (Fig. 2a), an abstract rep-
resentation of memory addresses and registers. In combination with data, a
subset of Z, memory and registers can be represented according to env1. Two
non-overlapping subsets with the same cardinality, context and savedctx rep-
resent the subset of locations that compose the context (env2) and the sub-
set of locations of a saved context (os1.a), respectively. The bijective function
ctx2saved ∈ context��savedctx relates each context location to where it is
saved, while saved2ctx is its inverse (os1.b). The context is defined as a rela-
tion from context to data, while a saved context is a relation from savedctx

to data.

(a) env1 in Level 1 and the rela-
tions of os1.b [c0,c1]

(b) env1 in Level 4 [c2,c3,c4]

1 EVENTS
2 osProgress anticipated
3 THEN
4 act1:loaded :∈ context data
5 act2:saved :∈ savedctx data
6 END
7 osFinal
8 ANY
9 new ∈ context→data

10 old ∈ savedctx→data
11 WHERE
12 grd3:loaded = new
13 grd4:saved = old
14 THEN
15 skip //state not changed

(c) Level 0

Fig. 2. Diagrams of location and initial abstraction

The initial abstraction (Fig. 2c), sees the context switches as two context
copies: one copies old context to saved ∈ savedctx �→data, and the other loads
new context to loaded ∈ context �→ data. The old and new contexts that are
copied are simply event parameters, that will later be refined into the actual
contexts that are copied. The OS is modeled in the event osProgress. The
event osFinal is not a part of the OS, but is only introduced to model the state
where the OS has successfully executed. This event is composed only of guards,
that is, it is enabled once the state represented in its guards is reached but does
not change it anymore. The event osProgress, that represents the OS kernel,
is allowed to change the variables saved and loaded, but does not yet describe
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1 osEntry REFINES osProgress
2 ANY
3 saveSet ⊆ toSave
4 old ∈ savedctx→data
5 WHERE
6 saveSet �= ∅

7 saved = toSave �− old
8 loaded = ∅ //load not started
9 THEN

10 saved := saved ∪ (saveSet � old)
11 toSave := toSave\saveSet

(a) Kernel entry

1 osExit REFINES osProgress
2 ANY
3 loadSet ⊆ toLoad
4 new ∈ context→data
5 WHERE
6 loadSet �= ∅

7 loaded = toLoad �− new
8 toSave = ∅ //save complete
9 THEN

10 loaded := loaded ∪ (loadSet � new)
11 toLoad := toLoad\loadSet

(b) Kernel exit

Fig. 3. Level 1

how the copies are made. It is made anticipated, which, in Event-B, means that
it may execute several times, but must eventually give up control and allow the
model to reach osFinal. Refinements of an anticipated event must converge,
i.e., decrease a variant, thereby proving that it eventually gives up control. The
idea is that, since the context is copied in different steps by HW and software,
this event can be refined into these steps. The POs generated by Rodin verify
that the refinements of this abstraction (Levels 1 to 5) are correct. If we prove
that the model always reaches osFinal, we prove that the desired state after
OS execution is reached. These proofs are shown in Sect. 7.

Fig. 4. Level 1 states and transitions

Level 1. Figure 3 shows the refine-
ment of osProgress into two events:
osEntry (os2.a: kernel entry respon-
sible for saving the old context), and
osExit (os2.b: kernel exit is responsi-
ble for loading the new context). They
model state transitions (Fig. 4), and
their guards define that entry must
happen before exit, and exit may only
start after entry is done.

The new variable toSave ⊆ savedctx keeps track of the context yet to be
saved, while the parameter saveSet defines the context subset saved in each run of
osEntry. The event is made convergent on the variant toSave, and saveSet is sub-
tracted from toSave in each run (Fig. 3a, Line 11). This guarantees that, eventu-
ally, the save process will complete and we move to a saved state. Similarly, the new
variable toLoad⊆ context represents the context yet to be loaded, while loadSet
defines the context subset loaded in each run of osExit. The event is made conver-
gent on the variant toLoad, and loadSet is subtracted from toLoad on each run
(Fig. 3b, Line 11), allowing the event to eventually reach the loaded state. Event
osFinal remains unchanged.

Level 2. Next, we define the input constants oldTask ∈ tasks and oldCtx ∈
context→data that represent the old task and its context when the kernel was
requested. The saving operation in osEntry must save oldCtx into oldTask’s



A Formal Modeling Approach for Portable Low-Level OS Functionality 165

1 osEntry REFINES osEntry
2 ANY
3 saveSet ⊆ toSave
4 WHERE
5 saveSet �= ∅

6 toSave �− t_saved(runningTask) =
toSave �− transform(oldCtx)

7 loaded = ∅ // load not started
8 THEN
9 t_saved(runningTask) := t_saved(

runningTask) �− (saveSet �
transform(oldCtx))

10 toSave := toSave\saveSet

(a) Kernel entry

1 osExit REFINES osExit
2 ANY
3 loadSet ⊆ toLoad
4 WHERE
5 loadSet �= ∅

6 loaded = toLoad �− invTransform(
t_saved(runningTask))

7 toSave = ∅ //save complete
8 THEN
9 loaded := loaded ∪ (loadSet �

invTransform(t_saved(runningTask)))
10 toLoad := toLoad\loadSet

(b) Kernel exit

Fig. 5. Level 2

save space. In order to save the context, we must map it to a saved context.
Additionally, the context might be modified during the saving process (env6),
e.g. the stack pointer is changed before it is saved when the architecture auto-
matically pushes some registers onto the stack. We must account for this modi-
fication, since what is finally saved is the transformed version of the values, and
not the original input values. Thus, we define the functions ctxTransform ∈
context→(data��data) and transform ∈ (context→data)��(savedctx→
data). The architecture-specific function ctxTransform is only declared at this
level, and represents the modification of each value in the context. The function
itself is only fully specified in Level 5. The function transform converts a con-
text into a saved context according to ctx2saved, modifying the values stored
in each location according to ctxTransform. This is modeled by the axiom.

c1.axm7: ∀ ctx ,el · ctx ∈ context→data ∧ el ∈ context ⇒
transform(ctx)(ctx2saved(el)) = ctxTransform(el)(ctx(el))

1 osFinal (guards)
2 loaded = invTransform(t_saved(runningTask))
3 t_saved(oldTask) = transform(oldCtx)
4 toSave = ∅

Fig. 6. Level 2: osFinal

With these definitions in
Event-B contexts, we also
refine the machine variables
and events (Fig. 5). To rep-
resent the saved contexts
of all tasks (os3.a), saved
is refined into t saved ∈ tasks→(savedctx → data), with glue invariant
saved = toSave�− t saved(oldTask). The new variable runningTask ∈ tasks

is equal to the constant oldTask before kernel body is run, and represents the new
scheduled task after the scheduler has run. While osFinal always uses oldTask
to check if the context has been correctly saved, osEntry refers to runningTask
to save the context. This way, all three kernel parts (entry , body , and exit) deal
with the same variable, simplifying code generation. We can finally replace the
abstract save action in Fig. 3a (Line 10) by the action in Fig. 5a (Line 9).
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The context to be loaded during kernel exit actually comes from the
saved context of runningTask, thus we replace the abstract load from Fig. 3b
(Line 10) by the load in Fig. 5b (Line 9). The functions ctxTransform and
transform used for saving a context have their inverses, used for the load process,
defined as ctxInvTransform ∈ savedctx→(data�� data) and invTransform
∈ (savedctx → data)��(context → data), related with the axiom

c1.axm8: ∀ sctx ,el · sctx ∈ savedctx→data ∧ el ∈ savedctx ⇒
invTransform(sctx)(saved2ctx(el)) = ctxInvTransform(el)(sctx(el))

1 osBody
2 WHERE
3 toSave = ∅

4 toLoad = context
5 THEN
6 runningTask :∈ tasks

Fig. 7. Level 2: osBody

Now, we can refine the old and new parameters
to reflect the real source and destination of the con-
text copies (os3.b) in Level 2 (Fig. 5a, 5b, and 6).

Finally, the new event osBody models kernel body
(Fig. 7), abstractly representing the scheduler (os4).
We do not model kernel body in more detail in this
work, but will refine it to guarantee its execution
according to the OS requirements.

Level 3. Though we do not model kernel body , we want to guarantee that
kernel entry prepares the CPU to start its execution. Analogously, we do not
model tasks, but want to guarantee that kernel exit prepares the CPU to run
them. Thus, we introduce the variables that control the conditions for proper
task and kernel body execution (os5, os6): kernelMode is a flag that indicates
when the kernel has been entered. osBody can only be enabled if it is true, and
osFinal if it is false; kernelCause records why the kernel has been invoked. It
unambiguously identifies each interrupt and syscall, and must be valid within
osBody; interruptEnable is the interrupt enabled flag (env3). It must be false
in osBody, and loaded from the next task’s saved context during kernel exit ;
currStack indicates the stack currently in use, abstractly representing a kernel
or a task stack. osBody is enabled if currStack indicates kernel stack, while
osFinal requires it to indicate task stack. We strengthen osBody and osFinal
guards to fulfill os5 and os6. Modification of these variables in kernel entry
and exit remain nondeterministic, since they are highly hardware-dependent.
Figure 8 shows the new sets, variables, and guards. We also create the event
entryNothingToSave, that mimics osEntry and is explained in Level 4.

Level 4. Now, kernel entry and exit are divided in two parts: one models what
is automatically done by the hardware, via an interrupt acceptance or a return
from interrupt instruction (env4, env5). This may save some registers, turn off
the interrupt enabled flag, switch the CPU mode, etc. The remaining actions of
kernel entry (os7) and exit (os8, os9) are fulfilled by their manual parts.

This Level still does not refer to specific details of a potential target architec-
ture. Therefore, the model must support different behaviors: the hardware might,
on interrupt, copy a set of its registers into another set of registers designed for
that (os10.b), or it might copy them to memory, for example pushing them
onto the stack (os10.a). In the first case, we call this a temporary save, since
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1 SETS (new)
2 stacks
3 kernelcauses
4 VARIABLES (new)
5 kernelMode ∈ bool
6 kernelCause ∈ kernelcauses
7 interruptEnable ∈ bool
8 currStack ∈ stacks

(a) New carrier sets and variables

1 AXIOMS (new)
2 partition(stacks,kernelstack,taskstacks)
3 partition(kernelcauses,{kCause_invalid},

kcause syscalls,kcause flowints)

(b) New axioms

1 osBody (new guards)
2 kernelMode = true
3 kernelCause �= kCause_invalid
4 interruptEnable = false
5 currStack ∈ kernelstack

(c) New guards in body

Fig. 8. Level 3: Additions to model

the destination is the same for all tasks and must, therefore, still be made per-
manent by copying it to the task’s saved context in kernel entry . To model this,
we partition context and savedctx in three sections, as shown in Fig. 2b: sec-
tions manualctx and manualsaved for the locations only manipulated in the
manual part, and two others for those automatically handled by the hardware.
autodirectctx and autodirectsave for those locations permanently saved by
the hardware, and autotempctx and autotempsave for those first copied to/from
a temp location. temp is another subset of location, created in this level.

Fig. 9. Kernel entry context save. dx ⊂ data and d′
x = ctxTransform(dx)

We refine the events osEntry and osExit by splitting each in two, and refin-
ing their parameters (saveSet and loadSet in Fig. 5) to differentiate the par-
titions in context and savedctx. The transform and invTransform functions
are also refined to reflect the refinements of this level and the separation of
the different levels of context copy. The events are refined according to Fig. 9:
osAutoEntry saves values from autodirectctx into autodirectsave and copies
from autotempctx to the new variable temp ∈ temp → data. For architectures
that only copy part of the context to temporary locations, not saving anything,
we refine entryNothingToSave into tempSave, adding a copy to temp and mak-
ing it convergent on the variant temp \ dom(temp) (must add elements to temp).
We also keep entryNothingToSave only modifying variables from Level 3. Then,
osManualEntry saves manualctx into manualsaved and copies temp into the
autotempsave location, completing the saving of the temporary part of the con-
text. The inverse operation is modeled in kernel exit : First, osManualExit loads
from manualsaved into manualctx and copies from autotempsave into temp,
then osAutoExit loads all autoctx from temp and autodirectsave.



168 R. M. Gomes et al.

Level 5 - Architecture-Specific Instantiations. Having intentionally mod-
eled the OS independent from the hardware so far, we finally introduce hardware
details in a new refinement level per target architecture. For each, we extend the
Event-B context and define, within location, all registers available in the archi-
tecture. At the same time, we also define which of them are part of context

(and to which subset), temp, etc. We also define the locations for saved con-
texts and the CPU-specific functions ctxTransform and ctx2saved. For each
target, one Event-B machine refines the last Level 4 machine, see the cor-
respondent Event-B context, and the architecture-specific actions from Level
3 are made deterministic. On interrupt, RISC-V copies some registers into
temp, not saving anything directly, therefore osAutoEntry is never enabled
and we can remove it. tempSave is refined into interrupt and ecall, which
are very similar: both switch into kernel (machine) mode, disable interrupts
and copy data into temp. Additionally, interrupt registers the interrupt ID
(kernelCause). For a syscall, we need to do this before ecall, so we refine
entryNothingToSave into syscall. We can refine kernelMode to the privilege
levels, adding an invariant that relates kernelMode = true to machine mode and
kernelMode = false to user mode (os11). On MSP430, registers are pushed
onto the task’s stack, and there are no temporarily saved registers, so tempSave
is removed. Without privileged modes, kernelMode is a variable, which is set to
true in osManualEntry and to false in osManualExit. osAutoEntry is refined
into interrupt and syscall. The latter imitates the former, additionally reg-
istering which syscall triggered the kernel. Since the interrupt can not do this
automatically, entryNothingToSave is refined to interruptHandler, which is
enabled after the interrupt.

7 Proofs and Model Checking

This section shows the properties we verified via theorem proving in Rodin and
LTL model checking. From the requirements, we elaborate safety properties to
be proved: (S1) Contexts are never corrupted by the kernel (os2), (S2) osBody
always runs in the specified conditions for its execution and osFinal is reached
with the specified conditions for task execution (os5, os6). And liveness proper-
ties guarantee the model reaches the intended states: (L1) The kernel executes in
the correct order, and (L2) always finishes execution (always reaches osFinal).

7.1 Theorem Proving

All refinements in our model must correspond to their abstraction, which is
proved with discharging the POs generated by Rodin. The initial abstraction,
Level 0, defines the state (osFinal guards) we want to achieve after OS execu-
tion, namely that an old context is saved and a new context is loaded. This state
must be reached by osProgress, which models the OS. Event osProgress is
refined into the three main parts of the kernel (entry, body, and exit). Entry and
exit are responsible, respectively, for saving the old task’s context and loading the
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new task into the CPU. The first abstraction is modeled such that osProgress
can not run forever. The idea is that it must change the state until it finally
enables osFinal, i.e. the desired terminal state. Through the refinements, we
model how exactly this happens, splitting osProgress into several events, and
creating invariants and actions that model the OS requirements.

Some of the discharged POs guarantee that the events refining osProgress
also give up control, and in Sect. 7.2 we prove they indeed modify the state
such that it eventually reaches osFinal. Other POs prove that actions always
respect the invariants (INV POs), or that a concrete event’s actions do simu-
late the abstract correspondents (SIM POs). There are several other rules for
PO generation, which we do not detail here. Table 2 summarizes the number of
POs generated in each level of abstraction, and shows how many of them were
automatically or manually discharged. The manually discharged ones are dif-
ferentiated according to their discharging complexity: simple POs only required
a few steps to be discharged, while the complex POs required more experience
with the proving system and the PO’s breakdown in several proving steps.

In Level 2, two invariants to guarantee that the save and load processes do
save oldCtx and load the runningTask’s saved context:

m05.inv2:toSave = ∅ ⇔ saved = transform(oldCtx)
m07.inv4:toLoad = ∅ ⇔ loaded = invTransform(t_saved(runningTask))

Discharging the related INV POs proves that, for every refinement, when our
model considers the old context as saved and the new context as loaded, they
indeed are. Those INV POs were always automatically discharged, except in few
refinements, where they were manually discharged in a few steps.

Table 2. Number of POs discharged

Level #POs Auto Simple Complex

0 8 8 0 0

1 17 15 2 0

2 63 52 11 0

3 14 14 0 0

4 83 39 35 9

5 70 58 6 6

Total 255 186 54 15

100% 73% 21% 6%

The SIM POs involving save and
load actions, however, were rather com-
plex, especially in Level 4. In par-
ticular for events osManualEntry and
osAutoExit, we had to create a new
parameter and a theorem in order to
discharge the SIM POs. We detail here
the proof strategy for the save action
SIM PO in osManualEntry. The same
strategy was applied to osAutoExit.
We must prove that the action model-
ing the osManualEntry arrows in Fig. 9
as described in Level 4, simulates its

abstract correspondent in Fig. 5a (Line 9):
m12.osManualEntry.act2: t_saved(runningTask) := t_saved(runningTask) �− (
autoSaveSet � autoTempTEMPSVDtransform(temp)) �−(manualSaveSet �
manualTransform(manualctx � oldCtx))

We replace the automatic save part of the action by the parameter aux =
autoSaveSet � autoTempTEMPSVDtransform(temp) and add to the event’s
guards the theorem aux = autoSaveSet� autoTempTransform(autotempctx�
oldCtx). After proving the theorem, the SIM PO is much easier to discharge.
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7.2 LTL Model Checking

For the liveness verification, we encode a set of LTL formulas that guarantee the
specified execution order and that osFinal is eventually enabled. The model
shall (1) eventually reach osFinal, staying there forever, (2) not reach a state
where all events are disabled, (3) always have exactly one event enabled, and (4)
implement the specified execution order: first, entry , then body , and finally exit ,
and manual save after auto save (os7) and manual load before auto load (os9).

Since the model’s axioms are rather complex, we need to create a minimal
set of context and savedctx elements to represent the locations that compose
contexts and saved contexts, otherwise the state space explodes and ProB cannot
run. For this, we extend the Event-B contexts with the constant instantiations,
and refine the machines we want to check. These machines are not modified any
further, except for the model checks of Level 3 and 4, where the nondeterministic
actions introduced in Level 3 would cause the checks to fail, since paths would
exist in which osBody and osFinal could not be reached. As our intention is
to leave this determinism to the architecture-specific models, the actions are
modified to enforce the correct execution path. In Level 5, all actions are left
unmodified, and we can check if the variables have been correctly set.

One error was found in Level 2: LTL finds a counterexample for reachability,
so the model may never reach osFinal. An infinite loop is possible, because
osBody does not decrease any variant and does not modify any variables that
affect its guards. Thus, we introduce a new boolean variable osBodyRun, initialize
it with false, and add the guard osBodyRun = false and an action osBodyRun
:= true. A similar error was found when entryNothingToSave was introduced,
prompting us to make it convergent and create a variant as explained in Level 4.

Model checking Level 4 also revealed that the execution order of events as not
as intended: one formula fails because we forgot to strengthen osManualEntry’s
guards to require it to only be enabled after all autodirectsave elements have
been saved, as required by os7. The new guard autodirectsave ∩ toSave = ∅

forces this order. Similarly, osAutoExit may only execute after all manualctx is
loaded (os9), thus the new guard manualctx ∩ toLoad = ∅ was introduced.

With these modifications to the models and the discharging of all proofs, we
prove that the requirements are fulfilled and the model is correct.

8 Conclusion and Future Work

We have presented the first step in our approach towards portability of embedded
RTOS based on formal methods and code generation. We have shown a generic
formal RTOS model in Event-B with context switches that decouples low-level
functionality from hardware specifics. This allows us to reuse the model and its
proofs for several architectures. Then, we instantiated the model for two architec-
tures and verified them via interactive theorem proving and model checking. The
safety and liveness verification of the models (1) proved that the generic model
and its instantiations do not corrupt task contexts by having them properly
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saved and loaded; (2) proved that the kernel and the tasks run in the appropri-
ate CPU states and privilege levels by having them properly changed; (3) proved
that the kernel executes in the correct order and finishes execution.

To the best of our knowledge, this is the first time that OS low-level function-
ality is formally modeled for portability and verification. With the target-specific
models, we can already generate significant parts of the OS assembly code for
the MSP430 and RISC-V architectures, however this is still an ongoing work.
Besides the code generation and automatic porting of low-level code, we are also
working on the modeling and verification of additional aspects in the OS, such
as security, timing, and energy consumption.

There is still much to do to make automatic porting a reality: Among other
issues, the effort of modeling is not negligible, specially for the average software
developer, who often lacks a background in formal methods. Besides, the cor-
rectness proofs can only be as good as the model itself, so the modeling process
must be thorough. Additionally, modeling and verifying an entire OS, includ-
ing all its low-level components, will require considerable effort. Nevertheless,
it has been proved that formal modeling in software improves its quality and
can reduce costs. Furthermore, architectures with completely different concepts
would require the model to be adapted. While the effort must still be investi-
gated, the hardware requirements of our current model should be fulfilled by most
modern architectures. For maintainability, specially for porting, we expect that
it will not only be beneficial, but also crucial within the IoT. The effort invested
in modeling can be mitigated by increasing the number of ports and partially
replacing testing by verification for guaranteed dependability during the devel-
opment process. Another issue we must mention is the time and computation
power required for model checking. The axioms in the presented model already
cause state explosion in ProB if all registers available in the target architectures
are included, which prompted us to create a minimal set for model checking.
With bigger and more complex models, even a minimal set will eventually not
avoid state explosion. We hope that advances in formal methods will eventually
solve this problem. Other methods, such as TLA+, Isabelle/HOL, and HOL4
are potentially suitable for the model presented in this work, and should be
investigated in future works.
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4. Boano, C.A., Römer, K., Bloem, R., Witrisal, K., Baunach, M., Horn, M.: Depend-
ability for the Internet of Things–from dependable networking in harsh environ-
ments to a holistic view on dependability. e & i Elektrotechnik und Information-
stechnik 133(7), 304–309 (2016). https://doi.org/10.1007/s00502-016-0436-4

5. Borghorst, H., Bieling, K., Spinkczyk, O.: Towards versatile models for contempo-
rary hardware platforms. In: 12th Annual Workshop on Operating Systems Plat-
forms for Embedded Real-Time Applications, OSPERT 2016, pp. 7–9, July 2016

6. Brandenburg, B.B.: The case of an opinionated, theory-oriented real-time operating
system. In: NGOSCPS 2019, April 2019

7. Cheng, S., Woodcock, J., D’Souza, D.: Using formal reasoning on a model of tasks
for FreeRTOS. Formal Aspects Comput. 27(1), 167–192 (2014). https://doi.org/
10.1007/s00165-014-0308-9

8. Craig, I.D.: Formal Refinement for Operating System Kernels. Springer, London
(2007). https://doi.org/10.1007/978-1-84628-967-5

9. Craig, I.D.: Formal Models of Operating System Kernels, 1st edn. Springer, London
(2010). https://doi.org/10.1007/978-1-84628-718-3

10. Dalvandi, M., Butler, M., Rezazadeh, A., Salehi Fathabadi, A.: Verifiable code
generation from scheduled Event-B models. In: Butler, M., Raschke, A., Hoang,
T.S., Reichl, K. (eds.) ABZ 2018. LNCS, vol. 10817, pp. 234–248. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-91271-4 16

11. Danmin, C., Yue, S., Zhiguo, C.: A formal specification in B of an operating system.
Open Cybern. Syst. J. 9(1) (2015)

12. Dhote, S., Charjan, P., Phansekar, A., Hegde, A., Joshi, S., Joshi, J.: Using FPGA-
SoC interface for low cost IoT based image processing. In: 2016 International Con-
ference on Advances in Computing, Communications and Informatics (ICACCI),
pp. 1963–1968, September 2016. https://doi.org/10.1109/ICACCI.2016.7732339

13. Event-B: Event-B and the Rodin Platform. www.event-b.org
14. Fathabadi, A.S., et al.: A model-based framework for software portability and

verification in embedded power management systems. J. Syst. Archit. 82, 12–23
(2018). https://doi.org/10.1016/j.sysarc.2017.12.001. http://www.sciencedirect.
com/science/article/pii/S1383762117305234

15. Frühwirth, T., Krammer, L., Kastner, W.: Dependability demands and state of
the art in the internet of things. In: 2015 IEEE 20th Conference on Emerging
Technologies Factory Automation (ETFA), pp. 1–4, September 2015. https://doi.
org/10.1109/ETFA.2015.7301592

16. General Dynamics C4 Systems: The seL4 microkernel (2016). https://sel4.
systems/. Accessed 05 Feb 2020

17. Gomes, R.M., Baunach, M., Malenko, M., Ribeiro, L.B., Mauroner, F.: A co-
designed RTOS and MCU concept for dynamically composed embedded systems.
In: OSPERT 2017 (2017)

18. Gomes, T., Pinto, S., Gomes, T., Tavares, A., Cabral, J.: Towards an FPGA-based
edge device for the Internet of Things. In: 2015 IEEE 20th Conference on Emerging
Technologies Factory Automation (ETFA), pp. 1–4, September 2015. https://doi.
org/10.1109/ETFA.2015.7301601

19. Goranko, V., Galton, A.: Temporal logic. In: Zalta, E.N. (ed.) The Stanford
Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, win-
ter 2015 edn. (2015). https://plato.stanford.edu/archives/win2015/entries/logic-
temporal/

20. Hahm, O., Baccelli, E., Petersen, H., Tsiftes, N.: Operating systems for low-end
devices in the Internet of Things: a survey. IEEE Internet Things J. 3(5), 720–734
(2016). https://doi.org/10.1109/JIOT.2015.2505901

https://doi.org/10.1007/s00502-016-0436-4
https://doi.org/10.1007/s00165-014-0308-9
https://doi.org/10.1007/s00165-014-0308-9
https://doi.org/10.1007/978-1-84628-967-5
https://doi.org/10.1007/978-1-84628-718-3
https://doi.org/10.1007/978-3-319-91271-4_16
https://doi.org/10.1109/ICACCI.2016.7732339
www.event-b.org
https://doi.org/10.1016/j.sysarc.2017.12.001
http://www.sciencedirect.com/science/article/pii/S1383762117305234
http://www.sciencedirect.com/science/article/pii/S1383762117305234
https://doi.org/10.1109/ETFA.2015.7301592
https://doi.org/10.1109/ETFA.2015.7301592
https://sel4.systems/
https://sel4.systems/
https://doi.org/10.1109/ETFA.2015.7301601
https://doi.org/10.1109/ETFA.2015.7301601
https://plato.stanford.edu/archives/win2015/entries/logic-temporal/
https://plato.stanford.edu/archives/win2015/entries/logic-temporal/
https://doi.org/10.1109/JIOT.2015.2505901


A Formal Modeling Approach for Portable Low-Level OS Functionality 173

21. Hu, J., Lu, E., Holland, D.A., Kawaguchi, M., Chong, S., Seltzer, M.I.: Trials
and tribulations in synthesizing operating systems. In: Proceedings of the 10th
Workshop on Programming Languages and Operating Systems, PLOS 2019, pp.
67–73. Association for Computing Machinery, New York (2019). https://doi.org/
10.1145/3365137.3365401

22. Texas Instruments: MSP430 ultra-low-power sensing and measurement MCUs
(2019). http://www.ti.com/microcontrollers/msp430-ultra-low-power-mcus/
overview/overview.html

23. Jastram, M., Butler, P.M.: Rodin User’s Handbook: Covers Rodin vol. 2.8, USA
(2014)

24. Klein, G., et al.: Comprehensive formal verification of an OS microkernel. ACM
Trans. Comput. Syst. 32(1) (2014). https://doi.org/10.1145/2560537

25. Lamport, L.: Proving the correctness of multiprocess programs. IEEE Trans. Softw.
Eng. SE-3(2), 125–143 (1977). https://doi.org/10.1109/TSE.1977.229904

26. Leuschel, M., Butler, M.: ProB: an automated analysis toolset for the B method.
Int. J. Softw. Tools Technol. Transf. 10(2), 185–203 (2008). https://doi.org/10.
1007/s10009-007-0063-9

27. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Sys-
tems: Specification. Springer, New York (2012). https://doi.org/10.1007/978-1-
4612-0931-7
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Abstract. Modern software systems operate in complex and changing
environments and are exposed to multiple sources of uncertainty. Consid-
ering uncertainty as a first-class concern in software testing is currently
on an uptrend. This paper introduces a novel methodology to deal with
testing under uncertainty. Our proposal combines the usage of parametric
model checking at design-time and online model-based testing algorithms
to gather runtime evidence and detect requirements violations. As mod-
eling formalism, we adopt parametric Markov Decision Processes where
transition probabilities are not fixed, but are possibly given as a set
of uncertain parameters. The design-time phase aims at analyzing the
parameter space to identify the constraints for requirements satisfaction.
Then, the testing activity applies a Bayesian inference process to identify
violations of pre-computed constraints. An extensive empirical evaluation
shows that the proposed technique is effective in discovering violations
and is cheaper than existing testing under uncertainty methods.

Keywords: Model-based Testing · Parametric Markov Decision
Processes · Uncertainty analysis · Bayesian inference

1 Introduction

Modern software-intensive systems are often situated in complex ecosystems that
can be hard or even impossible to fully understand and precisely describe at
design-time. Nevertheless, unreliable or unpredictable software behavior cannot
be tolerated as society increasingly depends on it. For this reason, there exists
the increasing need for systematic approaches to deal with incomplete knowledge
and sources of uncertainty while engineering complex systems. Endowing conven-
tional software engineering methodologies with techniques and practices able to
model, quantify, and mitigate uncertainty is becoming increasingly crucial [1].
In particular, research effort in techniques that explicitly consider uncertain
expected behavior in software testing is currently on an evident uptrend (e.g.,
see [2–5]).

This paper introduces a novel methodology to deal with uncertainty quan-
tification by combining parametric model checking [6] at design-time and online
(or on-the-fly) Model-based Testing (MBT) algorithms [7,8]. MBT is a software
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testing technique where run-time behavior of a software System Under Test
(SUT) is checked against a formal model describing the system’s behavior [7].
Our MBT approach allows the design-time probabilistic model to be underspeci-
fied. Namely, the modeler can explicitly represent partial knowledge on the SUT
by means of uncertain model parameters in a Markov Decision Process (MDP).
Parametric model checking is used to verify design-time requirements under vari-
ability of uncertain model parameters. The outcome of this stage is a mapping
from regions of these parameters to truth values encoding the verification con-
ditions to be evaluated at runtime. Thus, our MBT approach leverages these
conditions to drive the testing activity by maximizing the probability to hit the
uncertain components of the SUT multiple times. The objective of the MBT
phase is to gather runtime evidence over uncertain model parameters using a
Bayesian inference approach [9]. Thus, the MBT spots requirements violations
by comparing the incremental posterior knowledge and the pre-computed verifi-
cation conditions on uncertain parameters. The whole methodology is supported
by a software toolchain whose core component is a MBT module which integrates
test case generation, execution and evaluation. The MBT module makes use of
fine grained characteristics of the uncertain model parameters to reduce the
effort required by testing. The design-time analysis of the region space of uncer-
tain parameters (i.e., the outcome of the parametric model checker) is leveraged
to detect requirements violations and decide over termination.

To illustrate our approach we make use of an existing open-source case study
called SafeHome. It represents an exemplar of Cyber Physical Systems (CPSs)
borrowed from [5]. We conducted an empirical evaluation to study the cost-
effectiveness of our testing method by varying the number of uncertain param-
eters and the distance between actual values and verification conditions. We
also compared our approach with selected existing MBT methods, pointing out
advantages and threats to validity.

The major contribution of this paper can be summarized as follows:

i. description of our methodology to MBT under parametric variability of uncer-
tain beliefs;

ii. extensive evaluation to assess the cost-effectiveness of our approach and com-
parison with existing testing methods.

Our empirical evaluation shows that the whole methodology is effective to spot
requirements violations with bounded effort. Furthermore, the developed MBT
method outperforms existing MBT strategies.

The remainder of this article is structured as follows. Section 2 introduces
a preview of our methodology. Section 3 recalls the necessary background con-
cepts. Section 4 presents a running example (i.e., the SafeHome system), used
throughout the article to illustrate the main phases of the methodology. Section 5
introduces a formal treatment of our approach. Section 6 reports our evaluation
and discusses threats to validity. Section 7 describes related work. Section 8
concludes the paper.
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Fig. 1. High-level schema of our approach.

2 Preview of the Approach

In this work we focus on systems modeled as MDPs and quantitative require-
ments expressed using Probabilistic Computation Tree Logic (PCTL) [10]. MDPs
represent a widely accepted formalism to model and verify software system
dependability (e.g., reliability, availability, safety) [11]. Recent research activ-
ities show also the effective usage of MDPs in testing probabilistic systems [2].
As described in [12], models developed at design-time are often subject to sources
of uncertainty. Namely, certain behaviors of the system itself and the surround-
ing environment are hard to predict. For instance, the success probability of a
software task, or the failure rate of a hardware device (represented by transi-
tions in the MDP) may be hard to specify in a complete and accurate way. So,
to deal with uncertainty, our approach gives the modeler the ability of represent-
ing partial knowledge (i.e., beliefs) on transition probabilities by means of Prior
probability density functions [9], or simply Priors. On top of these assumptions,
we informally introduce here the two main phases of the approach (see Fig. 1):
(i) offline analysis; and (ii) online MBT.

The offline analysis (or pre-computation) aims at studying the parameter
space. We leverage the parametric model checking functionality of PRISM [6]
to analyze how parameters affect the satisfaction of PCTL requirements. The
Prior density functions are used to mechanically build a parametric MDP model
and the search space of each individual uncertain parameter. The result of the
model checker is a mapping from regions of these parameters to truth values (i.e.,
either true or false with respect to requirements satisfaction). It is worth not-
ing that model checking is computationally expensive and requires exhaustive
exploration of the model’s state space to analyze arbitrarily complex proper-
ties [13]. Since the computational cost of model-checking may be prohibitive for
online usage, we keep this pre-computation separated as an offline phase, where
we can execute demanding activities without interfering with the system oper-
ation. The outcome of the pre-computation encodes verification conditions to
be satisfied to meet the requirements. Thus, the online MBT phase performs a
controlled exploration of the SUT by using an uncertainty-aware test case gen-
eration strategy. Such a strategy leverages the structural characteristics of the
model to direct the effort towards transitions associated with uncertain param-
eters. In other words, we aim at concentrating on those components of the SUT
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whose behavior is subject to sources of uncertainty. The MBT feeds a Bayesian
inference process that computes the actual value of uncertain model parame-
ters based on the evidence gathered during testing. The actual values are then
checked against the (pre-computed) verification conditions to detect violations
of design-time requirements.

3 Background

This section recalls required background notions to understand the formal
aspects of the approach we developed. In the following we briefly revisit para-
metric MDPs, the quantitative temporal logic PCTL, and Bayesian Inference.
For a complete treatment we let the reader refer to [9,11,14].

3.1 Parametric Markov Decision Processes

Let θ be a finite set of variables. Let Q[θ] denote the set of all rational-coefficient
polynomial functions (i.e., a sum of terms, where each term is given by a coef-
ficient and a monomial). A parametric Markov Decision Process (pMDP) M
is a tuple (S, θ,A, s0, δ, AP,L) where S is a (finite) set of states, θ is a finite
set of parameters, A is an alphabet of actions, s0 ∈ S is the initial state, and
δ : S × A × S → Q[θ] ∪ [0, 1] is the partial probabilistic transition function, AP
is a set of atomic propositions, L : S → 2AP is a labeling function that asso-
ciates to each state the set of atomic propositions that are true in that state.
State transitions occur in two steps: a nondeterministic choice among available
actions; and a stochastic choice of the successor state according to δ. In the rest
of the paper, the notation pa

i,j will be used as short form for δ(si, a, sj). The
function A(si) is used to denote the actions in A available from the state si.

Note that a parameter-free pMDP coincides with standard MDP, as defined
in [11]. A MDP can be obtained from a pMDP by simply assigning values to
parameters. Formally, we need to create an instantiation val : θ → R s.t. the δ
function is well-defined, i.e.,

∑
sj∈S pa

i,j = 1 for all si ∈ S and a ∈ A(si). In the
following we use M[val] to denote the MDP obtained from the pMDP M with
instantiation val.

Both MDP and pMDP models can be augmented with rewards to quan-
tify a benefit (or loss) due to the occurrence of a certain transitions. A reward
usually represents non-functional aspects such as average execution time, power
consumption or usability. Rewards are formally specified by using the notion of
reward structure, i.e., a function r : S × A × S → R. Given a standard MDP
and a reward structure r, a deterministic policy π specifies for each state si the
action π(si) ∈ A(si) chosen by a decision maker to solve nondeterminism. The
notion of best policy π∗ refers to the policy able to maximize the expected cumu-
lated reward over a potentially infinite horizon. The best policy can be computed
solving the following Bellman’s Eq. 1 using dynamic programming approaches
as reported in [11].

π∗(si) = arg max
a∈A(si)

∑

j

pa
i,j · (ra

i,j + γV ∗(sj)) (1)
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where V ∗(sj) represents the expected cumulated reward when starting from sj

and acting optimally along a infinite horizon; γ ∈ [0, 1] is a discount factor that
alleviates the contribution of future rewards in favor of present rewards.

3.2 Probabilistic Computation Tree Logic

To specify requirements of interest we consider here the logic PCTL. The syn-
tax supports the definition of state formulas φ and path formulas ψ, which are
evaluated over states and paths, respectively. Formally, a formula is defined as
follows:

φ ::= true | a | φ ∧ φ | ¬φ | P��p[ψ], ψ ::= Xφ | φ U φ, (2)

where a ∈ AP and a path formula ψ is used as the parameter of the proba-
bilistic path operator P��p[ψ], such that �� ∈ {≤, <,≥, >} and p ∈ [0, 1] is
a probability bound. The symbol X represents the next operator, U is the until
operator. The operators G (i.e., globally) and F (i.e., eventually) can be derived
from the previous ones as for CTL. A state s ∈ S satisfies P��p[ψ] if, under
any nondeterministic choice, the probability of taking a path from s satisfying
ψ is in the interval specified by ��p.

Parametric model checking [14] is a verification technique able to analyze the
parametric variability of a pMDP model M and determine how such a variability
affects the satisfaction of a set of target PCTL properties. Formally, the outcome
of the model checker is a mapping between hyper-rectangles and truth values,
where an hyper-rectangle is a multidimensional rectangle h =×x∈θ

[lx, ux] with
lx, ux ∈ R lower- and upper-bound for parameter x, respectively. Intuitively,
for each true hyper-rectangle h, the model M[val] satisfies the properties iff
val(x) ∈ [lx, ux] for all x ∈ θ.

3.3 Bayesian Inference

Bayesian inference [15] really comes into its own in domains where uncertainty
must be taken into account. The main goal is to learn about one or more uncer-
tain/unknown parameters θ affecting the behavior of a stochastic phenomenon of
interest. The Prior knowledge (i.e., initial hypothesis or belief) of θ is incremen-
tally updated based on a collected data sample y = (y1, y2, . . . , yn) describing the
actual behavior of the target phenomenon. By using Bayes’ theorem we obtain
the Posterior distribution f(θ|y), describing the best knowledge of θ, given the
evidence y.

f(θ|y) ∝ f(θ) · f(y|θ) (3)

The density f(y|θ) is usually referred to as the likelihood function and repre-
sents the compatibility of the data with the hypothesis. The hypothesis is often
available from external sources such as expert information based on past expe-
rience or previous studies. This information is encoded by the Prior distribution
f(θ). The posterior distribution can be used in turn to perform point and inter-
val estimation. Point estimation is typically addressed in the multivariate case,
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θ3 s8-notify infrastructure s10, s11 x8,9 =0.98, x8,10 =1−x8,9 =0.02

Fig. 2. MDP model of the SafeHome system.

by summarizing the distribution through the Posterior mean E[f(θ|y)] and the
(95%) Highest Density Region HDR[f(θ|y)], defined as follows.

E[f(θ|y)] =
∫

θ · f(θ|y)dθ, HDR[f(θ|y)] = {θ : f(θ|y) ≥ 0.95} (4)

The magnitude of the HDR region yields the highest possible accuracy in the
estimation of the true value of θ and is usually adopted as a measure of the
confidence gained after the inference process. In Bayesian statistics, it represents
the credible region within which parameter values fall with probability 0.95.

4 A Running Example: The SafeHome System

The SafeHome security system represents an open-source benchmarking example
in charge of controlling and configuring alarms and related sensors that imple-
ment a number of security and safety features such as intrusion detection. For
the sake of readability, here we use an extract of the whole SafeHome by empha-
sizing the relevant characteristics for our problem domain. We let the reader
refer to [5] for a comprehensive description.

Figure 2 shows the high-level behavior of the system through a pMDP model.
The system behavior exhibits three main phases: initialization, monitoring and
alarm, in charge of sensor initialization, detection, and alarm handling, respec-
tively. From state s2 the SafeHome system tries to initialize all the available sen-
sors by executing the action init. If the task succeeds, the sensors are correctly
registered and the action startMonitoring can be executed to proceed towards
the monitoring and then alarm phase. According to [4], sources of uncertainty in
CPSs affect the behavior of the SUT at different levels: application level, due to
events/data originating from software components running upon physical units
of the CPS; infrastructure level, due to data transmission through networking
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Table 1. PCTL requirement examples for the SafeHome system.

Id Type Description PCTL definition

R1 Global
reliability

The probability of reaching a state
where assistance is required is less
than 0.05

P<0.05 [F assistance]

R2 Sensors
availability

The probability of observing operable
sensors without failures is greater than
0.9

P>0.9 [!sensorsLost U
sensorsOk ]

R3 Network
reliability

If sensors are operable, the probability
of eventually notifying the emergency
unit is greater than 0.98

sensorsOk → P>0.98 [F
policeNotified ]

and/or cloud infrastructure; integration level, due to interactions among physical
units at either application level or infrastructure levels. For instance, consider
the following common scenario in our target system. When the system is in state
s6 (i.e., monitoring holds), sensors can send the intrusion trigger to the security
system that eventually causes a notification to be sent to an external emergency
service (i.e., policeNotified state). However, the intrusion detection is affected
by uncertainty at integration level. In fact, this capability is conditioned by the
way sensors interact and their individual ability of correctly sensing the physical
environment. Thus, the action intrusion leads to either state s8 (i.e., the intru-
sion has been sensed) or state s7 (i.e., the intrusion has not been sensed) with
a substantial degree of uncertainty. This uncertain outcome is explicitly repre-
sented by uncertain parameters (i.e., x6,8 and x6,7, respectively). The uncertain
parameters associated with a state-action pair is called uncertain region and
we denote it as θi. The disjoint union of all θi is θ (i.e., the set of uncertain
parameters). Figure 2 lists all the uncertain regions in SafeHome and affected
levels.

Table 1 lists some requirements for our example, formally specified using
PCTL. It is worth noting that the ability of satisfying these requirements
depends on the actual value of model parameters. Figure 2 contains initial (uncer-
tain) beliefs on these parameters.

5 The Testing Framework

This section illustrates the whole testing framework. The presentation is parti-
tioned into two main fragments, reflecting the two main phases of our proposal.

5.1 Offline Analysis

The tester specifies the SUT behavior through a pMDP model (e.g., the Safe-
Home model in Fig. 2). The uncertain values of each region θi are formally
defined by a k-dimensional categorical distribution [9], with k the number of tar-
get states from the state-action (s, a) identified by θi. For instance, the region θ1
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is defined by the density function Cat(x1,2, x1,3, x1,5), describing the distribution
of transition probabilities from s1 to s2, s3, and s5, respectively, when the action
init is chosen. As described in [9], the natural conjugate Prior of a categorical
distribution is the Dirichlet distribution (i.e., a multivariate generalization of
the Beta). For instance, the mdoeler specifies the Prior knowledge of θ1 by using
either a non-informative Prior Dir(1, 1, 1), or a informative one, such as:

f(θ1) = Dir(47, 2, 1) (5)

when past experience is available. In this latter case, the Prior has been built
based on 50 past observations as follows: 47 · s2, 2 · s3, and 1 · s5.

The Prior knowledge specification provides the baseline for further offline
and online analysis. The initial guess for the uncertain parameters (e.g., values
assigned to parameters in Fig. 2) is automatically extracted by summarizing the
Priors through the mean values. The 95% HDR is used instead of computing
the range of possible values for each parameter in θ. Thus, we leverage this
information to limit the search space only to those values that are credible with
respect to the given beliefs. For instance, given the informative Prior defined in
Eq. 5, the HDR sets the following bounds.

HDR[f(θ1)] = x1,2 ∈ [0.87, 0.99], x1,3 ∈ [0.00, 0.09], x1,5 ∈ [0.00, 0.05] (6)

Since the Dirichlet is multivariate, the HDR is composed of a number of intervals,
one for each parameter.

It is worth noting that the HDR of each marginal distribution of a Dirichlet
(i.e., univariate Beta distribution) is instead a single interval defining the bounds
of each individual parameter. In the rest of the paper we will use HDR[fx(·)]
to denote the HDR of the marginalized f(·) by retaining the variable x. For
instance, considering the Prior of θ1 introduced in Eq. 5, the following holds.

HDR[Dirx1,2(·)] = [0.87, 0.99] (7)

After computing the HDR of each Prior, we execute the parametric model
checking functionality of PRISM to obtain the hyper-rectangles that meet the
desired PCTL requirements (e.g., SafeHome properties in Table 1). In our run-
ning example, the outcome of this activity is a set of true hyper-rectangles
{h1, . . . , hn} encoding verification condition for the SafeHome. Each element hi

is composed of a number of closed intervals, one for each uncertain parameter.

5.2 Online Model-Based Testing

As anticipated in Sect. 5, the online phase takes as input the model and the
hyper-rectangles to carry out the testing activity. The online MBT aims at
exploring the SUT in a controlled way by directing the effort towards the uncer-
tain model regions.
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Controller Observer

(1) + (2)
concretization

(3) + (4)
abstraction

Fig. 3. Conformance game iteration.

Conformance Game. Figure 3 shows the main steps of the whole iterative
approach. The idea originally introduced in [7] is to view the SUT as a black
box and distinguish between controllable behavior from the tester (i.e., inputs or
more in general external stimuli from the environment) and observable behavior
from the running software system (i.e., outputs or more in general an observ-
able stimulus’response). The Controller and the Observer components execute
a conformance game [2,7] until the termination condition is met. The game
starts from the initial state of the MDP model and, for each step, the controller
chooses an available action in A(s) from the current state s, depending on the
adopted test case generation strategy. The generation step (1) translates the
action to a controllable behavior to reach the same level of abstraction of the
SUT. Intuitively, the chosen action maps to a valid input provided by using a
service exposed by the SUT APIs. At this point, the external stimulus is pro-
vided to the SUT (2) that reacts in turn by exposing an observable outcome.
Thus, the observer evaluates (3) the outcome and interprets it to determine the
target model state s′ in order to reach again the level of abstraction of the MDP.
Here the evaluation is conducted by means of a post-condition function map-
ping to model states. This way, we can determine the target state s′ s.t. the
post-condition, evaluated on the observed outcome, holds. The last step is the
conformance checking (4) that verifies whether the obtained outcome is feasible
in the sense of the formal specification. Formally, the above steps are used to
verify the existence of a conformance relation between the model and the SUT.
The conformance relation is formalized in turn by leveraging the notions of
probabilistic alternating simulation and refinement, as described in [16]. A com-
prehensive theoretical discussion of these aspects is not part of the contribution
of this paper, so we let the reader refer to [16] for further details.

Bayesian Inference Module. Besides the conformance game, the Observer
component feeds a Bayesian inference process (see Sect. 3) to calibrate the uncer-
tain model parameters based on the gathered evidence by testing. An overview
on the statistical machinery used to perform this activity follows. Formally, we
let the parameters of the categorical distribution describing θi be defined by a
Dirichlet Prior as follows:

(xi,j , . . . , xi,k) ∼ Dir(αi), with αi = (αi,j , . . . , αi,k) (8)

Values in αi are the hyper-parameters of the Prior. Based on this formulation,
we can learn the uncertain parameters by belief monitoring during the testing
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process. For each executed test, the Prior probability is updated based on the
experience using Bayes’ theorem instroduced in Sect. 3. In our context, belief
monitoring can be efficiently performed since the Prior and the Posterior belong
to the same family of distributions (i.e., Eq. 8 representes a conjugate Prior).
Namely, the conformance game keeps track of the number of occurrences ni,j

that represents how many times the transition (si, sj) has been observed for all
θi and uncertain parameter xi,j . Thus, given a sequence of observations y (i.e.,
the runtime evidence), the Posterior is defined as follows.

(xi,j , . . . , xi,k)|y ∼ Dir(α′
i), with α′

i = (αi,j + ni,j , . . . , αi,k + ni,k) (9)

For instance, considering the SafeHome system, we can compute the Poste-
rior of θ1 by updating the hyper-parameters α′

1 = (47 + 93, 2 + 2, 1 + 5) if we
observe: 93 · s2, 2 · s3, and 5 · s5, as outcome of 100 invocations of the action
init from state s1. By summarizing the Posterior with the HDR we obtain the
following updated bounds.

HDR[f(θ1)] = x1,2 ∈ [0.87, 0.99], x1,3 ∈ [0.00, 0.09], x1,5 ∈ [0.00, 0.05]
HDR[f(θ1|y)] = x1,2 ∈ [0.89, 0.97], x1,3 ∈ [0.00, 0.05], x1,5 ∈ [0.01, 0.07] (10)

Uncertainty-Aware Test Case Generation. We introduce here the test case
generation strategy used by our online MBT algorithm. This strategy leverages
the notion of uncertainty-aware reward structure, motivated by the practical
need of identifying those actions that increase the likelihood of testing uncertain
regions (i.e., transitions annotated with uncertain parameters). In fact, our goal
is to equip MBT with the ability of stressing the uncertain components of the
SUT. The uncertainty-aware reward structure is formally defined as follows.

Definition 1 (uncertainty-aware reward structure). Given a pMDP model
M, an uncertain region θi, and two numeric values rh, rl ∈ N>0 s.t. rh 
 rl,
the uncertainty-aware reward structure u is defined as follows:

ua
i,j =

{
rh pa

i,j > 0 and ∃θi for (si, a)
rl otherwise

The rationale is to assign a high reward rh to transitions associated to uncer-
tain parameters and a low reward rl elsewhere. Then we use the uncertainty-
aware reward structure to automatically compute the best exploration policy
(Eq. 1) that maximizes the expected cumulated uncertainty-aware rewards. Intu-
itively, given θi, the best policy π∗

i drives a decision maker optimally towards
the uncertain model region θi.

Indeed, multiple uncertain regions determine alternative testing scenarios
targeting different portions of the model. The way we sample from available
choices (i.e., actions provided by alternative best policies) determines the whole
test case generation strategy. Our strategy provides control over test scenarios
during MBT based on a probabilistic function as defined below.
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Definition 2 (HDR-aware strategy). Given a pMDP model M a set of
uncertain regions θ1, . . . , θk and related best policies π∗

1 , . . . , π
∗
k, the HDR-aware

test case generation strategy is defined by the following partial probabilistic func-
tion:

P(a|s) =

{
0 ω(s, a′) = 0
ω(s, a)/

∑
a′∈A(s) ω(s, a′) otherwise

(11)

where ω represents a per-state weight function that maps a state and an action
to a value in R≥0 such that:

ω(s, a) = max
i:π∗

i (s)=a
‖HDR[f(θi|y)]‖ (12)

Intuitively, the weight function selectively increases or decreases the probabil-
ity of certain actions based on the magnitude of the Posteriors associated with
uncertain regions. As anticipated in Sect. 3, Bayesian statistics uses the mag-
nitude of the HDR as a measure of the degree of confidence in the inference
process: the smaller the magnitude, the higher the confidence. Thus, here we
leverage this measure to selectively increase the probability of actions that drive
testing towards regions associated with a lower degree of confidence.

Termination Condition. Our approach uses the ability of detecting violation
of requirements to build the termination condition for the online MBT algorithm.
In particular, since the testing activity incrementally builds the Posterior knowl-
edge of each θi, we can iteratively compare the summarization of the Posteriors
and the (pre-computed) hyper-rectangles encoding verification conditions. Thus,
the termination of the MBT can be formalized by means of the following two
alternative cases.

Definition 3 (Successful run). Given a pMDP M, a set of hyper-rectangles
H, and the Posterior f(θi|y) for all i, we say that the MBT is succesful iff there
exists h ∈ H, [lx, ux] ∈ h s.t. [lx, ux] ⊇ HDR[fx(θi|y)] for all i and x ∈ θi.

Definition 4 (Failing run). Given a pMDP M, a set of hyper-rectangles H,
and the Posterior f(θi|y) for all i, we say that the MBT is failing iff for all
h ∈ H there exists i, x ∈ θi s.t. [lx, hx] ∩ HDR[fx(θi|y)] = ∅, with [lx, hx] ∈ h.

The intuitive meaning of these two cases follows. The testing activity can
terminate by either confirming that requirements are met (i.e., successful run)
or identifying violated requirements (i.e., failing run) based on the observed evi-
dence. In the first case, the Posterior knowledge tells that the model M[val]
satisfies requirements for all instantiation val constructed by using the Posteri-
ors’ HDR. In fact, all the values that can be drawn from the HDRs meet the
pre-computed verification conditions. In the latter case, the verification con-
ditions cannot be satisfied because the HDR identifies disjoint intervals with
respect to pre-computed hyper-rectangles.

It is worth noting that Definition 3 and Definition 4 identify two disjoint
conditions. Furthermore, termination by satisfying one of the two conditions is
always guaranteed because of the asymptotic behavior of the Posterior in the
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limit of infinite observations. Loosely, if consistent estimates are available, then
Bayesian inference is consistent [17]. Moreover, the Posterior converges to a dis-
tribution independent of the initial Prior if the random variable in consideration
has a finite probability space [18].

6 Empirical Evaluation

We introduce our research questions and design of the evaluation in Sect. 6.1; we
present the results in Sect. 6.2; we finally discuss threats to validity in Sect. 6.3.

6.1 Research Questions and Design

The main goal of the evaluation is to investigate the cost-effectiveness of our
testing method. The cost (or effort) refers to the number of tests required to
achieve termination. The effectiveness here represents the ability of identifying
requirements violations. Thus, we aim at answering three research questions:

RQ1: Is the approach able to detect requirements violations?
RQ2: What is the cost required by our testing method to achieve termination?
RQ3: How does our approach compare with existing MBT methods in terms of

cost-effectiveness?

We addressed these questions by conducting an extensive testing campaign
using different versions of the SafeHome as SUT. In particular, we considered
variations taking control over two main factors of interest: degree of uncertainty
in terms of percentage of uncertain model parameters (varying from 25% to
100%); and distance between actual values of model parameters and verification
conditions given by hyper-rectangles (varying from 0.01 to 0.16). We have tested
each version of the SUT by using the approach presented in this paper and we
compared its cost-effectiveness with a traditional Random MBT approach [19],
and also an existing uncertainty-aware MBT method called Flat [16].

For all experiments, we measured the number of tests spent for each uncertain
region (i.e., the cost) and the failure detection capability (i.e., the effectiveness).
Hereafter we discuss the most relevant results and we refer the reader to our
implementation and dataset for the replicability of the experiments1.

6.2 Results

Results for RQ1. We addressed this question by assessing the ability of exhibit-
ing failing runs when the actual values of uncertain parameters fall outside the
boundaries of the hyper-rectangles. Thus, we took control over actual values and
hyper-rectangles and then we executed the HDR-aware MBT 100 times for each

1 The MBT module is open source software publicly available at https://github.com/
SELab-unimi/mbt-module. A replication package of the experiments is available at
https://github.com/SELab-unimi/sefm2020-replication-package.

https://github.com/SELab-unimi/mbt-module
https://github.com/SELab-unimi/mbt-module
https://github.com/SELab-unimi/sefm2020-replication-package
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Fig. 4. Effort by varying the distance and the degree of uncertainty.

combination of degree of uncertainty, distance, and truth value (i.e., either true
or false w.r.t. requirements violation). From the results, we observe that, in all
cases, the process effectively returns the expected outcome with bounded effort.
Namely, the MBT process terminated with no more than 9000 tests, represent-
ing the effort value measured in the worst case (i.e., 100% uncertainty and 0.01
distance). Further details on the evaluation of the effort follow.

Results for RQ2. Figure 4 shows the effort required by the HDR-aware MBT.
Each box-plot has been built considering 100 runs for each degree of uncertainty
and a specific distance value. Since the case “0.16 distance” is comparable to
the 0.08 one, it has been omitted. From the data reported by each individual
plot, we observe that the effort increases linearly with the degree of uncertainty.
Namely, for each distance value we assessed the existence of a linear depen-
dency between degree of uncertainty and number of tests with correlation value
greater than 0.5. The slope of the estimated lines varies from 16.4 to 37.5. The
shorter the distance the steeper the growth. This means that parameters close
to hyper-rectangle borders are likely to increase the effort when the number
of uncertain parameters increases. Furthermore, we observe that the variabil-
ity of the effort values increases when reducing the distance value. The average
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Fig. 5. Effectiveness comparison among HDR-aware, Random, and Flat.

variance of the effort is 2998.7, 62815.7, 355587.1, and 2433554.3, for distance
values 0.08, 0.04, 0.02, and 0.01, respectively. In general, we can observe that by
halving the distance value, we increase the variance of an order of magnitude.
The interpretation of this result tells that the closer the actual values to the
hyper-rectangles, the lower the predictability of the effort.

Results for RQ3. To address this research question, we first computed the
effort required by selected (existing) MBT strategies and then we compared it
with the effort required by the HDR-aware MBT by using the standardized non-
parametric Vargha and Delaney’s Â12 effect size measure [20]. In this context,
the Â12 encodes the probability that running the HDR-aware MBT yields less
effort than the Random and the Flat MBT strategies. Figure 5a shows a heat
map of the effect size by varying uncertainty and distance factors. The two plots
refer to the pairwise comparisons: HDR-aware versus Random (left); and HDR-
aware versus Flat (right). Data shows that Random and Flat are similar, i.e.,
the Â12 effect size values are comparable. In general, the probability of observing
less effort when adopting the HDR-aware MBT is high. It represents the certain
event for almost all cases. We observe outliers when the degree of uncertainty
is low (25%) and the distance is short (less than 0.04). In this settings, all the
strategies (HDR-aware, Random, and Flat) are likely to exhibit the same effort.

The effectiveness has been assessed by executing all the selected strategies by
assuming the same total amount of effort. Namely, we fixed the limit according
to the maximum effort required by the HDR-aware method. The rationale is to
execute both Random and Flat by using an effort value that ensures termination
of the HDR-aware method with the correct outcome. At the end of each exe-
cution we summarized the Posteriors to determine whether the run succeeded
or failed with respect to pre-computed hyper-rectangles. Thus, we counted the
number of wrong outcomes to measure the verification error rate when using
either Random or Flat instead of HDR-aware. Figure 5b shows a heat map of
the error rate by varying uncertainty and distance factors. The two plots refer
to the errors obtained by using: Random (left); and Flat (right). Data shows
that both approaches are likely to terminate by exhibiting a wrong outcome.
Thus, the effectiveness of both Random and Flat is lower w.r.t. the HDR-aware
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method. The two plots show a comparable pattern: the error rate increases when
the distance decreases and the uncertain parameters increase. In both cases we
observe the worst effectiveness values with distance equal to 0.01 and uncer-
tainty equal to 100%. In this setting, the error rate values are 0.96 and 0.90 for
Random and Flat methods, respectively.

6.3 Threats to Validity

To limit threats to external validity we conducted a testing campaign on several
versions of the SafeHome by taking control and detailing the important factors
of interest (i.e., uncertain regions, uncertainty degree, and distance) for all exe-
cuted experiments. Further generalization of our findings to different application
domains and model sizes requires additional experiments. We dealt with inter-
nal validity threats in the empirical study by directly manipulating independent
variables. Namely, we have direct assess to both actual values of uncertain param-
eters and design-time beliefs expressed by Priors. It is worth noting that direct
manipulation of these factors has been crucial to assess cause-effect between
them and the cost-effectiveness of our approach. Such a fine grained access to
independent variables allows the internal validity to be increased with respect
to conclusions based on an association observed without manipulation. Direct
manipulation permits the creation of the same experimental conditions within
repeated runs. We addressed threats to conclusion validity by reducing the possi-
bility of obtaining results by chance. We repeated experiments 100 for each SUT
variant and for each testing method. Then, we followed the guidelines introduced
in [20] to detect statistical difference. Namely, we conducted a pairwise compar-
ison among testing methods using the Mann-Whitney U test to calculate the
p-value with significance level α = 0.05. We also detected a practical value using
the standardized Vargha and Delaney’s Â12 non-parametric effect size measure.
We handled major threats to construct validity by assessing the validity of the
metrics adopted in our experiments. In particular, the cost has been assessed by
considering the number of tests required to achieve termination. This represents
a traditional metric in assessing randomized testing algorithms [20]. The effec-
tiveness has been measured by verifying the ability of identifying failures (i.e.,
requirements violation in our context). In search-based testing, this represents a
traditional measure to assess the effectiveness.

7 Related Work

A taxonomy of potential sources of uncertainty affecting the development of soft-
ware systems is presented in [21]. Uncertainty is categorized at different stages
such as requirements, design, and production. Testing in this work is almost
neglected. Further effort in categorizing and guiding software engineers in rec-
ognizing different types of uncertainty has been presented in [22]. Probabilistic
models have been adopted extensively to model and analyze uncertainties in the
context of self-adaptive systems. The approach introduced in [23] continuously
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updates transition probabilities of discrete time Markov models using efficient
runtime monitoring. Another approach, introduced in [12], describes runtime
quantitative verification and sensitivity analysis to support adaptation in order
to achieve perpetual meeting of nonfunctional requirements. Queueing networks
have been adopted and extended in [24] with adaptation knobs to dynamically
fulfill performance goals. All these lines of research aim at modifying probabilis-
tic models to react to uncertain changes during operation. In [25] MDPs are
extended by attaching confidence intervals to transition probabilities in order to
compute Pareto optimal policies. Our approach does not apply multi-objective
optimization but uses uncertainty to drive MBT.

Recent research activities show increasing effort in delivering approaches and
techniques that jointly consider testing and uncertainty quantification methods.
Uncertainty sampling has been introduced in [26] to generate suitable test data.
Namely, a “Query Strategy Framework” is adopted to infer a behavioral model
and then select those tests on which the behavior of the system is uncertain. This
approach outperforms conventional and adaptive random testing at exposing
faults. A so called uncertainty-wise UML-based modeling framework has been
introduced in [4] with the aim of creating models that can be executed to test
CPSs. A offline MBT approach that leverages on the uncertainty-wise modeling
framework has been presented in [5]. The approach generates test cases in a cost-
effective way by minimizing the number of tests but maintain coverage of models.
The approach presented in [2,16] incorporates uncertainty mitigation into an
online MBT framework. Nevertheless, requirements are neglected during the
testing process which is guided by coarse information of uncertain components.

To summarize, the methodology introduced in this paper differs from the
state-of-the-art since it combines offline analysis of parametric variability of
uncertain model beliefs and online MBT to detect requirements violations.

8 Conclusion

This paper introduces a novel approach to online model-based testing under
uncertainty encoded as parameters of a Markov Decision process. We use design-
time parametric model checking and then online testing algorithms to gather
runtime evidence and detect requirements violations. The design-time phase
analyzes the parameter space to pre-compute the constraints for requirements
satisfaction. The online testing activity feeds a Bayesian inference process able
to detect violations of pre-computed constraints. We provided a theoretical dis-
cussion of the approach and the description of an empirical evaluation aiming
at assessing its cost-effectiveness. During the evaluation we conducted a large
testing campaign using a number of variations of the SafeHome case study. The
experience collected during our experiments suggests that the approach is able
to spot requirements violations with bounded effort. The HDR-aware method
outperforms both the Random and the Flat strategies considered in our quantita-
tive comparison. Our testing framework has been released publicly to encourage
adoption and repetition of experiments.
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Abstract. Enabling Hoare-style reasoning for low-level code is attrac-
tive since it opens the way to regain structure and modularity in a domain
where structure is essentially absent. The field, however, has not yet
arrived at a fully satisfactory solution, in the sense of avoiding restric-
tions on control flow (important for compiler optimization), controlling
access to intermediate program points (important for modularity), and
supporting total correctness. Proposals in the literature support some of
these properties, but a solution that meets them all is yet to be found. We
introduce the novel Hoare-style program logic LA, which interprets post-
conditions relative to program points when these are first encountered.
The logic can support both partial and total correctness, derive contracts
for arbitrary control flow, and allows one to freely choose decomposition
strategy during verification while avoiding step-indexed approximations
and global invariants. The logic can be instantiated for a variety of con-
crete instruction set architectures and intermediate languages. The rules
of LA have been verified in the interactive theorem prover HOL4 and
integrated with the toolbox HolBA for semi-automated program veri-
fication, making it applicable to the ARMv6 and ARMv8 instruction
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exact sequence of memory accesses performed by software [8]; in critical soft-
ware components, to minimise the trusted computing base the compiler can be
designated as untrusted; in software fault isolation techniques [59], it may be
required to analyse the binary of closed source software.

One of the main difficulties in verifying machine code is the unstructured and
dynamic control flow. This makes it difficult, or in the case of highly optimized
code impossible, to adapt logics for high-level languages by mapping binary frag-
ments to high-level statements: the code may be re-ordered by compilation, and
one high-level statements may be implemented by multiple overlapping frag-
ments and share fragments with other statements. A number of authors have
explored the possibility of regaining Hoare-style reasoning also for the unstruc-
tured case [2,10,18,21,28,35,44,51,53,55]. However, we argue that there is still
room for progress. In order to provide the formal basis for a binary verification
toolkit, it is desirable that a Hoare-style logic for unstructured programs has the
following properties:

1. ability to express and verify both partial and total correctness;
2. support for verification of programs with arbitrary unstructured control flow,

including irreducible loops, i.e., loops with multiple entry points;
3. support for verification of programs with dynamic control flow, e.g., function

abstraction and exception handling;
4. freedom to decompose the verification using several strategies, e.g., splitting

the program into two fragments which may overlap;

We motivate these requirements in Sect. 2 via two simple but illustrative exam-
ples. Our main contribution is the novel logic LA that meets these requirements,
which is presented in Sect. 3. In order to provide a general verification frame-
work that supports programs in arbitrary machine and intermediate languages,
the logic abstracts from the axiomatization of primitive state transitions. We
show that the logic is sound and complete, and we present a definitional exten-
sion that simplifies the verification of binary programs. The logical framework is
demonstrated in Sect. 4, where we verify the two running examples. Finally, LA

has been formalised in the HOL4 interactive theorem prover, integrated into the
HOL4 binary analysis framework HolBA [38]1, and instantiated for two machine
models: the ARMv8 ISA and the HolBA intermediate language, which is called
BIR. This is described in Sect. 5. In Sect. 6, LA is compared with related work, in
particular, it is argued how existing solutions do not meet all of the requirements
listed above. The paper ends with some concluding remarks in Sect. 7.

2 Two Motivating Examples

We introduce two small programs and their intended properties. Despite their
size, the programs present some important challenges for binary verification.
1 The HolBA Github repository is located at https://github.com/kth-step/HolBA and

our LA implementation for this paper is available at the commit tagged SEFM2020

in the directory src/theory/abstract hoare logic.

https://github.com/kth-step/HolBA
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// cont1
24: $a   := $c
25: $b   := $c
26: $t   := 28
27: JUMP 40

// cont2
28: ...

// entry
20: $a   := $x
21: $b   := $y
22: $t   := 24
23: JUMP 40 // add

40: $c   := $a + $b
41: JUMP $t

(a) function reuse

// is_even
20: JUMPIF ($n == 0) 40
21: n      := n - 1
22: JUMP   30

// is_odd
30: JUMPIF ($n == 0) 50
31: n      := n - 1
32: JUMP   20

// no
50: ...

// yes
40: ...

(b) optimized mutual recursion

Fig. 1. Example code and control flow graph.

They are expressed in an assembly-like pseudolanguage, which represents an
abstract unstructured programming language.

2.1 Example: Function Reuse

The first program consists of a function to add two integers as well as a main
program that calls this function twice. Figure 1a presents the program code with
its static control flow graph using program fragments as nodes. Each fragment
consists of multiple statements with unique address labels. For example, the
statement 40: $c := $a + $b is located at address 40 and is part of the frag-
ment representing the function add. It evaluates $a + $b, assigns the result to
the variable $c, and gives control to the next statement. In this case, the next
statement is the indirect jump to the value in the variable $t, representing the
return from add.

The main program consists of three fragments and takes the two parameters
$x and $y. It computes 2 ∗ ($x + $y) by calling add twice and assigning the
result to $c. The fragments for entry and cont1 prepare the parameters of the
function, as well as the return address, and call add using direct jumps. The
ellipses in fragment cont2 represent the code that follows afterwards.

The program satisfies the following contract:

[$x = v1 ∧ $y = v2] 20 → {28} [$c = 2 ∗ (v1 + v2)] (1)

It states that whenever an execution reaches the entry point at address 20 and
the precondition $x = v1 ∧ $y = v2 holds, then, execution reaches the exit point
at address 28 and there the desired postcondition $c = 2 ∗ (v1 + v2) holds.

The control flow edges for the first and second calls are represented by solid
black and dashed grey arrows, respectively. Notice that the static control flow
contains two edges from add to the two return targets, while the dynamic control
flow only uses one return edge per call context, i.e., the first call always returns
to cont1 and the second call returns to cont2.
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This program illustrates how reuse patterns complicate the treatment of con-
trol flow in unstructured languages.

Apparent Loops. The static control flow of the example contains a loop: the
entry of add at the address 40 can reach the exit of add; this exit has a control
flow edge to 24; the fragment from 24 can jump back to the entry of add at 40.
This is caused by the lack of function abstraction in unstructured languages,
which requires a form of reconstruction of call contexts for the control flow.
Verifying this part of the program as a loop would involve the introduction of
an invariant, which is undesirable.

Individual Fragments. It is usually desirable to verify the function add inde-
pendently of the rest of the program. The contract for this function has to
capture the initial values of $a, $b and $t when starting execution from address
40:

[$a = v1 ∧ $b = v2 ∧ $t = v3] 40 → {v3} [$c = v1 + v2] (2)

The initial value of $t represents the return address of the function. In the state
where execution reaches this address, the variable $c must be the sum of the
initial parameter values. Notice how the precondition ties the return address
to the exit point of the contract with the free variable v3. This allows express-
ing properties of reusable fragments in terms of generic contracts that can be
instantiated per call.

Overlapping Fragments. A natural strategy to verify the whole program is to
sequentially compose the following two contracts, which capture the two steps
of the main program:

[$x = v1 ∧ $y = v2] 20 → {24} [$c = v1 + v2]

[$c = v1] 24 → {28} [$c = 2 ∗ v1]

The two contracts concern overlapping fragments of the program because the
fragment of each contract contains one invocation of the function add: the invo-
cation of the first contract ends in 24, and the other one ends in 28.

2.2 Example: Optimized Mutual Recursion

Figure 1b presents a program that uses mutual recursion between two functions
to determine the parity of a given integer. The function is even ends in address
40 if the input is even, otherwise in 50. Likewise, is odd ends in 40 if the input
is odd, otherwise in 50. The example does not use a stack, which could be the
result of an optimized compilation.

Upon entry to either of the two functions, the control flow has a loop (whose
control flow edges are represented by dashed grey arrows) with two exit points
yes and no. Considering the entry point is even, the program meets the follow-
ing contract:

[$n = v1] 20 → {40, 50} [($pc = 40 ∧ v1%2 = 0) ∨ ($pc = 50 ∧ v1%2 = 1)] (3)
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Here $pc represents the program counter, and it is used in the postcondition to
specify that the exit point reached depends on the input parity. For example,
execution reaches 40 and not 50 if the initial value of $n modulo 2 is 0. The
program satisfies an analogous contract for entry point is odd.

Multiple Exit Points. The given example consists of two fragments that, both
individually and combined, have two exit points each. To capture this specific
case as well as arbitrary branch structures in a natural way, it is necessary to
express and compose contracts with multiple exit points.

Irreducible Loops. The loop of the example is irreducible because it has mul-
tiple entry points, which is not uncommon for optimized code. For this reason,
verification of unstructured programs requires the ability to deal with these types
of loops.

3 The Program Logic LA

We assume a machine model consisting of a deterministic transition system.
Let Σ be the set of machine states ranged over by s. The execution of a single
machine instruction is modeled by the partial function nxt : Σ ↪→ Σ with nxtn

as its nth iteration. The partiality of the transition relation allows one to model
failing executions. We assume a function lbl : Σ → Λ from states to a set of
control states Λ. This function can be used to retrieve the label or address of the
next instruction executed from a state and can be thought of as accessing the
program counter. The generality of lbl allows it to also include stack pointers
and other parts of concrete machine states.

We use the notion of entry/exit points, or labels, to identify program frag-
ments. The weak transition relation weak(s, L, s′) relates an initial state s to
the final state s′ that is reached when executing the fragment whose entry point
is lbl(s) and exit points are L.

Definition 1 (Weak transition relation)

weak(s, L, s′) = ∃n. n > 0 ∧ nxtn(s) = s′ ∧ lbl(s′) ∈ L∧
∀n′ : 0 < n′ < n. lbl(nxtn

′
(s)) /∈ L

The weak transition relation is deterministic, partial (since a program may never
reach L from s), and guarantees that no intermediate state has lbl in L. That is,
when weak(s, L, s′) then s′ represents the first encounter of a state with label
in L after s.

The Hoare-style judgment of LA, [P ] l → L [Q], states total correctness in
terms of pre- and postconditions P and Q, entry point l, and set of possible exit
points L. In the following, we abstract from the assertion language used for pre-
and postconditions.

Definition 2 (Judgment of LA). The judgment [P ] l → L [Q] is valid iff

∀s. lbl(s) = l ∧ P (s) =⇒ ∃s′.weak(s, L, s′) ∧ Q(s′) .
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[P ∧ C] l L [Q] [P ∧ ¬C] l L [Q]
Case

[P ] l L [Q]

[P1] l L [Q1]
(

� (lbl = l) ∧ P2 P1

� (lbl ∈ L) ∧ Q1 Q2

)
Conseq

[P2] l → L [Q2]

[P ] l L1 ∪ L2 [Q] [Q]L1 L2 [Q]
Seq

[P ] l L2 [Q]

[I ∧ C ∧ V = x] l {l} ∪ L [lbl = l ∧ I ∧ V < x]

[I ∧ ¬C] l L [Q]
(� l /∈ L) Loop

[I] l L [Q]

Fig. 2. Inference rules for LA

Notice that due to Definition 1, we call this a first-encounter judgment. A partial-
correctness version can be obtained by exchanging the conjunction in the con-
clusion to an implication. In the following, we use lbl = l and lbl ∈ L for the
predicates that constrain the label of a state. Since commonly a program frag-
ment must guarantee different properties for different exit points, we use the
notation l 
→ Q for (lbl = l) ∧ Q. For instance, the following contract describes
the effects of the first statement of the program in Fig. 1a:

C1 = [�] 20 → {21, 22} [21 
→ $x = $a] (4)

Notice that the postcondition of C1 is equivalent to lbl = 21 ∧ $x = $a, therefore
the contract implicitly guarantees that execution starting from 20 reaches the
address 21 without encountering the address 22.

Since unstructured code can have multiple entry points, many program log-
ics feature multiple-entry judgments [10,26,44,51,53]. These are actually equiv-
alent to conjuncts of multiple judgments. In a slight abuse of notation, we use
[P ]L1 → L2 [Q] to refer to the set of all [P ] l → L2 [Q] such that l ∈ L1, inter-
preted conjunctively. Multiple-exit judgments cannot be so reduced. Consider
the example of a conditional jump with targets l1 and l2: if it is required that
the contract states that l1 is not visited before l2, this cannot be phrased using
single-exit judgments only.

3.1 Inference Rules

Figure 2 shows the inference rules of LA. Note that there are no rules for primitive
transitions (execution of only one transition) - these are added when the inference
system is instantiated for a specific ISA (see Sect. 5), for example, contract C1

of Eq. 4 is obtained in this fashion.
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The Case rule allows for combining judgments on different paths of execution
(split by a condition C on the initial state) that both end up in states with
program counters in L. This is useful when verifying branching structures.

The Conseq rule can strengthen the precondition and weaken the postcon-
dition. Note that in contrast to the standard Consequence rule [31], Conseq
only requires that the implications hold for states in the entry and exit points
(l and in L, respectively). For instance, contract C1 of Eq. 4 can be weakened to
[�] 20 → {21, 22} [(21 
→ $x = $a) ∨ (23 
→ �)] (since 23 is not in the exit label
set).

The Seq rule allows for sequential composition of two fragments, with the
label set L1 designating the midpoints. As an example, consider the two first
statements of the entry function in Fig. 1a. The contract C1 of Eq. 4 holds for
the first statement. Similarly for the second statement, the contract

C2 = [21 
→ $x = $a] 21 → {22} [22 
→ $x = $a ∧ $y = $b]

holds. In order to sequentially compose these two contracts, the precondition
of C2 and the postcondition of both C1 and C2 has to be identical. Just like
for the composition rule in Hoare logic, it is required the same predicate on
the point(s) of composition holds. Let Q be (21 
→ $x = $a) ∨ (22 
→ $x =
$a ∧ $y = $b). Since 21 
→ $x = $a implies Q, the contract C1 can be weakened
to [�] 20 → {21, 22} [Q]. In fact, since C1 guarantees that 22 is not encountered
between 20 and 21, we can enforce any property in the (impossible) case of ending
the fragment in 22. Also, since 22 is not the entry point and 21 is not an exit point
of C2, the Conseq rule can be used to weaken C2 to [Q] 21 → {22} [Q]. This
enables to use Seq rule to infer [�] 20 → {22} [Q] and Conseq rule to obtain
[�] 20 → {22} [$x = $a∧$y = $b]. Note the shape of the premises of Seq, which
are due to unstructured control flows: the fragment starting from l may reach
the endpoints L2 without encountering the midpoints L1, for instance if the first
fragment contains the compilation of a break statement. For this reason the rule
requires that the first fragment directly establishes Q if it reaches the endpoints
L2 before L1.

The premises of Loop are contracts for the loop body and loop exit. For the
loop body, the invariant I and the condition C entail that execution starting
from l does not reach any of the exit points in L before returning to l, preserves
the invariant, and strictly decreases the variant. For the loop exit, the invariant
I and the negation of the condition C guarantee that execution starting from l
reaches the exit points L and establishes Q. The side condition l /∈ L ensures
that execution with entry point l and exit points L establishes Q on the first
encounter of L also in the case when C holds. Also, notice that if l ∈ L then the
fragment associated with [I] l → L [Q] corresponds to the loop body, since the
weak transition does not loop through l.

The version for partial correctness simply disregards the variant. Note that
unlike similar rules for structured loops [39], the Loop rule must take into
account possible side effects of exiting the loop as well as multiple exit points.
For this reason, the postcondition in the conclusion is Q and not I ∧ ¬C. Mul-
tiple loop entry points can also be handled by formulating one invariant and
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variant per entry point, allowing for analysis of irreducible loops. Moreover, the
condition C is not syntactically extracted from the program.

The following rule is not necessary for completeness, but is used to unify
contracts stating different properties on the final states:

[P ] l → L [Q1] [P ] l → L [Q2]
Conj

[P ] l → L [Q1 ∧ Q2]

Theorem 1 (Soundness). If [P ] l → L [Q] can be derived from valid assump-
tions using the inference rules of LA, then [P ] l → L [Q] is valid.

Proof. By structural induction over the individual rules.

3.2 Completeness of LA

Note that since LA is agnostic with regard to the concepts of programs, state-
ments and instructions, the completeness theorem is formulated relative to a
sound and complete oracle for primitive transitions.

Theorem 2 (Completeness of LA). Given that the logic used for stating pre-
and postconditions is sufficiently expressive to state invariants, variants, weakest
preconditions and strongest postconditions, and that there exists a sound and
complete oracle for contracts of primitive transitions, the first-order theory of the
underlying program and the theory of well-founded orders, then � [P ] l → L [Q]
if [P ] l → L [Q] is valid.

Proof. To prove completeness of LA, the following definition is introduced for
the control-flow graph of [P ] l → L [Q]:

CFG(P, l, L) =

{
(lbl(nxtn(s)), lbl(nxtn+1(s)))

∣∣∣∣∣ P (s) ∧ lbl(s) = l ∧ n ≥ 0 ∧
∀0 < n′ ≤ n. lbl(nxtn

′
(s)) /∈ L

}

The edges of the control-flow graph CFG(P, l, L) are the possible transitions
starting from the state with label l for which the precondition P holds, up to
and including edges into the exit label set L.

The proof is then by induction over set inclusion on CFG(P, l, L).
For the base case, only one edge exists. This means that every state that

satisfies P and whose lbl is l immediately reaches L in one transition. The
contract describing this is derivable directly from contracts for the primitive
transitions.

For the inductive case, the induction hypothesis is that if CFG(P ′, l′, L′) is
a strict subgraph of CFG(P, l, L), then [P ′] l′ → L′ [Q′] =⇒ � [P ′] l′ → L′ [Q′].

First, consider the case where all edges in CFG(P, l, L) go directly from l to L.
Then, � [P ] l → L [Q] follows directly from the rules for primitive transitions and
the Case rule. In the case where not all edges go directly to L from l, consider
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the case for which the labels of CFG(P, l, L) \ (Λ × L) can be partitioned into
sequential sets La, Lb such that

(CFG(P, l, L) \ (Λ × L)) ∩ (Lb × La) = ∅ .

Let Cb be the predicate on states in l identifying all states from which execution
reaches Lb before L (this is provided by the oracle in the assumptions of the the-
orem). Furthermore, let Lmid be the subset of Lb which has incoming edges from
La. Then, � [P ∧ Cb] l → Lmid ∪ L [R1] follows from the inductive hypothesis
for some strongest postcondition R1 provided by the oracle in the assumptions
(note that this contract will not visit L by definition of Cb). � [R2]Lmid → L [Q]
follows for similar reasons, where R2 is some weakest precondition provided by
the oracle. After unifying the midcondition using the Conseq rule (by precon-
dition strengthening), then the two contracts can be composed using the Seq
rule to obtain � [P ∧ Ca] l → L [Q]. If Cb = �, then this derives the complete
contract [P ] l → L [Q]. If not, then [P ∧ ¬Cb] l → L [Q] must be valid, and deriv-
able since it is a strict subgraph of CFG(P, l, L). [P ] l → L [Q] is then derivable
by the Case rule.

In case the partition into sequential sets is not possible, then l is in the
transitive closure for every label except those in L, and since no edges go directly
from l to L, then l /∈ L. Let Cl be the predicate on states in l identifying all
states such that execution from l goes back to l before reaching L:

Cl =
{

s. I(s) ∧ ∃n. n > 0 ∧ nxtn(s) = s′ ∧ lbl(s) = l ∧
∀n′.n′ < n ∧ nxtn

′
(s) = s′ =⇒ s′ /∈ L

}

I is the predicate identifying all possible states in l:

I =

⎧⎨
⎩

s′. ∃s, n. P (s) ∧ lbl(s) = l ∧ n ≥ 0∧
nxtn(s) = s′ ∧ lbl(s′) = l ∧ ∀n′. n′ < n

nxtn
′
(s) = s′′ =⇒ s′′ /∈ L

⎫⎬
⎭

and V is a loop variant (which must exist, due to the total-correctness judgment
in the antecedent of the proof obligation) . Then the contract for the loop body
[I ∧ Cl ∧ V = x] l → {l} ∪ L [lbl = l ∧ I ∧ V < x] must be valid, and derivable
since it lacks any edge to L. Also, [I ∧ ¬Cl] l → L [Q] will be valid by definition
of Cl, and lack all edges going back to l, and accordingly be derivable. Since
P =⇒ I (the invariant also holds by definition in the very initial state) then
the two contracts can be used with the Loop rule to obtain [P ] l → L [Q], which
was to be proved, completing the proof.

3.3 LAS - Definitional Extension of LA

There are some common strategies that simplify verification via LA. First, for
sequential composition it is useful to clearly identify which labels in the exit label
set are not encountered by execution in the first contract, since it is required
to prove the exit label set of the first contract must include the exit points of
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the second contract. Secondly, while analysing concrete binary code it is usually
necessary to demonstrate preservation of invariants, such as the code being in
memory, the stack pointer being outside the code memory, and so on.

For these reasons we introduce a definitional extension of LA. The judgment
for LAS [P ] l I−→ 〈LW | LB〉 [Q] adds an invariant I, which must hold in the initial
and final states of execution, and two disjoint exit label sets LW and LB . The
sets LW and LB are referred to as whitelist and blacklist respectively: the labels
in LB must not be encountered before reaching exit points in LW .

Definition 3 (Judgment of LAS). Given that the whitelist and blacklist sat-
isfy LW ∩ LB = ∅ and LW �= ∅, the judgment [P ] l I−→ 〈LW | LB〉 [Q] is defined
as [P ∧ I] l → LW ∪ LB [(lbl /∈ LB) ∧ Q ∧ I].

The set of rules for LAS are derived from LA and for brevity we just introduce
them with short comments. It is possible to weaken a contract by freely dropping
labels from the blacklist or moving them to the whitelist:

[P ] l
I−→ 〈LW | LB〉 [Q]

BL-Subset

[P ] l
I−→ 〈LW | LB \ L〉 [Q]

[P ] l
I−→ 〈LW | LB〉 [Q]

(� L ⊆ LB) BL-to-WL

[P ] l
I−→ 〈LW ∪ L | LB \ L〉 [Q]

On the contrary, to move a label from the whitelist to the blacklist, the
postcondition must entail that the label is not encountered:

[P ] l
I−→ 〈LW | LB〉 [Q]

(
� L ⊂ LW

� Q =⇒ lbl �∈ L

)
WL-to-BL

[P ] l
I−→ 〈LW \ L | LB ∪ L〉 [Q]

Finally, a simplified and more conventional sequential composition is possible
when (i) the whitelist of the second fragment is included in this blacklist of the
first one and (ii) the midpoints LW do not overlap with the final endpoints L′

W :

[P ] l
I−→ 〈LW | LB〉 [R] [R]LW

I−→ 〈L′
W | L′

B〉 [Q]
(

� L′
W ⊆ LB

� LW ∩ L′
W = ∅

)
S-Seq

[P ] l
I−→ 〈L′

W | LB ∩ L′
B〉 [Q]

In contrast to LA, the consequence rule has been split up into the two separate
rules to remove the need for unnecessary computation in the implementation
of proof procedures. The rule Pre-Str is for precondition strengthening and
Post-Weak for postcondition weakening.

[P1] l
I−→ 〈LW | LB〉 [Q]

(� (lbl = l) ∧ P2 =⇒ P1) Pre-Str
[P2] l

I−→ 〈LW | LB〉 [Q]

[P ] l I−→ 〈LW | LB〉 [Q1]
(� (lbl ∈ LW ) ∧ Q1 =⇒ Q2) Post-Weak

[P ] l I−→ 〈LW | LB〉 [Q2]



Hoare-Style Logic for Unstructured Programs 203

Table 1. Function reuse formulas.

Abbr. Formula

Padd 40 �→ $a = v1∧$b = v2∧$t = v3

Radd 41 �→ $c = v1 + v2 ∧ $t = v3

Qadd v3 �→ $c = v1 + v2

Pmain 1 20 �→ $x = x ∧ $y = y

Rmain 1 40 �→ $a = x ∧ $b = y ∧ $t = 24

Smain 1 24 �→ $c = x+ y

Pmain 2 Smain 1

Rmain 2 40 �→ $a = $b = x+ y ∧ $t = 28

Smain 2 28 �→ $c = (x+ y) + (x+ y)

Qmain 28 �→ $c = 2 ∗ (x+ y)

Table 2. Mutual recursion formulas.

Abbr. Formula

cond 1 < $n

var $n

inv v1%2 = $n%2

Ploop b inv ∧ cond ∧ var = v2

Qloop b inv ∧ var < v2

Ploop e inv ∧ ¬cond

Qloop e (40 �→ v1%2=0)∨(50 �→ v1%2=1)

Rloop inv

Qloop Qloop e

Ploop $n = v1

The loop rule S-Loop is very similar to Loop of LA. Here the loop invariant
uses the place of the LAS invariant, and the side condition accounts for the split
of the end labels into whitelist and blacklist.

[C ∧ V = x] l I−→ 〈{l} ∪ LW | LB〉 [lbl = l ∧ V < x]

[¬C ∧ I] l �−→ 〈LW | LB〉 [Q]
(

� l /∈ LW

� l /∈ LB

)
S-Loop

[I] l �−→ 〈LW | LB〉 [Q]

4 Verification of the Examples

To exemplify the usage of our logic, we verify the programs from Sect. 2.

4.1 Function Reuse

We first establish a generic contract for the function add that is then instantiated
for the two function invocations. Figure 3 visualizes the verification flow and
Table 1 collects the predicates for this example. In the following, we simply omit
the blacklists if they are empty. The contract add generic corresponds to Eq. 2
and it is generic in terms of the function arguments v1 and v2 as well as the
return label v3. For simplicity, we set the blacklist as the set {20 . . . 28} \ {v3},
which are all the addresses of the example outside of add, except the return
address. In a more general use case, the blacklist is a variable set, where the
return label v3 and all function labels except the entry cannot be included.

The contract add return refers to a single primitive transition; hence it
is not derived from the inference rules of LA. Instead, it is established using
the semantics of the single indirect jump at program address 41, which guar-
antees [Radd] 41 → 〈{20 . . . 28, v3} | 〉 [Qadd]. This contract is weakened to add
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add body

add return

add instance 1

add instance 2

add genericSEQ

Fig. 3. Verification workflow for function add with the state predicates from Table 1.

main

call 1

add instance 1

SEQ

...

SEQ

Pmain part 2Pmain part 2

main part 1main part 1

Fig. 4. Verification workflow for main program with the state predicates from Table 1.

return with the rule WL-to-BL. Similarly, add body is derived from the
semantics of the single assignment at program address 40, which guarantees
[Padd] 40 → 〈{20, . . . , 28, 41, v3} | 〉 [Radd]. Here, we need to impose the side con-
dition v3 �= 41 in order to use the rule WL-to-BL to obtain add body. The
label v3 is included into the blacklist to allow subsequent sequential composition
with add return to add body.

This contract is instantiated twice for the two function invocations, where
concrete values are substituted for the return address v3 and the function argu-
ments v1 and v2. For the first function call (i.e. add instance 1) v1 = x, v2 = y,
v3 = 24 and for the second function call (i.e. add instance 2) v1 = v2 = x + y,
v3 = 28. Figure 4 shows the flow to verify the main program. For brevity, it omits
the source contracts of the second function invocation. The verification consists
of several sequential compositions, where the whitelists of subsequent contracts
have to be included in blacklists of preceding contracts. For example, main part
1 has 28 in the blacklist so that we can compose it with main part 2, where
28 is in the whitelist. Finally, we use weakening to obtain the overall contract
main, which corresponds to Eq. 1.

4.2 Mutual Recursion

The verification steps of the two recursion entry points is even and is odd are
virtually equivalent. Hence, we only present the steps for is even as shown in
Fig. 5. Because the control flow is a loop, we start by identifying the condition to
stay in the loop cond as well as loop variant var and loop invariant inv, which are
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loop

loop exit

loop body

LOOP

Fig. 5. Verification workflow for the recursive function is even with the state predi-
cates from Table 2.

defined together with the state predicates in Table 2. These predicates allow us
to establish the contracts loop body and loop exit using sequential reasoning,
as for the previous example. These contracts are then combined using the loop
composition rule. Finally, precondition strengthening allows us to obtain the
desired contract corresponding to Eq. 3 from loop because Ploop implies Rloop.

5 Implementation

We implemented our logic and verified its soundness in HOL4. We also instan-
tiated the logic for two transition systems: the formal model of ARMv8 and the
machine-independent intermediate language, BIR, of the binary analysis frame-
work HolBA [38].

HolBA supports the following verification workflow: first, the HolBA tran-
spiler translates ARMv8 (among other ISAs) binary code to BIR together with
a bisimulation proof. The bisimulation relation guarantees correspondence of
ARMv8 state components with BIR variable assignments and the BIR program
counter. Second, the BIR program can be verified to meet contracts - for these
examples, this has been done using a weakest precondition generator and prover.
Third, the contracts are transferred to the ARMv8 model using the bisimulation.
Transpilation to and from BIR as well as proving contracts for acyclic program
fragments is fully automated, meaning the verification code consists of specifi-
cation as well as fitting together contracts for acyclic program fragments, where
applying one rule typically takes one LOC. The integration of our logic in HolBA
allows composing ARMv8 contracts either directly, or indirectly by composing
BIR contracts and transferring the result to ARMv8.

The ARMv8 instantiation uses the L3-based machine model [29]. An ARMv8
machine state consists of registers, processor flags and memory. The program
counter is one of the registers and indicates which memory location contains the
next instruction to execute. Consequently, for this model, lbl retrieves the pro-
gram counter from the state and Λ are all memory addresses. The state transition
function NextStateARM8 represents the execution of a single instruction and cor-
responds to nxt. Because the program is stored in memory, it may change by
memory operations. The invariant of LAS can be used to fix the program under
analysis and exclude self-modifying code, by requiring that the program binary
is loaded in system memory.
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Table 3. HOL4 code sizes in lines of code (LOC).

Component Total Subcomponents

Logics 863 LA: 372, LAS: 491

Instantiations 1040 BIR: 974, ARMv8: 66

BIR composition tools 742

Examples 1180 Function reuse: 428,
Mutual recursion: 382,
ARMv8: 370

The BIR instantiation uses the model defined in HolBA. BIR is designed
to have as few language primitives as possible, to simplify the construction of
analysis tools. In fact, it is very similar to the pseudolanguage used in Sect. 2.
A BIR state consists of a map of variable names to values, a program counter,
and execution status flags to indicate whether the program is running or is in
an exceptional state. The variable map is used to represent both register and
memory assignments. In BIR, the program is not part of the state like in ARMv8
a program is in system memory. It can therefore change only due to an explicit
jump statement. For this model, lbl extracts the program counter of the BIR
state and nxt is the execution of the sequence of BIR statements that simulate
a single machine instruction. The transition function nxt is only defined for
transitions to non-exceptional states.

We chose to use boolean BIR expressions as state predicates in order to reuse
the existing automation of HolBA. Because BIR expressions can only refer to
variable assignments, but not to the program counter, this choice restricts the
expressiveness of pre- and postconditions. For this reason, BIR judgments are
defined as a specialisation of LAS where the postconditions are maps from labels
to BIR expressions following the syntax of 
→ from Sect. 3. We also proved in
HOL4 a program composition rule for BIR, i.e., contracts of subprograms can
be applied to larger programs.

We extended HolBA to support our specialized BIR judgments in the exist-
ing verification infrastructure. Specifically, we modified the weakest precondi-
tion tool of HolBA to enable automatic proofs of contracts for non-looping BIR
statement sequences without indirect jumps by using the existing SMT solver
integration and contract entailment. This allowed us, for example, to establish
the contracts marked with ∗ in Figs. 3, 4 and 5. We created a library to auto-
mate the application of composition rules and used it to verify the two example
programs according to the workflows presented in Sect. 4. This was also used
together with the HolBA transpiler to verify an ARMv8 program that has been
compiled from C code.

Table 3 shows the code sizes (calculated using cloc [20]) for our verification
of the logics, their instantiations, the supporting HOL4 tools to semi-automate
contract composition, and the verification of the examples. Each example of this
paper amounts to about 10 BIR statements and can be verified in less than 10 s
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Table 4. Summary of features of existing logics for unstructured programs.

Logic Total

correctness

Partial

correctness

First

encounter

Overlapping

fragments

Completeness

Myreen, Gordon [44] � � � � �
ISCAP [56] � � Only function ret. � �
Saabas, Uustalu [7,51] � � � � �
Tan, Appel [53] � � � � �
Benton [10] � � � � �

on an Intel i7-4800MQ with our proof-of-concept implementations. The ARMv8
example consists of 48 BIR statements and takes less than 40 s for transpilation
and verification.

6 Related Work

When Tony Hoare introduced the formal system that later became known
as Hoare logic in 1969, he did not initially treat arbitrary jumps and noted
that these likely present a problem with complex solutions [31]. The following
years, several extensions of Hoare logic were proposed to deal with unstructured
code [2,17,18,35] which were shown to be unsound [2,3,50].

In 1976, Wang [55] proposed a program logic for total correctness of unstruc-
tured Algol-like programs, introducing multi-exit postconditions with different
postconditions depending on exit label. However, in this logic, the judgments
do not guarantee that the postcondition is met at the initial encounter of an
associated label, unless this happens to entail exiting the program segment. In
1981, de Bruin [21] introduced a logic for partial correctness of unstructured
programs. This logic is dependent on a list of global label invariants, which must
hold every time the corresponding label is reached. This could be cumbersome
to handle during practical verification.

Years later, in the early 2000s, computational resources had made program
verification possible on a larger scale, facilitating the extension of the scope of
analysis from idealized high-level languages to machine code. In particular, typed
assembly languages [41] and proof-carrying code [1,48] originated a renewal of
interest in the logical foundations for reasoning about programs. Table 4 contains
a summary of recently proposed unstructured program logics.

Starting in 2002, the FLINT project began working on the CAP family of
unstructured languages and their program logics [15,16,28,49,56,57]. Various
dialects of these logics have been formalized in Coq [22,23], instantiated for x86
and SPARCv8 ISAs [58], and used to verify simplified OS kernels [27]. The ini-
tial CAP logics are written in continuation-passing style (in order to support
first-class code pointers easily) and incorporate separation logic. In 2011, they
presented ISCAP, a direct-style logic that supports a partial-correctness judg-
ment only for entire functions [56]. The CAP family does not include any logic
for total correctness like LA.
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In 2005, Benton [10] proposed a program logic for partial correctness with
multiple entry points and multiple exit points. Benton formalised a version of
his logic in Coq [11] and used it for proofs of type safety in a certified compiler
between two languages [12,13]. Benton uses continuation-passing style reasoning
with step-indexed approximations to provide the partial-correctness judgment.
This has some limitations; for example, a label continuation can never be both
in the pre- and postcondition. Also, the logic has global label invariants, similar
to those of de Bruin.

Tan and Appel introduced a program logic for partial correctness similar to
Benton’s, basing it on continuation-passing style reasoning with step-indexed
approximations [53]. This logic was used in the Foundational Proof-Carrying
Code project for type-safety proofs of SPARC machine code. No total-correctness
version of this logic is known to exist by the authors.

In 2006, Saabas and Uustalu [51] constructed a program logic for partial
correctness. Bartels et al. [5–7,32,33] used a derived logic with totally correct
judgment formalised in Isabelle/HOL to reason about communicating unstruc-
tured code. Marti et al. [40] used another formalisation in Coq to reason about
MIPS assembly in a minimal OS. In contrast to LA, these logics are composi-
tional only over non-overlapping code fragments.

Another program logic for unstructured code with totally correct judgment
was suggested in 2007 by Myreen and Gordon [44], most famously used in the
CakeML verified compiler [36]. In the implementation of the logic, the axiom-
atization of single instructions is done via decompilation into logic [42,45–47]
and the logic has been used to verify a bignum implementation [43], validate
the compilation of seL4 [52], verify device drivers [24,25], and provide machine-
checkable proofs of security properties of realistic executables [54]. Unlike LA,
the judgments of this logic do not guarantee that the postcondition is met at the
first encounter of the exit labels, which is equivalent to relaxing the condition
∀n′ : 0 < n′ < n. lbl(nxtn

′
(s)) /∈ L in the weak transition relation. For this

reason, the judgment of the logic cannot express contracts such as C1 in Eq. 4,
which disallow intermediate visits to certain labels. Also, a counterpart to the
Conj rule of LA is not possible in this type of logic, since it is not possible to
guarantee that if two contracts with the same entry and exit labels hold, then
the program establishes both postconditions at the same time. Having a stronger
judgment comes with other benefits of clarity as well. For example, with first-
encounter judgments stating loop variants and invariants (meaning {l} = L), it
is always known that the invariant holds on every iteration of the loop, whereas
this is impossible in the other case, where invariants could hold only every nth
loop.

Several authors [4,9,14,37] have proposed mechanisms for semi-automatic
verification of contracts for unstructured programs. These approaches use dif-
ferent variations of the weakest precondition calculus to generate verification
conditions in the same style that we followed in Sect. 5 to verify loop-free BIR
fragments. However, these works do not introduce a general program logic to
enable the composition of contracts that have been established using different
verification methods.
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7 Conclusion

We have presented a Hoare-style program logic LA which combines total cor-
rectness and postconditions stated on the first encounter of the endpoints. This
program logic been defined inside the ITP HOL4, and integrated with the HolBA
toolbox to perform semi-automated verification of binary programs. We also
prove relative completeness of LA. In practical verification, the drawback of a
first-encounter judgment is that the exit points of the final contract to be derived
need to form a subset of the exit labels in every sub-contract. Usually, this is han-
dled by generously populating the blacklist, for example with the complement
of the labels touched by execution in the contract.

The verification procedures we integrated into the toolbox HolBA are unop-
timized prototypes to exemplify the usage of the logic and do not present a com-
plete verification tool yet. Because of this, a significant amount of code in the
verification examples consists of ad-hoc procedures for special cases and should
be properly factored out into the toolbox. We are currently working on improv-
ing our tool to enable the verification of small and critical low-level components
like, for example, microkernels and cryptographic routines.

In this work, we assume a deterministic transition relation. However, we
believe that a partial correctness version of LA can be straightforwardly extended
to non-deterministic systems. However, the completeness proof might require
changes to the assumption on primitive transitions, since these can be non-
deterministic. Extending the total correctness version of the logic to deal with
non-determinism would likely be more complicated since the contract will have
to reason about execution traces.

Our work abstracts from the assertion language of LA, which is typically
restricted when the logic is instantiated. For instance, in our implementation
for BIR, we restricted the assertion language to use BIR boolean expressions.
Other possibilities for the assertion language can be the assertion language of
separation logic for enabling a frame rule, and rely-guarantee for reasoning about
concurrency. However, these restrictions of the assertion language do not, in
general, allow to directly transfer the completeness proof.

We are currently extending LA with strong invariants in the sense of Hähnle
and Mostowski [30]. This would allow stating properties at every execution step,
as opposed to the existing invariants of LAS which only hold at the initial and
final states. Adding such invariants would allow expressing continuous integrity
of shared memory sections.
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Abstract. Stability is a fundamental requirement of dynamical systems.
Most of the works concentrate on verifying stability for a given stabil-
ity region. In this paper we tackle the problem of synthesizing P-stable
abstractions. Intuitively, the P-stable abstraction of an open dynamical
system characterizes the transitions between stability regions in response
to external inputs. The stability regions are not given - rather, they are
synthesized as the tightest representation with respect to a given set of
relevant predicates P. A P-stable abstraction is enriched by timing infor-
mation derived from the duration of stabilization.

We implement a synthesis algorithm in the framework of Abstract
Interpretation, that allows different degrees of approximation. We show
the representational power of P-stable abstractions, that provide a high-
level account of the behavior of the system with respect to stability, and
we experimentally evaluate the effectiveness of a compositional approach,
that allows synthesizing P-stable abstractions for significant systems.

1 Introduction

Context. Reactive systems are often designed to operate in some stable condition
(in absence of external stimuli), and to reach a possibly different stable condition
(in response to some external stimulus). Stability may be reached after variable
amounts of time, possibly depending on the physical dynamics being controlled.
Notable examples are HVAC systems and relay-based circuits, built out of elec-
tromechanical components, pervasively adopted in the railways domain for the
control of stations.

System stability is hard to assess. Stability is not to be confused with a com-
pletely still situation (i.e. a zero-derivative point) and partly oscillating or limit
behaviors may be considered stable. Furthermore, a system may exhibit a large
number of stable conditions, which may be difficult to characterize by inspec-
tion, especially for legacy systems. Finally, the intended discrete logical behavior
depends crucially on the physical status: a light may be on or off depending on
the current in a lamp resistor; an engine may be powered or not depending on
whether the magnetic field induced by a coil is sufficient to close a switch.

In the context of analyzing legacy systems, one is interested in characterizing
the specification of a set of controlling actions in terms of their effects on the
c© Springer Nature Switzerland AG 2020
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Fig. 1. A circuit regulating a lamp L, based on a switch S and a relay RL, and an
automaton that describes the effects of the external actions on the lamp state.

system state. These inputs may trigger a sequence of complex internal changes,
both discrete (like relay interactions) and continuous (like the charging process
of a capacitor) before reaching the next stable state. The duration of these
evolutions is also important: after an action, it may be necessary to wait some
time before evaluating the state of the system or before accepting a new input.

As an example, consider the simple circuit represented on the left-hand side
of Fig. 1. It receives external inputs corresponding to actions on the switch S:
when the delayed relay RL receives enough current (i.e., if the switch stays closed
for a sufficient time for its charging process) it closes the corresponding switches
RLS 1 and RLS2. We consider the problem of extracting the relation between
some evaluations of interest, e.g., the lamp L being on or off, and the sequence
of performed actions, in a formalism that allows formal verification.

Contribution. In this paper we investigate the problem of characterizing the
effects of events on a hybrid system by analyzing where the triggered behaviors
stabilize. We define the notion of P-stable abstraction as the automaton that
captures the essence of stabilization following each external input.

The granularity of the abstraction is induced by a given set of relevant predi-
cates P. Intuitively, an (abstract) state is associated to predicate valuations, and
identifies the (concrete) states that are stable in the corresponding region. The
transitions between abstract states describe the stabilization process of the con-
crete system when responding to an external stimulus. The abstraction is made
accurate by requiring the stability regions to be minimal : the stability of a tra-
jectory is defined in terms of the smallest P-representable region in which the
trajectory eventually converges. The synthesis of P-stable abstractions directly
results in a set of temporal properties that are satisfied by the concrete system,
and can therefore be used in reverse-engineering and migrating to new technol-
ogy. In order to capture the duration of stabilizations, a P-stable abstraction
is enriched with timing information characterizing the time spent in unstable
states. This information can be used to synthesize the correct value to impose a
slow-switching hypothesis on the external environment of the system [17].

Second, we prove that the problem can be recast in the framework of Abstract
Interpretation (AI) [14] and propose a synthesis algorithm based on the explo-
ration of the abstract state space. At the core of the algorithm is the computation
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of sufficient conditions for stability. The AI framework is fundamental to seam-
lessly approximate P-stable abstractions by reducing the precision of the abstract
domain. A compositional approach is possible where the analysis algorithm is
applied to the individual components of a complex network, later combining
their P-stable abstractions. This approach is sound and, in the practically rele-
vant case of discrete interaction of components, it may obtain the same result
as obtained by the P-stable abstraction to the complex network.

The proposed algorithm has been implemented in a symbolic analysis tool
leveraging the PPLite library [5] for convex polyhedra. An experimental eval-
uation, focusing on a set of parametric benchmarks representing circuits with
run-to-completion behaviors, shows that the proposed techniques can obtain
abstractions of rather complex hybrid systems, also providing evidence for the
need of adopting the compositional analysis approach in order to improve on
scalability.

Structure of the Paper. In Sect. 2 we discuss related work. In Sect. 3 we introduce
some background. In Sect. 4 we introduce P-stable abstraction. In Sect. 5 we cast
the problem in the AI framework. In Sect. 6 we discuss the implementation, and
we experimentally evaluate the approach. In Sect. 7 we draw some conclusions
and outline directions for future work.

2 Related Works

State of the Art. Stability is an important property of dynamical and hybrid
systems which has been widely studied from different perspectives. Classic sta-
bility is defined by requiring that all the trajectories are asymptotically attracted
by an equilibrium point xe [9,17]. Since classical asymptotic stability excludes
oscillating behaviors, region stability [21,22] requires that the trajectories even-
tually remain inside a given invariant region, intuitively corresponding to the
temporal property AFAGR, for a given region R, even if no single equilibrium
point exists. The alternative notion of strong attractor also requires that all the
trajectories of the system never leave the region once entered, i.e A¬RUAGR.

The problem is typically to verify the global stability of a given system,
i.e. proving that every trajectory satisfies the required stability criterion (be it
asymptotic or region stability). When global stability does not hold, an addi-
tional task is to compute the region of attraction, i.e. the set of states whose
outgoing trajectories are stable.

Asymptotic stability can be proven by providing a Lyapunov function as
a certificate that the energy of the system is decreasing (in its domain) until
the equilibrium point is reached. Several methods have been proposed to this
aim, with different levels of automation, soundness and scalability [10,16,20,24].
Region stability verification cannot be directly tackled as a reachability problem.
It is proved by reduction to liveness checking with combinations of reachability
and SMT solving, or based on the use of (cartesian) predicate abstraction [21,22].

Interestingly, in the case of switching systems, stability of the whole system
is not implied by the stability of each modality. Some works (e.g. [6,23]) aim
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at finding conditions on switching sequences in order to ensure the stability of
the composed system. Another approach to achieve global stability is to impose
a slow-switching condition, i.e. there must be a sufficiently high time interval
between subsequent inputs. [8,19] prove the adequacy of such a time interval by
analyzing the average dwell time of the system.

Novelty. This work differs from the works mentioned above in several ways. First,
in contrast to verifying stability with respect to a given region, we synthesize a
P-stable abstraction that characterizes all the system behaviors with respect to
stabilization. Notice that we do not rely on a single convergence region being
given. We explore the space of possible convergence regions induced by the set
P of predicates, and find the tightest representations. Second, the synthesized
region is not a simple invariant of the system: rather, it is possibly, eventu-
ally invariant only for the trajectories triggered by the event under considera-
tion. Hence we simulate hybrid evolutions with a relation of possible attraction
between two stable conditions: we want to express the existence of an eventually
convergent trajectory (intuitively corresponding to an EFAGR property, for a
given region R), rather than requiring stabilization for all paths (as in AFAGR).
Another key difference is that the aforementioned approaches are mainly related
to purely dynamical or closed hybrid systems. We adopt a more expressive frame-
work, considering switched systems, open to autonomous events. Specifically, our
aim is to analyze the stabilization effects for external inputs, by considering the
“closed” dynamic of the system. Finally, we take into account timing informa-
tion.

This work is also quite distinct from predicate abstraction for hybrid sys-
tems [1,2]: the main difference is that predicates are not evaluated in transient
states, i.e., “abstract” transitions will connect predicates evaluated only in stable
conditions. Consider, for example, that the length of the traces is not retained.

In terms of techniques, this is the first work exploiting the Abstract Inter-
pretation framework [14,15] in the field of stability analysis. We trade precision
for efficiency and propose an approximated analysis that can be implemented
using known techniques.

3 Background

We write R≥ for the set of non-negative reals. Given a sequence σ and an index
i ∈ N, let σ[i] denote the i-th element of σ. We adopt a logic notation derived
by SMT, using a fragment of first-order logic and the theory of Linear Real
Arithmetic (LRA). Given a set of Boolean variables L, let Ψ(L) define the set of
boolean combinations over L. Given a set of real-valued variables V , let LPredV

define finite conjunctions of LRA predicates with free variables in V . We write
Ψ(L, V ) to denote SMT(LRA) formulae obtained by boolean combinations of
Boolean variables in L and linear predicates over V .
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Finite and Timed Automata. A finite state automaton is a tuple 〈Q,Q0, A,R〉
where Q is a finite set of states, Q0 ⊆ Q is the set of initial states, A is a finite set
of labels and R ⊆ (Q×A×Q) is the labeled transition relation between states. A
timed automaton [3] 〈Q,Q0, C,A, inv, R〉 is an automaton equipped with a finite
set of clocks C, with state invariants inv : Q → LPredC associating each state q ∈
Q with its clock constraints inv(q)1 and with R ⊆ (Q×A×LPredC ×℘(C)×A),
where: edge (q, a, g, r, q′) ∈ R represents the transition from state q to q′, labeled
with a and guarded by clock constraints g; the set r ⊆ C gives the set of clocks
to be reset with this transition. We adopt notation q

a,g,r−−−→ q′.
In a timed automaton with a single clock variable c, whenever a state q is

involved only in the untimed transitions qi
a,c:=0−−−−→ q

ε,c≥m−−−−→ qj and inv(q) =

(c ≤ M), we omit it from the set of states in the tuple and write qi
a,[m,M ]−−−−−→→ qj ,

meaning that qi reaches qj with a transition labeled with a in a time between
m and M . When clear from context we also omit the ‘inv’ component from the
tuple.

Hybrid Systems. Let v̇ denote the time derivative dv/dt. A linear hybrid system
with piecewise affine dynamics is a tuple H = 〈Loc,Var ,A, inv, init,flow,disc〉
where [25] Loc is a finite set of locations; Var = {v1, . . . , vn} is a finite set of
continuous state variables; A is a finite set of synchronization labels; init : Loc →
LPredVar defines initial conditions for each location; inv : Loc → LPredVar

defines invariant conditions for each location; flow: Loc → LPredVar∪ ˙Var defines
the continuous transition relation; disc ⊆ (Loc×A×Loc×LPredVar∪Var ′) defines
the labeled discrete transition relation. A state of a hybrid system H is a tuple
〈�,x〉 where � ∈ Loc and x ∈ R

n. Let Σ denote the state space of H and init(H)
denote the set of states s = 〈�,x〉 such that x |= (inv(�) ∧ init(�)). A run of
hybrid system H is a path ρ = (s0

δ1−→ s1
a2−→ s2

δ3−→ s3
a4−→ . . . ) where δi ∈ R≥,

ai ∈ A, si = 〈�i,xi〉 ∈ Σ, s0 ∈ init(H) and each step corresponds to either a
continuous transition

δ ∈ R≥ f : [0, δ] → R
n ḟ : (0, δ) → R

n f(0) = x f(δ) = x′

∀ε ∈ [0, δ] : f(ε) |= inv(�) ∀ε ∈ (0, δ) : (f(ε), ḟ(ε)) |= flow(�)

〈�,x〉 δ−→ 〈�,x′〉
or a discrete transition

(�, a, �′, μ) ∈ disc (x,x′) |= μ x′ |= inv(�′)

〈�,x〉 a−→ 〈�′,x′〉
.

We write Run(H) for the set of all runs of H. A run ρ diverges if ρ is infinite and
the sum

∑
i≥0 δi diverges.2 We consider systems without Zeno behaviors, i.e.,

1 A clock predicate is a linear predicate over a clock variable c of the form c �� k,
where k is constant. A clock constraint is a finite conjunction of clock predicates.

2 We let δi = 0 whenever the i-th transition is a discrete one.
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every finite run of H is a prefix of some divergent run of H. If Run(H) ⊆ Run(H′),
then H′ is a relaxation of H and H is a refinement of H′ [8].

In hybrid automata, as well as in a switched systems [17], discrete behav-
iors can be distinguished between controlled (internal) events, for logic-based
mechanism, and autonomous (external) events, modeling unpredictable environ-
mental influences. The set of labels for discrete interaction of H is therefore
partitioned in A = I ∪ E, denoting internal and external events respectively.
Given a hybrid automaton H = 〈Loc,Var ,A, inv, init,flow,disc〉, we denote with
Hc the corresponding closed system, i.e., Hc .= 〈Loc,Var , I, inv, init,flow,discc〉
with discc = {(�, i, �′, μ) ∈ disc | i ∈ I}. Let ‘ c�’ denote the reflexive and tran-
sitive closure of the transition relation of Hc. When clear from the context, we
also use ‘s c� s′’ to denote the corresponding run from s to s′ in the closed
system.

Time of a Run and Slow Switching. For each run ρ = (s0
δ1−→ s1

a2−→ s2 . . . )
and index m, the time spent to complete the prefix of length m of ρ is τm(ρ) .=∑m

i=1 δi. For a finite run of length n, τ(ρ) is a shortcut for τn(ρ). Let ε be the
ordered sequence of indices for the external events of ρ. The sequence of external
switching time points of ρ is a sequence t of elements in R≥ such that t[0] = 0
and t[i] = τε[i](ρ) for all i. For each hybrid automaton H and time d ∈ R≥, Hd

is a refinement of H such that every run of Hd is associated with a sequence t
of external switching time points satisfying (t[i + 1] − t[i]) > d for all i.

Abstract Interpretation. We assume some familiarity with the basic notions of
lattice theory [7] and Abstract Interpretation [14,15]. Given a poset (L,�) and
a set S ⊆ L, its downward closure is ↓ S

.= {x ∈ L | ∃s ∈ S . x � s}; the set
S ⊆ L is downward closed if S = ↓ S. The notation for upward closure is similar.
Given two posets (L,�) and (L�,��) and two monotonic functions α : L → L�

and γ : L� → L, the pair (α, γ) is a Galois connection [14], denoted L −−−→←−−−
α

γ
L�, if

for all x ∈ L, x� ∈ L� it holds that α(x) �� x� if and only if x � γ(x�). For each
concrete function F : L → L, its most precise sound abstraction in L� according
to this Galois connection is F � .= α ◦ F ◦ γ.

Temporal Logic. In the rest of this paper, we adopt a notation inspired to model
checking for specific patterns of computation-tree logic formulae. In particular,
H, s |= AGφ means that for all ρ ∈ Run(H) outgoing from s (i.e. such that
ρ[0] = s), for all i ∈ N, ρ[i] |= φ. Similarly H, s |= EFAGφ means that there
exists a run ρ ∈ Run(H) outgoing from s, and a j ∈ N such that ρ[j] |= AGφ.

4 P-stable Abstraction

In this section we characterize the stabilizing executions of a closed hybrid system
with respect to the truth values of a given set of predicates. Namely, we build
an abstract timed automaton whose transitions simulate the stabilizing runs of
the closed system following the occurrence of an external event.
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4.1 Region Stability

Given a hybrid system H = 〈Loc,Var ,A, inv, init,flow,disc〉, where the discrete
interactions A are partitioned into the sets of the internal and external events,
we call closed evolution (for short evolution) of a state s ∈ Σ a hybrid run of
the closed system Hc starting from s. Given a region R ⊆ Σ of the state space,
we say that a state s ∈ Σ is internally stable in R (for short, stable in R) if and
only if R is invariant for all closed evolutions of s; state s is said to be possibly
attracted by R (for short, attracted by R) if there exists a closed evolution of s
reaching a state internally stable in R. More formally:

Definition 1 (Stability and attraction). For each s ∈ Σ and R ⊆ Σ,

stable(s,R) ⇐⇒ (s |=c AGR);
attr(s,R) =⇒ (s |=c EFAGR).

Different definitions can be provided for relation ‘attr’: for instance, one could
impose the stronger constraint that the trajectory does not oscillate inside and
outside R before stabilizing, hence attr(s,R) .= (s |=c E(¬RUAGR)).3 Nonethe-
less, the results stated in the following will also hold for the weaker definition
attr(s,R) .= (s |=c EFAGR).

The “run-to-completion” closed evolutions of a state s ∈ Σ are described by
the regions that possibly attract it: due to the non-determinism of the closed sys-
tem, taken into account by the existential path quantification, this can be a set
of different regions, each of them representing a possible future stable condition.
The most precise characterization of these behaviors could be given by the set of
minimal regions for which attr(s,R) holds. The synthesis of such a set presents
us with the problem of minimality. In fact, it is common to find trajectories that
exhibit asymptotic behaviors to an equilibrium condition: for instance, the dis-
charging process of a capacitor is described by an exponential flow that, ideally,
never reaches a null charge, so that a minimal region of convergence does not
exists. Nonetheless, under a certain threshold the capacitor can be assumed to
be discharged and the following decay of voltage has no impact on its behavior
in the circuit. In other words, within a certain stable region of interest, the exact
trajectories may not be relevant for the analysis of the system. This suggests to
fix a priori a finite set of predicates P representing the properties we want to
observe: hence, the run-to-completion behaviors will be described as the minimal
attracting areas chosen from the (finite) set of regions induced by P.

4.2 Untimed P-stable Abstraction

Given a finite set of predicates P ⊆ Ψ(Loc,Var) we denote with ΦP the set
of their (finite) boolean combinations, omitting the subscript when clear from
context. We say that P induces a grid in the state space, since every formula
φ ∈ Φ defines a P-expressible region as the set of its models in Σ. Both relations
3 This can be seen as the “existential” version of the strong attractor definition [21].
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‘stable’ and ‘attr’ defined in Sect. 4.1 can be evaluated on such regions. Note
that, given a state s, the set of formulae in Φ such that stable(s, φ) holds is
upward closed (i.e., for all φ, φ′ ∈ Φ such that φ ⇒ φ′, if stable(s, φ) then
stable(s, φ′)). Having fixed a finite set of P-representable regions, we can now
define the minimal version of relations stable and attr.

Definition 2 (Minimal P-stability). For each s ∈ Σ and φ ∈ Φ, let

no stronger attr(s, φ) .= �φ′ ∈ Φ . ((φ′ ⇒ φ) ∧ (φ′ �= φ) ∧ attr(s, φ′));
stablemin(s, φ) .= stable(s, φ) ∧ no stronger attr(s, φ);
attrmin(s, φ) .= attr(s, φ) ∧ no stronger attr(s, φ).

Namely, relation ‘stablemin’ links a state s ∈ Σ with a formula φ ∈ Φ if φ
is invariant for the evolutions of s in the closed system and if there are no
smaller P-representable regions in which s can converge. If such a φ exists, it is
unique (modulo logical equivalence) and state s is said to be minimally P-stable
(or simply stable). If a state has no formula in Φ such that ‘stablemin’ holds,
then it is said to be transient, since there exists an evolution attracted by a
smaller P-region that does not contain it. In the following we use the notation
transient(s). Observe that, by definition, the relation ‘attrmin’ is a subset of
relation ‘attr’ and, like the latter, it is non-deterministic: ‘attrmin’ links a state
with the minimal regions in which one of its closed evolution stabilizes.

We say that a system H has a well-defined run-to-completion semantics
for the set of predicates P, written wd-rtc(H, P) for short, if a state of H
cannot delay indefinitely its reaching a P-stable condition. In other words, if
attrmin(s, φ), not only there exists a path s

c� s′ with stablemin(s′, φ), but
also, there is no path that satisfies Gtransient. This requirement expresses
that the system reaction to an event must be reliable and there must exist a
finite time after which the system has completed the process.

As an example, consider an automaton with states Q = {q0, q1, q2} and tran-
sition relation R(q0, q1), R(q1, q1), R(q1, q2), R(q2, q2). The runs starting from
q0 are attracted by predicate {q2}, but are allowed to stay in the transient state
q1 for an unbounded number of steps before reaching q2. Hence, the stabiliza-
tion process with respect to {q2} is not well-defined. Nevertheless, for the same
system wd-rtc holds with predicate {q1 ∨ q2}.

Definition 3 (P-stable abstraction). Let H = 〈Loc,Var ,A, inv, init,flow,
disc〉 be a hybrid automaton, and E ⊆ A a set of external events. Let P ⊆
Ψ(Loc,Var) be a set of predicates. The (untimed) P-stable abstraction of H is
the finite state automaton A .= 〈Φ,Φ0, E, ↪−→〉, where

Φ0 = {φ ∈ Φ | ∃s0 ∈ init(H), s ∈ Σ . s0
c� s ∧ stablemin(s, φ) }

and φ ↪
e−→ φ′ if and only if there exist s, s1, s

′ ∈ Σ such that

stablemin(s, φ), s
e−→ s1

c� s′, stablemin(s′, φ′).
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Intuitively, the runs of A represent the evolution of the truth values of the
predicates in P in response to external events once stabilization is reached, upon
“absorption” of the transient states. Notice that initial states Φ0 are defined
following the same intuition, and represent the possible initial P-stable regions,
since H may start in a transient condition.

The definition of P-stable abstraction captures the fact that we are studying
the effects of the external inputs when H is in a stable condition: we disre-
gard runs where external inputs are received in transient states. This “stable-
switching” paradigm can be intuitively thought of as the qualitative counterpart
of the slow-switching hypothesis used as sufficient condition for reasoning about
global stability in switched systems [17]. We informally define the restriction of
H under stable switching as the hybrid automaton Hss obtained by applying
the guard ¬transient to every external transition of H.

The P-stable abstraction of H is a weak simulation [18] of Hss . The precision
depends on the choice of P. In fact, two states that are stable in the same region φ
are not necessarily connected by a concrete run: when distinct areas of attraction
are represented with the same formula, spurious behaviors may be introduced.

We compare the definition of P-stable abstraction with “classic” predicate
abstraction [1,2]. In our setting, the concretization of an abstract state φ is
the set of states in Σ that are stable in φ. Similarly, the abstract transitions
represent concrete transitions of the form s

e−→ s1
c� s′, i.e., a single external

event possibly followed by internal transitions. Thus, differently from predicate
abstraction, a path in the abstraction may be significantly shorter than the
corresponding concrete ones.

For each φ ↪
e−→ φ′ in A, let Γ (φ ↪

e−→ φ′) be the set of the simulated hybrid runs:

Γ (φ ↪
e−→ φ′) .=

{
s

e−→ s1
c� s′

∣
∣
∣ stablemin(s, φ), stablemin(s′, φ′)

}
.

The Γ operator is naturally extended to runs of A4 by concatenation of its
applications to single transitions, and to set of runs.

Proposition 1. If wd-rtc(H, P) holds, the stable-switching runs of H are sim-
ulated by the runs of A, i.e., Run(Hss) ⊆ Γ (Run(A)).

Example 1. Consider the circuit on the left-hand side of Fig. 1, where external
events include the opening/closing of switch S and the property of interest is the
condition of lamp L: letting iL (resp., iRL) denote the intensity of the current
passing through the lamp (resp., the relay), we choose P = {(−c ≤ iL ≤ c)}, so
that the state space is partitioned into Loff .= (−c ≤ iL ≤ c) and Lon .= ¬Loff .
Initially all the switches are open and neither the relay coil RL nor the lamp L
receives current. Hence, the system is (internally) stable in Loff .

Starting from a condition stable in Loff (Fig. 2), if the external event Sclose

is received, iRL increases with a continuous dynamics implementing the delay of

4 For each φ0 ∈ Φ0 operator Γ applies to initial transitions as Γ (↪→ φ0)
.
= {s

c� s′ |
s ∈ init(H), stablemin(s

′, φ0)}.
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Fig. 2. States of trace s0
Sclose−−−→ s1

δ1−→ s2
i−→ s3

δ3−→ s4
Sopen−−−→ s5 projected on iRL, the

state of the switch S and of lamp L with respect to time t.

its activation. After δ1 time, iRL reaches the activation threshold a (state s2) and
it closes the corresponding switches with an internal discrete transition (labeled
i). The closing of RLS 2 turns on the lamp L. The system is now stable in Lon.
The hybrid system run s0

Sclose−−−→ s1
δ1−→ s2

i−→ s3 (with stablemin(s0, Loff ),
attrmin(s1, Lon), attrmin(s2, Lon) and stablemin(s3, Lon)) corresponds to a sin-
gle transition Loff ↪

Sclose−−−→ Lon in the P-stable abstraction.
Since RLS 1 has been closed, RL receives current even if the switch S gets

opened. It follows that when later receiving the external event Sopen in state s4
(with stablemin(s4, Lon)), the system switches to state s5 and the lamp stays
on (namely, stablemin(s5, Lon)). In the P-stable abstraction we will have the

transition Lon ↪
Sopen−−−→ Lon.

4.3 Timed P-stable Abstraction

We now characterize the time needed to reach a stable condition after receiving
an external input.

Definition 4 (Convergence time of φ ↪
e−→ φ′). For each abstract transition

φ ↪
e−→ φ′ its convergence time is the interval in R≥ ct(φ ↪

e−→ φ′) .= [lb, ub], where

lb = inf
{

τ(ρ)
∣
∣ ρ ∈ Γ (φ ↪

e−→ φ′)
}
,

ub = sup
{

τm(ρ)
∣
∣ ρ ∈ Γ (φ ↪

e−→ φ′),¬stablemin(ρ[m], φ′)
}
.

The convergence time represents the time spent in the transient states. If the
system is stable in φ and an external event e is received, after max ct(φ ↪

e−→ φ′)
time the system will certainly be stable in φ′; before min ct(φ ↪

e−→ φ′), the system
is certainly still in a transient state so that it is not safe to evaluate the truth
value of the predicates. Similar considerations apply to initial conditions: each
φ ∈ Φ0 is associated with a convergence time ct(↪→ φ), that represents the time
needed to stabilize at start up.

Note that, since we are assuming wd-rtc(H, P), the convergence time of
Definition 4 is always bounded from above (i.e., ub < +∞). An unbounded
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convergence time would imply the existence of a path starting from φ that can
indefinitely postpone its stabilization in φ′, which is probably an undesirable
system behavior. Hence, the computation of convergence time is a practical way
to detect the violation of the wd-rtc(H, P) hypothesis, and obtain diagnostic
information to either debug the model or change the set of predicates P.

On the basis of these considerations, we can define a timed automaton that
simulates the P-stable runs of the hybrid system H.

Definition 5 (Timed P-stable abstraction). Given a P-stable abstraction
A = 〈Φ,Φ0, E, ↪−→〉 the corresponding timed abstraction is a timed automaton
having as initial state an additional state � and having

– transition � ↪
ε,[m,M ]−−−−−→→ φ, for each φ ∈ Φ0, with [m,M ] = ct(↪→ φ);

– transition φ ↪
e,[m,M ]−−−−−→→ φ′, for each φ ↪

e−→ φ′, with [m,M ] = ct(φ ↪
e−→ φ′).

Starting from the additional state �, each path reaches the first stable condi-
tion φ in the corresponding initialization time ct(↪→ φ). Then, after an external
event e, it non-deterministically jumps to the next stable condition within the
interval imposed by the associated convergence time.

The convergence time information can be used to define the runs we are
abstracting with a slow -switching characterization, rather than a (possibly

uncomputable) stable-switching one. Let ct = max{M | φ ↪
e,[m,M ]−−−−−→→ φ′ in A};

then the refinement Hct (see Sect. 3), allowing external inputs with a delay of
(at least) ct , ensures that the system has always sufficient time to reach stability.
It follows that Run(Hct) ⊆ Run(Hss), hence, Hct defines a concrete semantics
compliant with A.

Example 2. Reconsider the circuit of Fig. 1, whose P-stable abstraction has been
analyzed in Example 1. We can compute the timing information of the stabi-
lization processes, obtaining ct(Loff ↪

Sclose−−−→ Lon) = [δ1, δ1]; the other abstract
transitions are instantaneous (i.e., their convergence time is 0, as they have no
transient states). By waiting δ1 after each external event, the system Hδ1 follows
the behaviors described by the P-stable abstraction: namely, we know how long
switch S must stay closed in order to turn on (and keep on) the lamp.

5 P-stable Abstraction via Abstract Interpretation

The simulation presented in Sect. 4 may not be computable when dealing with
complex hybrid systems. In this section we formulate the same concepts in an
Abstract Interpretation framework: this provides a formal setting to search for
a balance between precision and efficiency.

In order to abstract the semantics of Hss (i.e, the stable switching semantics
of H), we consider as concrete domain the powerset of hybrid states (℘(Σ),⊆)
and as concrete function the post-image operator of an external event subject to a
stability constraint: postss(S, e) .= {s′ ∈ Σ | ∃s ∈ S . ¬transient(s)∧s

e−→ s′}.
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P-stable abstraction as Galois connection. The simulation of Definition 3 can
be seen as the abstraction of function postss . Consider functions (α1, γ1), with
α1(S) .= {φ ∈ Φ | ∃s ∈ S . attrmin(s, φ)} for each S ⊆ Σ, and γ1(F ) .= {s ∈
Σ | ∀φ ∈ Φ : attrmin(s, φ) =⇒ φ ∈ F} for each F ⊆ Φ: this couple forms
the Galois connection (℘(Σ),⊆) −−−→←−−−

α1

γ1
(℘(Φ),⊆). The use of the powerset of

formulae Φ as abstract domain allows for representing a disjunction of regions
and describe precisely the non deterministic behavior of the concrete function.
The following proposition states that this abstraction defines exactly the same
relation introduced in Definition 3.

Proposition 2. Let A be the P-stable abstraction of H. For φ, φ′ ∈ Φ and e ∈ E,
φ ↪

e−→ φ′ in A if and only if φ′ ∈ α1(postss(γ1({φ}), e)); also, Φ0 = α1(init(H)).

Approximating the P-stable abstraction. A first simplification step can be to
overapproximate disjunctive stable regions with their join: this lets us obtain
a deterministic abstract system based on a conservative abstraction of all the
possible behaviors of the concrete system. To this aim, we can consider Φ instead
of its powerset. In addition, we can further approximate this domain using its
cartesian relaxation.

We denote with (K,�) the cartesian abstraction [4] of (Φ,⇒). This can
be formally defined considering the lattice of knowledge values for each pred-
icate Pi ∈ P, namely Pi = ({⊥i, pi, pi,�i},�i) with ⊥i �i pi �i �i and
⊥i �i pi �i �i; then, (K,�) =

(⊗Pi∈PPi

)
, where ‘⊗’ denotes the smash prod-

uct operator. Hence, every k ∈ K, with k �= ⊥, is a vector (k1, . . . , kp), with
ki ∈ {pi, pi,�i}. Every k ∈ K represents a formula in Φ: while ⊥ is ‘false’,
(k1, . . . , kp) is (

∧
ki=pi

Pi ∧ ∧
ki=pi

¬Pi). We will use k ∈ K meaning the corre-
sponding formula in Φ. Note that (K,�) is a meet sublattice of (Φ,⇒): joins are
not preserved since the cartesian abstraction cannot express precisely disjunc-
tions between predicates.

We build an abstraction as composition of Galois connections:

(℘(Σ),⊆) −−−→←−−−
α1

γ1
(℘(Φ),⊆) −−−→←−−−

α2

γ2
(Φ,⇒) −−−→←−−−

α3

γ3
(K,�),

where α2 is the join operator on Φ, i.e., α2(F ) .= ∨(F ), γ2 is the downward
closure, i.e., γ2(φ) .= ↓{φ}, and (α3, γ3) is the cartesian abstraction, i.e., α3(φ) .=
�{k ∈ K | φ ⇒ k} and γ3(k) = k. Let α

.= α3 ◦ α2 ◦ α1, and γ
.= γ1 ◦ γ2 ◦ γ3.

Definition 6 (Approximated P-stable abstraction). The approximated P-
stable abstraction of hybrid system H with external events E is the finite state
automaton A� .= 〈K, {k0}, E, ↪−→〉, with initial state k0

.= α(init(H)) and k ↪
e−→ k′

if and only if k′ = α(postss(γ(k), e)).

In other words, in the approximated P-stable abstraction we have transition
k ↪

e−→ k′ if every trajectory starting from a state that is stable in k with the
external event e will eventually have k′ as invariant, provided that no other
external events are accepted meanwhile.
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By definition, γ ◦ α is an approximation of γ1 ◦ α1: since all the concrete
functions we are dealing with are monotone, A� of Definition 6 is a sound overap-
proximation of the P-stable abstraction A of Definition 3. Spurious behaviors can
be introduced mainly because non deterministic trajectories are conservatively
abstracted with a single transition. Function ‘α’ loses the ability to distinguish
between states that are stable in a region with the ones that are stable in a
greater one, therefore losing part of the minimality of the stable predicates. As
an example, given two formulae φ1, φ2 ∈ Φ, for Definition 3 the set of states
that are considered stable in φ1 ∨ φ2, are disjoint from the states that are stable
in φ1 or in φ2, because minimality is required. Instead, using ‘α2’, we consider
stable in φ1 ∨ φ2 also all the states that are stable in smaller regions, therefore
recovering the monotonicity of the concretization function.

Finally, the use of the cartesian structure K overapproximates disjunctions.
Extending the same reasoning done in Sect. 4.2, for each k ↪

e−→ k′ in A�, let
Γ �(k ↪

e−→ k′) be the set of runs abstracted by it:

Γ �(k ↪
e−→ k′) .=

{
s

e−→ s1
c� s′

∣
∣
∣ stable(s, k), stable(s′, k′)

}
.

Since the stabilization criterion is more slack, Γ (Run(A)) ⊆ Γ �(Run(A�)).
The computation of convergence time information can be extended as well:
the time needed by the approximated system to stabilize after an external
input will be lower than the one computed for A. Letting ct� = max{M |
k ↪

e,[m,M ]−−−−−→→ k′ in A�}, we have that Hct� is a relaxation of Hct and Run(Hct�) ⊆
Γ �(Run(A�)). Namely, Hct� defines a new concrete semantics that is compli-
ant with A�. Moreover, for each t ≥ ct�, we know that the abstraction soundly
analyzes the evolution of predicates along the runs of Ht.

6 Implementation and Experimental Evaluation

A possible approach for the computation of the approximation A� of the abstract
system A is outlined in Pseudocode 1. Here, a reachability driven fixpoint com-
putation incrementally adds (P-stable) states and transitions to A�; to this end,
each abstract state k ∈ K being processed is paired with a corresponding reached
set of states S, such that stable(s, k) holds for every s ∈ S.

The procedure abstracts the initial state and then enters the main loop.
Function ‘postH’ computes the image of an external discrete transition. The key
processing step is the computation of a conservative evolution of a source set
S in the closed system, which is performed within internal evolveH(S, P).
Here, we exploit the cartesian approximation to build the vector k′ with a linear
number of calls to a region-stability check : for each Pi ∈ P we test whether the
evolution of S is eventually invariant in it or in its negation. The stabilization
check is based on the search of abstract lasso-shaped traces, disregarding diver-
gent variables like the global clock. Finally, the addition of abstract locations
may call a widening operator, possibly incurring further overapproximations but
ensuring the convergence of the procedure.
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Pseudocode 1. Build the P-stable abstraction of H.
1: function build abstraction(H, P)
2: 〈A�,waiting〉 ← 〈∅, ∅〉;
3: 〈k0, S0, ct0〉 ← internal evolveH(init(H), P);
4: 〈A�,waiting〉 ← add init state(A�, 〈k0, S0〉, ct0,waiting);
5: while waiting �= ∅ do
6: 〈k, S〉 ← pop(waiting);
7: for all e ∈ E such that e enabled in S do
8: Se ← postH(S, e);
9: 〈k′, S′, ct〉 ← internal evolveH(Se, P);

10: 〈A�,waiting〉 ← add state(A�, 〈k′, S′〉,waiting);
11: 〈A�,waiting〉 ← add trans(A�, 〈k, e, ct , k′〉,waiting);

return A�;

We implemented the abstraction with a symbolic LRA-BDD based approach,
built on the PPLite library for convex polyhedra [5], and evaluated it on a set
of benchmarks representing circuits, shown in Table 1. External events close or
open switches and trigger a run-to-completion process given by the activation of
relays. Delayed elements are modeled either with their pragmatic approximation
in timed components or by following the continuous dynamics of the internal
process of charge/discharge. The predicates of interest focus on the state of
some lamps. The abstraction is able to highlight the stabilization process of the
signal in a still situation as well as in an oscillating one, e.g., in the periodic
flashing of some lamps. The temporal properties extracted from the resulting
abstract automata have been checked with the nuXmv model checker [11,13].

Table 1. P-stable abstraction of models with run-to-completion behaviors.

H A�

test locs vars #E #P locs trans time

s3 512 21 2 6 2 4 0.152

s4 4096 28 2 8 2 4 2.708

s5 32768 35 2 10 2 4 67.570

r3 1024 29 6 6 7 42 2.060

s1 1 128 18 2 1 2 4 0.042

s1 2 2048 25 2 1 2 4 0.374

s1 3 24576 32 2 1 2 4 5.444

s1 4 262144 39 2 1 2 4 99.190

s2 1 1024 25 2 3 2 4 0.356

s2 2 16384 32 2 3 2 4 4.983

s2 3 196608 39 2 3 2 4 96.412

s3 1 8192 32 2 5 2 4 4.743

s3 2 131072 39 2 5 2 4 96.528

s4 1 65536 39 2 7 2 4 101.797

r2 1 512 29 4 3 4 16 1.662

r2 2 2048 36 4 3 4 16 24.592

r3 1 4096 40 6 5 7 42 62.653

H A�

test locs vars #E #P locs trans time

s1 8 7 2 2 2 4 0.001

2×s1 64 14 4 4 4 16 0.061

3×s1 512 21 6 6 8 48 1.448

4×s1 4096 28 8 8 16 128 115.886

5×s1 32768 35 10 10 32 320 –

s2 64 14 2 4 2 4 0.013

2×s2 4096 28 4 8 4 16 13.784

3×s2 262144 42 6 12 8 48 –

r2 128 18 4 4 4 16 0.073

2×r2 16384 36 8 8 8 64 –

h2 4 16 2 2 2 4 0.037

2×h2 16 32 4 4 4 16 13.581

3×h2 64 48 6 6 8 48 –

h3 8 24 2 2 2 4 2.582

2×h3 64 48 4 4 4 16 –

of 16 24 4 1 2 6 0.501

2×of 256 48 8 2 4 24 –
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Compositional Reasoning. The current implementation is based on the explo-
ration of a single, monolithic automaton, which may result in reduced scalability.
When the concrete system is the composition of multiple subsystems having no
practical discrete interaction between them (or when the predicates in P are
influenced only by details that are local to the subsystems), then the P-stable
abstraction can be approached compositionally. The right-hand side of Table 1
shows an exponential growth in computation time for the analysis of the paral-
lel composition of several independent, identical circuits. In all the tests whose
analysis completes without incurring the timeout threshold (150 s), the abstract
automaton for the composed system is exactly the cartesian product of the
abstraction of its components, so it corresponds – without loss of precision –
to the composition of the single abstractions. Hence, the analysis of the overall
system can be factorized into the analysis of the subsystems, whose computa-
tion and composition are much more efficient. Clearly, in more general cases the
predicates may involve relational constraints on the variables of different sub-
systems, or their internal interaction may have impact on their stability. Hence,
the composition of the single abstractions is generally expected to be less precise
than the abstraction of the network (but still guaranteed to be an overapproxi-
mation). When precision is not enough to verify the target property, a refinement
step can be applied, based for example on considering larger subsystems, doing
some compositions at the concrete level and hence reducing spurious behaviors.

7 Conclusions

In this paper we tackled the problem of synthesizing an abstract representation
of the stabilizing behavior of hybrid automata. We defined P-stable abstractions
that have two key distinguishing features: first, they provide the most precise
account – with respect to the given set of predicates – of the evolution between
stable conditions in response to external events; second, they include timing
information derived from the duration of the stabilization process, which pro-
vides suitable values for slow-switching control. We proved that the problem
of synthesizing P-stable abstractions can be cast in the framework of Abstract
Interpretation, and presented a general synthesis algorithm which allows approx-
imating P-stable abstractions with precision depending on the abstract domain
being adopted. We show that P-stable abstractions are very informative from
a representational standpoint. The experimental evaluation demonstrates that
substantial performance improvements can be obtained by a compositional app-
roach, leveraging the structure of hybrid automata networks.

In the future, we will investigate the use of symbolic techniques such as
SMT to complement Abstract Interpretation and further improve the scalability
and the precision of the engine. On the application side, the synthesis of P-
stable abstraction is currently being integrated within a industrial tool chain
of the Italian Railway Network [12]. Specifically, the aim is to reverse-engineer
legacy relay-based railways interlocking systems, using the P-stable abstraction
as reference specification for a computed-based equivalent solution.
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Abstract. Contracts regulating the behaviour of multiple interacting
parties go beyond the notion of pure properties, but allow one to doc-
ument and analyse the ideal behaviour. In this paper we build upon
a real-time deontic logic allowing the description of such contracts and
present a runtime verification tool for monitoring of such contracts. We
present a verification algorithm used to monitor contracts written in this
logic and an airport agreement is used as a case study to illustrate how
such agreements and contracts can be monitored using our tool with
reasonable processing costs.
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1 Introduction

With the rise of multi-party systems and services, the formal notion of contracts
or regulated interaction between participating parties has increased in impor-
tance. For many such situations, viewing a contract as a logical property which
is not to be violated is sufficient—whether it is for the verification, monitoring
or enforcement of the communication between parties. However, another view
is that the notion of contracts should be first-class objects which speak about
ideal behaviour but also cover the possibility that the actual behaviour does not
match the ideal one and its consequences. Deontic logics [10] address precisely
this aspect, typically using ideal-behaviour modalities such as obligations, per-
missions and prohibitions. Consider a multi-party system in which, whenever
a file is downloaded, then the user should pay. From a deontic perspective, we
would see an obligation to perform a pay action whenever we see a download
action. Within the deontic logic, one can also express reparation clauses e.g. an
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obligation to pay a fine is added if the obligation to pay is not satisfied. Var-
ious approaches have been proposed in the literature for the formal reasoning
about such deontic concepts e.g. defeasible logic in [11], event calculus-based
in [12], dynamic logic style in CL [15] and automata-based in [13]. The com-
mon theme across these and other related approaches is looking at contracts as
first-class entities which can be analysed and transformed independently of the
systems they regulate enabling analysis such as conflict analysis or contract bias
evaluation.

One recurring challenge across these approaches, beyond the deontic one, is
that of addressing temporal issues [14], however, there has been limited work on
deontic logic allowing reasoning about continuous time contracts, and no tools
we are aware of. Recently, we have proposed Themulus [2], a real-time deontic
calculus to reason about contracts over continuous time. From a practical per-
spective, the use of the calculus for actual verification of system behaviour with
respect to a contract raises challenges, particularly due to the real-time nature
of the calculus. In this paper, we present some results proving the soundness
of a runtime verification algorithm of contracts written in Themulus. We have
implemented this algorithm on top of the runtime verification tool Larva [6] in
order to enable real-world agreements to be monitored.

(O1)

(O2)

(O3)

(O4)

(O5)

(F1)

(F2)

(F3)

(F4)

(F5)

(P1)

(P2)

(P3)

(P4)

(P5)

(C1)

(C2)

(C3)

(C4)

(C5)

Fig. 1. Operational Semantics transition rules 1/2

2 Contracts and Agents

In this section, we present some previous definitions published in [2]. We include
them here to make the paper self-contained. We will assume a time domain T
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(AO3)
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(AO5)
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(V1)

(V2)

(V3)

(S1)

(S2)

(S3)

(wait1)

(wait2)

(rec1)

(rec2)

Fig. 2. Operational Semantics transition rules 2/2

ranging over the non-negative reals1. In order to deal with the recursion operator,
we assume a set of variables fvars over which recursion will be defined.

Contracts regulate the behaviour of a number of agents, or parties running
in parallel. In this section we present the notation we will use to describe these
agents and their behaviour in order to be able to formalize contracts in the
following sections.

Structurally, the underlying system consists of a number of indexed agents
running in parallel, using variables A, A1 to represent the individual agents. The
system as a whole will consist of the parallel composition of all agents indexed
by a finite set I i.e. the system will be of the form ||iPIAi. We will use variables
A, A1 to denote the state of the system as a whole. Agents semantics are thus
assumed to be represented as timed labelled transition systems:

– , for a P Act, indicates that agent A changes to A1 upon performing
action a. As it is usual in process algebrae [17], the execution of actions do not
consume time. The transition indicates that agent A cannot perform
action .

– , for d ą 0 P T, indicates that agent A evolves to A1
after d time units pass.

2.1 Contract Syntax

Definition 1. The set of contract formulae denoted by C (with variable ϕ P C
to range over the contracts) is syntactically defined as follows:
1 It is worth noting that the logic we present works equally well if the natural numbers

are used for a discrete time domain. However, we allow for real time values to cater
for any temporal constraints.
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ϕ ::= J | K | Pkpaqrds | Okpaqrds | Fkpaqrds | waitpdq | condkpaqrdspϕ1, ϕ2q
| ϕ1;ϕ2 | ϕ1 ^ ϕ2 | ϕ1 _ ϕ2 | ϕ1 § ϕ2 | rec x.ϕ | x

where a P Act, x P fvars, k P I and d P T Y t8u.
The basic formulae J and K indicate, respectively, the contracts that are

trivially satisfied and violated. Then we have the operators that represent the
modalities from the deontic logic: obligations Okpaqrds, prohibitions Fkpaqrds
and permissions Pkpaqrds. In all three cases the operator indicates the agent k,
the action a, and the time constraint d (the modality is in force within d units
of time). We can find the contract disjunction ϕ1 _ϕ2, and contract conjunction
ϕ1 ^ ϕ2, sequential composition ϕ1;ϕ2, delay waitpdq, the conditional contract
condkpaqrdspϕ1, ϕ2q, and the reparation operator ϕ1 § ϕ2. Finally, there is the
possibility of repetition introduced by the variable x P fvars and the recursion
operator rec x.ϕ. Using these basic contract combinators, we can define more
complex ones, for example a prohibition which persists until a particular action
is performed—a prohibition on agent k from performing action a until party l
performs action b, written Fpra, ksU rb, lsq, and defined as follows:

Fpra, ksU rb, lsq df= rec x.
`
condkpaqr8spK, Jq ^ condlpbqr8spJ, xq˘

In order to simplify the semantics of the language, we define a congruence in
the language.

Definition 2. We define the relation ” Ď CˆC as the least congruence relation
that includes:

1. ϕ ^ J ” ϕ 2. J ^ ϕ ” ϕ 3. K ^ ϕ ” K 4. ϕ ^ K ” K
5. ϕ _ J ” J 6. J _ ϕ ” J 7. ϕ _ K ” ϕ 8. K _ ϕ ” ϕ

9. J; ϕ ” ϕ 10. K; ϕ ” K 11. J § ϕ ” J 12. K § ϕ ” ϕ

13. Okpaqr0s ” K 14. Fkpaqr0s ” J 15. Pkpaqr0s ” J 16. waitp0q ” J
17. condkpaqr0spϕ, ψq ” ψ

The operational semantics of the language is defined by the rules appearing
in Figs. 1 and 2. The operational semantics of the contracts has three kind of

transitions: (i) to denote that contract ϕ can evolve (in one step)
to ϕ1 when action a is performed, which involves party k (and possibly other

parties); or (ii) indicating that the contract ϕ can evolve to ϕ1 when

the action a is not offered by any party other than k; or (iii) to
represent that contract ϕ can evolve to contract ϕ1 when d time units pass. We
will use variable α to stand for a label of either form: pa, kq or pa, kq. The rules
of the operational semantics are always applied to irreducible terms.
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Next, define the predicate viopϕq that indicates if a contract is currently
violated.

Definition 3. We say that an irreducible contract ϕ is in a violated state, writ-
ten viopϕq, if and only if the contract has already been violated:

viopJq df
= ff viopKq df

= tt

viopPkpaqrdsq df
= pa, kq viopOkpaqrdsq df

= ff

viopFkpaqrdsq df
= pa, kq viopwaitpdqq df

= ff

viopϕ ^ ϕ1q df
= viopϕq _ viopϕ1q viopϕ _ ϕ1q df

= viopϕq ^ viopϕ1q
viopϕ § ϕ1q df

= viopϕq ^ viopϕ1q viopcondkpaqrdspϕ, ϕ1qq df
= ff

viopϕ;ϕ1q df
= viopϕq vioprec x.ϕq df

= viopϕq

We can now define how contracts evolve alongside a system, and what it
means for a system to satisfy a contract.

Definition 4. Given a contract ϕ P C with alphabet Act1 and a system A,
we define the semantics of ϕ}A—the combination of the system with the
contract—with alphabet Act with Act1 Ď Act through the following rules:

Rule M1 and M2 handles synchronization between the contract and the system.
If an action a performed by the system is of interest to the contract, the contract
evolves alongside the system (M1), if the contract allows an agent to perform an
action but only agent k (and no other agent) is willing to engage in the action,
then only the contract evolves (M2). Rule M3 handles actions on the system
which the contract is not interested in. Finally, rule M4 ensures that time cannot
skip over a violation.

Definition 5. Let A be a system and ϕ P C be a contract.

– System A can break ϕ, written breakpA, ϕq, if there exists a computation that
leads to a violation of the contract: for some n ě 0 and contracts ϕ0 till ϕn

such that:

ϕ } A = ϕ0 } A0 =ñ ϕ1 } A1 =ñ . . . ϕn−1 } An−1 =ñ ϕn } An,

and An ( viopϕnq.
– System A may fulfil ϕ, written fulfillpA, ϕq, if there exists a computation of

the system that fulfils the contract: for some n ě 0 and contracts ϕ0 till ϕn:

ϕ } A = ϕ0 } A0 =ñ ϕ1 } A1 =ñ . . . ϕn−1 } An−1 =ñ ϕn } An,

and A ( viopϕkq for 0 ď k < n, and ϕn ” J.
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Note that there are contracts which may never be fulfilled. An example of
such a contract is ϕ = rec x.ra, k, 8spK, 8q, which may never be fulfilled since
there are no transitions from this contract leading to J. Nevertheless, if agent k
never performs action a, then neither is the contract broken.

3 Case Study

The case study presented in this section (Fig. 3) is based on the Madrid Barajas
airport regulations [1]. The contract describing our case study can be formalized
using our contract calculus as follows:

1. The passenger is permitted to check in her lug-
gage according to the stipulations of the class of
ticket they purchased from their respective air-
line company. It is necessary that the passenger
arrives at the airport, at least two hours before
her flight, in order to check-in her luggage and
pass the security controls. Then, the passenger
is permitted to use the check-in desk within two
hours before the plane takes off (t0). ϕ0

2. At the check-in desk, the passenger is obliged
to present her boarding pass within 5 minutes.
ϕ1

3. After presenting the boarding pass, the passen-
ger must show her passport. She has 5 minutes
for this purpose. ϕ2

4. The passenger is permitted to carry two pieces
(of hand luggage): one personal article and one
carry-on luggage. If the passenger has carry-on
luggage, she is obliged to fit it into the device
for hand luggage allowance, situated next to the
check-in desks. ϕ3

5. After presenting her passport, the passenger is
permitted to board within 90 minutes and to
present the hand-luggage to the airport staff
within 10 minutes. ϕ4 (the part before the repa-
ration)

6. The airline company is obliged to allow the
passenger to board within 90 minutes. ϕ4 (the
reparation part)

7. The passenger is obliged to pass the filters or
security checkpoints, before they access the re-
stricted safety areas of the airport, as boarding
gates and passenger-only zones, in accordance
with the safety regulations, within 60 minutes.
ϕ5

8. These security checkpoints consist of metal-
detector arches for the passengers and X-ray
detectors for their luggage. The airport secu-
rity staff are permitted to carry both systems
manually. ϕ6

9. If the hand luggage is a personal computer or
another electronic device, the airport security
staff is permitted to ask the passenger to take
it out of its protective case in order to be ex-
amined. ϕ7

10. The passenger is obliged to take out the per-
sonal computer protection if the airport staff
need to examine it. ϕ8

11. The passenger is forbidden from taking articles
to the security restricted area, or to the cabin

of the aircraft, which constitute a risk for the
health of other passengers, the crew and the
safety of the aircraft and the cargo. ϕ9

12. The passenger is obliged to included risk ar-
ticles at check-in as baggage and/or apply to
them the relevant procedure to be accepted on
board. Otherwise, the security staff can requi-
sition the articles. ϕ10

13. Security staff is permitted to deny access to the
boarding area and the airplane cabin to any
passenger in possession of an object which, even
if not considered forbidden, arouses their suspi-
cions ϕ7. If the passenger is stopped from car-
rying luggage, the airline company is obliged to
put the passenger’s hand luggage in the hold
within 20 minutes ϕ4 (reparation part).

14. The passenger is obliged to transport the liq-
uids in individual containers with a capacity of
fewer than 100 ml. These containers must be
carried in a resealable, transparent plastic bag
(for its easy inspection), with a capacity of not
more than 1 liter. Maximum one bag per pas-
senger. ϕ12

15. The passenger is obliged to accompany her med-
ication with a corresponding receipt, a medical
prescription or a specified statement about the
passenger’s health condition, in case the secu-
rity staff requires it. ϕ13

16. Even if the regulations for liquids do not apply
in the medication case, the passenger is obliged
to demonstrate all liquid medication to the se-
curity staff, apart from the transparent plastic
bag, used for the transport of other liquids. ϕ14

17. The passenger is obliged to check in all firearms,
which may not be transported. ϕ15

18. The passenger has an obligation to know her
rights if she wants to file a complaint. In this
case, she may ask for a document at any air-
port in Spain, in which his rights are described,
including some advice about how to act. Over
and above, the passenger may also contact the
Spanish National Aviation Agency (Agencia Es-
tatal de Seguridad Aérea — AESA). ϕ16

19. The passenger is entitled to present a claim, in
case of any violation of those rights, which can
result in a financial compensation or any other
kind of compensation. If a passenger is unhappy
with the service during a flight but is not enti-
tled to present a claim, he still has the option
to lodge a complaint or a suggestion. ϕ17

Fig. 3. Adaptation of the Madrid Barajas airport regulations
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PBS ::= ppϕ0 ^ ϕ10 ^ ϕ15q;ϕ1;ϕ2;ϕ3;
pϕ5 ^ ϕ6 ^ ϕ7 ^ ϕ8 ^ ϕ9 ^ ϕ12 ^ ϕ13 ^ ϕ14q;
pϕ4 ^ ϕ11qq ^ ϕ16 ^ ϕ17q

Where the formulas ϕ1, . . . , ϕ17 are defined in Fig. 4 such that p, S, c refer to
the passenger, the security airport staff, and the airline company, respectively;
while t0 is departure estimated time. Note that the clauses ϕ0 to ϕ17 are used
to express the different parts of the contract, and combined in the top-level
contract expression PBS. The translation is quite straightforward although it is
not automated. We have attach a formula to each point of the contract indicating
where it has been formalized.

checkin: Go to the checkin desk
PBP: Present boarding pass
ShP: Show her passport

CToHL: Carry two hand luggage
board: Board

hl: Board with hand luggage
PSC: Pass the security checkpoints
CD: Carry detectors

EPP: Examine passanger PC
TOP: Take out PC
TRA: Taking risk articles
CRA: Check in risk articles
RRA: Requisition of risk articles
DRA: Access to boarding area

hlhold: Put her hand luggage in the hold
board: Board

liquids: Liquids of 100ml
medication: Medication with receipt

liq: Demonstrate liquid medication
firearms: Check in the firearms

rights: Know her rights
complaint: File a complaint

Fig. 4. Madrid Barajas airport regulations formulae.

Then, this approach allows us to check and determine if any of the agents
involved in the plane boarding system breaks the contract. In this case, our for-
malism allows us to determine, for instance, if it was the passenger who violated
the contract and if so why, e.g. because she did not present her boarding pass
within the specified time at the check-in desk, or because she was taking articles
to the restricted security area.

4 Runtime Verification

The operational semantics we give to contracts provides us with a framework for
contract monitoring: to monitor contract ψ P C, we start the monitor in state
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ψ and update the state whenever the system performs an action according to
the operational semantics. A violation is reached once the violation predicate is
satisfied by the system. In the rest of this section, we concretely show how our
logic can be automatically monitored using a derivative-based algorithm [4].

The idea behind derivative-based or term rewriting-based monitoring is that
the formula still to be monitored is used as the state of the monitoring system.
Whenever an event e is received with the system being in state ψ, the state
is updated to ψ1 such that any trace of events es matches ψ1, if and only if
e : es (the trace starting with e, followed by es) matches ψ. This is repeated
and a violation is reported when (and if) the monitoring state is reduced to a
formula which matches the empty trace. In our contract logic, the operational
semantics provide precisely this information, with ψ1 being chosen to be the

(unique) formula such that2 (where the monitoring systems
observes the action a performed by party k), and viopψq indicates whether ψ
matches the empty string (immediately violates the contract).

In timed logics, this approach has to be augmented with timeout events
which, in the absence of a system event, still change the formula. For example,
the contract waitpdq;ϕ would evolve to ϕ upon d time units elapsing. Similarly,
if d time units elapse (with no system events received), we evolve the contract
Okpaqrds;ϕ to K;ϕ, which is equivalent to K, thus enabling us to flag the viola-
tion as soon as it happens. If we were to wait for a system event, the violation
might end up being identified too late. In our case, we use the timeout function
to enable the setting of a timer to trigger the monitoring state update, evolv-
ing ϕ to the unique formula ϕ1 according to the timed operational semantics

. Also, system events carry a timestamp, through which
the contract can be moved ahead in time upon receiving the event.

In order to formalise these ideas, we need a notion of structural equivalence.
Intuitively, two contracts are structurally equivalent if they only differ in the
time constraints and so they can perform the same actions.

Definition 6. Consider the relation R Ď C ˆ C defined as follows:

R df= tpJ, Jq, pK, Kqu
Y tpFkpaqrds,Fkpaqrd1sq | d, d1 ą 0u
Y tpPkpaqrds,Pkpaqrd1sq | d, d1 ą 0u
Y tpOapkqrds,Oapkqrd1sq | d, d1 ą 0u
Y tpwaitpdq,waitpd1qq | d, d1 ą 0u
Y tpcondkpaqrdspϕ1, ϕ2q, condkpaqrd1spϕ1, ϕ2qq | d, d1 ą 0,

ϕ1, ϕ2 P Cu
The structural equivalence congruence, denoted by ”s is the smallest congruence
containing R.
2 We write r; s to indicate the forward composition of the two relations r and s, and

use ÞÝÑ to denote the reflexive transitive closure of the timed labelled transition
systems.
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Proposition 1. Let ϕ,ψ P C be two structurally equivalent contracts, ϕ ”s ψ.
Then viopϕq = viopψq and .

Proof. The proof follows using structural induction.

Definition 7. The timeout of a contract ϕ, written timeoutpϕq, is inductively
defined as follows:

timeoutpJq df
= 8 timeoutpKq df

= 8
timeoutpPkpaqrdsq df

= d timeoutpOkpaqrdsq df
= d

timeoutpFkpaqrdsq df
= d timeoutpcondkpaqrdspϕ1, ϕ2qq df

= d

timeoutpwaitpdqq df
= d timeoutpϕ1;ϕ2q df

= timeoutpϕ1q
timeoutpϕ1 § ϕ2q df

= timeoutpϕ1q timeoutprec x.ϕ | xq df
= timeoutpϕq

timeoutpϕ1 ^ ϕ2q df
= minttimeoutpϕ1q, timeoutpϕ2qu

timeoutpϕ1 _ ϕ2q df
= minttimeoutpϕ1q, timeoutpϕ2qu

Finally, we obtain the result that we need: any timed transition taking less
than the timeout of a contract preserves the structure of a contract.

Proposition 2. Given contract ϕ and time t < timeoutpϕq, advancing ϕ by t

time units preserves the structure of the contract: if , then: ϕ ”s ϕ1.

Proof. The proof is simple by structural induction.

We can now define the closure of a contract ϕ as all formulae reachable from
ϕ through action transitions and timeout time transitions.

Definition 8. We define the closure of a contract formula ϕ, written closurepϕq,
to be the set of all contract formulae reachable through a combination of visible
action transitions and timeout transitions. Formally, closurepϕq is the smallest

set such that: (i) ϕ P closurepϕq; (ii) if ϕ1 P closurepϕq, and , then

ϕ2 P closurepϕq; and (iii) if ϕ1 P closurepϕq, and , then
ϕ2 P closurepϕq.

It is easy to prove, that for a contract ϕ whose time constraints are non-zero
constants, the closure of ϕ does not exhibit Zeno-like behaviour3. It also follows
that the relations of timeout time steps and visible event steps are sufficient to
characterise the operational semantics progress of a contract to a violation or
otherwise.

4.1 A Monitoring Algorithm

The monitoring algorithm for our contract logic is shown in Algorithm 1. The
state of the monitor is stored in variable contract while variable systime keeps

3 By Zeno-like behaviour, we mean an infinite number of arbitrarily smaller time steps
whose sum converges, thus blocking time from progressing.
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track of the last timestamp processed by the system. Initially, these variables
are set to ψ and 0 (line 1). The monitoring algorithm is effectively a loop (lines
2–17) which checks whether there was a violation upon every iteration. Upon
entering the loop, any pending timer triggers are replaced (lines 3–5), enacting
a process which creates a special timeout event (line 4) to be launched (asyn-
chronously) after the current contract times out. In the meantime, execution is
blocked until an event is received (line 6). If the event received is the timeout
event, the monitored formula is updated accordingly using the timestep function

which returns the unique formula satisfying with the time
advanced by timeoutpψq time units (lines 7–10). If, however, the event received
is a system event e with timestamp t, the monitoring state is updated by first
advancing time by pt− systimeq time units, and then stepping forward using the
step function which returns the unique formula such that (lines
11–14). Finally, the systime variable is updated accordingly (line 16).

It is worth noting that the algorithm replicates the two types of transitions
required to advance a contract: (i) maximally advancing time until the struc-
ture of the contract changes (the case of a timeout event); and (ii) processing
a system event. This ensures that the state of the contract monitor advances
steadily in correct steps (assuming that timestep and step correctly implement
the rules from the semantics). Furthermore, progress is ensured since stepping
along maximal time steps never results in Zeno-like behaviour.

1 contract = ϕ; systime = 0;
2 while �vio(contract) do
3 reset timer to timeout(contract))
4 createEvent(Timeout);

5 end
6 switch getEvent() do
7 case Timeout do
8 Δt = timeout(contract);
9 contract = timestep(contract, Δt);

10 end
11 case Event e with Timestamp t do
12 Δt = t − systime;
13 contract = step(timestep(contract, Δt), e);

14 end

15 end
16 systime = systime + Δt;

17 end
18 report(Violation);

Algorithm 1: Algorithm to monitor timed contracts
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5 Runtime Verification Using Larva

Rather than programming the runtime verification algorithm from scratch, we
have built it on top of an existing runtime verification tool. We used Larva [6],
which uses Dynamic Automata with Timers and Events (DATEs) as a specifica-
tion language. DATEs are symbolic timed automata enriched in many aspects.

There are three main elements in DATE transitions: (i) Events refer to
observable actions which a DATE may react to. (ii) Conditions are boolean
expressions taking into consideration both the DATE’s symbolic state and the
system state, which decides whether a transition is taken or not. (iii) Actions
are modifications that are done to the DATE or system state upon observing an
event and satisfying the condition. What follows formally defines these concepts.

Events which a DATE will be able to react to are either (i) system events
over an alphabet SystemEvent, corresponding to control- or data-flow points
of interest during the execution of the system; or (ii) timer events which are
triggered upon a timer t reaching a threshold limit L written t@L. Timer lim-
its can either take the form of a time constant T P T (where T refers to the
continuous time domain), or deadline variables D P Deadline. Unlike constant
limits, deadline variables can be dynamically modified during the traversal of
the DATE.

Event ::= SystemEvent | Timer@pT Y Deadlineq
DATE conditions and actions may also refer to the state of the system which
is being monitored e.g. to react to a login event only if the system is in alert
mode. The state of the system σ will be assumed to range over the type States.
Besides, monitors may keep their own state, e.g. the monitor may keep track of
how many users are logged in, in order to react to a login only when more than
100 concurrent users are using the system. The symbolic DATE state μ will be
assumed to range over the type Statem.

In addition, a DATE configuration will also keep track of the timer values
τ P StateT , assigning a time value to each time such that StateT = Timer Ñ
T. Similarly, it keeps track of the current value of the timer variable deadlines
δ P StateD where StateD = Deadline Ñ T. We will abuse notation and
write δpLq to extend the function to work also on constant deadlines (in which
case that constant deadline is returned) and τ + Δ (where Δ P T) to denote the
timer state in which all timers are advanced by Δ time units. The symbolic state
of a DATE is thus defined to be a combination of all these parts: State+M =
Statem ˆ StateT ˆ StateD.

Conditions c P Condition are predicates over the system and full monitoring
state:

Condition = pStates ˆ State+M q Ñ B

Similarly, actions α P Action are functions which, based on the system state,
may update any part of the full monitoring state:

Action = pStates ˆ State+M q Ñ State+M
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Formally Defining DATEs. A DATE is quadruple xQ, q0,K,By where Q is a
finite set of states, q0 P Q is the initial state, K Ď pQ ˆ Event ˆ Condition ˆ
Action ˆ Qq is a set of event-condition-action transitions, and B Ď Q is a set

of bad states. We will write q
e|c ÞÑαÝÝÝÝÑ q1 to denote a transition pq, e, c, α, q1q P K.

The following figure shows an example of a DATE whereupon the detection
of a login event on alert mode, a timer of ten minutes is started. If the ten
minutes elapse before a logout, the DATE reaches a bad state.

q1start q2

login | alertMode() ÞÑ t.reset();

logout

t@10

The event triggers from a DATE state q, written triggerspqq, are defined to
be all events which appear on transitions outgoing from q: triggerspqq df= te |
Dq1, c, α ¨ q

e|c ÞÑαÝÝÝÝÑ q1u.
The semantics of a DATE with dynamic timer deadlines can now be defined

using this notation. The configuration of the monitor consists of (i) the state
q P Q of the DATE; and (ii) the symbolic monitoring state σ P State+M of the
monitor. Given a monitoring configuration, the earliest timer trigger is the least
time which will trigger an outgoing timer event transition if no other event is
received:

earliestpq, pμ, τ, δqq df= mintδpLq − τptq | t@L P triggerspqq
^ δpLq ě τptqu

The semantics of DATEs will specify how the configuration of the DATE changes
upon event triggering or time passing. We will have two forms of operational
semantics relations: (i) C

e,Δ,σÝÝÝÑ C 1 to denote that the monitor moves from
configuration C to C 1 upon the system receiving event e after Δ time units
(from the last transition) and with the system state snapshot at that time being

σ; (ii) C
Δ,σ

C 1 to denote that the monitor goes from configuration C to C 1
after Δ time units of inactivity at the end of which the system state is σ.

The first relation is defined with the implicit condition that an event e has
triggered and another two preconditions: the existence of a transition triggering
on e and the satisfaction of the condition c. The side-condition ensures that no
timer-triggered transitions should have modified the configuration before.

q
e|c ÞÑαÝÝÝÝÑ q1 cpσ, pμ, τ, δqq

pq, pμ, τ, δqq e,Δ,σÝÝÝÑ pq1, αpμ, τ + Δ, δqq
earliestpq, pμ, τ, δqq ą 0
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The second relation is similar to the previous but, while not requiring the occur-
rence of a system event, requires that the timer has reached its deadline.

q
t@L|c ÞÑαÝÝÝÝÝÝÑ q1 τptq + Δ = δpLq cpσ, pμ, τ, δqq

pq, pμ, τ, δqq Δ,σ pq1, αpμ, τ + Δ, δqq
earliestpq, pμ, τ, δqq = 0

Building on the earlier example, consider the case where the automaton is in the
second state with the timer just reset: pq2, p∅, t ÞÑ 0, t ÞÑ 10qq. If a logout event
occurs after six minutes, then Δ = 6, while earliestpq2, p∅, t ÞÑ 6, t ÞÑ 10qq = 10−
6 = 4. Therefore the first relation would apply, updating the configuration to
pq1, p∅, t ÞÑ 6, t ÞÑ 10qq. On the other hand, if no logout event occurs within ten
minutes, then earliestpq2, p∅, t ÞÑ 0, t ÞÑ 10qq = 10 − 0 = 10 causing the second
relation to be applied resulting in the configuration pqˆ, p∅, t ÞÑ 10, t ÞÑ 10qq.

6 Implementation

The operational semantics given to the contracts, along with the timers and
events, provide the framework to transform contracts in our calculus into DATEs
which can be used to runtime verify the performance of parties involved. More
details about the implementation can be found in [3] and in the Appendix.

We have adapted the derivative-based [4] runtime verification algorithm in
order to obtain a DATE which reacts to the events appropriately. The resulting
two-state DATE keeps track of the current contract in a variable ϕ and updates
triggers on either an event or the timeout triggers. Initially, ϕ is set to the
contract to monitor, while T to timeoutpϕq:

start

e | viopnextpϕ, eqq

t@T | viopnexttimepϕqq

e | �viopnextpϕ, eqq ÞÑ ϕ = nextpϕ, eq; T = timeoutpϕq

t@T | �viopnexttimepϕqq ÞÑ ϕ = nexttimepϕq; T = timeoutpϕq

s
The function nextpϕ, eq corresponds to stepptimesteppϕ,Δtq, eq while

nexttimepϕq corresponds to timesteppϕ,Δtq—in both cases Δt is the time elapsed
since the last processed event.Using this construction, a trace leads to the bad state
of the DATE if and only if it violates the initial contract. It is worth noting that
since any computable function can be embedded as the action of a DATE transi-
tion, the translation is made possible by the computability of derivatives over time
and event steps.



244 A. Aranda Garćıa et al.

Practical Evaluation. To test our approach, we implemented the case study in
Java with each action represented as a method call. When evaluated empirically,
runtime verification tools, typically (e.g. [5]) get evaluated by comparing the time
needed to run the system with and without monitoring. In this case, this is not
practical since the system is simply a sequence of dummy method executions.
Instead, the purpose of this quantitative evaluation is (i) to verify the correct
behaviour of the monitor, i.e., that a violation is indeed reported when it actually
occurs and vice versa; and (ii) to verify our intuition that the monitor will scale
linearly with the size of the execution of the underlying system.

A number of test cases were generated, each representing the interactions of
a single user involving a varying number of actions. In each case, the monitor
verdict was as expected. Subsequently, different levels of traffic were generated
by launching several users in parallel ranging from 100 to 100,000 users. The
experiment4 was run on a laptop with an Intel i7-855U processor, 16 GB RAM.

Thousands of users 0.1 0.5 1 5 10 50 100

No monitoring (s) 0.0556 0.231 0.261 0.736 0.811 7.00 12.1

With monitoring (s) 0.104 0.433 0.595 2.16 4.05 18.1 38.4

Difference (s) 0.0480 0.202 0.334 1.43 3.24 11.1 26.4

Difference per user (ms) 0.480 0.404 0.334 0.285 0.324 0.223 0.264

The results in the table above show that as the number of users increases, the
CPU time per user stabilises at around 0.3 ms. This confirms our reasoning that
since the individual user monitors do not interact, the monitoring effort scales
linearly to the number of users. One would only expect this trend to stop when
reaching a large number of users such that the performance of an underlying
framework starts deteriorating, e.g., the thread pool grows larger than what is
efficiently manageable.

Regarding memory, since contract monitors only need to keep track of a state
of bounded size per user per contract, this was not considered to be an issue.

7 Conclusions and Future Work

In this paper, we have presented a runtime verification algorithm for a real-time
contract calculus, proved to be correct. Also, we presented an implementation
of the algorithm as part of an established runtime verification tool Larva.

It is worth noting that despite the fact that there is much work on real-time
deontic logics (see [2] for a summary and comparisons of such works), and limited
work on monitoring of deontic logics (e.g. see [7,8,16]), the overlap between the
two has been largely neglected.

4 Code is available at: https://github.com/aarandag/larva-timedcontracts.

https://github.com/aarandag/larva-timedcontracts
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There are various research directions this research opens. Regarding the run-
time verification aspect, an interesting challenge is how we can use our techniques
for runtime enforcement: starting from a specification, how we can synthesise
algorithmic machinery to ensure that the system under scrutiny does not violate
the specification, e.g. by delaying or injecting events. In particular, there is a
body of work on runtime enforcement of timed properties, e.g. [9] which could
offer insight on how our work can be extended to build contract enforcement
engines, a notion that has not been widely explored in the deontic logic world.
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13. Pace, G.J., Schapachnik, F.: Contracts for interacting two-party systems. In: FLA-
COS 2012. ENTCS, vol. 94, pp. 21–30 (2012)

14. Pace, G.J., Schneider, G.: Challenges in the specification of full contracts. In:
Leuschel, M., Wehrheim, H. (eds.) IFM 2009. LNCS, vol. 5423, pp. 292–306.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00255-7 20

15. Prisacariu, C., Schneider, G.: A dynamic deontic logic for complex contracts. J.
Logic Algebraic Program. 81(4), 458–490 (2012). Special Issue: NWPT 2009

16. Testerink, B., Dastani, M., Meyer, J.-J.Ch.: Norm monitoring through observation
sharing. In: Proceedings of the European Conference on Social Intelligence, ECSI-
2014, Barcelona, Spain, 3–5 November 2014, pp. 291–304 (2014)

17. Yi, W.: CCS + time = an interleaving model for real time systems. In: Albert,
J.L., Monien, B., Artalejo, M.R. (eds.) ICALP 1991. LNCS, vol. 510, pp. 217–228.
Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-54233-7 136

https://doi.org/10.1007/978-3-642-00255-7_20
https://doi.org/10.1007/3-540-54233-7_136


Sound C Code Decompilation
for a Subset of x86-64 Binaries

Freek Verbeek1,2(B), Pierre Olivier3, and Binoy Ravindran1

1 Virginia Tech, Blacksburg, VA, USA
2 Open University of The Netherlands, Heerlen, The Netherlands

fvb@ou.nl
3 University of Manchester, Manchester, UK

Abstract. We present FoxDec: an approach to C code decompilation
that aims at producing sound and recompilable code. Formal methods
are used during three phases of the decompilation process: control flow
recovery, symbolic execution, and variable analysis. The use of formal
methods minimizes the trusted code base and ensures soundness: the
extracted C code behaves the same as the original binary. Soundness and
recompilablity enable C code decompilation to be used in the contexts
of binary patching, binary porting, binary analysis and binary improve-
ment, with confidence that the recompiled code’s behavior is consistent
with the original program. We demonstrate that FoxDec can be used to
improve execution speed by recompiling a binary with different compiler
options, to patch a memory leak with a code transformation tool, and to
port a binary to a different architecture. FoxDec can also be leveraged to
port a binary to run as a unikernel, a minimal and secure virtual machine
usually requiring source access for porting.

1 Introduction

Research in program analysis, verification, and engineering often assumes a con-
text where source code is available. However, numerous safety-critical systems
in automotive, aerospace, medical and military domains are built out of compo-
nents whose source code is unavailable [40]. In the case of proprietary software,
a customer is dependent on the vendor for maintenance, patching, and verifica-
tion [41]. In such contexts, decompilation can be useful. Decompilation ideally
produces sound (functionally equivalent to the binary) and recompilable C code.

The majority of existing decompilation tools do not satisfy these two prop-
erties [1,11,14–17,19,25,32]. These papers do not evaluate soundness, focusing
on other metrics such as readability and code size [9]. It is a well-known issue
in many existing tools that decompiled C code is not functionally equivalent to
the binary [9,41]. The only exception is Phoenix [9], which provides decompila-
tion based on semantics-preserving control-flow recovery. Phoenix, however, does
not define its soundness, nor does it provide a soundness proof of its control-
flow recovery algorithm. We refer to Sect. 5 for a more detailed comparison to
existing decompilation tools.
c© Springer Nature Switzerland AG 2020
F. de Boer and A. Cerone (Eds.): SEFM 2020, LNCS 12310, pp. 247–264, 2020.
https://doi.org/10.1007/978-3-030-58768-0_14
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This paper presents FoxDec (Formal x86-64 Decompilation): sound and
recompilable C code decompilation from x86-64 binaries. During three key stages
of decompilation formal methods are used. First, we formally verified a control-
flow recovery algorithm using the Isabelle/HOL theorem prover [33]. Second, we
present a symbolic execution engine that uses rewrite rules – formally proven cor-
rect using the Isabelle/HOL theorem prover – to aggregate small state-changes
induced by assembly instructions to higher-level programming constructs. Third,
we show how the Z3 theorem prover [13] can be used to formally establish a
relation between symbolic memory regions in the binary and variables in the
decompiled C code. Taken together, these three uses of formal methods increase
the trustworthiness that the decompiled C code is sound.

We show that soundness and recompilability allow FoxDec to be useful in
the following contexts, each of which is discussed on Sect. 3:

Binary Patching. When source code is unavailable, performing a patch at the
machine code or assembly level is highly complex [41]. By decompiling a binary
as C code, one can patch at the source code level, which is significantly easier. As
an example, we take a binary with a memory leak. We decompile to C, apply the
code transformation tool Coccinelle [36] to patch the leak, and recompile [36].

Binary Porting. Using FoxDec, one can take an x86-64 binary, decompile, then
recompile it for any other little-endian architecture. It can thus be an alternative
to software emulators such as QEMU [5], which suffers from significant slow-
downs ranging from 5 to 1000x [10]. FoxDec also enables porting binaries to run
as unikernels [28]. Most of the existing unikernel models require recompilation
or relinking to port an existing application, thus requiring source code [34]. As
examples, we port binaries from x86 to ARM, and a binary of the PARSEC [6]
Blackscholes program to a unikernel.

Binary Analysis. Verification and analysis tools typically operate on source
code. The low-level intricacies occurring in binaries make analysis difficult. We
show that through C code decompilation, FoxDec enables the application of
standard off-the-shelf source code analysis tools on binaries. For example, we
use Frama-C to determine ranges for variables and check for buffer overflows in
the binary of the GNU Coreutils word-count (wc) program [24].

Binary Improvement. Different compilers offer variable program performance,
compilation speed, binary sizes, etc., which vary with the compiled program and
the compilation options. C decompilation enables recompiling a binary with dif-
ferent settings. As an example, we show that it is possible to improve execution
speed of functions in a binary containing implementations of floating-point func-
tions, simply by decompiling and recompiling them.

The approach has limitations. User-interaction is required for 1) providing
information on function signatures, and 2) inclusion of header files. Soundness
of a specific step – namely, introducing references to variables – cannot be guar-
anteed since without type-information it is undecidable whether a value is a
pointer. In that case, the decompiled variable reference is annotated with a
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3,]pbr[rtpdrowqlumi:01pbrhsup:1

1,]4x0-pbr[rtpdrowddda:11psr,pbrvom:2

3: mov dword ptr [rbp - 0x10], edi 12: mov eax, dword ptr [rbp - 0x4]

4: mov dword ptr [rbp - 0x8], 1 13: cmp eax, dword ptr [rbp - 0x8]

5: mov dword ptr [rbp - 0x4], 0 14: jb 9

6: mov dword ptr [rbp - 0xc], 0 15: mov rax, qword ptr [rbp]

pbrpop:618,pbrbus:7

ter:7121pmj:8

9: shl qword ptr [rbp], 1

Fig. 1. Running example

soundness warning and further user-interaction is mandated. Moreover, we can-
not deal with indirect branching and thus consider only a subset of all possible
x86 binaries.

The research contributions of this paper are: 1) C code decompilation such
that for key stages soundness criteria have been formalized; 2) the demonstration
that this produces efficiently executable code: to the best of our knowledge, no
related work exists that provides numbers on execution speed of the recovered
code; 3) the demonstration that sound and recompilable C code recovery can be
used for binary patching, porting, analysis, and improvement. To the best of our
knowledge, no previous decompilation tool targets soundness, recompilability
and is based on formal methods. Project information can be found at: https://
llrm-project.org/; all code and proofs are available at: https://doi.org/10.5281/
zenodo.3952034.

2 C Code Extraction

We demonstrate the steps of decompilation on the assembly code in Fig. 1. The
code first initializes local variables. It then loops over lines 12-14-9-12 until the
carry flag is false (jb looks at that flag).

2.1 Step 1: Binary to Control-Flow Graph

The Control-Flow Graph (CFG) is a graph with basic blocks (i.e., lists of instruc-
tions) as vertices and edges with labels from a set F of flags. In order to obtain
a CFG from a binary, two steps are required: disassembly and CFG recovery.
Both these steps have been extensively studied in literature [2–4,7,22,23,43].

In order to express the soundness of a CFG, we use the notion of paths. A
path in the binary is defined as any list of instructions such that there exists
a possible execution of the binary that visits exactly these instructions. Let I
denote the set of instructions, and let [I] denote lists of instructions. We use
is pathbin(π) to denote that a list π of instructions of type [I] is a path in the
binary. A path in the CFG is a list of lists of instructions. Let is pathcfg(π, g)

https://llrm-project.org/
https://llrm-project.org/
https://doi.org/10.5281/zenodo.3952034
https://doi.org/10.5281/zenodo.3952034
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denote that π of type [[I]] is a path in CFG g. The following notion of soundness
is a reformulation of the concept of an ideal CFG from [43].

CFG Soundness: CFG g is sound, if and only if:

is pathbin(π) ⇐⇒ ∃π′ · is pathcfg(π
′, g) ∧ flatten(π′) = π

FoxDec Implementation and Argument for Soundness: We use Ramblr
for disassembly [41]. A generic and provably sound approach to disassembly is
outside the scope of this paper. However, we limit the applicability of FoxDec
to binaries without indirect branching. As result, the disassembler knows at
all times at which addresses it needs to disassemble instructions. Under this
limitation, disassembly can be done in a provably sound way. Similarly, CFG
extraction is done by a reimplementation similar to angr’s CFGFast [39]. The
algorithm straightforwardly produces a CFG, by starting at a known entry point
and considering for each encountered instruction its effect on the instruction
pointer. Again, the limitation of no indirect branching ensures soundness.

2.2 Step 2: CFG to Abstract Code

We formulate a datatype for abstract code that is able to represent the decom-
piled program at all stages of decompilation. This datatype expresses a program
as a combination of control flow, basic blocks, and branching decisions. Each
basic block is represented by a polymorphic type β; branching decisions are
represented using a polymorphic type φ.

acode(β, φ) := Block β | Skip | Continue | Break ID | acode(β, φ) ; acode(β, φ)
| If φ Then acode(β, φ) Else acode(β, φ) Fi

| Loop acode(β, φ) Pool Resume{(ID, acode(β, φ))}
Abstract code consists of basic blocks, skips, sequential execution, if state-

ments, and loops. There is only one type of loop that has no exit condition and
thus loops infinitely if it does not contain a break. A Continue has the same
semantics as the C continue statement, i.e., forcing the next iteration of a loop.
A Break is also similar to the C break, but it optionally has an argument. In
case of a loop with multiple exit points, the Break can use an ID to identify
which exit has been used. After the loop, a Resume statement can execute code
based on which exit was taken. For example, if a loop breaks due to a Break i
statement and the loop is followed by a Resume that contains the pair (i, a), then
abstract code a is executed. If the set of Resume is empty, we will omit it.

Let a = acode(β, φ) be abstract code. A path of the abstract code is a list
of elements of type β. Let is pathac(π, a) denote that π of type [β] is a path of
abstract code a.

Step 2 consists of generating abstract code with β = [I] and φ = F , i.e.,
with the same basic blocks and branching decisions as the CFG. It is thus a
function cfg to ac that takes as input a CFG and produces an element a of type
acode([I], F ).



Sound C Code Decompilation for a Subset of x86-64 Binaries 251

Abstract Code Extraction Soundness: Abstract code extraction is sound,
if and only if:

is pathcfg(π, g) ⇐⇒ is pathac(π, cfg to ac(g))

FoxDec implementation and Argument for Soundness: Yakdan et al.
provide an algorithm for extracting control flow structures from a CFG [44].
The algorithm considers a certain subgraph. Initially, this subgraph is the entire
CFG, but for each loop the body forms a new subgraph. This recursive nature
allows extraction of nested loops. The function breaks down the current subgraph
into sequential statements. Edges back to the entry node of the subgraph are
Continue statements, edges exiting the subgraph are Break statements.

We modeled an adopted version of the method of Yakdan et al. in the
Isabelle/HOL theorem prover. This provides a formalized function cfg to ac,
which was proven sound (the proof files are made available). Subsequently, we
implemented the exact algorithm as formalized in Isabelle/HOL.

Example 1. Control flow reconstruction produces the following for the running
example:

Block 1 −> 12
Loop
Block 12 −> 14
If CF Then Block 14 −> 12 Else Break Fi

Pool
Block 14 −> ret

A block l −> l′ consists of the instructions from l up to (excluding) l′.
One loop has been identified, which is exited if the carry flag is false. The final
block runs until and including the ret instruction.

2.3 Step 3: Symbolic Execution

The next step is to transform the basic blocks in the abstract code to symbolic
state changes. We achieve this by running symbolic execution. The purpose is
twofold: a) to aggregate the state changes induced by the individual instructions
to a set of larger state changes, and b) to express those state changes in a more
architecture-independent fashion.

Formally, symbolic execution is a function symb that takes as input a basic
block b of type [I] and produces an element of type {ASP}. Here elements of type
ASP are assignments over state parts, i.e., ASP = {(SP , ESP )}. An assignment
is denoted by sp := v. The left-hand-side is an element of type SP , i,e, a state
part. A state part is either a register, a flag, or a memory region represented
by an address a and a number of bytes s. The latter is denoted by [a, s]. An
assignment [a, s] := v of a value to a memory region is done in little-endian
fashion, i.e., value v is split up into a byte list and then reversed. All assignments
are mutually independent.
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The right-hand side is an element of type ESP , i.e., expressions over state
parts. These expressions consist of common bit-vector operations including tak-
ing bit subsets and concatenation as introduced above, logical operators, casting
operators, and floating-point, signed and unsigned arithmetic operators. The
expression ∗[a, s] denotes dereferencing: reading s bytes from memory address a.

To express soundness, we need to compare 1) the actual behavior of exe-
cuting assembly instructions with 2) the semantics of the symbolic expressions.
First, let exec(b, σ) denote execution. It takes as input a basic block b of type [I]
and a concrete state σ and runs each instruction consecutively. Function calls
are treated symbolically (this models non-deterministic user-input). Second, let
evalE(e, σ) denote an evaluation function for expressions. It evaluates the expres-
sion as much as possible, but again leaves results of function calls symbolic. The
execution of an assignment evaluates both the left and the right-hand side in
the current state, and then updates the current state. This leads to a function
eval{ASP} that evaluates a set of assignments, i.e., that evaluates symbolized basic
blocks.

Symbolic Execution Soundness: Symbolic execution is sound, if and only if,
for any basic block b of type [I]:

∀σ · exec(b, σ) = eval{ASP}(symb(b), σ)

This notion of soundness is context-insensitive, i.e., it considers each block sep-
arately. Let symbac(a) apply symbolic execution to all blocks. It thus takes as
input abstract code a of type acode([I], F ) and produces symbolized abstract
code of type acode({ASP}, ESP ). This ensures that:

is pathac(π, a) ⇐⇒ is pathac(map symb π, symbac(a))

Here map is the standard map function. Moreover, soundness of symbolic exe-
cution implies that for any path π of type [[I]] (produced by Step 2):

∀σ · exec(flatten(π), σ) = evalpath(map symb π, σ)

Here function evalpath consecutively runs evaluation on the given list of symbol-
ized basic blocks. It formulates that executing paths from the CFG is equivalent
to evaluating the symbolized abstract code.

FoxDec Implementation and Argument for Soundness: The key elements
of symbolic execution are instruction semantics and rewrite rules. Instruction
semantics consists of a set of symbolic assignments per instruction. For example,
the add instruction updates flags and its first operand with symbolic expressions.
We use the formal semantics of Roessle et al. [38]. They leverage the work of
Heule et al. [21] which produces machine-learned semantics for a large set of
instructions. Their semantics have been proven to be highly reliable. Roessle et
al. translated these into a bitvector language and formalized them in the Isabelle
theorem prover [33]. We have taken the semantics of this model and programmed
them as symbolic assignments. Aggregating the semantics of individual instruc-
tions leads to large expressions. Simplification rules are necessary to maintain
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scalability and readability. We have written a simplification engine that uses
arithmetic, logical, and bit-vector based simplification rules. Each of these rules
has been proven correct in the Isabelle/HOL theorem prover.

Example 2. Symbolic execution produces the following for the running example:

Block {rbp := rsp − 8, ∗[rsp − 8, 4] := 1, ∗[rsp − 16, 4] := edi, . . .}
Loop
Block {CF := ∗[rbp − 4, 4] > ∗[rbp − 8, 4], . . .}
If CF Then Block {∗[rbp, 8] := ∗[rbp, 8] ∗ 6, . . .} Else Break Fi

Pool
Block {rax := ∗[rbp, 8], . . .}

First, one can see that the basic blocks have become sets of mutually independent
assignments. For example, the first block assigns the 4-byte value 1 to address
rsp− 8. This is due to instructions 2 and 4. Second, one can see that semantics
have been aggregated, e.g., multiplication by 6 instead of left-shifting and times
3. Also, instructions 12 and 13 have been aggregated into a single assignment to
the carry flag.

2.4 Step 4: Variable Analysis

The key purpose of variable analysis is to establish which memory regions cor-
respond to which variables. Three types of variables exist: local, global, or heap
variables. Local variables are stored in the stack frame, relative to either the
stack pointer (rsp) or the frame pointer (rbp). Global variables are stored in
the data sections of a binary. Their addresses are typically immediates, i.e, con-
stant values that represent a certain offset with respect to where the binary is
stored in memory. Heap variables are represented by pointers.

Before memory regions can be matched to variables, any address computation
must be expressed relative to the initial state. Consider the running example.
Within the loop, region [rbp, 8] actually overlaps with region [rsp − 8, 4] from
the first block. This is because during the loop, the following invariant holds:
rbp = rsp0 − 8. Expressed in initial values it is easy to see these two regions
should be mapped to the same variable: [rsp0 − 8, 8] and [rsp0 − 8, 4].

The first step of variable analysis is thus invariant propagation. In the running
example, the invariant assigned to line 1 will contain rsp = rsp0. At line 12, it
will contain rbp = rsp0 − 8. In similar fashion, initial values of the form x0 are
propagated for all registers and memory regions. After invariant propagation, it
is checked whether all addresses are expressed in terms of initial values.

The second step replaces memory regions with variables. Local variables are
identified by finding regions whose address computation includes the stack- or
frame pointer. For example, the symbolic expression ∗[rsp0 − 4, 4] is replaced by
a symbolic expression consisting of some 32-bit local variable lv . Global variables
are identified by finding symbolic expressions of the form [i, s] with both i and s
immediates. For example, the symbolic expression ∗[4257968, 8] is replaced by a
64-bit global variable gv . For each global variable, we retrieve the initial value
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of the global variable from the data sections of the binary. The remaining set of
memory regions constitute heap variables. These require no modification during
variable analysis. For example, ∗[rax, 4], dereferencing the pointer in register
rax, is not modified by this step.

Generally, regions may be different but still map to the same variable. This
happens if the regions are necessarily overlapping. Two regions [a, s] and [a′, s′]
are necessarily overlapping, notation [a, s] ∼ [a′, s′], if and only if in any state
addresses a and a′ resolve to regions that share at least one byte. Such regions
are merged during variable analysis.

Variable Analysis Soundness: Assume that the addresses of all memory
regions are expressed in terms of the initial state. Let var [a, s] return the vari-
able that is being substituted for region [a, s]. Variable analysis is sound, if and
only if, for any two accessed memory regions [a, s] and [a′, s′], anywhere in the
abstract code:

[a, s] ∼ [a′, s′] ⇐⇒ var [a, s] = var [a′, s′]

FoxDec Implementation and Argument for Soundness: Invariants are
established via a standard forward propagation algorithm [18]. For loops, the cur-
rent invariant is iteratively weakened until a fix-point is reached. To establish
whether two regions are necessarily overlapping, the Z3 theorem prover is used [13].
The regions are necessarily overlapping if them being separate is unsatisfiable.

Example 3. Variable analysis produces the following for the running example:

Block {lv0 := 1, lv1 := 0, lv2 := p0 . . .}
Loop
Block {b := lv1 > lv2, . . .}
If b Then Block {lv0 := lv0 ∗ 6, . . .} Else Break Fi

Pool
Block {ret := lv0]}
During the loop rbp = rsp0 −8. As result, the region [rbp, 8] in the blocks in

the loop were necessarily overlapping with the regions [rsp−8, 4] and [rsp−4, 4]
in the first block. All these regions were thus merged into one variable lv0.
Variable b has been introduced as a Boolean variable for the carry flag. Moreover,
the function signature maps registers edi to parameter p0, and the function
returns a value via variable ret = rax.

2.5 Step 5: References

After variable analysis, there can still be symbolic expressions that are references
to variables. Step 5 identifies such expressions and replaces them. For example,
if region [rsp0 − 4, 4] has been substituted with variable lv , symbolic expression
rsp0 − 4 is replaced by symbolic expression &lv . In case the region was not
encountered, a fresh variable lvf is introduced and the region is translated as
a reference to that fresh variable. Since the size cannot be established, it is
assumed to be 8 bytes. The code is annotated with a possible unsoundness.
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References to global variables pose a problem with respect to automation.
Consider the occurrence of an immediate 4257968, and assume that this immedi-
ate value is within the address range of the data sections of the binary. This may
or may not be the address of some global variable. By default, this is considered
not to be a reference to a global variable. However, the code is annotated with
a message indicating that an immediate occurred whose value indicates that it
is likely to be a global variable pointer. The user can then manually modify a
config file, ensuring that 4257968 is translated to &gv .

2.6 Step 6: C Code Generation

The abstract code produced by variable analysis is the base for C code gener-
ation. The main difference between the abstract code and C is types. For the
abstract code, we know the size of each variable, but not the type.

Consider the C expression a − b/c. Its semantics depend on whether the
variables are floats, signed, or unsigned ints. The +, and − operator behave the
same for unsigned and signed ints, but division does not. The semantics of the
operators are thus dependent on the types of the variables. In the abstract code,
this is not the case. The operators are well-defined, e.g., the operator in the
symbolic expression is the result of a div, idiv, or fdiv assembly instruction
(division of signed, unsigned, floating point). This means that we do not need
type information for variables.

We thus rely on type punning to translate variables. Consider a 64-bit vari-
able. Depending on which operator is applied to it, it must be accessed in differ-
ent ways. This is achieved using a union. When translating an operator, we first
establish the types expected by the operator. For example, an fdiv assembly
instruction expects two doubles. A sub expects (un)signed ints (note that sub-
traction is equal for unsigned/signed arithmetic). We arbitrarily pick unsigned
out of the two options. We then translate the operands and pun them – if nec-
essary – to the types expected by the operator. Punning one type to another
means casting without modifying its contents.

Example 4. The running example produces the following C:

var64_t f(var32_t p0) {
var64_t lv0.u = 1; var32_t lv1.u = 0, lv2 = p0;
while (1) {

bool b = lv1.s > lv2.s;
if (b) lv0.s = lv0.s * 6; else break;

}
return lv0;

}

In contrast to using type punning and unions to derive C, it is also possible
to use type inference [30]. The major advantage of using type inference with
respect to our approach is that the produced C code is much more readable
and humanly understandable. The drawback is that it is not always possible
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(i.e., it is undecidable). Type punning thus produces in more cases code that is
recompilable, at the cost of readability.

3 Applications

We have applied C code extraction to binaries containing functions of the
FDLIBM library. We have considered both non-optimized code (O0) and fully
optimized (O3). FDLIBM provides mathematical floating-point functions such as
sin, fmod and log that satisfy the IEEE754 standard. We have chosen FDLIBM
as a case-study for the following reasons:

Complexity: The functions provide highly optimized implementations of
advanced mathematical functions. They contain advanced flow control, includ-
ing nested loops and if-statements, goto’s, switches, and both in- and external
function calls. They execute a plethora of floating-point, signed and unsigned
arithmetic operations and frequently cast between types. Advanced pointer-
arithmetic is used, both on arrays and on addresses of variables (e.g., splitting
up the high and low part of a 64-bit floating point variable). Type punning is
used, even in the original (vanilla) C code.

Testability: Even though the implementation is complex, the interfaces to the
functions are all simple. They generally are side-effect free functions that take
either one or two floating-points parameters and return a floating point. Some
functions do produce side effects, such as writing certain results into an array
that is passed as a parameter. For all functions, these are well-documented. The
functions are typically fast, allowing execution of millions of test-cases.

The FDLIBM library comprises 84 functions and 8.543 lines of C code. 23 of
these functions are simple wrappers that only call other functions. We exclude
them from our evaluation, since they do not do anything interesting on their own.
One function, ieee754 lgamma r, uses indirect branching, which is not sup-
ported. The text sections of the remaining 61 functions comprise 13.744 (10.221)
lines of assembly code (respectively O0 and O3), not including any data sections.
For each of these 61 functions, we have decompiled C code. In this case study,
all warnings on pointers to global variables were trustworthy, i.e., they actually
were pointers and not constants. At four places, the decompiled C code has been
modified due to fixed-size local arrays. The decompiled C code has been recom-
piled. For each function f we thus have the vanilla function fv in the original
binary and the function fr in the recompiled binary.

Test Setup. Testing consists of running both functions fv and fr on randomly
generated values and comparing their results. For each function, we have run
100.000.000 test cases. All experiments in this section were run on a 1.2 GHz Intel
Core m3 machine with 8 GB RAM. The test setup first requires generation of
random values of type double. We build a random-generator that at the top-level
randomly (but uniformly) calls one of five different random double generators.
Four of the random double generators randomly pick a double from 1) the range
[−2.0, 2.0], 2) the range [−20000.0, 20000.0], 3) the range of subnormals, 4) a
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Fig. 2. Ratios of execution speed, capped of at a factor 2.6. Series x/y means that
the original binary had been compiled with optimization x, and the recompiled C
is compiled with optimization y. For series O0/O0, factors higher than 2.6 have been
labelled. Excluding ieee754 pow, the average factor for series O3/O0 is 2.3 with a
maximum of 6.6.

set of specific values such as plus- and minus infinity, plus- and minus zero and
one, plus- and minus NaN, and values such as maximal and minimal doubles.
The fifth random double generator produces a bit pattern from 64 random Bools
and casts it to a double. The purpose of this test setup is thus to test random
values, likely values and corner cases.

Results. We measure running times of the vanilla and the recompiled version
for a comparison. For each function, an array of 50.000 elements is initialized
with random test data for 50.000 test cases. Two arrays are allocated to store
output data. Subsequently, a loop is run that calls the vanilla function fv for each
test case and writes its output to one of the output arrays. Then, a loop is run
for the recompiled function fr. Of both loops, the running times are measured.
After having run both loops, the output data is compared for equality, to ensure
that the functions produced the same results. This is then repeated until a total
of 100.000.000 test cases have been run, accumulating the running times. The
reason to do it in batches of 50.000 is to prevent measurement inaccuracy. One
batch of 50.000 function calls typically takes about 5.000µs, which is accurately
measurable.

Figure 2 shows running times for 50 out of 61 functions. The remaining 11
functions are each called by at least one of the 50 functions and therefore not
shown. Let tv and tr denote respectively the running times of all test cases
on the vanilla and recompiled functions. The graph shows the ratio tr

tv
. The

series O0/O0 is the case where the vanilla binary had been compiled without
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Fig. 3. Original and recompiled performance of PARSEC Blackscholes.

optimizations, and the decompiled code is compiled without optimizations as
well. The regenerated code is on average a factor 1.5 slower then the vanilla.
There are two notable exceptions: ieee754 pow and cbrt. The recompiled
version of the first is, for all four series in Fig. 2, about a factor 40 times slower.
This function consists of a series of if-statements (no loops). Its CFG consists
of a largely irreducible CFG of 93 basic blocks and 144 edges, leading to an
exponential blow-up during control flow extraction. The second is a factor 9.9
slower in this series.

If, however, the decompiled code is compiled with optimizations, then the
decompiled code is generally either faster than the vanilla, or is at most 50%
slower. This is shown by series O0/O3 and O3/O3 (respectively for a non-optimized
and fully optimized original binary). As expected, the series O3/O0, which decom-
piles code from an optimized binary and recompiles it without optimizations,
produces decompiled code that is significantly slower than its original (Fig. 3).

3.1 Use-Cases of C Decompilation

Binary Improvement: Decompiling as C code allows us to recompile a pro-
gram with higher optimizations or a different compiler in order to get perfor-
mance gains. We used the PARSEC [6] Blackscholes benchmark which is repre-
sentative of modern compute-intensive data analytics applications. We compile
the vanilla source code with gcc 6.3 and the default optimization level, i.e. O0.
We then decompile that binary and recompile the resulting code varying the
compiler and the level of optimizations. We use gcc 6.3 and clang 3.8, the
default versions available on Debian 9, as well as gcc 8.3 and clang 9.0 which
are the latest versions released. We varied the optimization level from O0 to
O3, and added a fourth case with both O3 and march=skylake which produces
binaries optimized for the particular CPU used for this test: a Xeon E3-1270 v5
clocked at 3.6 GHz. Blackscholes’s largest data set was used (native size).

We compare the speedup/slowdown of the recompiled code over the original
Blackscholes code compiled with gcc 6.3/O0. As one can observe, the capacity
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to decompile and recompile with O1 or higher can bring significant speedups.
Across all compilers, the average speedup is 1.81x for O1, 1.93x for O2, 1.99x for
O3 and 2.01x for O3 with march=skylake. Note that clang 3.8 with this last
option produced invalid code so no result is presented for that particular case.

Binary Patching. Coccinelle is a C transformation tool use for software patch-
ing [35]. It takes as input a semantic patch and one or a set of C files, and pro-
duces a patch. As example, we take a binary that contains a function allocating
an array on the heap with malloc(), then initializing it and performing some
computations within that array. The function returns without calling free()
on that array which is a memory leak. We write a Coccinelle semantic patch
formulating that the array manipulated by that function should be freed before
it returns. We decompile C from the binary, apply the patch, and recompile,
producing a patched binary.

Binary Porting. We have run the x86 binary containing the FDLIBM library
on an ARM64 Cavium ThunderX server machine, by recompiling the decompiled
C, and successfully reran all test cases. Moreover, we have taken an x86 binary
containing the Blackscholes benchmark and run it as a unikernel. Unikernels [28]
are minimal and single-purpose VMs tailored for cloud execution and presenting
numerous benefits such as low image size, memory footprint, and fast instantia-
tion times. Porting an application to unikernel models typically requires access
to the application’s sources [34]. Using FoxDec we can decompile an application
for which the sources are not available, and recompile it as a unikernel.

We decompiled PARSEC Blackscholes and recompiled it as a unikernel, using
the HermitCore [27] unikernel model. To demonstrate unikernel benefits, we
measured the image size, boot time, and memory footprint of the resulting VM.
We compared these numbers to a regular Linux VM (a minimal Ubuntu 16.04
from Vagrant repositories), which can be used to deploy in the cloud an appli-
cation whose sources are not available. The image size, boot time, and memory
footprint for the recompiled unikernel vs. the Linux VM were resp 2.1 MB vs.
781 MB, 20 ms vs. 26 ms, and 12 MB vs. 87 MB. We came to similar data for a
Docker container [29] (resp. 116 MB, 1500 ms, 2 MB).

Binary Analysis. Frama-C is a tool suite dedicated to source code analysis of C
software. It can be used for, among others, program slicing, test-case generation,
and verification. We have applied Frama-C to the binary of the word-count
program. It indicated one loop with a possible buffer overflow. Manual analysis
showed that this was a false negative.

4 Discussion and Limitations

This section summarizes issues related to soundness and automation and dis-
cusses limitations.

Let a be the abstract code produced after Step 3 (symbolic execution). Sound-
ness of these steps provides as a corollary:

is pathbin(π) ⇐⇒ ∃π′ · is pathac(π′, a) ∧ ∀σ · exec(π, σ) = evalpath(π′, σ)



260 F. Verbeek et al.

Table 1. Decompilation tools. FM = Based on Formal Methods; RC = recompilability

Name Output FM RC Types Supports Soundness

FoxDec C Partial Punning x86-64 with SIMD Yes

Phoenix C Partial Yes 32 bit: x86 Yes

Ghidra C No Partial All

RetDec C/Python Partial Yes 32 bit: x86, ARM, MIPS

Ramblr Assembly Yes x86-64

DiL HOL No 32 bit: x86, ARM, MIPS

IDA PRO Assembly No All

Hex-Rays Pseudo C No Partial All

SmartDec C++ Partial Yes x86-64

McSema LLVM IR Yes All

Executions of the binary are represented by the symbolized abstract code. Steps 4
to 6 concern the translation to C. Sound variable analysis ensures that the assign-
ments in the symbolized state blocks are executed on the proper variables. Step 5
is possibly unsound, but C code annotations are provided. Step 6 is a matter
of translating symbolized expressions to their C equivalent. Universally, if the
resulting C code does not contain annotations, it is sound.

The subset of supported binaries is limited to binaries without indirect
branching, variadic functions, self-modifying code, setjmp/longjmp, and con-
currency.

Some parts of our C code decompilation are x86-64 specific. The symbolic
execution engine is based on semantics for x86 instructions. Variable analysis is
largely generic, but it requires knowledge on which registers are used to relate
local variables to (in x86: rsp and rbp). CF extraction and C code generation are
generic. We thus argue that implementing this approach for other architectures
is a matter of engineering.

5 Related Work

Decompilation, and C decompilation in particular, has been an active research
field for decades [9,11,12,20,37,42]. Table 1 provides an overview of some of
the available tools. The table does not show disassemblers, such as CapStone
or BAP [8]. Column RC provides information on recompilability. Ramblr and
McSema provide decompilation into a language lower-level then C, but with
recompilation. The bulk of the C code decompilation tools produce pseudo C
or C that requires manual inspection for it to be sound and recompilable. The
notable exception is Phoenix, discussed below [9]. Column Types provides an
overview of how types are dealt with, if applicable. As discussed in the previous
section, we use type punning to enable recompilability, at the cost of readability.

To the best of our knowledge, the only existing C decompilation tool that
targets soundness is Phoenix [9]. Phoenix uses control-flow recovery and type
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recovery to produce structured and readable C code. The key difference between
FoxDec and Phoenix is that for Phoenix, soundness is not defined, nor is an
argument provided on why the approach is sound. For example, an algorithm
is provided for control-flow recovery without a soundness criterion or proof. In
contrast, this paper is based on formally proven correct control-flow recovery.
Second, Phoenix uses type recovery, producing much better and readable code.
However, they themselves state that this leads to soundness failures, whereas
type punning does not introduce any soundness issues. Finally, Phoenix works
for x86 in 32-bit and does not support floating-point operations. We have not
been able to install Phoenix for a direct comparison.

Very recently, Ghidra has been released by the US National Security Agency
(NSA) [1]. It is an open-source framework that aims at analyzing malicious code.
It provides a robust C multi-architectural decompilation framework. Moreover,
it supports indirect branching and its C generation relies not on punning and
unions. However, the code it produces is not necessarily sound or recompilable.

RetDec (Retargetable Decompiler) provides an end-to-end binary-to-C
decompilation suite [15,25]. Their work considers binaries from various 32-bit
architectures and provides decompilation via LLVM. Their output is either C or
a Python-like language. Their work has some unique characteristics. First, the
use of LLVM enables the application of LLVM based tools. Second, they have
put a great effort in producing humanly readable source code. Thirdly, they
combine their work with type inference [30], producing C code with arrays and
structs. Finally, they provide an unpacker as a preprocessor [26], that is able to
take a packed binary (e.g., malware) and make it suitable for decompilation.

Ramblr [41] is part of the angr binary analysis framework [39], which provides
binary analysis tools such as CFG recovery. The focus of Ramblr is on symbolized
disassembly, i.e., deriving assembly with symbolic labels instead of immediate
addresses. This allows binary patching, since the assembly can be reassembled.

A special kind of decompilation is decompilation-into-logic (DiL) [31,32]. DiL
embeds disassembled machine code into Higher-Order-Logic. Blocks are given
formal pre- and postconditions and loops are translated to recursive functions.
DiL enables formal verification of binaries in a theorem prover.

Various commercial tools for binary analysis and decompilation exists. IDA-
PRO [16] supports all mainstream architectures and is build on years of research
into binary analysis. An extension of IDA-PRO is Hex-Rays [19]. Hex-Rays
extracts humanly readable C-like pseudocode text. It is extremely fast, pro-
viding a result virtually on-the-fly for many functions. Other commercial tools
include SmartDec [17], which targets C++ code, and McSema [14] which extracts
LLVM.

6 Conclusion

This paper presents FoxDec: a C decompilation framework that is based on
formal methods and that aims at soundness and recompilability. We show that C
decompilation allows the application of source-level tools on binaries. We apply,
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e.g., a C code patching tool to patch a binary, or we apply a C code verification
framework to verify the binary. Moreover, C decompilation can be useful for
binary porting. We show this by porting an x86-64 binary to a unikernel and to
an ARM machine. We have shown that FoxDec provides decompiled C code with
little overhead in terms of execution speed with respect to the original binary.
FoxDec will be made available online under an open-source license.

In the near future, we want to strengthen the formal relation between the
decompiled C code and the binary. Instead of proving formal correctness of each
individual step, we aim at producing a formal certificate that provides a theo-
rem prover with all the information necessary to establish a simulation relation
between the binary and C code. Moreover, we want to focus on formally verified
type inference algorithms. The result would be a way to largely automatically
retrieve formally proven correct C code from a subset of x86-64 binaries.
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Research (ONR) under grants N00014-17-1-2297, N00014-16-1-2104, and N00014-18-
1-2022.
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Abstract. Consumption of REST services has become a popular means
of invoking code provided by third parties, particularly in web applica-
tions. Nowadays programmers of web applications can choose TypeScript
over JavaScript to benefit from static type checking that enables validat-
ing calls to local functions or to those provided by libraries. Errors in
calls to REST services, however, can only be found at runtime. In this
paper, we present SRS, a language that extends the support of static
analysis to calls to REST services, with the ability to statically find
common errors such as missing or invalid data in REST calls and misuse
of the results from such calls. SRS features a syntax similar to JavaScript
and is equipped with a rich collection of types and primitives to natively
support REST calls that are statically validated against specifications of
the corresponding APIs written in the HeadREST language.

1 Introduction

During the last decades web services have become an important building block
in the construction of distributed applications. REST web services in particular
have become quite popular [16,30]. These services, through specific application
programming interfaces, allow consumers to access and manipulate representa-
tions of web resources, identified by Unique Resource Identifiers, by using the
operations offered by HTTP. Nowadays a very large number of APIs are inter-
faces of REST services [24] and many software companies expose REST APIs
for their services.

Since so many applications are designed to offer REST APIs, the consumption
of REST services has become a popular means of invoking code provided by
third parties. However, the support available to programmers for writing code
that consumes these services is extremely limited when compared to the sort of
support offered when invoking external libraries provided by third parties. The
practical impact of this problem is attested by a study on a large-scale payment
company which concluded that errors in invocations of REST services, related
to invalid or missing data, cause most of the failures in API consumer code [2].

The fact that programmers have no way of knowing whether their calls to
REST APIs are correct until runtime was identified as one of the four major
research challenges for the consumption of web APIs [38]. This state of affairs
led to an inter-procedural string analysis proposal to statically check REST calls
in JavaScript [37]. The solution checks whether a request to a service conforms
c© Springer Nature Switzerland AG 2020
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to a given API specification written in OpenAPI1, and involves checking whether
the endpoint targeted by the request is valid and the request has the expected
data. Since OpenAPI has severe limitations on what can be expressed about
the exchanged data, there are many errors related to invalid or missing data in
requests that cannot be addressed by this approach. Moreover, since the models
of response data are not taken into consideration, misuse of the result to REST
calls cannot be addressed.

This paper presents an approach to API consumer code development based on
two new languages: HeadREST—a specification language for REST APIs with
a rich type system that supports the specification of semantic aspects of REST
APIs—and SRS (short for SafeRESTScript)—a subset of JavaScript equipped
with (i) types and strong static analysis and (ii) primitives to natively support
REST calls that are statically validated against HeadREST specifications of the
corresponding APIs. The validation system of SRS is based on a general-purpose
verification tool (Boogie). SRS compiler generates JavaScript code for valid SRS
programs, making it easy to use the two languages together and providing a
solution for the execution of SRS programs in many different execution envi-
ronments. The SRS compiler comes in the form of an Eclipse plugin which is
publicly available for download. Alternatively, HeadREST and its validator can
be exercised directly from a browser [8].

The main contributions of this work are an approach to statically check REST
API consumption, and SRS, a type-safe JavaScript-like language, together with
its compiler.

The paper starts with a tour through our approach (Sect. 2) and a brief intro-
duction to THE HeadREST specification language (Sect. 3). Then, we present
the SRS programming language and its validation system (Sect. 4). The valida-
tion system guarantees the detection of errors in REST calls as well as common
runtime errors (including null dereference, division by zero and accesses out-
side arrays bounds). Section 5 presents the evaluation of SRS, Sect. 6 discusses
related work, and Sect. 7 concludes the paper by pointing towards future work.

2 Overview of the Approach

This section presents the motivation for SRS and walks through our approach
by means of an example. First we show how HeadREST allows us to specify
REST APIs and capture properties that are important and cannot be expressed
in currently available Interface Description Languages (IDL) such as OpenAPI.
Then we show how SRS allows programming clients of REST services and how
to rely on the compiler to check whether (i) REST calls conform to the speci-
fied service interface and (ii) the response data is correctly used, thus avoiding
runtime errors.

1 https://swagger.io/specification.

https://swagger.io/specification
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Fig. 1. Excerpt of JavaScript code with a call to an endpoint of the Instagram API

2.1 Background

Applications that consume REST APIs communicate with the service provider
through calls to the API endpoints, that is to say, by sending requests for the
execution of a HTTP method over an URL. The URL of the request identifies a
web resource and additionally can provide values for some optional parameters;
additional data can be sent in the request body. The service provider sends back
a response that carries, among other data, a response status code indicating
whether the request has been successfully completed.

Figure 1 shows an excerpt of a JavaScript application [20] that performs a
call to an endpoint of the Instagram API to search for locations by geographic
coordinates. According to the API documentation [19], this endpoint has several
optional parameters, including lat, lng, and distance. The center of the search
must be defined and there are three different ways of doing it. Although lat
and lng are optional, if one is used, the other is also required. The distance
is optional and its maximum value is 5000. In the success case—signalled by
response code 200—the response body is an object with field data containing
an array of objects with field id, among others.

Code that consumes this endpoint may contain different sorts of errors. Calls
may not conform to the specified interface: for instance the request may contain
a value for lat but not for lng, or it may contain a value for distance that
exceeds the maximum value or simply that is not an integer. Moreover, the
response data may not be correctly used. This is the case in the example: if the
call succeeds, then line 15 accesses a possibly non-existent element of the array
in field data.

The fact that the model of the response data might depend on the pro-
vided input is an additional source of errors. For example, the endpoint in the
GitLab API to get all wiki pages for a given project [17] features an optional
boolean parameter with-content to indicate whether the pages’ content must
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Fig. 2. A HeadREST specification for an Instagram API endpoint

be included in the response. Hence, the response body is an array of objects
that contains field content only when the request has value true for field
with-content.

In order to avoid such errors programmers must carefully read the API doc-
umentation. The situation is worsened as this sort of documentation tends to
be vague and imprecise, even when available in a formal document. Limitations
in the expressiveness of existing IDLs—and in particular of OpenAPI, the de
facto standard for specifying REST APIs—make programmers resort to natu-
ral language for conveying extra information. In the case of the two endpoints
considered here this is in fact what happens since most of the properties under
discussion are not expressible in the IDLs used for the documentation.

Such state of affairs lead us to develop an approach to support the detection
of common errors at compile-time by statically checking that calls match APIs’
requirements and that data obtained in the response is correctly used.

2.2 SRS in Action

Our approach builds on two pillars: HeadREST, a specification language for
REST APIs, and SRS, a language with an expressive type system for program-
ming the code that consumes REST APIs.

HeadREST resorts to types to express properties of states and of data
exchanged in interactions and pairs of pre and post-conditions to express the
relationship between data sent in requests and those obtained in responses, as
well as the resulting state changes. Two type primitives account for its expres-
siveness: refinement types, (x:T where e), consisting of values of type T that
satisfy expression e; and a predicate, e in T, for checking whether the value of
e is of type T.
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Fig. 3. Example of SRS code consuming an Instagram API endpoint

The endpoints exposed by an API, together with their behaviour, are spec-
ified by assertions of the form {φ} m u {ψ} where φ is the pre-condition, m is
the HTTP method; u is a URI template and ψ is the post-condition.

Figure 2 shows a specification of the endpoint discussed before. It starts with
the declaration of type SearchLocation that represents the search data. Note
how refinement types capture the endpoint requirements for search data; e.g.,
line 10 says that fields lat and lng must be both present or absent; the question
marks in front of these two fields indicate that they are optional.

The behaviour of the endpoint is specified by two assertions (lines 16–22). The
first says that, if the requirements for the search data sent in the request are not
met, then the call does not succeed (the response code is different from 200).
The second assertion says that, if the request is successful, then the response
body consists of an array of Location, a type defined in line 14.

HeadREST also supports the specification of conditions concerning resources,
their representations and their identifiers (see [34] for details). For instance, in
the second triple (lines 20–22), we can specify that each Location in the response
is the representation of a resource that can be individually obtained through the
endpoint. Since these properties do not help in avoiding errors in consumer code
(individually, clients have no control over the state of the resources), in this
paper we limit our presentation to a resource-less version of HeadREST.

Figure 3 shows an SRS program similar in spirit to the JavaScript code in Fig. 1.
SRS adopts HeadREST types, while featuring direct support for RESToperations.
We can see that the type checker spots an error in the use of the response data
in line 16. The specification ensures that the effective type of result in that exe-
cution point is (Fig. 2, line 22). This means that it is
safe to access result.body.data[i].id only if i < length(result.body.data)
and, hence, line 16 is incorrect. Would the specification be stronger and, in Fig. 2
line 22, read instead response.code == 200 ==> response in body:{data:(v:
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Fig. 4. The syntax of HeadREST

Location[] where length(v) > 0)}, then the program would be valid. Note that
the use of type SearchLocation in line 8 makes sure that the data sent in
the request meets the stated necessary conditions for the request be successful
(Fig. 2, line 16). The figure also shows the type checker signaling an error if,
in line 8, the value given for distance exceeds the maximum value allowed. SRS
further supports assert statements that are statically validated. They are use-
ful to check, immediately before a call to an endpoint, that a necessary con-
dition for the request to be successful holds. In the example, we could add

immediately before line 10.

3 The HeadREST Specification Language

HeadREST was designed to support the specification of REST APIs and to
capture important properties that cannot be expressed in currently available
interface description languages. This section briefly introduces the resourceless
version of HeadREST [34].

The syntax and validation system of HeadREST are influenced by the Dminor
language [7]. Extensions and adaptations to Dminor types, expressions and their
respective validation rules were adapted to address the specific needs of REST.
The syntax of HeadREST is in Fig. 4. It assumes a countable set of identifiers
(denoted by f or x, y, z), a set of constants (c), a set of labels (l, l1, l2, . . . ),
integer literals (n), string literals (s), a set of URI template literals (u), and a
set of regular expression literals (r).

Scalar types include standard Integer, String, Boolean, the REST-specific
URITemplate to represent a service endpoint or a group of URI resources and
Regexp for regular expressions. Any is the top type. For types, we additionally
have arrays, refinement types, and the singleton object type {l : T}.

Constants include integer, string, and boolean literals, to which null was
added. The null value is of type Any but not of object types. The empty object
type, {}, describes empty objects and constitutes the super type of all objects. To
inhabit Regexp and URITemplate types, two sorts of literals were added: regular
expressions and URI templates values. Regular expressions form a subset of those
in JavaScript. The syntax of URI Templates is conform to RFC-6570 [18].
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Expressions include variables and constants, (primitive) function calls, a con-
ditional, arrays and object operations, quantification, and the e in T operator
that allows checking whether a given expression e belongs to type T . Useful
derived expressions include isdefined(e.l) � e in {l : Any} and e && f �
e ? f : false.

Although HeadREST features a small core of types, the type language is quite
expressive due to the interplay between refinement types and the in predicate.
A few examples of derived types follow, where x is a variable taken freshly.

T & U � x : Any where (x in T & x in U) !T � x : Any where !(x in T )

{?l : T} � x : {}where x in {l : Any} ⇒ x in {l : T} Natural � x : Integer where x ≥ 0

The operator e in T is essential for the expressiveness of the type system. The
intersection, union and negation types are derived using this operator, and these
types are the basis for many other derived types. The important multi-field
object type can be derived thanks to the intersection type; e.g., {l : {},m : String}
abbreviates (x : Any where (x in {l : {}} & x in {m : String})) which only uses
core types. An important derived type is the optional field type, {?l : T}, assert-
ing that if an object has a field l then its type is T . For example, if e is an
expression of type {?l : Boolean}, then expression e in {l : Any} && e.l is valid
since, according to its type, if e has field l its type is Boolean and the good
formation of e.l is only ensured in this case.

Specifications consist of a collection of assertions (triples), each of which
describe part of the behavior of an endpoint. Currently HeadREST supports the
four main HTTP verbs: get, post, put and delete. For the specification of pre- and
post-conditions three variables are added: request and response that correspond
to the call and the reply, and root, the absolute URL of the entry point of the
service. The types of the request and response variables are as follows.

Request � {location : String, ?template : {},header : {}, ?body : Any}
Response � {code : Integer,header : {}, ?body : Any}

Algorithmic type checking is based on a bidirectional system, composed of
two main relations: one that synthesizes the type of a given expression and one
that checks whether an expression is of a given type [13,15,29]. At the inter-
section of these two relations lies semantic subtyping, a relation that establishes
that a type T is subtype of a type U when all values that belong to T also belong
to U . Types and contexts are translated into first-order logic (FOL) formulae.
The thus obtained FOL formulae are then evaluated using an SMT solver. Our
implementation uses Z3 [26].
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Fig. 5. The syntax of SRS (extends Fig. 4)

4 The SRS Programming Language

The SRS language (a shorthand for SafeRestScript) is a type-safe variant
of JavaScript with direct support for REST calls. It was designed to be, at the
syntactic level, as close as possible to JavaScript. It transpiles to JavaScript,
making it easy to integrate REST API consumer code written in SRS with
JavaScript code, namely code of web applications for manipulating the DOM.

Compared with other typed extensions of JavaScript, such as TypeScript [6],
the main novelty of SRS is the incorporation of refinement types, the in-type
predicate and, most importantly, REST endpoints as external functions. More
precisely, a REST endpoint is seen as an impure, external function that receives
a value of type Request, possibly changes a global resource set state, and then
returns a result of type Response. REST calls are then just calls to such func-
tions. Additional properties of these endpoints-as-functions, namely their spe-
cific return type, are inferred from the HeadREST specification of the REST
API endpoints. Each triple in the specification specifies a relation between
the input (the request) and the output (the response) of an endpoint: if the
request meets the pre-condition, then the response meets the pos-condition. From
triple {φ}mu {ψ}, the return type of endpoint-as-function mu is extracted as
{r : Request where φ ⇒ ψ}. Note that endpoints-as-functions are, hence, total:
they accept any input of type Request, even those that do not meet the pre-
condition of any of their triples (in the vein of Hoare Logic [21] and as opposed to
that of Design by Contract [25]). JavaScript is single threaded and, hence, func-
tion calls that take time to execute should ideally be executed asynchronously.
REST calls fall into this category; SRS supports asynchronous in addition to
synchronous REST calls.

SRS adopts the HeadREST type system, not only for its support for REST
operations, but also to provide precise static type checking. In SRS, each variable
is declared with a type that restricts the values that can be assigned to the
variable. Each variable also features an effective type that corresponds to the set
of values the variable may have at a given point in a program. The effective type
changes with program flow, but is necessarily a subtype of the declared type.
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4.1 Syntax

The syntax of SRS, presented in Fig. 5, extends that of HeadREST in Fig. 4.
The language includes a new constant undefined. Functions that return undefined
are of type void, an abbreviation of (x : Any where x == undefined).

At the level of expressions, SRS introduces REST calls mue, composed of an
HTTP method m (see Fig. 4), an URI template literal u describing the relative
URL of the target resource, and an expression e that should evaluate to a value
of type Request. The endpoint needs to be specified in the SRS specification
imported by the program. Functions can be declared with the async keyword;
calls to these functions are asynchronous while REST calls are asynchronous if
they are preceded by keyword await.

Statements include variable assignment. The left hand side w of an assign-
ment statement (a location) is a variable x, an object field w.l, or a position in
an array w[e]. An assignment can thus update a specific element of an object or
an array. Moreover, statements include conditional statements, while loops, and
return statements. Loops may declare an invariant, i.e., an expression that is true
at loop entry and after each loop iteration. Invariants are sometimes necessary
to prove that certain expressions have the right type, for instance, whether the
effective type of the expression used in a return statement matches the return
type of the function. Statement return abbreviates return undefined.

An SRS program is a sequence of declarations: import clauses, global variable
and function declarations. The implementation of SRS further supports type
abbreviations in the form of typex = T . Function definitions are composed of a
return type T , the function name f , a comma-separated list of parameters with
their respective types U x, and the function body. In order to simplify variable
scope validation, the body opens with the declaration and initialization of all
local variables: V y = e is a semi-colon-separated list of variable declarations.
The initialization is mandatory since some types, such as refinement types, may
not have a default value. The function’s body consists of a statement S that
defines the control flow and the return value.

4.2 Type Checking

Statically type checking SRS programs is a major challenge given the rich type
system of SRS and global imperative variables. It requires flow-sensitive typing
(the effective type of an expression depends on its position in the program).

SRS programs are translated into verification conditions, i.e., logical formu-
lae whose validity entails the correctness of the program. Following a popular
approach initiated by Spec# [4], these conditions are not generated directly but
instead obtained through a translation into Boogie [5], an intermediate language
for program verification. Once a SRS program is translated into a Boogie pro-
gram, it is up to the Boogie validator to generate the verification conditions and,
resorting to an SMT solver, verify whether they hold.

At the basis of the translation is an axiomatization of the typing relation that
is inspired by Whiley [28]. Values and types are modelled as sets. All SRS values,
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independently of their type, belong to the Boogie type Value. For each type, we
introduce functions and axioms that define its subset of values. More concretely,
given a type X (for example, Integer) and its internal representation Y in Boogie
(int, in the example), the base functions and axioms are the following.

function isX(Value) returns (bool);
function toX(Value) returns (Y);
function fromX(Y) returns (Value);
axiom (forall y: Y :: isX(fromX(y)));
axiom (forall y: Y :: toX(fromX(y)) == y);
axiom (forall v: Value :: isX(v) ==> fromX(toX(v)) == v);

Function isX checks whether a value belongs to type X and returns a Boogie
boolean. Function toX converts the Boogie value to its internal representation
Y, and fromX performs the inverse operation. The axioms define the properties
of the functions. The first asserts that all values constructed from type Y belong
to type X. The second and third axioms assert that toX and fromX are inverse
functions. More complex types, such as arrays and objects, are represented by
Boogie maps and require the introduction of additional functions and axioms.

Functions isX, toX and fromX are used for defining the translation of expres-
sions and the predicate that checks whether the value of an expression is of a
given type. This is illustrated below in simple cases: the translation of an SRS
integer literal and an array access, and the predicate for the integer type.

V�n� = fromInt(n) F�int�(e) = isInt(e)
V�e1 [e2]� = getIndexValue(V�e1�, toInt(V�e2�))

The translation of SRS to Boogie is based on the collection of functions
presented below. We discuss some cases that convey the main ideas of how the
translation works. The full set of rules is available in the extended version of this
paper [9].

V�e� ≡ Boogie expression of type Value that represents expression e

F�T � ≡ Boogie predicate that checks whether an expression is of type T

V∗�e�x ≡ Sequence of Boogie statements that validates expression e

and places the corresponding Boogie expression in variable x

W�T � ≡ Sequence of Boogie statements that validates type T

B�S� ≡ Boogie statement that represents statement S

B�D� ≡ Boogie declaration that represents declaration D

The translation of REST calls and of specification triples to Boogie are the
most interesting elements of the translation, as they accomplish the view of
endpoints-as-functions discussed before. REST calls are translated to Boogie
using a function, named restCall, that receives as parameters the REST method,
the translation of a string u′ representing the URI template relative path u, and
the request object, and returns the response object. Each specification triple is
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translated into an axiom relating the return value of restCall with the request
call argument as follows.

B�{e1}mu{e2}� = axiom (forall request : Value, response : Value::
restCall(m,V�u′�, request) == response∧
V�e1� == V�true� ⇒ V�e2� == V�true�)

The translation of REST calls is defined by the following rules:

V∗�mue�x = V∗�e�y; assertF�Request�(y);
x := restCall(m,V�u�, y); assumeF�Response�(x)

V∗�awaitmue�x = V∗�mue�x; havoc g1, . . . , gp

Expression e in a synchronous REST call is validated and placed in a fresh
variable y. Then an assert checks whether y is of type Request. Function restCall
is called and its response is stored in variable x. The response is assumed to be
of type Response. Note that when the request does not meet the pre-condition
of any triple for the target endpoint, the axiomatization of restCall does not
ensure anything about the response; it is only known that it belongs to type
Response. In asynchronous REST calls, the execution is suspended and, when
resumed, the global variables may have changed. This is captured by the havoc
statement, which assigns arbitrary values to variables (while respecting their
declared types).

The type validation takes into account that types may contain expressions
by descending the abstract syntax tree of types. The most important rule is the
rule for where types (y, z are variables taken freshly).

W�(x : T where e)� = W�T �; assumeF�T �(y);V∗�e[y/x]�z;assertF�Boolean�(z)

We complete this brief presentation by addressing the translation of global
variable declaration and functions.

B�T x = e� = varx : Value where F�T �(x);V�T f() { return e }�

B�T f (T1 x1, . . . , Tn xn ) {U1 y1 = e1 ; . . . ; Um ym = em ; S }� =
procedure f(x1 : Value, . . . , xn : Value) returns (result : Value)

requires F�T1�(x1) ∧ · · · ∧ F�Tn�(xn); ensures F�T �(result);
modifies g1, . . . , gp;

{
var y1, . . . , ym, w1, . . . , wn : Value;w1 := x1; . . . ;wn := xn;
W�T1�; . . . ;W�Tn�;W�U1�; . . . ;W�Um�;W�T �

B�y1 = e1 ; . . . ; ym = em ;S[w1/x1] . . . [wn/xn]; return�
}
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In the first rule, the declared type is captured by a Boogie where clause while
the initialization is ignored as it is not relevant: whenever a procedure is called,
nothing can be assumed about any global variable besides its declared type. The
validation of T and e is achieved via an additional, dummy, procedure f .

In the second rule, the immutability of procedure parameters in Boogie
requires the declaration of new variables to use instead of the parameters in
the function body. The requires clause checks whether the arguments belong
to the parameters types and the ensures clause checks whether in all returning
points of the procedure the result of the function matches the function type.
The modifies clause asserts that all global variables can be modified by the
procedure. The body of the procedure makes the validation of parameters types
Ti, local variables types Uk and the return type T . The validation order allows
that the validity of T and Uk depend on Ti and the validity of Ti depend on the
Tj , for j < i, as in {x : int where x > b/a} f({x : int where x! = 0} a, int b){...}.

4.3 Transpiling to JavaScript

Valid programs are transpiled to JavaScript. The translation of REST calls is
achieved by calling auxiliary functions, one for synchronous and another by
asynchronous calls. The URL to the call is the expansion of the URI template; its
parameters are defined by the field template of the request object. The expansion
follows the RFC 6570 [18], only for the level of URI templates supported by SRS.
The content-type JSON is added to the request headers, so objects sent and
received in the body are ensured to be of JSON format, and therefore having
a direct translation to JavaScript objects. The calls use XMLHttpRequest, an
object that is supported by all browsers and devices.

5 Evaluation

This section addresses the evaluation of our approach. Ideally, we would like
to compare the bug finding efficacy of our approach in “real code” with that
of Wittern et al. [37], the unique approach to statically checking REST calls
that we are aware of. However, this turned out not feasible, since translating
JavaScript code into SRS requires annotating all the libraries used and/or write
adaptors that monitor the interface with libraries.

In this way, to evaluate our approach, we used HeadREST to specify a variety
of REST APIs and SRS to write and validate programs that exercise the different
elements of the language while consuming REST APIs. The goal is to evaluate
to what degree can SRS be used in examples which include complex REST calls
that can be found in real examples.

We used SRS to write programs that consume publicly available APIs and
do not require authentication, including PetStore2 and DummyAPI3 as well

2 https://petstore.swagger.io.
3 http://dummy.restapiexample.com.

https://petstore.swagger.io
http://dummy.restapiexample.com
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as programs that consume real-world off-the-shelf services such as Instagram,
GitHub and GitLab. Since API calls in SRS are checked against HeadREST
specifications, we also developed HeadREST specifications for the chosen APIs
describing the behaviour of the relevant endpoints. In what follows we provide
details about three of these case studies. The complete examples are available
in the supplementary material [8].

Instagram. We developed in SRS a solution alternative to the JavaScript func-
tion in Sect. 2. The application allows users to find Instagram photos by tag
or location and calls the different endpoints of the Instagram API which sup-
ports search for (i) locations by geographic coordinate, (ii) photos by location
and (iii) photos by tag. The solution is based on a SRS program defining asyn-
chronous functions for calling the API, similar to that presented in Fig. 3. These
functions are available in the generated JavaScript code and used by the program
that manipulates the DOM. We additionally developed a program for showing
the recent comments on media for a user, given its identifier, which requires to
call three other endpoints: one to get the ids of recent media, another to get
the comments for each of them and a third one to get information about the
user. Both programs use the same specification with the behaviour of the six
endpoints.

GitHub. We developed an SRS program that offers a function getUserById(int
id) to obtain a GitHub user given its idwith return type (u: User where u.id ==
id)|NotFoundError. Since the GitHub REST API does not have an endpoint that
supports this operation (to get the representation of individual users, one needs to
provide the username), our program sends a GET request to /users?since=id-1 if
id is a positive integer. According to the API documentation, this endpoint lists all
users, in the order that they signed up on GitHub. Retrieval is by pagination: each
call retrieves a sublist of all users. The start of the sublist is defined by the optional
parameter since. If case the parameter is not present, then its value is assumed to
be zero. In the HeadREST specification of GitHub we were able to precisely express
this behaviour. One of the assertions included in the specification states that if the
request provides a value for since that is a natural number, then the array of users
provided in the response body starts with a user whose id is equal to since+1. This
assertion is essential to prove that if a user is obtained, it has the id provided in the
function argument and, hence, that the return type of the function is valid.

The endpoint can also be used for searching for an user
with certain characteristics. We used it to define a function getSiteAdmin() with
return type (u: User where u.site_admin)|AdminNotFound that searches
over the GitHub users to find an administrator. The search code gets the various
pages of users and stops when one of them contains an user with admin privi-
leges, or when no admin was found on all pages, in which case AdminNotFound is
returned. The fact that the function type checks ensures that the returned user
representation (if any) is an indeed an administrator.

In GitHub each user has a set of repositories, and each repository has a set
of collaborators and a list of commits, each with its author. We programmed
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Table 1. Case studies of consuming REST APIs with SRS

HeadREST SRS
#EndP #Types LOC Check (s) #EndP #Func LOC Check (s)

Instagram#app1 6 9 225 1.3 3 4 82 1.5

Instagram#app2 6 9 225 1.3 3 3 65 1.8

GitHub 5 9 93 0.8 5 3 86 1.3

GitLab 10 20 435 1.7 8 10 250 50.5

a function that gets the collaborators of a repository that did not contribute
to a project, i.e., did not make a commit. The function crosses the information
obtained in two different endpoints: one for retrieving the collaborators of a given
repository for a given user and another for retrieving the list of commits of the
repository. As the repository may be private, the function receives a key that
must give authorization to access the repository information, and that is added
to the request header.

GitLab. is the Git manager used by our students to develop their course
projects. We wrote functions that automate tasks we recurrently perform
manually. For instance, we programmed a function to remove a user from
all projects owned by another user. This function uses three endpoints, one
of them involving request and response types particularly large—the request
has more than 10 optional parameters and the response body is an array
of an object type with more than 30 fields, several of them also objects.
The type of the response is used, for instance, to validate the expression
response.body[i].namespace.name that occurs in the body of the function.
Another interesting example is the function getWikisFromProject(string
token, int|string id, boolean withContent) we defined in SRS to get the
wikis from a project, identified by its integer id or a string that is the URL-
encoded path of the project (and, hence, of type int|string). The function
uses an endpoint that features an optional parameter to indicate whether the
response should contain the content of the wikis. The behaviour of GitLab at
this endpoint was specified in HeadREST as shown below and allows the SRS
validator to find errors in accesses to response.body[i].content, such as when
the SRS code does not guarantee that accesses are performed only if the value
sent in request.template.with_content is true.

{ request in {template: {id: String|Integer , ?with_content:
Boolean }} }

get ‘/projects /{id}/ wikis {? private_token ,with_content}‘
{ (response.code == 200 ==> response in {body: Wiki []}) &&

(response.code == 200 && request.template in {with_content:
Boolean}
&& request.template.with_content ==>

response.body in (Wiki & {content:String })[]) }
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Table 1 presents additional information about the three case studies. The first
group of columns addresses HeadREST specifications and shows the number
of endpoints that were specified, the number of types that were defined, the
number of lines and the validation time, in seconds. The second group of columns,
which addresses SRS client programs, shows the number of endpoints that were
consumed, the number of functions that were defined, the number of lines of code
and the validation time, in seconds. The validation the time of SRS programs
presented in the table does not consider the validation time of the specification.
Benchmarking was performed on a machine with an Intel Core i7-7700HQ CPU,
2.80GHz and 16GB of RAM memory, under Windows 10. The times reported
are the average of three runs.

Overall, these examples demonstrate that HeadREST supports the specifica-
tion of a variety of API endpoints found in real examples and is able to capture
important properties of these endpoints that were previously available only in
natural language. During the development of the client programs we could wit-
ness that the formalisation of properties allowed SRS to find all sort of errors
in our code, in particular, errors in the invocations of the underlying services
(invalid or missing data in the requests or use of incorrect URLs) and errors in
the use of the data received in the response. We also noted that were we pro-
gramming the same client code in JavaScript, most of the errors we made would
not be found by Wittern at al. [37]. On the one hand, errors caused by invalid
data in the requests were often caused by restrictions on data that are simply
not expressible in OpenAPI. On the other hand, several errors lied in the usage
of the data received in the response, a type of error that is not addressed by the
analysis performed by the tool.

In terms of performance, we witness what is also evident in the results in
Table 1: the complexity of the types involved in REST calls significantly slows
the validation process when the correctness of the code strongly depends on these
types. This problem can be alleviated by placing functions whose validation is
too demanding in separated source files. Because the validator ignores files that
have not changed, these functions do not need to be validated again if they have
not changed.

6 Related Work

Static verification of JavaScript code has been the main research topic for client-
side coding in the last few years [31]. Nevertheless, research concerning the veri-
fication of consumer code of REST APIs for JavaScript-like client-side languages
is slim and the solutions proposed tend to be quite limited.

Solutions for helping finding bugs in scripts come in the form of a varied set of
languages and tools. JSHint [22] scans JavaScript code for suspicious usage; Thie-
mann [32] and Anderson et al. [1] propose type system for subsets of JavaScript;
TypeScript [6], Dart [11] and Flow [14] are languages that were developed with
the goal of statically detecting type-related errors in JavaScript-like languages.
Languages such as Dependent JavaScript [10] and Refined TypeScript [35] incor-
porate sophisticated type systems, but the power of the e in T predicate and
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semantic subtyping (supported by SRS) seems to be particularly suited for pro-
gramming REST clients. Whiley [28] is a programming language that features
a rich type system and flow typing; it uses Boogie only to check the verification
conditions [33]. Contrary to SRS, neither of these solutions specifically addresses
REST calls.

TypeScriptIPC [27] extends TypeScript with the ability to describe the pres-
ence or absence of properties in objects, a feature that HeadREST and SRS
can easily describe and for which a derived predicate isdefined was introduced
(cf. Sect. 3). Like all the languages discussed above, TypeScriptIPC does not
provide explicit support for REST calls.

The tool by Wittern et al. [37], discussed in the introduction, statically
checks web API requests in JavaScript code, focusing on ajax requests made
via jQuery4. The tool uses a field-based call graph to make the necessary string
analyses on the JavaScript method calls and is able to check whether calls to end-
points match a valid URI template in the API specification and the request has
the expected data. Such errors are easier to check in SRS since the construction of
URIs is limited to URI template instantiation (thus ruling out the construction of
new URIs via string operations such as concatenation). In contrast, the verifica-
tion supported by SRS that the request has the expected data is beyond reach of
Wittern et al. for the rich, non-OpenAPI, data definitions. RESTyped Axios [12]
is a client-side tool that verifies REST calls in TypeScript against RESTyped
specifications, with requests made via the Axios framework [3]. RESTyped allows
to define strongly-typed routes and Axios checks at compile time whether the
URLs are valid and whether the types of the members passed on requests and
accessed on responses correspond to the ones declared in the specification. These
two approaches fail to detect many of the defects at the reach of SRS, including
those related to complex restrictions on input data of REST calls (not expressible
in the adopted specification languages) or the misuse of the return data.

Whip [36] is a contract system for services that uses a dependent type sys-
tem to monitor services at runtime and check whether they respect their adver-
tised interfaces. Whip offers a high-order contract language that, similarly to
HeadREST, addresses the lack of expressiveness of IDLs to capture non-trivial
properties that can be found in the documentation of popular services. Whip
focus is on the specification of properties that cross-cut more than one service
(e.g., properties that describe how a client of one system should use a reply to
interact with another) and, by using contracts, addresses the specification of the
expectations and promises of a service to other services.

7 Conclusion

We present a framework for statically checking code that consumes APIs. Rel-
evant aspects of APIs are described with HeadREST, a specification language
featuring refinement types and semantic subtyping. The consumer code itself is
written in SRS, a variant of JavaScript with explicit primitives for synchronous
4 https://api.jquery.com.

https://api.jquery.com
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and asynchronous REST calls. HeadREST specifications are validated by resort-
ing to an SMT solver to discharge semantic subtyping goals. API consumer code
is checked via a translation to Boogie. We validate our approach by writing in
SRS various benchmarks from the literature. We further report on three case
studies of consumer code for popular APIs (Instagram, GitHub, and GitLab).

Much remains to be done; we sketch a few ideas for future work. The lack of
references is the most relevant difference between SRS and JavaScript. Introduc-
ing references in objects and arrays is not trivial and adds additional complexity
to the Boogie translation. Dafny [23] devised a clever solution using object refer-
ences in its translation to Boogie, but the technique does not carry straightfor-
wardly to refinement types. A preliminary experience showed that this extension
substantially increases the validation time.

Since SRS compiles to JavaScript, programmers may take advantage of its
standard libraries. To use JavaScript functions in SRS code, their signatures are
required. We plan to address this issue, possibly by following the TypeScript
approach, that is, by introducing declaration files where external JavaScript can
be declared and annotated with the SRS types so they can be used in SRS code.

HeadREST specifications may feature inconsistent triples. This aspect does
not influence the validation of HeadREST specifications, since each triple is vali-
dated independently, but it can affect the validation of SRS programs. Specifica-
tions featuring inconsistent triples induce inconsistent Boogie axiomatizations,
allowing programs with typing errors to be validated. It is therefore important
to detect inconsistent HeadREST specifications.
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Abstract. Reconfigurable systems are emerging in many application
domains as reconfiguration can be used to cope with unpredictable
system environments and adapt by delivering new functionality. The
Dynamic Reconfigurable BIP (DR-BIP) framework is an extension of
the BIP component framework enriched with dynamic exogenous recon-
figuration primitives, intended to support rigorous modeling of reconfig-
urable systems. We present a new two-layered implementation of DR-BIP
clearly separating between execution of reconfiguration operations and
execution of a fixed system configuration. Such a separation of concerns
offers the advantage of using the mature and efficient BIP engine as
well as existing associated analysis and verification tools. Another direct
benefit of the new implementation is the possibility to monitor a holistic
view of a system’s behavior captured as a set of traces involving informa-
tion about both the state of the system components and the dynamically
changing architecture. Monitoring and analyzing such traces poses inter-
esting questions regarding the formalization and runtime verification of
properties of reconfigurable systems.

1 Introduction

The current trend for adaptive and resilient systems changes the perspective of
system designers who have to consider systems that are reconfigurable and self-
organizing. This requires conceptual models to better understand and properly
take into account the different types of dynamism and corresponding coordi-
nation mechanisms for their description. In particular, it is desirable to have a
rigorous and disciplined approach that would allow envisioning how a system
with static coordination structure can be progressively modified to enhance its
adaptivity and resilience.

Consider a platoon system of an automated highway where an arbitrary num-
ber of autonomous cars are moving in the same direction, in a single lane, at
different cruising speeds. Cars dynamically organize into platoons, i.e., groups
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of cars cruising at the same speed and closely following a leader car. Platoon-
ing confers advantages such as increasing the road capacities, providing a more
steady-state traffic flow, and reducing the risk of traffic congestion [4]. Organiz-
ing as platoons requires non-trivial dynamic coordination between cars. All the
cars belonging to a platoon must agree on a common cruising speed dictated by
the leader car. Platoons may dynamically merge or split. A merge can take place
if two platoons are close enough, i.e., the distance between the tail car of the
first platoon and the leader car of the second is reaching some minimal distance
K. After the merge, the speed of the new platoon is updated consistently for all
cars. A platoon may also split upon the request of a car to leave the platoon.
This results in the creation of two platoons. A leading platoon that increases
its speed whereas the newly formed tail platoon decreases its speed to achieve
some separation distance. However, not all cars can initiate a split, as they may
leave other cars stranded. After splitting, the resulting platoons should have at
least some minimal size S. For such traffic systems, the global system dynamics
depends both on the behavior of individual cars as well as the organization into
platoons and their coordination.

Providing insight into the interplay between static coordination and vari-
ous types of dynamism and reconfiguration has been a driving concern for the
design of the DR-BIP component framework [9]. DR-BIP is an extension of
the BIP framework which has been used for more than a decade for modeling
component-based systems with static architectures. In BIP, a system is built from
architecture-agnostic components coordinated using interactions and priorities.
We have thoroughly formalized operational semantics for BIP and studied results
comparing its expressiveness with respect to existing modeling formalisms [5].
The theoretical framework has been implemented by a toolset integrating an
execution engine, code generators for different types of execution platforms, and
verification tools. DR-BIP supports an incremental modeling methodology con-
sidering that a system consists of a set of motifs, a kind of “worlds” where
components “live”. Motifs are dynamic architectures integrating components
coordinated according to specific rules. To model component mobility, a motif
is equipped with a data structure which is a graph representing a map. An
addressing function is used to associate with each component a node of the map.
Reconfiguration rules deal with: 1) component dynamism e.g., creation/deletion
of components; 2) map dynamism e.g.., updating the map structure; 3) compo-
nent mobility e.g., changing the addressing function, and 4) modifying connec-
tors that define interactions between components. Furthermore, it is possible to
express reconfiguration between motifs e.g., component migration, which confers
the ability for system self-organization.

The paper presents the DR-BIP language for constructing dynamic reconfig-
urable systems using BIP components and connectors as well as a layered imple-
mentation of DR-BIP that re-uses the BIP Engine. Our previous work on DR-BIP
introduced the concepts for programming reconfigurable systems [8,9], nonethe-
less, its implementation was limited to a restricted abstract language of simple
components and motifs, and had little support for executing reconfiguration rules.
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The DR-BIP language has been designed to integrate full-fledged components
and connectors described in BIP, arbitrary motif maps and addressing functions
described as external C++ structures, and a high-level declarative syntax for
reconfiguration rules. The implementation of DR-BIP semantics relies on code
generation (for motifs, reconfiguration rules, components, etc.) and clearly sepa-
rates reconfiguration issues from the execution of static configurations. It involves
two separate computational phases: the first deals with the execution of recon-
figuration rules that determine the overall static coordination structure which we
refer to as the instantiated BIPmodel ; the second executes for the instantiated BIP
model, the interactions between components using theBIPEngine.The twophases
alternate in a global computation cycle synchronized by a well-defined protocol.
The present implementation offers the advantage of using the mature and efficient
BIP execution engine. Furthermore, the underlying separation of concerns allows
better comprehension and management of the intricate semantics of DR-BIP and
enhances confidence in the reconfiguration engine implementation. Another direct
benefit from the studied implementation is the possibility to monitor a holistic
view of the system behavior as a set of traces involving dynamic configurations in
addition to component states. The proposed implementation of DR-BIP provides
insight into system behavior as the combination of both architectural and compo-
nent state information, as well as monitoring execution traces at different levels
of detail. Analyzing such traces poses interesting questions regarding the formal-
ization and verification of properties of reconfigurable systems. Nonetheless, the
development of a specific logic for expressing reconfiguration properties and the
synthesis of monitors are beyond the scope of this paper.

Automatic code generation for implementation and/or analysis purposes is
one of the most prominent features of model-based design methodologies. There
exists a tremendous number of modeling formalisms and associated code genera-
tion flows dedicated to static systems. On one hand, general purpose formalisms
such as uml/papyrus [12], aadl/osate [11], taste [18], ptolemy [7] are
state-of-the-art tools oriented towards design and implementation. On the other
hand, domain specific formalisms and/or software libraries such as genom [14]
and ros [21] focus on simulation, rapid prototyping and implementation target-
ing only specific application domains.

Code generation and runtime analysis is becoming more challenging for recon-
figurable systems. Approaches have been explored for several general-purpose
architecture description languages with reconfiguration capabilities such as π-
adl [6], archJava [1], c2sadel [16] to cite only a few. Nonetheless, these
approaches did not reach the same level of acceptance as for static systems.
Architecture dynamism and reconfiguration is of much interest for domain spe-
cific languages as well. Formalisms such as buzz [19] for swarm robotics and
paracosm [13] for autonomous driving systems are gaining popularity. How-
ever, most of the concepts supported are ad-hoc and hardly re-usable beyond
their domain. We position DR-BIP as a general-purpose architecture description
language for the description of dynamic reconfigurable systems.
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The paper is structured as follows. Section 2 recalls the DR-BIP concepts
and introduces the key features of the DR-BIP language. Section 3 presents the
DR-BIP layering principle and its concrete implementation. Section 4 provides
insights on the software architecture and the tooling for generating code used to
execute DR-BIP models. Section 5 presents the provided monitoring support and
illustrates its application to the analysis of a platoon system as presented earlier.
Section 6 discusses challenging future work directions on modeling and analysis
of dynamic reconfigurable systems. Finally, Sect. 6 concludes about the benefits
from the presented layered implementation. We provide an online artifact with
the tools, the simulation experimental data, and the documentation needed to
recreate it [22].

c4c6 c5 c2c3c4c6 c5 c2c3

Platoon Motif Instance

Instantiated BIP Model

Fig. 1. An example motif and its instantiation in BIP. (Color figure online)

2 DR-BIP Overview

We consider DR-BIP models integrating (1) components and connector types
described in the BIP language and (2) motif types and reconfiguration rules
described in the DR-BIP language. We recall that in BIP, connector types specify
interactions between components along their interfaces. This section introduces
the concepts underlying DR-BIP and key features of the language.

2.1 Motifs and Reconfiguration Rules

Motifs are dynamic structures consisting of (i) a set of components, (ii) a
map and (iii) an addressing function [9]. Maps are underlying data structures
(typically a directed graph) used to organize interactions between components.
Addressing functions provide an association between the components and the
nodes of maps.

Example 1. Figure 1 showcases on the left an instance of a motif type named
Platoon. It consists of the set of five components {c2 . . . c6}, the map consisting
of a chain of five nodes, and the addressing function associating each component
with one node in the chain. Component c2 is associated with the head of the
chain, thus giving it the role of the leader. Components c3, · · · c6 are associated
with other nodes and have the role of followers of the platoon.
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Motifs are associated with local reconfiguration rules dictating their evolution.
These rules define how components are interconnected, and modify the motif i.e.,
add/remove components, update the map, and update the addressing function.
Rules are executed depending on conditions evaluated on the motif and component
states. More precisely, local reconfiguration rules have the general form:

rule rule-name (arg1, ... argn)
when (cond1, ... condn) { action1(args), ... actionm(args) }

Their execution consists in selecting a set of components of the motif and assign-
ing them to formal parameters argi. Assignments are constrained by a “when”-
clause, providing a Boolean condition condi for each formal parameter. For each
valid assignment to formal arguments args, a sequence of actions actionj is
executed modifying the motif. An assignment of the parameters such that a
“when”-clause is satisfied, is called a match. Further details on the computation
of matches are presented in Sect. 3.2.

c0c4c6 c5 c2c3

Platoon0

Road

Platoon1

c1

Fig. 2. An example platoon system consisting of 7 cars organized in 2 platoons. (Color
figure online)

We distinguish between two types of configuration rules: 1) connecting rules
whose actions deal solely with the creation of connectors, and 2) updating rules
whose actions deal with the creation or deletion of components and the modi-
fication of the map or of the addressing function. The distinction is important
because connecting rules do not change the motif; they affect solely the instan-
tiated BIP model.

Example 2. Figure 1 illustrates the Platoon motif (left), and the instantiated
BIP model resulting from the application of connecting rules (right). Connector
SpeedUpdate (pink) is used to synchronize speed with the leader. Furthermore,
cars that are allowed to split from the platoon are connected with the leader, as
they need to adjust speeds. We call this connector SplitStep. For example, c3
cannot split, since by doing so, it will leave c2 stranded. Since both c4 and c5
can split, two connectors (shown in brown) of SplitStep are created.

While local reconfiguration rules apply to a single motif and are given access
to that motif only, global reconfiguration rules apply to more than one motif. In
this case, the formal parameters can be assigned any motif or component. More-
over, actions can perform migration of components between motifs as well as the
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creation or deletion of motif instances. The execution of all reconfiguration rules
both local and global results in creating an instantiated BIP model containing
components interconnected by a set of connectors.

Example 3. Figure 2 illustrates a fully instantiated BIP model of the platoon
system. We have one Road motif grouping all 7 cars, and two platoons: Platoon0

grouping two cars, and Platoon1 grouping five. We notice two SpeedUpdate
connectors (pink), one for each platoon, and two SplitStep connectors (brown)
in Platoon1, as no car is allowed to split in Platoon0. The GlobalStep connector
(blue) allows all cars to move synchronously. Finally, to perform a merge, the two
platoons can interact using connector MergeForward (green) resulting from the
execution of a global connecting reconfiguration rule between the two platoons.
This connector involves the leader of the heading platoon, the tail and the leader
of the second platoon. It allows checking proximity and updating the speed.

2.2 The DR-BIP Language

The DR-BIP language is a declarative language for the description of: (1) imports
that expose all building blocks for the dynamic model (i.e., component types,
connector types, additional BIP predicates, map types and addressing functions);
(2) a set of motif types with their associated local and global reconfiguration
rules; and (3) a designated “initializer” global reconfiguration rule to initialize
the system.

Imports. The DR-BIP language allows component and connector types to be
imported from a BIP model. Additionally, external general purpose data struc-
tures and functions from the host language (C++) can be used for the imple-
mentation of maps and addressing functions. Listing 1.1 provides an example
of imports. It includes the reference to the BIP package containing component
and connector types (Line 1) which can be used in DR-BIP rules. The listing
also includes specifications of signatures of the data structures used to build
maps and addressing functions that can be found in a file platoon.cpp. We
distinguish methods that modify objects from those that do not (using keyword
const). We see in lines 3–9 the declaration of the data structure PlatoonMap
used as a map. The methods prefixed with const do not modify the map. For
example, the method allowedSplit checks whether a split of the platoon by
the car assigned to that node is allowed. The method assign replaces all nodes
of the current map with those of another PlatoonMap. Finally, we import the
signature of additional BIP predicates, described as Boolean functions over ele-
ments of the BIP model. Line 11 introduces the predicate AtSplitLocation
which checks if a given Car component (whose type is described in BIP) is in a
control location where a split is allowed.

Motif Types and Reconfiguration Rules. The definition of a set of motif types
follows the declaration of imports in a DR-BIP specification. For each motif, the
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Listing 1.1. DR-BIP external declarations.

1 model platoon
2 import from "platoon.cpp" {
3 map PlatoonMap {
4 const bool isLeader(Node)
5 const bool allowedSplit(Node)
6 const PlatoonMap [] splitAt(Node)
7 void assign(PlatoonMap)
8 ...
9 }

10 addressing PlatoonAddressing { ... }
11 predicate AtSplitLocation(Car)
12 }

types of map and addressing functions are declared, along with their associated
reconfiguration rules.

As explained previously, each reconfiguration rule consists of (1) a label spec-
ifying its name, (2) a list of formal parameters referring to components or motifs
affected by the rule’s actions (3) a “when”-clause consisting of a list of Boolean
conditions used to filter the relevant components and assign them to formal
parameters, and (4) one or more reconfiguration actions.

The concrete specification of reconfiguration rules in the DR-BIP language
uses the following predefined symbols for every motif: the set of managed com-
ponents (C), the map (S), and the addressing function (@). These variables can
be used in the “when”-clause by calling the const methods of the map and
addressing functions1. Furthermore, all methods for S and @ can be used as
reconfiguration actions.

Listing 1.2. The Platoon motif and the SplitIR connecting rule.

1 motif Platoon <PlatoonMap , PlatoonAddressing > {
2 connecting rule SplitIR(Car leader , Car follower)
3 when ((C.size() > 3) && S.isLeader(@leader),
4 follower != leader && S.allowedSplit(@follower)) {
5 new SplitStep(follower , leader)
6 }}

Example 4. Listing 1.2 displays the motif Platoon along with the local connect-
ing rule SplitIR. Line 1 declares the motif with the identifier Platoon, and asso-
ciates with it the map PlatoonMap and addressing function PlatoonAddressing
(which are imported as explained in Listing 1.1). Platoon has a connecting recon-
figuration rule SplitIR. It creates a connector (of type SplitStep) between each
follower and the leader to allow the follower to split. Thus, it is parametrized
by a follower and a leader . The “when”-clause provides two conditions, one for

1 The set of components (C) is a C++ std::set, and relevant methods can be used.
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each parameter. The first condition (line 3) specifies that there must be at least
3 components in the component set and queries the map to ensure that the node
associated with leader is the head of the platoon in the map. Since function
isLeader expects a node, the addressing function is used (@leader) to get the
associated node. In the second condition (line 4), we ensure that the follower
is any other car in the platoon where a split is allowed. To check if splitting is
allowed, we make use of the method allowedSplit associated with the map. For
every match, we create a new connector (SplitStep) with the two associated
components. �

3 Layered Implementation

We adopt a two-layered approach for the execution of DR-BIP models. The first
layer is the interaction layer. It deals with an instantiated BIP model involving a
fixed number of components and their connectors. This model can be simulated
and executed using the BIP engine, and analyzed using existing tools of the
BIP toolset. The second layer is the reconfiguration layer. It deals with dynamic
changes of the set of components and the way they are connected. It includes
the reconfiguration rules that determine how the instantiated BIP model evolves.
We note that this implementation principle is general and can be applied to any
kind of dynamic reconfigurable system.

Our approach is driven by two main goals: separation of concerns and sim-
plicity. Separation of concerns means that we reason separately about each layer.
We reuse predefined elements from the interaction layer such as types of com-
ponents and connectors as well as existing engines for execution, analysis, and
verification (cf. [2]), while adequately extending all the concepts of BIP. Sim-
plicity means that we ease the learning and use of the language by introducing
a minimal set of new concepts and constructs. For the reconfiguration layer, we
only provide constructs for building the rules modifying the instantiated BIP
model that is used by the interaction layer. In the reconfiguration layer, ele-
ments of the BIP model and all necessary topological structures are external to
the language and are imported.

3.1 Execution Principle

The execution of a DR-BIP model uses a protocol for the collaboration between
two engines (shown in Fig. 3): the reconfiguration engine handling the reconfigu-
ration layer, and the BIP engine handling the interaction layer. The two engines
share an instantiated BIP model which consists of: the set of components, the set
of connectors between these components, and a set of interrupt conditions. An
interrupt condition is a predicate on a given state of the instantiated BIP model.
When an interrupt condition becomes true, the system needs to be reconfigured.
Normal execution is stopped in the BIP engine, and control is transferred to the
reconfiguration engine so that it applies reconfiguration. Two signals determine
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Fig. 3. Interplay between the reconfiguration engine and BIP engine.

which layer is to execute: Go and Reconfigure, respectively, initiate phases of
execution of the BIP engine and the reconfiguration engine.

The BIP engine evaluates all interrupt conditions, and if none of them holds,
it computes enabled interactions. If an interrupt condition holds, control is trans-
ferred to the reconfiguration engine until a Go signal is received. In BIP, inter-
actions are specified by connectors. They represent synchronized state changes
of several components. An interaction is enabled if all inter-connected compo-
nents are able to synchronize. The BIP engine finds all enabled interactions and,
if any, one is selected for execution. Following the execution, the states of all
inter-connected components are updated. If no enabled interaction is found, the
BIP engine has reached a deadlock state of the instantiated BIP model and the
entire execution of the dynamic reconfigurable system is halted. Otherwise, it
continues executing as long as no interrupt condition holds.

The reconfiguration engine executes the reconfiguration rules and modifies
the instantiated BIP model. First updating reconfiguration rules are executed
iteratively until stabilization. They consist in adding/removing components and
updating the structure of the motifs. In our implementation, local updating
reconfiguration rules execute first until stabilization, followed by global updat-
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ing reconfiguration rules. When stabilization is reached, connecting rules are
executed to re-create the connectors between components, and then the set of
interrupt conditions is updated. Control is then passed to the BIP engine. It is
important to note that to avoid interference, reconfiguration rules are executed
sequentially.

3.2 Reconfiguration Engine Details

We present additional details about the reconfiguration engine and the way it
computes matches and modifies the set of interrupt conditions.

Computing Matches. The computation of matches constitutes the core operation
in the reconfiguration phase. It can be computationally expensive as generally, a
condition for a given parameter can depend on other parameters. For efficiency
reasons, in our implementation, we restrict conditions to reference only previous
parameters in the list (i.e., a condition for parameter at index n can reference
only parameters [0..n]). This ensures that matches can be computed incremen-
tally without the need to backtrack, stopping immediately if no assignment is
found.

Example 5. We revisit the connecting rule in Listing 1.2 applied on Exam-
ple 1. The Platoon motif shown in Fig. 1 has the set of components C =
{c2, c3, c4, c5, c6}, where c2 is the leader and c6 is the tail of the platoon.
This rule has two formal parameters of component type Car namely, leader
and follower. Since it is a local reconfiguration rule, parameters are assigned
components of type Car belonging to the motif (in our case C). The “when”-
clause consists of 2 conditions, one for each formal parameter. The computation
begins by evaluating the first condition to calculate the possible assignments
for leader. The predicate |C| > 3 holds for all possible assignments. However,
S.isLeader(@leader) is true only for c2. The final set of assignments for leader
is therefore {c2}.

We now evaluate the possible assignments for follower. Note that it is
possible to reference also leader as the set of possible assignments is com-
puted. Indeed the condition leader != follower is evaluated for each compo-
nent assigned to leader (i.e., for all elements in {c2}). Furthermore, since no
split can result in a platoon with less than 2 cars, S.allowedSplit(@follower)
holds only for c4 and c5. The possible assignments for the second parameter are
thus {c4, c5}. The rule executes for each of the following two matches: 〈c2, c4〉
and 〈c2, c5〉, creating two SplitStep connectors (shown on the right of Fig. 1 in
brown). �

Executing Rules. After finding possible matches for a given rule, it is possible
to execute it multiple times. In the case of updating reconfiguration rules (both
local and global), the rule is executed with the first match, before stopping and
re-evaluating all the reconfiguration rules. This is important, as a rule action
can modify the state of (one or more) motif component set, map, or addressing
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function, requiring all respective clauses to be recomputed. However, in the case
of connecting rules, the rule is executed for all possible matches, as connecting
rules only add connectors to the model without modifying the motifs.

Modifying the Set of Interrupt Conditions. Interrupt conditions are predicates on
the state of the instantiated BIP model that initiate reconfiguration. For each
rule, we construct the conjunction of all conditions in the “when”-clause, and
instantiate it to account for all possible assignments of parameters, adding each
instantiation as an interrupt condition. The set of interrupt conditions models
the disjunction over all such interrupt conditions, as when one holds at least
one rule has a match and can execute. Since the sets of components and motifs
change dynamically after reconfiguring, the set of possible assignments changes,
and the set of interrupt conditions is updated to account for it. Recall that during
the execution of the instantiated BIP model, motifs remain unchanged, when
generating interrupt conditions, only BIP predicates are considered to change
values. Therefore, optimizations by partial evaluation are applied to minimize
the number of instantiated interrupt conditions.

4 Software/Code Architecture

The two-layered execution principle (Fig. 3) is mirrored in the software code,
where BIP and the reconfiguration layer are written separately, and compiled
separately to generate all necessary C++ files. Then, all C++ files are compiled
together to form a single executable process. Figure 4 showcases the compilation
scheme for DR-BIP models. Note the clear separation between BIP language,
DR-BIP language, and external code.

BIP Compiler Modifications. We modified the BIP compiler to generate the
BIP engine code that accounts for interrupt conditions. As shown in Fig. 4, the
BIP compiler also generates a separate file containing all type information on
connectors and components. The BIP engine itself has been modified to work
on a dynamic number of components and connectors. Related connectors and
interrupt conditions are grouped according to the rules that generate them. In
this way, a group acts as a “namespace” for the corresponding rule allowing (1)
dynamic change in connectors and interrupt conditions to be done in bulk for
performance gains; and (2) isolation of connectors and interrupt conditions of
one rule from those of other rules. In BIP, connectors are originally conceived to
operate on a fixed number of components. To overcome this limitation, an extra
annotation to the BIP model has been introduced to specify connector types
with a variable number of components.

Reconfiguration Compiler. The reconfiguration compiler performs the parsing,
analysis, and code-generation for the reconfiguration layer. It re-uses the BIP
compiler to load information on interaction and component types for the consid-
ered BIP model. Furthermore, it parses the elements from the input reconfigu-
ration file to generate the reconfiguration engine code. Type-checking is done at



A Layered Implementation of DR-BIP Supporting Run-Time Monitoring 295

this phase using information from the BIP model and the external signatures of
BIP predicates, maps, and addressing functions. To analyze, and eventually gen-
erate code, the reconfiguration compiler provides an infrastructure for executing
a sequence of passes on the model. The reconfiguration compiler performs two
passes: the first annotates rules and motifs with necessary information to mini-
mize the number of interrupt conditions; the second pass generates C++ code. It
outputs the necessary code to (1) create data-structures to manage components;
(2) compute matches, execute, and generate interrupt conditions for rules; and
(3) initialize and destroy motifs dynamically.

Execution Control Flow. The DR-BIP implementation compiles both engines in
one executable. In the resulting executable, the BIP engine begins executing, and
yields control to the reconfiguration engine using the two function calls init and
reconfigure. Function init is called once to initialize the reconfiguration engine.
Function reconfigure is called whenever reconfiguration is needed. Alongside
the reconfiguration compiler, a template (C++ file) provides an implementation
for functions init and reconfigure. The init implementation calls the “ini-
tializer” global reconfiguration rule, then performs a reconfiguration phase, while
reconfigure performs the reconfiguration phase as described in Fig. 3. So, control
flow goes from the BIP engine main loop to the template, which then invokes the
relevant methods for the rules and motifs generated by the configuration layer com-
piler to perform reconfiguration. By providing the general execution infrastructure
in a template separately from the rules specific to the dynamic model, it is possible
to manage, inspect, and customize the DR-BIP state and execution independently
of a given model. Template modification is key for instrumenting DR-BIP and out-
putting traces for analysis and monitoring, as we will discuss in Sect. 5.

BIP Model (.bip) BIP Compiler

Reconfiguration File
(.drbip)

Reconfiguration
Compiler

BIP Engine with 
Interrupt Cycle (C++)

Component & Connector
Types (C++)

Rules & Matching Logic
(C++)

DR-BIP Execution
Loop Template (C++)

Imports (C++)

C++ Compiler Executable

Fig. 4. Compilation scheme for the reconfiguration engine alongside BIP. Solid arrows
indicate input/output relation, dashed arrows indicate logical dependencies and dotted
arrows highlight the control-flow between the various elements.
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5 Monitoring, Analysis and Profiling Support

In Sect. 4, we introduced the two elements allowing DR-BIP modular support
for tracing, inspection, and run-time monitoring and analysis. On the one hand,
the reconfiguration compiler provides a modular pass on the model that can be
used to generate further code and “hooks” for tracing and generating run-time
events. On the other hand, the DR-BIP template provides all the structures and
control flow primitives needed to inspect, analyze and log relevant elements of the
model: the instantiated BIP model shown in Fig. 3, including all BIP component
instances internals, sets of all active motif instances and their reconfiguration
rules, as well as global reconfiguration rules.

In addition to execution, our implementation provides the key ingredients
that enable profiling, analyzing, and monitoring the execution of DR-BIP mod-
els. In this section, we describe our approach for inspecting dynamic reconfig-
urable architectures and generating a trace for analysis and profiling. We first
present the concept of DR-BIP traces. Then, we evaluate quantitative proper-
ties on two scenarios of platoon system, we profile the execution time of these
scenarios, and report on performance metrics.

5.1 DR-BIP Traces

The state of the instantiated BIP model is usually represented as a tuple giv-
ing for each component its current control location and a valuation of its vari-
ables [3,10]. Nonetheless such a concept of state is not adequate for dynamic
reconfigurable systems as it ignores their structure represented by the motifs
and the outcome of applying reconfiguration rules. For this reason we use the
concept of configuration which encompasses the usual notion of component state
and additionally accounts for architectural aspects. A configuration of a DR-BIP
model consists of (i) the set of its motifs, and (ii) for each motif the set of its
associated components and the connectors generated by executing its connecting
rules. It is represented as a set of hyper-graphs, one for each motif. The set of
nodes is the set of the components of the motif. Each hyper-edge corresponds
to a connector relating the involved components. We call stateful configuration
a pair consisting of a configuration and component states at a given execution
step. A DR-BIP trace is the sequence of stateful configurations.

Example 6. Fig. 5 shows a stateful configuration of a platoon system with 12
cars. The configuration shows the cars grouped by platoons while the position
of the cars is part of their state. Combining information from both makes it
possible to calculate distances between platoons, and the space occupied by all
the cars. Our example has 4 platoons (shown different colors) occupying a total
of 10.41 units. We infer from the respective positions that two platoons are about
to merge as they are separated by 0.41 units. �
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Fig. 5. Stateful configuration of a 12 car platoon system with 4 platoons (each platoon
is assigned a unique color). (Color figure online)

5.2 Properties for Dynamic Reconfigurable Systems

By analyzing DR-BIP traces we are able to check properties not only about
components and their states, but also about the evolution of configurations as
a result of reconfiguration actions. Monitoring and checking such qualitative or
quantitative properties requires the evaluation of predicates on stateful configu-
rations.

Qualitative properties can be formalized in logics. Clearly, a propositional
formula can be checked on a given stateful configuration. If a formula involves
modalities, it should be evaluated on sequences of stateful configurations. While
formalizing qualitative properties for dynamic reconfigurable systems is not in
the scope of this paper, we present an example safety property ensuring that a
car can belong only to one platoon, and all cars in the same platoon have the
same speed as the leader. The property can be expressed as:

� ∀p, p′ ∈ Platoon ∀c ∈ Car ∃c′ ∈ p.C ∃X ⊆ p.C :
(p′ �= p ∧ c ∈ p.C) =⇒ (c �∈ p′.C ∧ (SpeedUpdate(c′,X)) ∧ c.speed = c′.speed)).

This means that for any sequence of stateful configurations, the argument of
� holds. For a given stateful configuration, we can verify if a car belongs to a
platoon (c ∈ p.C) by checking if it is a vertex in the hypergraph of the motif. Fur-
thermore, the leader is determined by verifying the presence of the edge associ-
ated with the connector (SpeedUpdate(c′,X)) in the corresponding hypergraph.
Using the state of each car, we verify that the cars have the same speed as the
leader (c.speed = c′.speed).

Quantitative properties can be evaluated in a similar manner. We specify
the degree of satisfaction of a quantitative property by using score functions
normalized in the interval [0..1]. We assume that the degree increases as the
scores get close to zero.

Example 7. To analyze quantitative properties of the platoon system in Exam-
ple 6, we define three score functions: (1) uniform separation (US), (2) target
size (TS), and (3) road occupancy (RO). Uniform separation is used to assess
how uniform the distance between platoons is. It is computed from the set of
distances between platoons, normalized in an interval [0..1] to obtain a set of
distances di, for which we compute their mean d, and the standard deviation as

follows: US =
√

Σ((di−d)2)
|d| . Thus, for uniform distances the score converges to 0.
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Fig. 6. The evolution of scores in two scenarios of platoon systems. The Y-axis shows
the score (in the range [0..1]), while the X-axis shows the number of steps of the system
(number of rules and interactions executed). The scores are: uniform separation (blue),
target size (orange), and road occupation (purple). (Color figure online)

TS is used to estimate how close the size of platoons is to an ideal target size. It is
computed similarly to the score US as the deviation from the ideal size. For this
example, we fix the ideal size to be 2. Lastly, RO measures the total space occu-
pied by all cars on the road. It is computed as follows: RO = 1 − ((L − Σdi)/L)
where L is the distance between the leading car of the first platoon and the
tail car of the last platoon. By combining the three scores we aim to measure
deviation with respect to configurations where the platoons have a specific size,
while maintaining similar distances between them that are not too large, so as
to not waste road space. The scores computed for the stateful configuration in
Fig. 5 are as follows: US = 0.34,TS = 0.14 and RO = 0.23. Indeed, we observe
that the distance between the left-most two platoons (0.41) significantly differs
from the distance between the two others (1). Additionally, we see two platoons
of size 4, and a total separation distance of 2.41 units between platoons (23% of
the total distance occupied by the cars).

We consider two different large platoon systems: S1 and S2 differing only in
the initial distance between cars. Both S1 and S2 start with a single platoon of
1,000 cars. In S1 cars are initially separated by K = 0.3 which is less than the
minimal distance needed to merge platoons, while in S2 cars are initially sepa-
rated by 2K. By taking the initial distance between cars smaller than the merge
distance, platoons have very little possibility to diverge, as they will be merged
very soon after a split. On the contrary, with an initial distance much larger
than K, platoons are not likely to be merged soon after a split. We illustrate
the evolution of scores in Fig. 6. In the case of S1, cars form at most 2 pla-
toons during the simulation, and we are unable to reach platoon size 2, as splits
are rapidly followed by merges. In addition, distances between platoons remain
equal in S1 as splits are rapidly followed by merges allowing no possibility for
the cars to separate. For S2, we see a convergence towards the target platoon
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size. However, we observe larger and diverging separation between platoons, as
well as differentiation of the distances between platoons. �

Table 1. Fixed-length simulation of 5,000 interactions of platoon system capturing
maximum number of motifs (M) and execution times (BIP, DR-BIP) when varying
initial distance, number of cars (N), and number of reconfiguration phases (RP).

N S1 S2

RP M BIP (s) DR-BIP (s) RP M BIP (s) DR-BIP (s)

100 48 4 0.16 0.05 178 77 0.18 0.52

13 4 0.13 0.01 30 40 0.14 0.05

500 48 4 0.68 0.59 569 306 0.83 30.40

14 4 0.72 0.18 47 65 0.75 0.77

1000 48 4 1.40 2.08 729 504 1.52 118.00

14 4 1.44 0.62 51 73 1.44 1.94

5.3 Profiling DR-BIP Performance for Platoon System

We use performance metrics to profile the behavior of both DR-BIP and the
system being executed. Measurements of reconfiguration frequency and time
allow fine-tuning rules and models so as to enhance performance.

Recall from Example 7, we have two platoon systems that differ only in the
initial distance between cars: S1 and S2. Both S1 and S2 start with a single
platoon of N cars. Cars are initially separated by 0.3 < K for S1 and 2K for
S2, where K is the minimal distance needed to merge platoons. We performed a
fixed-length simulation up to 5,000 BIP interactions for S1 (resp. S2), and report
the result in Table 1 averaging values over 10 simulations. To control the number
of reconfiguration phases, we modify the model so that a car cannot split before
moving for a certain amount of time.

Consider the case of 1000 cars and high reconfiguration rate (row 5). The
average total execution time for S1 (resp. S2) is 3.48 s (resp. 119.52 s). A recon-
figuration phase occurs after executing 104 (resp. 7) interactions. The percent-
ages of the time spent reconfiguring are respectively 60% and 99%. For S1, we
can see that the maximum number of motifs present after each reconfiguration
phase (M) is 4, indicating the presence of at most 2 platoons (with 1 road and
1 motif responsible to merge platoons). For S2, we see the creation of multiple
motifs, increasing to 729 motifs, which results in an increase of execution time for
DR-BIP. Growing number of car and motif instances increases the time required
for matching motif rules and global reconfiguration rules. When reconfiguration
is less frequent, and with fewer motif instances, we observe reasonable execution
times. For S2, when a reconfiguration phase occurs every 98 interactions (row
6), the runtime is reduced from 119.52 s to 3.38 s.
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6 Conclusion

We presented a two-layered approach for the specification, execution and moni-
toring of DR-BIP models integrating a reconfiguration and an interaction layer.
DR-BIP extends BIP with the concepts and primitives needed for modeling
dynamic reconfigurable systems. It supports modeling reconfiguration involving
motifs along with their maps and addressing functions as well as reconfigura-
tion rules for the dynamic change of local and global coordination patterns. We
elaborated on the interplay between the reconfiguration engine which manages
motifs and executes reconfiguration rules to modify an instantiated BIP model,
and the BIP engine which executes the interactions of the latter. We also pre-
sented the necessary extensions to the BIP compiler and engine in order to reuse
them in the context of dynamic and reconfigurable systems.

Another key contribution is the definition of traces for DR-BIP models allow-
ing a natural high level interpretation of system behavior and run-time monitor-
ing and analysis. Using information from stateful configurations, we can analyze
properties characterizing the complex collective behavior of the system compo-
nents. We demonstrated all these concepts for both qualitative and quantitative
properties on a platoon system example inspired from autonomous traffic sys-
tems.

We focus on two complementary directions for future work. The first is to
improve the current implementation. The second is to provide enhanced sup-
port for analysis and controlled experimentation through model simulation. We
plan to increase the efficiency of the execution of the reconfiguration phase,
by allowing the incremental evaluation of reconfiguration rules. For instance,
static dependencies between rules can be exploited to avoid the costly global
re-evaluation of all rule constraints and computation of matches at every step.
Moreover, symbolic representations and/or searching techniques inspired from
SAT/SMT solving can be used to isolate the impact of a rule on the system and
therefore to restrict the focus of application of rules to that part.

Regarding the support for analysis at runtime, our simulation infrastructure
provides all the needed introspection capabilities to extract both architecture
(i.e, hypergraph of interconnected components and connectors) and state infor-
mation (i.e, component state vectors). We plan to integrate the monitoring of
behavior and/or configuration properties by introducing temporal modalities [20]
into configuration logics [15]. Beyond monitoring, statistical model checking can
be used to evaluate properties over multiple traces of the system and to compute
levels of confidence for their satisfaction. However, the application of statistical
model checking would require the definition of a stochastic semantics for the DR-
BIP model. As a first alternative, this can be achieved by keeping non-stochastic
the execution of the reconfiguration engine, while leaving stochastic aspects at
the BIP level to be handled only by the (statistical) BIP engine [17]. A more
challenging alternative would consist in proposing and implementing a stochastic
semantics for the reconfiguration engine to be combined with the BIP engine.

Finally, in addition to monitoring and analysis, we plan to develop support
for controlled experimentation allowing to bring reconfigurable dynamic systems
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into specific configurations and check their behavior. This is particularly impor-
tant for the definition of coverage criteria and validation through the exploration
of corner cases and critical situations. It will additionally require the refinement
of the BIP model into a model distinguishing between observable and control-
lable features and their integration.
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Abstract. We present a model-driven approach for the creation of for-
mally verified scenarios involving human-robot interaction in health-
care settings. The work offers an innovative take on the application
of formal methods to human modeling, as it incorporates physiology-
related aspects. The model, based on the formalism of Hybrid Automata,
includes a stochastic component to capture the variability of human
behavior, which makes it suitable for Statistical Model Checking. The
toolchain is meant to be accessible to a wide range of professional fig-
ures. Therefore, we have laid out a user-friendly representation format
for the scenario, from which the full formal model is automatically gener-
ated and verified through the Uppaal tool. The outcome is an estimation
of the probability of success of the mission, based on which the user can
refine the model if the result is not satisfactory.
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robotics · Model-driven approach · Statistical Model Checking

1 Introduction

Robots are becoming increasingly widespread in non-industrial contexts. Future
applications range from autonomous means of transportation [28] to personal
assistants [14]. If on one hand factory workers are specifically trained to interact
with this type of machinery and grow familiar with safety practices over time, on
the other hand a much wider range of users awaits robots in the near future [22]
and this poses a new set of challenges. In the area of safety, strong guarantees
of people’s health preservation will be required, beginning from compliance with
the standards. ISO 12100 [18] and ISO 13849-1 [20] provide general guidelines,
whereas ISO 13482 [19] is specifically targeted to service robots. It is common
knowledge for researchers in the field that testing techniques are not sufficient
given the complexity of these systems [25], and there already exist works in
literature that resort to formal verification for safety-critical scenarios [16,30].
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In this paper, we focus on human-related aspects in scenarios involving inter-
actions between humans and robots. Service robots will support people in every-
day life situations, and it is, therefore, crucial that human factors are accounted
for in the robot decision-making process. To this end, we have developed a model-
driven approach for the creation and formal verification of scenarios related to
human-centric robotic applications. Target scenarios feature mobile robots and
their controllers interacting with humans in a defined environment. Separate sce-
narios tackle different interaction strategies, depending on what specific service
the human is requesting. To ease the modeling process, we have identified a set
of usual coordination patterns involving a human and a robot, which the user of
the approach can customize and re-use with minimum effort. The mission of the
robot, as more thoroughly discussed in Sect. 4, will be to provide all the services
requested in a specific scenario, and the purpose of the approach is to allow the
designer of the application to verify the feasibility of the mission.

The approach considers some physiological features of humans that make
it particularly suited for the healthcare domain, but it is still general enough
to befit a broader range of applications. The policies of the robot controller
that drive the mission to success are designed to prioritise human needs over
efficiency. This can make a difference when robots interact with people in dis-
comfort or in pain, or when human lives are at stake and the controller has to
make a decision—something that can happen in healthcare settings. Another
key issue for practitioners is that modeling the volatility of human behavior is
often considered beyond the capabilities of formal methods [25]. As a first step
towards solving this issue, in our approach humans are not treated as rational
agents that unmistakably execute their mission. Instead, their model features
a stochastic component to simulate free will, that causes them to occasionally
make autonomous decisions.

In our approach, scenarios are formally modeled through Hybrid Automata
[4], with the addition of stochastic components. The model is formally verified
through Statistical Model Checking (SMC) [3] against a set of relevant proper-
ties. The toolchain is meant to be used by professional figures with a technical
background, though not necessarily in robotics nor in formal models. Therefore,
the entry point is a user-friendly representation of the key parameters of the sce-
nario that the application designer can smoothly produce and refine. The tool
processes this input, automatically generates the complete formal models, and
performs verification through the Uppaal tool [11,24].

We have selected a use case from the healthcare domain to evaluate the
effectiveness of the approach. Some significant experimental results drawn from
the use case are presented in the paper. The experiments are run using a publicly
available prototype of the tool [1].

The paper is structured as follows: Sect. 2 surveys related works; Sect. 3 out-
lines the background; Sect. 4 presents the approach; Sect. 5 describes the formal
model; Sect. 6 presents the use case and the experimental results; finally, Sect. 7
concludes. Appendix A presents additional details about the formal model, and
Appendix B describes additional experiments.
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2 Related Work

Formal modeling and verification of systems that involve interactions between
humans and robots is a long-standing issue. The work by Webster et al. [31]
analyses the dynamics of a person assisted by a personal care robot in a smart
home. All the elements of the scenario are modeled as agents using Brahms, and
then verified through the SPIN model-checker: in particular, the human non-
deterministically selects the action to perform from a pre-determined set, and
the robot must act accordingly. Vicentini et al. [30] focus on the risk assessment
procedure of industrial collaborative tasks. The authors propose a framework
based on LTL formulae to verify that the overall level of risk of the system does
not exceed a certain threshold. The work has been extended to also include
manifestations of erroneous human behavior, handled in a black-box manner [7].
Bersani et al. [9] address applications involving robots and humans working in a
shared environment, modeled as networks of Timed Game Automata. Humans
are modeled as uncontrollable agents, to capture the uncertainty of the real
world. A robot controller that also accounts for unpredictable human moves is
then automatically synthesized through the Uppaal-TIGA tool.

Porfirio et al. [27] explore how formal verification can be used to ensure that
robots adhere to social norms while interacting with humans. Norms, expressed
as LTL formulae, constitute the properties to be verified, whereas the sequence
of interactions is modeled as a composition of state machines. Concerning the
social robotics field, Adam et al. [2] propose a framework based on the BDI
architecture to make human-robot interaction feel more natural. The authors
build upon models of human cognition to develop a perception and deliberation
process that drives the robot towards making decisions in a human-like fashion.

Some works exploit SMC to verify robotic systems. Arai and Schlingloff
[6] use SMC to make predictions on the performance of autonomous transport
robots in production plants. Foughali et al. [13] apply SMC to formally verify
real-time properties, like schedulability and readiness, of robotic software. Herd
et al. [17] focus on multi-agent systems, and on swarm robotics in particular: in
this case, SMC helps deal with the size of the problem, which cannot be handled
by traditional model checking techniques.

Finally, Zhao et al. [12] perform probabilistic model-checking of UAV mis-
sions, focusing on advanced aspects of battery prognostics and health manage-
ment.
As this brief survey shows, although the issue of verifying human-robot interac-
tion has been tackled with different techniques, the combination of sound formal
methods with the modeling of human behavior unpredictability is still an open
question. To the best of the authors’ knowledge, the work in this paper is the
first attempt at formally verifying an explicit model of human-related aspects,
such as free will. In addition, as mentioned in Sect. 1, service robots will come
into contact with people with different backgrounds, who may not be able to
create complex models while designing their application. Therefore, the accessi-
bility of a tool is a key factor in assessing its effectiveness. The work presented
in this paper addresses these issues and is a first step towards filling the gaps.
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3 Background

The formal models presented in this work are expressed through Hybrid
Automata (HA) enriched with a stochastic component, indicated as HA+ in the
rest of the paper. HA are an extension of Timed Automata. In Timed Automata,
time is modeled through variables (clocks), whose value increases linearly with
time unless they are reset [5]. Conditions on clocks govern the transitions between
states. In HA, locations are also endowed with sets of differential equations (flow
conditions) that constrain the derivatives of real-valued variables of the model,
thus allowing for the modeling of systems with complex dynamics [4].

Automata can be organized in networks, where synchronization between dif-
ferent automata occurs through channels. Given a channel e and two automata
with complementary enabled transitions labelled as e? and e!—whose guards are
both satisfied—the two transitions fire at the same time and the two automata
synchronously change their locations. Non-deterministic choices in the model can
be refined by probabilistic distributions. These constitute the stochastic compo-
nent of the formalism and are modeled via probabilistic transitions, as exempli-
fied in Fig. 1. This type of transition is marked with a probability weight, that
determines how much the system will be biased to evolve in a certain direction
rather than its alternatives.

The stochastic component of the formalism enables the application of statis-
tical techniques, and SMC in particular. As opposed to traditional model check-
ing, SMC relies on Hypothesis Testing or Estimation to evaluate the probability
that a property holds on paths starting from a generic state s of the system
[3]. Therefore, it does not fully explore the state space, and is feasible also for
complex systems. The properties to be checked are expressed in the PCTL logic,
whose syntax, shown in Table 1, allows us to express quantitative constraints
on probabilities through the P≥θ(φ) operator. Given a HA+ automaton and a
PCTL property ψ, the possible outcomes of SMC are: (a) a binary value, 1 or
0, depending on whether P (ψ) ≥ θ holds or not, where P (ψ) is the probability
of ψ holding, and θ is a threshold; or (b) a probability interval to which P (ψ) is
guaranteed to belong. Section 6 presents some examples of SMC experiments.

The features of HA+ are used for the robot and human models presented
in detail in Sect. 5. In particular, given the emphasis of the work on human
physiology, the model of the human includes differential equations describing
the time-dynamics of fatigue. Although human fatigue can take different forms
[21], at the moment we focus on the physical strain originated from non-stop

Fig. 1. Automaton with proba-
bilistic transitions: 0.4 and 0.6 are
the probabilities of reaching s2 and
s3 starting from s1.

Table 1. PCTL Syntax

φ ::= a | ¬φ | φ ∨ φ′ | φ ∧ φ′

ψ ::= φ | Xφ | φUφ′ | P≥θ(ψ)

a ∈ AP atomic proposition

θ ∈ [0, 1] probability bound
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walking. According to Konz [23], the alternate fatigue/recovery cycles can be
modeled as exponential curves, as in Eq. 1. Low values of coefficients λ and μ
mean slower fatigue accumulation and recovery, while F0 corresponds to the
value of fatigue at the start of the current cycle (it is 0 when the human starts
walking for the first time). Full exhaustion corresponds to F (t) = 1, full recovery
to F (t) = 0.

F (t) =

{
1 − (1 − F0)e

−λt (walking)

F0e
−μt (resting)

(1)

Concerning the model of robot velocity, we use the typical trapezoidal veloc-
ity profile [10] with three phases: acceleration, constant maximum speed, and
deceleration. Maximum acceleration amax and maximum velocity vmax are design
parameters of the robot. For the robot battery, we assume an exponential
charge/discharge cycle typical of electronic devices with lithium batteries [29].
Equation 2 shows the battery charge time-dynamics: ρ and σ represent the
charge/discharge rates, whereas C0 is the starting charge value for the cur-
rent cycle. The times required for a full charge and a full discharge cycle (Tchg

and Tdchg) are known a-priori given the battery model, therefore rates ρ and
σ are approximated with precision ε as in the following: ρ = 1

Tdchg
ln( 100

100−ε ),
σ = 1

Tchg
ln( 100

100−ε ).

C(t) =

{
100 − (100 − C0)e

ρt (discharging)

100 − (100 − C0)e
−σt (charging)

(2)

4 Approach

The main contribution of this paper is a model-driven approach for the analysis of
human-robot interaction through formal verification. The approach is tailored to
non-industrial settings, and in particular to the healthcare environment. Indeed,
we focus on scenarios in which the volatility of human behavior is at its peak,
which may not be the case for industrial workers who are methodically trained
to perform a set of actions during their shift. Furthermore, modeling physiology-
related aspects is crucial for healthcare applications, since people in need of a
medical service may find themselves in diverse, even critical, physical conditions.
The toolchain is meant to be used by professionals possibly with some technical
background, but not necessarily in robotics or in formal methods. Hospitals are
subject to a tremendous flow of people on a day-to-day basis, and this requires
dedicated professional figures to be efficiently handled. For example, clinical
workflow analysts [26], who design and analyze work shifts for medical facilities,
perfectly fit this profile.

The application designer is in charge of assigning each of the currently
requested services to one of the available robots. Therefore, a group of humans
served by a robot will constitute the atomic operational unit (referred to as the
scenario hereinafter). Serving everybody in the group will constitute the mis-
sion, i.e., the high-level goal [8], for the robot. The boundaries of the mission
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Fig. 2. Diagram representing all the phases of the approach. Different shades of gray
indicate the current progress of implementation: the darker phases are fully imple-
mented, the lighter ones are to be expanded in the future.

also include any other parameters that, were they to be modified, the overall
outcome would change accordingly, e.g., the enclosed environment where the
agents operate or the robot starting conditions. Through the tool, the designer
can try different configurations until the estimated probability of success is rea-
sonable. Figure 2 depicts the steps of the design process: (i) configuration of the
scenario, performed by the designer; (ii) automated model generation; (iii) exe-
cution of the SMC experiment; (iv) critical assessment of the verification results,
followed by application deployment if the results are satisfactory, otherwise by
model refinement. In this paper, we focus on the scenario configuration and on
the formal model, whereas the deployment phase will be elaborated in future
works.

4.1 Configuration

The user of the toolchain has the option to customize all the parameters of the
scenario depicted in Fig. 3 and described in the following.

A scenario includes Nh humans to be served and a robot from the fleet that
will serve them. Robots are characterized by maximum speed and acceleration
(vmax and amax in Fig. 3) and are each associated with a battery. An association
between a robot and a battery constitutes a robotic system with its own id.

Fig. 3. Class diagram of the user-customizable portion of the model.
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Table 2. Human-robot interaction patterns

Pattern Description

Human follower The human follows the robot while the robot moves towards the
destination. Because of free will, the human can decide to walk
freely and whether to follow or not when the robot issues its
command. If they get too far, the robot stops and waits for them

Human leader The robot follows the human that moves towards the
destination (unknown to the robot). The human is free to start
and stop whenever they want and the robot follows accordingly

Human recipient The human waits for the robot to fetch an item from a specific
location. While the robot is delivering the object, the human is
free to move and the robot has to track them. Synchronization
occurs when the human and the robot are close and the human
stops to pick up the item

Batteries possess an initial charge value Cstart ∈ [0, 100], and the two parameters
Tchg and Tdchg that determine the duration of full charge/discharge cycles. For
each scenario, it is also essential to model the environment in which services
will be carried out. Specifically, the operational environment is modeled as a
two-dimensional layout. The designer may specify the Cartesian coordinates of
specific points of interest—e.g., wall corners and doorposts. The model capturing
robot navigation takes these elements into account to drive the agent towards
their correct destination and to prevent collisions with walls or humans.

Together with robots, humans are a basic component of the scenario that
needs to be configured by the designer. Each human is identified by a unique id
that determines the order in which they will be served. Furthermore, the user
can specify the human’s walking speed v and the destination point dest. A fun-
damental aspect of humans in the scenario is the way in which they are going
to interact with the robot. We have identified a set of patterns for recurrent
human-robot synchronization mechanisms, focusing on a particular subset suit-
able for the mobile robots with a predefined set of functionalities covered by our
work. Currently implemented patterns are described in Table 2. Different pat-
terns impact how the system will evolve while a certain service is being carried
out and the condition that the system needs to verify to state that the service
has been provided. As shown in Fig. 3, the designer can specify the parameter p
for each human to set up how the interaction with the robot will play out.

Finally, it is also possible for the designer to customize the physiological
traits of the humans in the scenario through the pf parameter (see Fig. 3). This
draws from a set of profiles that aggregate potential subjects by age and medical
condition. Since the physiological property currently included in the model is
fatigue, particular care is given to conditions that specifically target the respi-
ratory functions of patients, thus their ability to walk. Providing the designer
with this predetermined set of profiles allows them to match the specific indi-
viduals from their scenario with medically recognized significant cases. This also
allows them to save time while designing the application, although the manual
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specification of a different set of parameters is still possible if necessary. Refer-
ring to the model of fatigue introduced in Sect. 3, different profiles mean different
values for parameters λ and μ. Therefore, they determine the time needed by a
specific subject to reach full exhaustion and full recovery. With this feature, the
professional assessing the results has the guarantee that the physical condition
of the patient has been taken into account while estimating the outcome of the
mission.

4.2 Model Generation and SMC Experiment

The HA+ models are handled as templates customizable by the user. This sub-
set is, indeed, the result of the configuration phase. By doing so, the designer is
only required to arrange the main elements of the application in a user-friendly
format, which is more suited to their technical background than creating formal
stochastic models from scratch. This input is fed to a script that automatically
generates the formal model with the values laid down by the designer. Once the
generation of the model is completed, the tool initiates the verification process.
The user also has the option to choose whether the tool should produce a simu-
lation of the system or estimate the probabilities of the mission ending in failure
or success—i.e., a typical SMC experiment.

4.3 Result Analysis and Refinement

If the user decides to run an SMC experiment, this yields a probability value.
If the probability of success is smaller than a desirable threshold, the user may
refine the model in one of the following ways: (a) reduce the workload of a
robot, for example, if its current battery charge value is not sufficient to carry
out all the requested services; (b) change the order in which humans are to
be served, which could improve the overall efficiency, e.g., by reducing robot
movements between a service and the next one; (c) choose different services to
be included in the scenario; (d) choose a different robot from the fleet, with
different speed/acceleration parameters or with a different battery charge value.
A different robot model may be useful in case the previous one moved too fast for
the human, whereas issues related to the battery may involve complete discharge
before the mission is done.

5 Model

In this section, for each type of component of a scenario (robots, batteries,
humans) we present the corresponding HA+. The model also features an orches-
trator, which plays the pivotal role of managing the synchronization among all
other components through channels (see Sect. 3). The decisions of the orches-
trator are based on the state of the system. In particular, specific features of
the model capture the behavior of sensors measuring physical properties of the
system, which drive the decisions of the orchestrator. Each property is modeled
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via a dense counter variable that changes over time as a result of update instruc-
tions on transitions, but does not possess an explicit time-dependency. We also
assume that these sensors periodically repeat the measurement: constant Tpoll

captures the refresh period and clock tupd measures the time elapsed since the
last update. As mentioned in Sect. 3, the robot movement follows a trapezoidal
velocity profile, whereas the human moves with constant speed. As for human
free will, we have chosen the straightforward approach [15] of modeling it as a
random phenomenon whose behavior is comparable to a Bernoulli variable X.
Finally, to dampen the complexity of the model, we assume that humans are only
free to choose when to start or stop, and not an arbitrary trajectory. Interested
readers can find additional details about the models in Appendix A.

Robot: The HA+ in Fig. 4 represents the three operating conditions of the
robot, corresponding to idleness, motion and battery recharging. We introduce
two time-dependent variables V and rdist that model, respectively, the velocity of
the robot at a generic time instant t and the distance covered since the beginning
of the motion. The automaton features locations ridle, rstart, rmov, rstop, and rrec
corresponding, respectively, to: (1) the idleness of the robot with V = 0; (2)
the acceleration phase of the motion, thus V̇ = amax; (3) the travel phase with
constant speed, V = vmax; (4) the deceleration phase with V̇ = −amax; (5) the
battery recharging phase, thus V = 0. In every location, ṙdist = V holds. When
the orchestrator fires the commands to start or stop recharging (bstart and bstop),
if the robot is at the recharging station, the automaton transitions from ridle to
rrec and back. The switch from ridle to rstart takes place when the command to
start moving (rstart) is issued. Similarly, the automaton switches from rmov to
rstop when rstop is fired. It is also possible to start and stop the robot while it
is accelerating or decelerating, so two transitions are added between rstart and
rstop. In location rstart, velocity is increasing linearly from 0 to vmax, thus when
V = vmax the automaton switches to rmov. While decelerating, the robot stays
in rstop as long as V > 0 and goes back to ridle when V = 0. We model as dense
counters the Cartesian coordinates of the robot in space (rposx

and rposy
), and

the angle θr for the orientation with respect to the x -axis. On every self-loop,
and on all transitions in Fig. 4 marked with a ξR, the corresponding update
instruction of Table 3 is executed.

Robot Battery: Figure 5 shows the HA+ representing the behavior of the
battery. The time-dependent variable in the model is the charge value C . The

Fig. 4. Robot automaton.
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robot battery can be in one of three states, modeled by as many locations:
discharging (bdchg), charging (bchg), and fully discharged (bempty) in which case
the robot cannot move autonomously. The constraints on the derivative of charge
C stemming from the model introduced in Sect. 3 are shown in Eq. 3.

Ċ =

{
−(100 − C0)ρeρt (bdchg)

(100 − C0)σe−σt (bchg)
(3)

The switch from bdchg to bchg and vice versa occurs when the orchestrator decides
that a robot needs to start/stop recharging, firing events bstart and bstop, respec-
tively. An additional location bfull is needed to model the case in which the bat-
tery is back to full charge (condition C = 100) and immediately stops recharging.
This happens thanks to the urgent channel bfull [24] that fires as soon as the
automaton enters location bfull. The sampled charge value is modeled by dense-
counter bch, whose update instructions ξBC and ξBD are shown in Table 3 and
correspond, respectively, to the charge and discharge operating conditions.

Human-Follower: The model is depicted in Fig. 6. The time-dependent vari-
ables are hdist, which represents the distance covered by the human, and F ,
which corresponds to the value of the fatigue at a generic time instant. Their
temporal dynamics are given in Eq. 4: hdist is either constant, or it increases lin-
early with time (with coefficient v, which is the human’s constant speed) when
the human is moving, whereas F adheres to the model in Eq. 1.

hidle =

{
Ḟ = −F0μe−μt

ḣdist = 0
hbusy =

{
Ḟ = F0λe−λt

ḣdist = v
(4)

The operating conditions modeled for this component are the idleness of the
human (location hidle) or walking (hbusy). The switch from hidle to hbusy, and
back, occurs when the orchestrator orders it or as a result of the human’s free will.
In the first case, the orchestrator fires hstart or hstop. This leads to a probabilistic
transition (the dashed arrows in Fig. 6) whose possible outcomes represent the
human obeying the order, thus reaching the prescribed destination, or disobeying
it, thus staying in the same location. The transition is governed by the two
constant weights obey and disobey. In the second case, two additional transitions
between hidle and hbusy capture autonomous decisions as a result of free will:

Fig. 5. Battery automaton.
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Fig. 6. Human-follower automaton.

Table 3. Update instructions

ξR : r′
posx := rposx + V (t)Tpollcos(θr) ξH : h′

posx := hposx − vTpollcos(θh)

r′
posy := rposy + V (t)Tpollsin(θr) h′

posy := hposy − vTpollsin(θh)

ξBC: b′
ch := 100 − (100 − bch)e−σTpoll ξBD: b′

ch := 100 − (100 − bch)eρTpoll

ξHI: h′
ftg := hftge

μTpoll ξHB: h′
ftg := 1 − (1 − hftg)e

−λTpoll

thus, the human fires hstart and hstop. Sample points of the random variable X are
observations of local variable fw . A success is the decision of the human to start
or stop freely and it occurs when fw > FWth, which is the guard condition of the
transitions between hidle and hbusy. FWth is a constant threshold, and variable
fw is updated every Tpoll instants with a random value in range [0,FWmax].
Therefore, the probability of making an autonomous decision is E[X ] = p =
1 − FWth

FWmax
. If the p-value is close to 1, humans will behave more erratically, and

vice versa if it is close to 0. Location hfaint models the case in which the human
is too exhausted to proceed: it is reached when F ≥ 1, where 1 corresponds
to the maximum value of fatigue, and it causes urgent channel hfaint to fire
immediately. The dense counters are hftg (for the fatigue), and hposx , hposy , θh

for the Cartesian coordinates and orientation of the human with respect to the
x-axis. Table 3 shows the update instructions (ξHI, ξHB) for the fatigue, which
adhere to the model in Eq. 4, and also those (ξH) of the position, where hposx ,
hposy represent the projections of the displacement since the last update.

Orchestrator: The automaton is displayed in Fig. 7a. The purpose of this com-
ponent is to orchestrate the synchronization among the other agents and drive
the system towards mission accomplishment. This is realized by monitoring the
sensor outputs described in previous sections, and deciding whether the current
state of the system requires a certain event to be fired. We have identified three
operational paradigms implemented by as many sub-machines: r rech controls
the recharging phase of the robot; r move controls the start and the end of the
movement when, based on the interaction pattern between the human and the
robot carrying out the service, it is initiated by the robot; h move controls the
dual case, in which the movement is initiated by the human. The orchestrator
features both r move and h move since both designs can be included in the same
scenario. Sub-machines in Fig. 7a are endowed with ports: these are not part of
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Fig. 7. Orchestrator automaton and 〈op〉 chk〈x〉pattern.

the formalism, but a visual representation of the transitions entering and leaving
the component (arrows in and out of a port constitute the same transition).

Figure 8 shows the details of the sub-machines. They are all built using the
〈op〉 chk〈x〉 pattern of Fig. 7b, which includes a location modeling the current
operating condition of the entire system (e.g., orrech , orflw), generically identified
by oop, and a location ochkx modeling the orchestrator monitoring the state of
the system, where x is a numerical index. Ports highlight the transitions entering
and leaving the pattern sub-component, guarded by γstart, γstop, γfail and γscs,
where each γ condition is associated with a component-specific formula. The
semantics of the pattern is described in the following.

The orchestrator moves to operating condition oop when the corresponding
condition γstart is true. The transition from oop to ochkx is governed by clock
tact, and it periodically occurs every Tint time instants. Upon entering ochkx , the
orchestrator runs the monitoring routine (ξO of Fig. 8). If condition γstop holds,
the orchestrator moves to the following operating condition—i.e., a different
sub-component—otherwise it goes back to oop. Table 4 shows the guards for
each sub-machine. Locations ofail and oscs of Fig. 7a correspond to the end of the
mission with failure or success, respectively, and are reached when conditions
γfail and γscs hold. Failure occurs if the battery charge drops to 0 (event bdead),
hence the robot cannot recover autonomously, or if the human fatigue exceeds
1 (event hfaint). Location oscs is reached when the mission has been successfully
completed—i.e., when all humans in the scenario have been served.

The first instance of the pattern is idle chk1 in Fig. 7a, which models the
situation in which the system is idle and periodically checks whether an action
can start. The system enters this component first when the execution starts, and
returns to it whenever an action stops (and the corresponding sub-component is
left). Similarly, the orchestrator exits this component if one of the γstart condi-
tions for the other sub-machines is true.

The recharging routine of Fig. 8a starts when a robot is idle and its current
battery charge bch is below a threshold Bth1 . Sub-machine r rech models two
operating conditions: the movement of the robot towards the charging station
(rmov chk2), and the robot recharging its battery (rrech chk3). Upon entering
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(a) r rech sub-automaton.

(b) r move sub-automaton. (c) h move sub-automaton.

Fig. 8. Sub-machines of the orchestrator automaton.

Table 4. Orchestrator guard conditions

γstart γstop

idle chk1 rrech.γstop ∨ rlead.γstop ∨ rflw.γstop rmov.γstart ∨ rlead.γstart ∨
rflw.γstart

rmov chk2 ridle ∧ (bch < Bth1 ) (rposx = RSx) ∧ (rposy = RSy)

rrech chk3 tact ≥ Tint (bch > Bth2 ) ∧ rrec

rlead chk4 ridle ∧ ¬(hp = 1) (hftg > Hth1 ) ∨ (bch <
Bth1 ) ∨ (hsvd ∧ ¬∀hhsvd )

rflw chk5 hbusy ∧ (hp = 1) hidle

〈op〉 chk〈x〉 γscs : ∀h hsvd γfail : bdead? ∨ hfaint?

r rech, the orchestrator fires rstart to instruct the robot to reach the charging
station (Cartesian coordinates RSx and RSy), then rstop when the dock has been
reached. Location ostop bridges the two operating conditions and models the
deceleration phase of the robot (rstop): this is why the orchestrator waits Tint

time instants before moving on, with Tint > vmax/amax. When the robot has
stopped completely, it can start recharging, and the orchestrator fires bstart. The
robot stops recharging, thus bstop is fired, when variable bch is above a threshold
Bth2 , then the orchestrator switches back to oidle.

The r move sub-machine of Fig. 8b is entered to initiate the robot move-
ment when the robot is idle and the human is not a leader. Upon entering
r move, the orchestrator fires rstart and hstart since the human is a follower. The
only operating condition modeled by this sub-component is the robot movement
(component rlead chk4 in Fig. 8b). The robot movement stops (events rstop and
hstop fire, since the human is a follower) if: (a) human fatigue hftg exceeds a
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maximum tolerable value Hth1 , or (b) the battery charge drops below a value
Bth1 that calls for recharging, or (c) the human has been served, but they were
not the last one.

If the human is a leader and starts moving, hence its automaton is in loca-
tion hbusy, the orchestrator enters sub-machine h move (Fig. 8c). Upon entering
h move, rstart is triggered and the robot starts moving. The only operating con-
dition is the robot following the human, modeled by rflw chk3. The orchestrator
exits h move when the human has stopped, and stops the robot with rstop.

As per Fig. 7a and Fig. 8, failure is possible for all sub-components. Instead,
only r move and h move have outgoing transitions towards oscs, since recharging
the robot has no impact on service provision: this explains why the scs ports in
Fig. 8a are not connected to the outer component.

6 Experimental Results

As previously discussed, use cases are conveniently found within the healthcare
domain, specifically for the purposes of efficient patient flow handling. The exper-
imental setting chosen to test the approach involves a human patient who needs
to reach a doctor’s office. The mobile robot is aware of the floor plan and the
patient’s characteristics, and it is able to guide the human towards the destina-
tion. When the service is successfully provided, the robot will have achieved its
mission. Instances of classes and attributes of Fig. 3 are provided by the designer
through a JSON file. The portion of the model that is not customizable by the
user is stored in an XML template. The tool automatically processes the input
of the user to generate a verification-ready version of the HA+ model. The tool
selected for the verification is Uppaal and its extension for SMC [11,24]. In this
work we use Uppaal version 4.1.24 to implement the automata, and run SMC
experiments1 with the default set of statistical parameters. Each experiment
yields the probability for mission success: formula P≤τ

≥θ (� osuccess) is verified,
with probability bound θ and time-bound τ .

With this experiment, we are able to test how different fatigue profiles impact
the completion of the mission. The experimental setting features a mobile robot
with vmax = 20 cm/s, amax = 5 cm/s2, with a fully charged battery (Cstart = 100)
and approximately 2.5 h of full charge/discharge time (Tchg = Tdchg = 9000 s).
Listing 1.2 shows the portion of the JSON file defining these parameters. The
floor plan used for this experiment, depicted in Fig. 9a, reproduces a T-shaped
hallway of a hospital, with doors leading to different offices. The entrance and
starting point for both agents is on the left-end side (coordinates (200, 300)) close
to the charging station (RSx = 250,RSy = 375). Listing 1.3 shows a snippet of
the JSON file defining the coordinates for the points of the layout.

The mission for this robot is to lead a single human to their destination
in (1300, 500). Therefore, the interaction pattern is Human-Follower. To test
the effectiveness of the fatigue-related policies of the orchestrator, we repeat the

1 On a machine with 128 cores, 515GB of RAM and Debian Linux version 10.
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(a) Floor plan and trajectories. (b) Fatigue curves.

Fig. 9. On the left, the floor layout for Exp A, with initial positions and destination
marked by a ×, and intermediate points by a •. On the right, the fatigue curves for
all the profiles tested in this experiment (colors as in the legend). Location markers
indicate the time each human has reached the corresponding point of the trajectory.
(Color figure online)

experiment with three different versions of the human, with different fatigue pro-
files and values of walking speed. Listing 1.1 shows how these data are specified.
In the first case, the human is young and in fine health (pf = 1). Their Maximum
Endurance Time (MET)—i.e., how long they can walk non-stop before F = 1—
is approximately 23min (with reference to Eq. 1, it leads to λ = μ = 0.005)
and their walking speed is v = 18 cm/s. In the second case, the human is an
elder in good health (pf = 3), with MET = 14min (λ = 0.008, μ = 0.0035) and
v = 8 cm/s. In the third case, the human is affected by a severe respiratory dis-
ease (pf = 5, v = 5 cm/s) with MET = 4.6min (λ = 0.025, μ = 0.001).

Listing 1.1. Humans

1 "humans":[

2 {"id": 1,

3 "v": 5,

4 "p": "follower",

5 "p_f": 5,

6 "dest": {
7 "x": 1300,

8 "y": 500}},[..]]

Listing 1.2. Robot

"robots": [

{"id": 1,

"v_max": 20,

"a_max": 5,

"c_start": 100,

"T_chg": 9000,

"T_dchg":9000},
[..]]

Listing 1.3. Floor Plan

"floorPlan": [

{"name":"HALL1",
"x": 200,

"y": 400},
{"name":"HALL2",
"x": 1200,

"y": 400},
[..]]

For the first case study, we have verified through the tool that P (� osuccess) ∈
[0.717, 0.817] with τ = 300 s. With the second setting, the property that has
been verified is P (� osuccess) ∈ [0.8, 0.9] with τ = 300 s, and in the last case
P (� osuccess) < 0.098 with τ = 1000 s. Furthermore, a simulation trace with
τ = 2000 s has also been produced for each test case. These results prove that in
the first two cases the destination can be reached in approximately 5min with a
high degree of confidence. In the last case, instead, it is practically impossible to
complete the mission even in 16 min. The reason behind this result is highlighted
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Table 5. Experiments performance data

Exp. States Time [min] Virtual memory [KiB] Resident memory [KiB]

pf = 1 212570 ≈1 166488 120800

pf = 3 391311 ≈1.5 166484 122376

pf = 5 2927009 ≈11.5 166484 123068

by the simulations in Fig. 9: Fig. 9a shows the trajectories of the two agents,
whereas Fig. 9b shows the fatigue curves for the three test cases and the time
instants in which the destination or intermediate points of the trajectory have
been reached within the simulation. The orchestrator commands every agent to
stop walking if human fatigue exceeds a certain threshold, set to Hth1 = 0.9. In
the last test case, motion stops at t = 200 s, it resumes at t = 1200 s when fatigue
drops to an acceptable value (Hth2 = 0.3) and stops again at t = 1400 s when
the destination is yet to be reached. This behavior is caused by the orchestrator
trying to prevent human exhaustion, which inevitably slows down the entire
mission. In the other two cases, thanks to the different pf parameter values,
when the human reaches the destination the value of fatigue is still acceptable,
thus they are not stopped by the orchestrator.

Performance data for each experiment can be found in Table 5. The exper-
iment demonstrates how the tool can predict the outcome of the mission for
various scenarios with little effort on the designer-side. Moreover, it constitutes
a preliminary step towards assessing the soundness of the models presented in
Sect. 5, specifically the ability of the orchestrator to enable corrective actions if
required by the state of the system.

7 Conclusion

We have presented a model-driven approach for the verification, through SMC,
of human-robot interactions in healthcare scenarios. There are two main future
development directions for the approach presented here. The model can be
enriched with new interaction patterns to widen the range of applications that
can be assessed. It is also possible to refine the model of human behavior by creat-
ing a correlation between environmental factors and the likelihood of autonomous
decisions, which are a purely random phenomenon in the current version of the
work. The maximum degree of scenario flexibility could also be enhanced by
having the human and the robot dynamically shift from one pattern to another
in particular situations as a result of the orchestrator’s policies. We envisage
the creation of a Domain-Specific Language that designers can use to model
the mission, with finer-grained details and a richer set of physiological factors.
Simultaneously, we plan on developing the deployment phase of the toolchain.
Through a code generation procedure, the orchestrator could be transformed into
executable code to be deployed on real mobile platforms. This would allow us
to test if the robot can effectively accommodate real people’s needs and comply
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with the human-oriented nature of the work. The deployment-ready controller
could also be simulated in a 2D/3D environment: beyond the testing purposes,
this could also help professionals with a different or non-technical background
in visualizing the potential capabilities of the approach.
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Appendix A Additional Models

A.1 Human-Leader Model

Fig. 10. Human-leader automaton.

The automaton modeling the second pattern in Table 2 is depicted in Fig. 10.
Operating conditions, time-dependent variables and dense counters are the same
as the ones described for the Human-Follower pattern in Sect. 5. In this pat-
tern, the human is leading the task, thus they are in charge of checking when the
task is complete, and, in that case, end it. This checking mechanism is modeled
by location hchk. The automaton enters this location every time the value of
clock tupd equals Tpoll. The model includes a boolean variable hsvd, which has
value 1 when the service requested by human h has been provided, 0 otherwise.
Upon entering location hchk, the automaton checks whether the destination has
been reached or not (update indicated by χ in Fig. 10). If this is the case, hsvd

is set to true, hstop is triggered and the automaton switches back to hidle. Oth-
erwise, the automaton returns to hbusy and the human keeps walking. If the
human is a leader, their free will manifests itself by stopping even if the desti-
nation is yet to be reached, which is modeled through a transition from hbusy

to hidle, with the guard condition fw > FWth. Free will is modeled as described
in Sect. 5. Similarly, what is stated about update instructions in Table 3 for the
Human-Follower pattern stands correct for this pattern as well.
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A.2 Human-Recipient Model

Figure 11 represents the automaton for the Human-Recipient pattern. Loca-
tions hidle and hbusy model the same situations described for the previous two
patterns. In this case, there is an additional contingency corresponding to the
moment in which the human collects the item from the robot, modeled by loca-
tion hrec. This occurs when the robot has fetched the item and reached the
human location: at this point, the orchestrator triggers hstart to prompt the syn-
chronization. Event hstop is then triggered to signal the end of the task. Free
will is also taken into account for this pattern, with the same characteristics
described in Sect. 5. The human can freely decide to walk or stop while the
robot is fetching the object. Therefore, two transitions are added between hidle

and hbusy, enabled by the condition fw > FWth, which trigger events hstart and
hstop. All variables (time-dependent, dense counters and parameters) have the
same semantics described for the first pattern.

Fig. 11. Human-recipient automaton.

Appendix B Additional Experiments

The additional experimental setting, presented in the following, demonstrates
how the two patterns in Appendix A work in practice, and how the robot bat-
tery is managed by the orchestrator. The floor layout is the same as in Fig. 9a.
In this case study, the robot needs to serve two humans: one adhering to the
Human-Recipient (see A.2) pattern, and one to the Human-Leader pattern
(see A.1). The specific parameters for the first human are: v = 15 cm/s, pf = 3
and dest = (1250, 100). Since this is a recipient pattern, in this case the dest
parameter represents the location of the item needed by the human. For the
second human, they are: v = 10 cm/s, pf = 1 and dest = (1250, 500). The robot
has the same characteristics as the one used for the experiment in Sect. 6, but
we are going to run two versions of the experiment: one with Cstart = 100% and
one with Cstart = 11%.

The experiments are run on the same machine used for the experiment in
Sect. 6, with the same version of Uppaal and the same statistical parameters.
Performance data can be found in Table 6.

Figure 12 and Fig. 13 show two simulation traces, one for each value of Cstart.
When the battery is fully charged, the robot immediately moves towards the
location of the object to fetch and then returns to the location of the first
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Table 6. Experiments performance data

Exp. States Time Virtual memory [KiB] Resident memory [KiB]

Cstart = 100% 1138343 ≈4.5min 166972 126304

Cstart = 11% 75339267 ≈6.5 h 166968 124752

(a) First human served (recipient).

(b) Second human served (leader).

Fig. 12. Simulation trace of the experiment with Cstart = 100%: robot trajectory is in
both plots, human 1 is in (a) and human 2 in (b).

human, who never moves from the starting point (Fig. 12a). As in Fig. 12a, the
first human is served (hsvd = 1) at t = 150 s. Figure 12b shows the behavior of the
second interaction pattern: since the second human is a leader, they immediately
start moving as soon as their turn comes. The robot follows and, when it ends
up ahead of the human (e.g., t ≈ 190 s), it steps back and resumes the trailing.
The whole mission ends successfully after approximately 270 s (see Fig. 12b).

In the second case with low battery charge, the robot initially starts moving
towards the location of the object, but, as soon as bch < Bth1 , with Bth1 = 10%,
the orchestrator orders it to stop and start moving towards the recharge station
instead. This is allowed since the human is a recipient, thus the robot is entitled
to start and stop the action whenever necessary. The recharging phase lasts
until bch > Bth2 , with Bth2 = 70% for this experiment (t = 1400 s), as in
Fig. 13c. When the battery has sufficiently recharged, the robot resumes all its
operations: it fetches the item from point (1250, 100), brings it to the first
human (t ≈ 1600 s), then follows the second human to the destination. The
whole mission ends successfully at t ≈ 1700 s.
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The verified property in both cases is P≤τ
≥θ (� osuccess). With Cstart = 100%,

the property is verified with τ = 500 s and θ = 0.9. With Cstart = 11%, we have
verified that P (� osuccess) ∈ [0.4, 0.5] with τ = 2000 s.

The experiment demonstrates how the orchestrator successfully manages the
battery recharge policy to prevent the failure of the mission, even though this
causes a general slowdown in service provision.

(a) First human served (recipient).

(b) Second human served (leader).

(c) Robot battery charge and human 2 fatigue.

Fig. 13. Simulation trace of the experiment with Cstart = 11%: robot trajectory is in
both plots, human 1 is in (a) and human 2 in (b), battery charge and fatigue of human
2 in (c).
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