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nn Learning Objectives
After reading this chapter, you should know 
the answers to these questions:

55 Why are sequence, structure, and bio-
logical pathway information relevant to 
medicine?

55 Where on the Internet should you look 
for a DNA sequence, a protein sequence, 
or a protein structure?

55 What are two problems encountered in 
analyzing biological sequence, struc-
ture, and function?

55 How has the age of genomics changed 
the landscape of bioinformatics?

55 What are two computational challenges 
in bioinformatics for the future?

9.1	 �The Problem of Handling 
Biological Information

Bioinformatics is the study of how informa-
tion is represented and analyzed in biological 
systems, especially information derived at the 
molecular level. Whereas clinical informatics 
deals with the management of information 
related to the delivery of health care, bio-
informatics focuses on the management of 
information related to the underlying basic 
biological sciences. As such, the two disciplines 
are closely related—more so than generally 
appreciated (see 7  Chap. 1). Bioinformatics 
and clinical informatics share a concentration 
on systems that are inherently uncertain, diffi-
cult to measure, and the result of complicated 
interactions among multiple complex com-
ponents. Both deal with living systems that 
generally lack straight edges and right angles. 
Although reductionist approaches to studying 
these systems can provide valuable lessons, it 
is often necessary to analyze those systems 
using integrative models that are not based 
solely on first principles. Nonetheless, the two 
disciplines approach the patient from oppo-
site directions. Whereas applications within 
clinical informatics usually are concerned with 
the social systems of medicine, the cognitive 
processes of medicine, and the technologies 
required to understand human physiology, 
bioinformatics is concerned with understand-

ing how basic biological systems conspire 
to create molecules, organelles, living cells, 
organs, and entire organisms. Remarkably, 
however, the two disciplines share significant 
methodological elements, so an understand-
ing of the issues in bioinformatics can be valu-
able for the student of clinical informatics and 
vice versa.

The discipline of bioinformatics continues 
to be in a period of rapid growth, because the 
needs for information storage, retrieval, and 
analysis in biology—particularly in molecular 
biology and genomics—have increased dra-
matically over the past two decades. History 
has shown that scientific developments within 
the basic sciences tend to have a delayed effect 
on clinical care and there is typically a lag of a 
decade before the influence of basic research 
on clinical medicine is realized. It cannot be 
understated the impact that genomics and 
bioinformatic approaches are having in the 
clinic and the point of care. Indeed, chapters 
focusing on “Translational Bioinformatics” 
and “Precision Medicine and Informatics” 
(7  Chaps. 28 and 30) describe how these foun-
dational advances are leading toward impacts 
on human health and improved approaches to 
clinical care.

9.1.1	 �Many Sources 
of Biological Data

There are many sources of information that 
are revolutionizing our understanding of 
human biology and that are creating signifi-
cant challenges for computational processing. 
New technologies are enabling the miniatur-
ization of laboratory experiments, increased 
automation of experiments and through 
advanced computer processing, and the inter-
pretation of data quickly. These technolo-
gies are producing data at a staggering rate. 
The data produced can interrogate different 
views into the Central Dogma of Biology, the 
metabolome, the metagenome and ancillary 
molecular processes.

The most dominant new type of informa-
tion is the sequence information produced by 
genetic studies. This was enabled by the Human 
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Genome Project, an international undertaking 
intended to determine the complete sequence 
of human DNA as it is encoded in each of 
the 23 human chromosomes. The first draft of 
the sequence was published in 2001 (Lander 
et al. 2001) and a final version was announced 
in 2003 coincident with the 50th anniversary 
of the solving of the Watson and Crick struc-
ture of the DNA double helix. The sequence 
continues to be revised and refined and now 
the sequence the genomes of many differ-
ent individuals have been realized. Initially, 
the 1000 genomes consortium provided 
>1000 genomes of healthy individuals (1000 
Genomes Consortium, 2010), and now datas-
ets exist with >100,000 genomes of individu-
als with a variety of conditions.1 Essentially, 
the entire set of genetically driven events 
from conception through embryonic develop-
ment, childhood, adulthood, and aging are 
encoded by the DNA blueprints within most 
human cells. Given a complete knowledge of 
these DNA sequences, we are in a position to 
understand these processes at a fundamen-
tal level and to consider the possible use of 
DNA sequences for diagnosing and treating 
disease. This has led to the application of bio-
informatics (and other foundational domains) 
as Translational Bioinformatics and Precision 
Medicine Informatics (7  Chaps. 28 and 30).

Additionally, large-scale experimental 
methodologies are used to collect data on 
thousands or millions or more molecules 
simultaneously. Scientists apply these metho
dologies longitudinally over time and across a 
wide variety of organisms or within an organ-
ism to observe the development of various 
physiological phenomena. Technologies give 
us the ability to follow the production and 
degradation of molecules, such as the expres-
sion (transcription) of large numbers of genes 
simultaneously, the presence of proteins or 
metabolites in a biosample, or the populations 
of microorganisms in a sample.

The first high throughput experiments 
measured the expression of genes on gene 
expression microarrays (Lashkari et al. 1997). 

1	 7  https://www.nhlbiwgs.org/ (accessed December 1, 
2018).

This enabled the study of the expression of 
large numbers of genes with one another (Bai 
and Elledge 1997) and to study multiple varia-
tions on a genome to explore the implications 
of changes in genome function on human dis-
ease. This work has led to the field of genom-
ics, the study of the molecular state of a cell, 
tissue or organism through the state and activ-
ity of its genome. With technology advance-
ments, gene expression can now be measured 
by directly sequencing messenger RNA mol-
ecules in a cell and counting the number of 
copies of that RNA molecule that is observed.

While some scientists are studying the 
human genome, other researchers are study-
ing the functions of the genomes of numerous 
other biological organisms, including impor-
tant model organisms (such as mouse, rat, 
fruit fly and yeast) as well as important human 
pathogens (such as Mycobacterium tuberculo-
sis or Haemophilus influenzae). The genomes 
of these organisms have been determined, and 
efforts are underway to characterize them. 
These allow two important types of analysis: 
the analysis of mechanisms of pathogenicity 
and the analysis of animal models for human 
disease. In both cases, the functions encoded 
by genomes can be studied, classified, and 
categorized, allowing us to decipher how 
genomes affect human health and disease.

These ambitious scientific projects are not 
only proceeding at a furious pace, but also 
are often accompanied by another approach 
to biology, which produces another source 
of biomedical information: proteomics, the 
study of the protein gene products of the 
genome—the proteome. Proteomics enables 
researchers to discover the state (quantity 
and configuration) of proteins within an 
organism. These protein states can be corre-
lated with different physiological conditions, 
including disease states. Some of these protein 
states can be used as identifying markers of 
human disease. Similar approaches are being 
applied to understanding the diversity, con-
centration levels and functions of non-DNA, 
RNA or protein molecules such as metabo-
lites through the study of the small molecules 
in the metabolome.

Using these technologies together, we can 
now study the epigenome, the non-genetic 
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effects that influence genome function. These 
include molecules that directly alter the struc-
ture of DNA but not its sequence (such as 
DNA methylation) or proteins that bind to 
DNA and affect how that DNA expresses 
genes. Epigenomics gives us a more complete 
picture of how biology functions and what its 
implications are for human health.

All these technologies, along with the 
genome-sequencing projects, are conspiring 
to produce a volume of biological informa-
tion that at once contains secrets to age-old 
questions about health and disease and threat-
ens to overwhelm our current capabilities of 
data analysis. Thus, bioinformatics is becom-
ing critical for medicine in the twenty-first 
century.

9.1.2	 �Implications for Clinical 
Informatics

The effects of this new biological information 
on clinical medicine and clinical informat-
ics are still evolving. It is already clear, how-
ever, that some major changes to medicine 
will have to be accommodated. These efforts 
have emerged as important areas of bio-
medical informatics that have become their 
own domains, Translational Bioinformatics 
(7  Chap. 26) and Precision Medicine and 
Informatics (7  Chap. 28) and use of bio-
technology data is now common in Clinical 
Research Informatics (7  Chap. 27).
	1.	 Genetic information in the medical record. 

With the first set of human genomes now 
available and prices for gene sequencing 
rapidly decreasing, it is now cost-effective 
to consider sequencing every patient 
genome or at least genotyping key sections 
of the genomes and integrating that with 
the medical record.

	2.	 New diagnostic and prognostic information 
sources. One of the main contributions of 
the genome-sequencing projects (and of the 
associated biological innovations) is that 
we are likely to have unprecedented access 
to new diagnostic and prognostic tools. 
Diagnostically, the genetic markers from a 
patient with an autoimmune disease, or of 
an infectious pathogen within a patient, will 

be highly specific and sensitive indicators 
of the subtype of disease and of that sub-
type’s probable responsiveness to different 
therapeutic agents. Several genotype-based 
databases have been developed to identify 
markers that are associated with specific phe-
notypes and identify how genotype affects a 
patient’s response to therapeutics. ClinVar2 
and The Human Gene Mutation Database 
(HGMD)3 both annotate mutations with 
disease phenotype. This resource has become 
invaluable for genetic counselors, basic 
researchers, and clinicians. Additionally, 
the Pharmacogenomics  Knowledge Base 
(PharmGKB) collects genetic information 
that is known to affect a patient’s response to 
a drug (more on PharmGKB is described in 
Translational Bioinformatics, 7  Chap. 26).4

	3.	 Ethical considerations. One of the critical 
questions facing the genome-sequencing 
and other related projects is “Can genetic 
or other molecular information be mis-
used?” The answer is certainly yes. With 
knowledge of a complete genome for an 
individual, it may be possible in the future 
to predict the types of disease for which 
that individual is at risk years before the 
disease actually develops. If  this informa-
tion fell into the hands of unscrupulous 
employers or insurance companies, the 
individual might be denied employment or 
coverage due to the likelihood of future dis-
ease, however distant. There is even debate 
about whether such information should 
be released to a patient even if  it could 
be kept confidential. Should a patient be 
informed that he or she is likely to get a 
disease for which there is no treatment? 
What about that patient’s relatives, who 
share genetic information with the patient? 
This is a matter of intense debate, and 
such questions have significant implica-
tions for what information is collected and 
for how and to whom that information 

2	 7  https://www.ncbi.nlm.nih.gov/clinvar/ (accessed 
November 1, 2018).

3	 7  http://www.hgmd.org/ (accessed November 1, 
2018).

4	 7  http://www.pharmgkb.org/ (accessed November 
1, 2018).
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is disclosed (Durfy 1993). Passage of the 
Genetic Information Nondiscrimination 
Act in 2008 set initial federal guidelines on 
use of genetic information.5 Additionally, 
the Personal Genome Project (PGP) has 
been working to define open consent mod-
els for releasing genetic information.6 
The Clinical Sequencing and Exploratory 
Research Consortium (CSER) has been 
tackling the difficult issues in translation 
of genomic data to the clinic broadly.7

9.2	 �The Rise of Bioinformatics

A brief  review of the biological basis of medi-
cine will bring into focus the magnitude of 
the revolution in molecular biology and the 
tasks that are created for the discipline of 
bioinformatics. The genetic material that we 
inherit from our parents, that we use for the 
structures and processes of life, and that we 
pass to our children is contained in a sequence 
of chemicals known as deoxyribonucleic acid 
(DNA).8 The total collection of DNA for a 
single person or organism is referred to as 
the genome. DNA is a long polymer chemi-
cal made of four basic subunits. The sequence 
in which these subunits occur in the poly-
mer distinguishes one DNA molecule from 
another and directs a cell’s production of 
proteins and all other basic cellular processes. 
Genes are discreet units encoded in DNA 
and they are transcribed into ribonucleic 
acid (RNA), which has a composition very 
similar to DNA.  Genes are transcribed into 
messenger RNA (mRNA) and a majority of 
mRNA sequences are translated by complex 
macromolecular machines, called ribosomes, 
into protein. Not all RNAs are messengers 

5	 7  http://www.genome.gov/10002328 (accessed 
November 1, 2018).

6	 7  http://www.personalgenomes.org/ (accessed 
November 1, 2018).

7	 7  https://cser-consortium.org/ (accessed November 
1, 2018).

8	 If  you are not familiar with the basic terminology of 
molecular biology and genetics, reference to an 
introductory textbook in the area would be helpful 
before you read the rest of  this chapter.

for the translation of proteins. Ribosomal 
RNA, for example, is used in the construction 
of the ribosome, the huge molecular engine 
that translates mRNA sequences into protein 
sequences. Additionally, mRNAs can be mod-
ified through alternative splicing, degradation, 
and formation of secondary structures that 
influence transcriptions. Once expressed, pro-
teins are frequently modified (e.g. phosphory-
lated), and these modifications can change the 
function of the protein. This process of DNA 
being transcribed to RNA and RNA being 
translated to protein is commonly referred to 
as the Central Dogma of Biology.

Understanding the basic building blocks 
of life requires understanding the function of 
genomic sequences, genes, and proteins. When 
are genes expressed? Once genes are transcribed 
and translated into proteins, into what cellular 
compartment are the proteins directed? How 
do the proteins function once there? Do the 
proteins need to be modified in order for them 
to become active? How are the proteins turned 
off? Experimentation and bioinformatics have 
divided the research into several areas, and 
the largest are: (1) DNA and protein sequence 
analysis, (2) macromolecular structure–func-
tion analysis, (3) gene expression analysis, (4) 
proteomics, (5) metabolomics, (6) metagenom-
ics, and (5) systems biology.

9.2.1	 �Roots of Modern 
Bioinformatics

Practitioners of bioinformatics have come 
from many backgrounds, including medicine, 
molecular biology, chemistry, physics, statis-
tics, mathematics, engineering, and computer 
science. It is difficult to define precisely the 
ways in which this discipline emerged. There 
are, however, two main developments that have 
created opportunities for the use of informa-
tion technologies in biology. The first is the 
progress in our understanding of how biologi-
cal molecules are constructed and how they 
perform their functions. This dates back as far 
as the 1930s with the invention of electropho-
resis, and then in the 1950s with the elucidation 
of the structure of DNA and the subsequent 
sequence of discoveries in the relationships 
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among DNA, RNA, and protein structure. 
The second development has been the paral-
lel increase in the availability of computing 
power. Starting with mainframe computer 
applications in the 1950s and moving to mod-
ern workstations, and ‘the Cloud’, there have 
been hosts of biological problems addressed 
with computational methods.

9.2.2	 �The Genomics Explosion

The benefit of  the human genome sequence 
to medicine is both in the short and in the 
long term. The short-term benefits lie prin-
cipally in diagnosis; the availability of 
sequences of  normal and variant human 
genes will allow for the rapid identification 
of  these genes in any patient (e.g., Babior 
and Matzner 1997). The long-term benefits 
will include a greater understanding of  the 
proteins produced from the genome: how the 
proteins interact with drugs; how they mal-
function in disease states; and how they par-
ticipate in the control of  development, aging, 
and responses to disease.

The effects of genomics on biology and 
medicine cannot be overstated. We now have 
the ability to measure the activity and func-
tion of genes within living cells. Genomics 
data and experiments have changed the way 
biologists think about questions fundamen-
tal to life. Whereas in the past, reductionist 
experiments probed the detailed workings of 
specific genes, we can now assemble those data 
together to build an accurate understanding 
of how cells work.

9.3	 �Biology Is Now Data-Driven

Nearly 30 years ago, the use of computers 
was proving to be useful to the laboratory 
researcher. Today, computers are an essential 
component of modern research. This has led 
to a change in thinking about the role of com-
puters in biology. Before, they were optional 
tools that could help provide insight to expe-
rienced and dedicated enthusiasts. Today, 
they are required by most investigators, and 
experimental approaches rely on them as 

critical elements. This is because advances in 
research methods such as genetic sequenc-
ing, experimental robotics and microfluid-
ics, X-ray crystallography, nuclear magnetic 
resonance spectroscopy, cryoelectron micros-
copy, proteomic mass spectrometry and other 
high throughput experiments have resulted in 
experiments that generate massive amounts 
of data. These data pose new problems for 
basic researchers on how the data are properly 
stored, analyzed, and disseminated.

The volume of data being produced by 
genomics projects is staggering. There are now 
more than 211 million sequences in GenBank 
comprising more than 285 billion digits. Since 
2008, sequencing has bested Moore’s law (see 
7  Chap. 1).9 But these data do not stop with 
sequence data: PubMed contains over 28 
million literature citations, the Protein Data 
Bank (PDB) contains three-dimensional 
structural data for over 45,538 distinct protein 
structures, and the Gene Expression Omnibus 
(GEO) contains over 2.8 million arrayed sam-
ples. These data are of incredible importance 
to biology, and in the following sections we 
introduce and summarize the importance of 
sequences, structures, gene expression experi-
ments, systems biology, and their computa-
tional components to medicine.

9.3.1	 �Sequences in Biology

Sequence information (including DNA 
sequences, RNA sequences, and protein 
sequences) is critical in biology: DNA, RNA, 
and protein can be represented as a set of 
sequences of basic building blocks (bases for 
DNA and RNA, amino acids for proteins). 
Computer systems within bioinformatics thus 
must be able to handle biological sequence 
information effectively and efficiently. To 
that end, the bioinformatics community has 
developed central databases to store sequence 
information, data models to represent that 
information and software analysis tools to pro-
cess sequence data.

9	 7   h ttp: / /www.genome.gov/sequencingcosts/ 
(accessed November 1, 2018).
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9.3.2	 �Structures in Biology

The sequence information mentioned in 
7  Sect. 9.3.1 is rapidly becoming inexpensive 
to obtain and easy to store. On the other hand, 
the three-dimensional structure information 
about the proteins, DNA, and RNA is much 
more difficult and expensive to obtain, and 
presents a separate set of analysis challenges. 
Currently, only about 45,000 distinct three-
dimensional structures of biological mac-
romolecules are known.10 These models are 
incredibly valuable resources, however, because 
an understanding of structure often yields 
detailed insights about biological function. As 
an example, the structure of the ribosome has 
been determined for several species and con-
tains more atoms than any other structure to 
date. This structure, because of its size, took 
two decades to solve, and presents a formida-
ble challenge for functional annotation (Cech 
2000). Yet, the functional information for a 
single structure is dwarfed by the potential for 
comparative genomics analysis between the 
structures from several organisms and from 
varied forms of the functional complex. Since 
the ribosome is ubiquitously required for all 
forms of life these types of comparisons are 
possible. Thus, a wealth of information comes 
from relatively few structures. To address the 
problem of limited structure information, the 
publicly funded structural genomics initiative 
aims to identify all of the common structural 
scaffolds found in nature and to increase the 
number of known structures considerably. In 
the end, it is the physical interactions between 
molecules that determine what happens within 
a cell; thus the more complete the picture, the 
better the functional understanding. In partic-
ular, understanding the physical properties of 
therapeutic agents is the key to understanding 
how agents interact with their targets within 
the cell (or within an invading organism). 
These are the key questions for structural biol-
ogy within bioinformatics:
	1.	 How can we analyze the structures of mol-

ecules to learn their associated function? 

10	 For more information see 7  http://www.rcsb.org/ 
(accessed November 1, 2018).

Approaches range from detailed molecu-
lar simulations (Levitt 1983) to statistical 
analyses of the structural features that 
may be important for function (Wei and 
Altman 1998).

	2.	 How can we extend the limited structural 
data by using information in the sequence 
databases about closely related proteins 
from different organisms (or within the 
same organism, but performing a slightly 
different function)? There are signifi-
cant unanswered questions about how to 
extract maximal value from a relatively 
small set of examples.

	3.	 How should structures be grouped for the 
purposes of classification? The choices 
range from purely functional criteria 
(“these proteins all digest proteins”) to 
purely structural criteria (“these pro-
teins all have a toroidal shape”), with 
mixed criteria in between. One interesting 
resource available today is the Structural 
Classification of Proteins (SCOP),11 which 
classifies proteins based on shape and 
function.

9.3.3	 �Genome Sequencing Data 
in Biology

Advances in sequencing technology are piv-
otal in enabling the practice of genomic 
medicine. Whereas the first human genome 
sequence was carried out over approximately 
13 years at a cost of $2.7 billion (Davies 2010), 
whole human genomes can now be sequenced 
in a matter of days at a cost that is growing 
ever-closer to the magic, if  somewhat arbi-
trary, $1000 price tag. This amount is com-
monly seen as the price at which it becomes 
feasible to sequence a patient in the course 
of clinical care, justifiable both clinically and 
financially. In 2004, and again in 2011, the 
National Human Genome Research Institute 
(part of the National Institutes of Health) 
funded a number of efforts specifically aimed 

11	 7  http://scop2.mrc-lmb.cam.ac.uk/ (accessed Dece
mber 1, 2018).
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at increasing speed and decreasing the cost of 
genome scale sequencing.

Traditional sequencing involves a method 
referred to as Sanger sequencing. This method 
typically is applied to sequences ranging from 
300 to 1000 nucleotides in a non-high through-
put manner.12 In the early to mid 2000s, sev-
eral technologies were introduced to sequence 
large amounts of DNA in parallel. These high 
throughput sequencing methods (of which there 
are many including sequencing by synthesis, 
single molecule sequencing, combinatorial 
probe anchor synthesis, and others) typically 
involve shorter sequences than Sanger based 
approaches, but can generate gigabases of 
sequence in short fragments at low cost 
(<$0.05 per megabase sequenced). These 
methods are being used for many applications, 
including identification of genetic variants in 
clinical studies, characterizing genome func-
tion with specific experiments and sequenc-
ing novel species genomes. These studies have 
already discovered the genetic basis of rare 
genetic disorders by sequencing entire families 
(Ng et al. 2010), and we have seen a glimpse of 
the future of genome sequencing for routine 
health care in the analysis of a single genome 
of a healthy man (Ashley et al. 2010). As will 
be described in detail in the Translational 
Bioinformatics chapter (7  Chap. 26), these 
sequencing approaches have been put to prac-
tice clinically. One emergent area of research 
is metagenomics, the study of microorganism 
ecosystems using DNA sequencing, including 
the association of human gut flora popula-
tions to disease phenotypes in humans (Qin 
et al. 2010).

9.3.4	 �Expression Data in Biology

The development of DNA microarrays led to 
a wealth of data and unprecedented insight 
into the fundamental biological machine. The 
traditional premise is relatively simple; tens 
of thousands of gene sequences derived from 
genomic data are fixed onto a glass slide or 

12	 7   http://en.wikipedia.org/wiki/DNA_sequencing 
(accessed November 1, 2018).

filter. The sequences for each spot are derived 
from a single gene sequence and the sequences 
are attached at only one end, creating a forest 
of sequences in each spot that are all identi-
cal. An experiment is performed where two 
samples (e.g. groups of cells that are grown 
in different conditions or for comparisons of 
normal and cancer tissue), one group is a con-
trol group and the other is the experimental 
group. The control group is grown normally, 
while the experimental group is grown under 
experimental conditions. For example, a 
researcher may be trying to understand how 
a cell compensates for a lack of sugar. The 
experimental cells will be grown with limited 
amounts of sugar. As the sugar depletes, some 
of the cells are removed at specific intervals 
of time. When the cells are removed, all of 
the mRNA from the cells is separated from 
the cells and converted back to DNA, using 
reverse transcriptase (a special enzyme that 
can create a DNA copy from an RNA tem-
plate). This leaves a pool of cDNA molecules 
(DNA derived from mRNA is called comple-
mentary DNA or cDNA) that represent the 
genes that were expressed (turned on) in that 
group of cells. In the development of genom-
ics experimentation, these cDNA molecules 
would be tagged with florescence and hybrid-
ized to slides containing single stranded DNA 
“probes” that are arrayed in a grid. These 
microarray “chips” can then be analyzed for 
color differences between grid points that cor-
respond to specific gene regions. Today, with 
the advent of high throughput sequencing 
the RNA/cDNA can be sequenced directly 
to measure expression levels and using DNA 
barcoding technology and microfluidics, indi-
vidual cells can be sequenced alone instead of 
in pooled samples where all cells’ contribu-
tions to mRNA is in the same analysis. High 
throughput single cell sequencing is an excit-
ing advancement which adds orders of com-
plexity to the required computational analysis 
(Shapiro et al. 2013).

Computers become critical for analyz-
ing these data because it is impossible for a 
researcher to measure and analyze all of the 
datasets by hand. Currently scientists are 
using gene expression experiments to study 
how cells from different organisms compen-
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sate for environmental changes, how patho-
gens fight antibiotics, and how cells grow 
uncontrollably (as is found in cancer). A chal-
lenge for biological computing is to develop 
methods to analyze these data, tools to store 
these data, and computer systems to collect 
the data automatically.

9.3.5	 �Metabolomics Data in Biology

Genomics and proteomics study the func-
tion of the genome and the proteome, while 
metabolomics studies the diversity and func-
tion of small molecules in a biosample. These 
include metabolites such as lipids, carbohy-
drates, metal ions, hormones, signaling mol-
ecules, etc. Interest in the metabolome has 
increased significantly with the development 
of  separation and mass spectrometry technol-
ogies that can identify small molecule molec-
ular mass and identities in a high throughput 
fashion. Bioinformatics is a key component 
of  both the identification of specific mole-
cules by matching mass spectrometry “finger-
prints” with a database of  known molecules 
as well as in the analysis the resulting data. 
For example, researchers have characterized 
the metabolome of human colorectal can-
cers and stool and identified disease enriched 
metabolites as a possible detectable markers 
of  disease or treatment outcomes (Brown 
et al. 2016).

9.3.6	 �Epigenetics Data in Biology

Epigenetics consists of  heritable changes 
that are not encoded in the primary DNA 
sequence. Several types of  epigenetic effects 
can now be studied in the laboratory, and 
they have been associated to disease and risks 
of  disease (Goldberg et al. 2007). First, the 
regional structure of  chromosomes affects 
which regions of  the genome can be tran-
scribed, i.e. which regions can be expressed. 
Large proteins, called histones, coordinate 
the structure of  chromosomes and their 
structure and positions are regulated with 
protein posttranslational modifications 
to the histones bound to the DNA.  These 

changes have been associated with sponta-
neous mutations in cancer, complex genetic 
diseases, and Mendelian inherited genetic 
diseases. Second, cytosine bases in the DNA 
can be methylated and this can affect gene 
expression. DNA methylation patterns can 
be passed on when DNA is replicated. Like 
chromosome structure, these modifications 
have been associated with human disease 
(Bird 2002).

9.3.7	 �Systems Biology

Recent advances in high throughput technol-
ogies have enabled a new, dynamic approach 
to studying biology, that of systems biology. 
In contrast to the historically reductionist 
approach to biology, studying one molecule at 
a time, systems biology looks at the entirety 
of a system including dynamic relationships 
between the different components. With that 
said, systems biology is still maturing. As an 
analogy, consider an airplane. Having a “parts 
list” for a Boeing 747 does not enable us to 
understand how those parts work together 
to make the airplane operate. If  the airplane 
breaks, the parts list alone does not tell us 
how to remedy the situation. Rather, we need 
to understand how the parts interact, how 
one affects another, and how perturbations to 
one part of the system affect the rest of the 
system. Similarly, systems biology involves 
understanding not only the “parts list”, i.e. 
the list of all genes, proteins, metabolites, etc., 
but also the dynamic networks of interactions 
among these parts. An integrated simulation 
of an entire bacterial cell has shown the feasi-
bility of accurate computational simulations 
of cell physiology (Karr et al. 2012).

Current research in -omics technologies 
have both enabled and catalyzed the advance-
ment of systems biology. However, a systems 
biology approach goes beyond simply per-
forming these high bandwidth methods for the 
purpose of biological discovery. Rather, sys-
tems biology implies a systematic, hypothesis-
driven approach based on omic-scale (very 
large) hypotheses. Once the interactions in 
a biological network are understood, one 
can model that network to make predictions 
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regarding the system’s behavior, particularly in 
light of specific perturbations. Understanding 
how the system has evolved to work can also 
help us understand what goes wrong when the 
system breaks down, and how to intervene in 
order to restore the system to normal.

9.4	 �Key Bioinformatics Algorithms

There are a number of common computa-
tions that are performed in many contexts 
within bioinformatics. In general, these com-
putations can be classified as sequence align-
ment, structure alignment, pattern analysis of 
sequence/structure, gene expression analysis, 
and pattern analysis of biochemical function.

9.4.1	 �Early Work in Sequence 
and Structure Analysis

As it became clear that the information from 
DNA and protein sequences would be volumi-
nous and difficult to analyze manually, algo-
rithms began to appear for automating the 
analysis of sequence information. The first 
requirement was to have a reliable way to align 
sequences so that their detailed similarities and 
distances could be examined directly. Needleman 
and Wunsch (1970) published an elegant method 
for using dynamic programming techniques to 
align sequences in time related to the cube of the 
number of elements in the sequences. Smith and 
Waterman (1981) published refinements of these 
algorithms that allowed for searching both the 
best global alignment of two sequences (aligning 
all the elements of the two sequences) and the 
best local alignment (searching for areas in which 
there are segments of high similarity surrounded 
by regions of low similarity). A key input for 
these algorithms is a matrix that encodes the 
similarity or substitutability of sequence ele-
ments: When there is an inexact match between 
two elements in an alignment of sequences, it 
specifies how much “partial credit” we should 
give to the overall alignment based on the simi-
larity of the elements, even though they may 
not be identical. Looking at a set of evolution-
arily related proteins, Dayhoff (1974) published 

one of the first matrices derived from a detailed 
analysis of which amino acids (elements) tend to 
substitute for others.

Within structural biology, the vast com-
putational requirements of the experimental 
methods (such as X-ray crystallography and 
nuclear magnetic resonance) for determining 
the structure of biological molecules drove 
the development of powerful structural anal-
ysis tools. In addition to software for ana-
lyzing experimental data, graphical display 
algorithms allowed biologists to visualize 
these molecules in great detail and facilitated 
the manual analysis of structural principles 
(Langridge 1974; Richardson 1981). At the 
same time, methods were developed for simu-
lating the forces within these molecules as they 
rotate and vibrate (Gibson and Scheraga 1967; 
Karplus and Weaver 1976; Levitt 1983).

The most important development to support 
the emergence of bioinformatics, however, has 
been the creation of databases with biological 
information. In the 1970s, structural biologists, 
using the techniques of X-ray crystallography, 
set up the Protein Data Bank (PDB) specifying 
the Cartesian coordinates of the structures that 
they elucidated (as well as associated experimen-
tal details) and made PDB publicly available. 
The first release, in 1977, contained 77 structures. 
The growth of the database is chronicled on the 
Web: the PDB now has over 75,000 detailed 
atomic structures and is the primary source of 
information about the relationship between pro-
tein sequence and protein structure.13 Similarly, 
as the ability to obtain the sequence of DNA 
molecules became widespread, the need for a 
database of these sequences arose. In the mid-
1980s, the GENBANK database was formed as 
a repository of sequence information. Starting 
with 606 sequences and 680,000 bases in 1982, 
the GENBANK has grown by much more than 
135 million sequences and 125 billion bases.14 
The GENBANK database of DNA sequence 
information supports the experimental recon-
struction of genomes and acts as a focal point 

13	 See 7  http://www.rcsb.org/ (accessed December 1, 
2018).

14	 7  http://www.ncbi.nlm.nih.gov/genbank/ (accessed 
December 1, 2018).
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for experimental groups. Numerous other data-
bases store the sequences of protein molecules15 
and information about human genetic diseases.16

Included among the databases that have 
accelerated the development of bioinformatics 
is the Medline database of the biomedical lit-
erature and its paper-based companion Index 
Medicus (see 7  Chap. 23).17 Including articles 
as far back as 1809 and brought online free on 
the Web in 1997, Medline provides the glue that 
relates many high-level biomedical concepts 
to the low-level molecule, disease, and experi-
mental methods. In fact, this “glue” role was 
the basis for creating the NCBI suite of data-
bases and software and PubMed systems (see 
7  Sect. 9.5) for integrating access to literature 
references and the associated databases.

9.4.2	 �Sequence Alignment 
and Genome Analysis

Perhaps the most basic activity in computa-
tional biology is comparing two biological 
sequences to determine (1) whether they are 
similar and (2) how to align them. The prob-
lem of alignment is not trivial but is based on a 
simple idea. Sequences that perform a similar 
function should, in general, be descendants of 
a common ancestral sequence, with mutations 
over time. These mutations can be replace-
ments of one amino acid with another, dele-
tions of amino acids, or insertions of amino 
acids. The goal of sequence alignment is to 
align two sequences so that the evolutionary 
relationship between the sequences becomes 
clear. If  two sequences are descended from 
the same ancestor and have not mutated too 
much, then it is often possible to find corre-
sponding locations in each sequence that play 
the same role in the evolved proteins. The 
problem of solving correct biological align-
ments is difficult because it requires knowl-

15	 7  http://www.uniprot.org/ (accessed December 1, 
2018).

16	 7  http://www.ncbi.nlm.nih.gov/omim (accessed 
December 1, 2018).

17	 7  http://www.ncbi.nlm.nih.gov/pubmed (accessed 
December 1, 2018).

edge about the evolution of the molecules that 
we typically do not have. There are now, how-
ever, well-established algorithms for finding 
the mathematically optimal alignment of two 
sequences. These algorithms require the two 
sequences and a scoring system based on (1) 
exact matches between amino acids that have 
not mutated in the two sequences and can be 
aligned perfectly; (2) partial matches between 
amino acids that have mutated in ways that 
have preserved their overall biophysical prop-
erties; and (3) gaps in the alignment signifying 
places where one sequence or the other has 
undergone a deletion or insertion of amino 
acids. The algorithms for determining opti-
mal sequence alignments are based on a tech-
nique in computer science known as dynamic 
programming and are at the heart of  many 
computational biology applications (Gusfield 
1997). .  Figure  9.1 shows an example of a 
Smith-Waterman matrix, the first described 
local alignment algorithm that utilizes a 
dynamic programming approach. The algo-
rithm works by calculating a similarity matrix 
between two sequences, then finding optimal 
paths through the matrix that maximize a 
similarity score between the two sequences.

Unfortunately, the dynamic programming 
algorithms are too computationally expensive 
to apply to large numbers of sequences, so a 
number of faster, more heuristic methods have 
been developed. The most popular algorithm 
is the Basic Local Alignment Search Tool 
(BLAST) (Altschul et  al. 1990). BLAST is 
based on the observation that sections of pro-
teins are often conserved without gaps (so the 
gaps can be ignored—a critical simplification 
for speed) and that there are statistical analy-
ses of the occurrence of small subsequences 
within larger sequences that can be used to 
prune the search for matching sequences 
in a large database. These tools work well 
for both protein and nucleic acid sequences. 
Other tools have been developed that are bet-
ter suited for nucleic acid sequence assembly 
and mapping of short read high throughput 
sequencing data including BLAT (Kent 2003), 
SOAP (Li et al. 2008), and others.

Protein 3D structures can be aligned, visu-
alized and compared in a similar way to lin-
ear protein sequences (.  Fig. 9.2). Tools such 
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a) Pairwise alignment between human chymotrypsin and human trypsin.
CTRB_HUMAN MAFLWLLSCWALLGTTFGCGVPAIHPVLSGLSRIVNGEDAVPGSWPWQVSLQDKTGFHFC 

CTRB_HUMAN GGSLISEDWVVTAAHCGVRTSDDVVVAGEFDQGSDEENIQVLKIAKVFKNPKFSILTVNND 

CTRB_HUMAN ITLLKLATPARFSQTVSAVCLPSADDDFPAGTLCATTGWGKTKYNANKTPDKLQQAALPL 

CTRB_HUMAN LSNAECKKSWGRRITDVMICAG - -  ASGVSSCMGDSGGPLVCQKDGAWTLVGIVSWGSDTC

CTRB_HUMAN STSSPGVYARVTKLIPWVQKILLAN -

TRY1_HUMAN MNPLLILTFVA- - - - - - - - - - -  - AALAAPFDDDDKIVGGYNCEENSVPYQVSLN- - SGFHFC 

TRY1_HUMAN GGSLINEQWVVSAGHC- YKSRIQVRLGEHNIEVLEGNEQFINAAKIIRHPQYDRKTLNND

TRY1_HUMAN IMLIKLSSRAVINARVSTISLPTAPP - - ATGTKCLISGWGNTASSGADYPDYPDELQCLDAPV

TRY1_HUMAN LSQAKCEASYPGKITSNMFCVGFLEGGKDSCQGDSGGPVVCNG - - - - QLQGVVSWGDGCA

TRY1_HUMAN QKNKPGVYTKVYNYVKWIKNTIAANS

b )  S m i t h  Wa t e r m a n  m a t r i x  i l l u s t r a t i n g  t h e  a l i g n e d  r e g i o n  i n  A ,  u s i n g  t h e  B L O S U M 6 2
m u t a t i o n  m a t r i x  ( H e n i k �  a n d  H e n i k o �,  1 9 9 4 ) .
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F L E G G K D S C Q G D S G G P V V C N G Q L Q

6 6 6 -2 -1 0 -3 -2 6 1 0 6 6 -2 -3 -3 -3 0 6 -2 -4 -2-3 -4 -2

0 0 0 -1 -2 1 0 -1 0 -2 1 0 0 -1 0 0 0 -2 0 -1 -1 -1-2 -1 -1

0 0 0 0 0 4 -1 0 0 0 4 0 0 -1 -2 -2 -1 1 0 0 -2 0-2 -2 0

6 6 6 -2 -1 0 -3 -2 6 1 0 6 6 -2 -3 -3 -3 0 6 -2 -4 -2-3 -4 -2

-3 -3 -3 -2 -3 -2 -1 -2 -3 -3 -2 -3 -3 -2 4 4 -1 -3 -3 -2 1 -2-1 1 -2

0 0 0 0 0 4 -1 0 0 0 4 0 0 -1 -2 -2 -1 1 0 0 -2 0-2 -2 0

0 0 0 0 0 4 -1 0 0 0 4 0 0 -1 -2 -2 -1 1 0 0 -2 0-2 -2 0

-3 -3 -3 -3 -3 -1 9 -3 -3 -3 -1 -3 -3 -3 -1 -1 9 -3 -3 -3 -1 -3-2 -1 -4

-3 -3 -3 -1 -3 -1 -1 0 -3 -3 -1 -3 -3 -2 1 1 -1 -2 -3 0 2 00 2 -2

6 6 6 -2 -1 0 -3 -2 6 1 0 6 6 -2 -3 -3 -3 0 6 -2 -4 -2-3 -4 -2

-1 -1 -1 -1 -6 0 -3 0 -1 6 0 -1 -1 -1 -3 -3 -3 1 -1 0 -4 0-3 -4 2

0 0 0 0 0 4 -1 0 0 0 4 0 0 -1 -2 -2 -1 1 0 0 -2 0-2 -2 0

6 6 6 -2 -1 0 -3 -2 6 1 0 6 6 -2 -3 -3 -3 0 6 -2 -4 -2-3 -4 -2

6 6 6 -2 -1 0 -3 -2 6 1 0 6 6 -2 -3 -3 -3 0 6 -2 -4 -2-3 -4 -2

-2 -2 -2 -1 -1 -1 -3 -1 -2 -1 -1 -2 -2 7 -2 -2 -3 -2 -2 -1 -3 -1-4 -3 -1

-4 -4 -4 -2 -4 -2 -1 -2 -4 -4 -2 -4 -4 -3 1 1 -1 -3 -4 -2 4 -20 4 -3

-3 -3 -3 -2 -3 -2 -1 -2 -3 -3 -2 -3 -3 -2 4 -4 -1 -3 -3 -2 1 -2-1 1 -2

-3 -3 -3 -3 -3 -1 9 -3 -3 -3 -1 -3 -3 -3 -1 -1 9 -3 -3 -3 -1 -3-2 -1 -4

-2 -2 -2 1 0 0 -3 5 -2 0 0 -2 -2 -1 -2 -2 -3 0 -2 5 -2 5-3 -2 -2

-2 -2 -2 5 -1 0 -3 1 -2 -1 0 -2 -2 -1 -2 -2 -3 0 -2 -1 -1 1-3 -2 1

-1 -1 -1 -1 6 0 -3 0 -1 6 0 -1 -1 -1 -3 -3 -3 1 -1 1 -4 1-3 -4 2

6 6 6 -2 -1 0 -3 -2 6 1 0 6 6 -2 -3 -3 -3 0 6 -2 -4 -2-3 -4 -2

0 0 0 -1 -2 1 0 -1 0 -2 1 0 0 -1 0 0 0 -2 0 -1 -1 -1-2 -1 -1

-2 -2 -2 -3 -4 -3 -2 -2 -2 -4 -3 -2 -2 -4 -3 -3 -2 -4 -2 -2 -2 -21 -2 -3

-2 -2 -2 -1 -1 1 -1 -1 -2 -1 1 -2 -2 -1 0 0 -1 0 -2 -1 -1 -1-2 -1 -1

-4 -4 -4 -2 -4 -2 -1 -2 -4 -4 -2 -4 -4 -3 1 1 -1 -3 -4 -2 -4 -20 4 -3

-3 -3 -3 -2 -3 -2 -1 -2 -3 -3 -2 -3 -3 -2 4 4 -1 -3 -3 -2 1 -2-1 1 -2

.      . Fig. 9.1  Example of  sequence alignment using the Smith Waterman algorithm
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9 as PyMol18 and UCSF Chimera19 provide 
sophisticated and extensible applications for 
relatively easy visualization of 3D structures. 
Tools for 3D alignment of the structures are 
provided with these applications.

9.4.3	 �Prediction of Structure 
and Function from Sequence

One of the primary challenges in bio
informatics is taking a newly determined DNA 
sequence (as well as its translation into a pro-
tein sequence) and predicting the structure of 
the associated molecules, as well as their func-
tion. Both problems are difficult, being fraught 
with all the dangers associated with making 
predictions without hard experimental data. 
Nonetheless, the available sequence data are 
starting to be sufficient to allow good predic-
tions in a few cases. For example, there is a 
Web site devoted to the assessment of biologi-
cal macromolecular structure prediction meth-
ods.20 Results suggest that when two protein 
molecules have a high degree (more than 40%) 

18	 7  https://pymol.org/ (accessed December 1, 2018).
19	 7  http://www.cgl.ucsf.edu/chimera/ (accessed 

December 1, 2018).
20	 7  http://predictioncenter.org/ (accessed December 

1, 2018).

of sequence identity and one of the structures 
is known, a reliable model of the other can be 
built by analogy. In the case that sequence sim-
ilarity is less than 25%, however, performance 
of these methods is much less reliable.

With the advent of deep learning, there 
has been an acceleration of progress in many 
machine learning tasks, including structure 
prediction. Recently, the use of convolutional 
neural networks by DeepMind Inc. called 
AlphaFold (Senior, et al. 2020) has lead to a 
quantum leap in the quality of predicted struc-
tures—so much so that some experts in protein 
structure prediction have said that parts of this 
challenge can now be considered “solved21.” 
They make this claim because on multiple pre-
diction tasks, the accuracy of the predicted 
structure is similar to those determined exper-
imentally. Of course, it is likely that there are 
classes of proteins that may not perform as well, 
but for a large fraction of protein sequences, the 
structure seems to be predictable by these meth-
ods. An important caveat is that these methods 
must be carefully reviewed by the community, 
reproduced and made generally available before 
they will have their full impact

When scientists investigate biological 
structure, they commonly perform a task 
analogous to sequence alignment, called 
structural alignment. Given two sets of three-
dimensional coordinates for a set of atoms, 
what is the best way to superimpose them so 
that the similarities and differences between 
the two structures are clear? Such computa-
tions are useful for determining whether two 
structures share a common ancestry and for 
understanding how the structures’ functions 
have subsequently been refined during evo-
lution. There are numerous published algo-
rithms for finding good structural alignments. 
We can apply these algorithms in an auto-
mated fashion whenever a new structure is 
determined, thereby classifying the new struc-
ture into one of the protein families.

There are also algorithms for using the 
structure of a large biomolecule and the struc-
ture of a small organic molecule (such as a 

21	 7   https://www.nature.com/articles/d41586-020-
03348-4.

.      . Fig. 9.2  Example of  structural visualization and 
comparison. Comparison of  the serine protease protein 
structures and catalytic amino acids using Chimera 
(7  http://www.cgl.ucsf.edu/chimera; accessed Decem-
ber 15, 2018)
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drug or cofactor) to try to predict the ways in 
which the molecules will interact. An under-
standing of the structural interaction between 
a drug and its target molecule often provides 
critical insight into the drug’s mechanism of 
action. The most reliable way to assess this 
interaction is to use experimental methods to 
solve the structure of a drug–target complex. 
Once again, these experimental approaches 
are expensive, so computational methods play 
an important role. Typically, we can assess the 
physical and chemical features of the drug 
molecule and can use them to find comple-
mentary regions of the target. For example, 
a highly electronegative drug molecule will be 
most likely to bind in a pocket of the target 
that has electropositive features.

Prediction of function often relies on use 
of sequential or structural similarity met-
rics and subsequent assignment of function 
based on similarities to molecules of known 
function. These methods can guess at general 
function for roughly 60–80% of all genes, but 
leave considerable uncertainty about the pre-
cise functional details even for those genes for 
which there are predictions, and have little to 
say about the remaining genes.

9.4.4	 �Clustering of Gene 
Expression Data

Analysis of gene expression data often begins 
by clustering the expression data. A typical 
experiment is represented as a large table, 
where the rows are the genes on each chip and 
the columns represent the different experi-
ments, whether they be time points or differ-
ent experimental conditions. Each row is then 
a vector of values that represent the results of 
the experiment with respect to a specific gene. 
Clustering can then be performed to deter-
mine which genes are being expressed simi-
larly. Genes that are associated with similar 
expression profiles are often functionally asso-
ciated. For example, when a cell is subjected to 
starvation (fasting), ribosomal genes are often 
downregulated in anticipation of lower protein 
production by the cell. It has similarly been 
shown that genes associated with neoplas-
tic progression could be identified relatively 

easily with this method, making gene expres-
sion experiments a powerful assay in cancer 
research (see Yan and Gu 2009, for a review). 
In order to cluster expression data, a distance 
metric must be determined to compare a gene’s 
profile with another gene’s profile. If  the vector 
data are a list of values, Euclidian distance or 
correlation distances can be used. If  the data 
are more complicated, more sophisticated dis-
tance metrics may be employed. These meth-
ods fall into two categories: supervised and 
unsupervised. Supervised learning methods 
require some preconceived knowledge of the 
data at hand (discussed below). Usually, the 
method begins by selecting profiles that rep-
resent the different groups of data, e.g., genes 
that represent certain pathways, and then the 
clustering method associates each of the genes 
with the representative profile to which they 
are most similar. Unsupervised methods are 
more commonly applied because these meth-
ods require no knowledge of the data, and can 
be performed automatically.

Two such unsupervised learning methods 
are the hierarchical and K-means cluster-
ing methods. Hierarchical methods build a 
dendrogram, or a tree, of the genes based on 
their expression profiles. These methods are 
agglomerative and work by iteratively joining 
close neighbors into a cluster. The first step 
often involves connecting the closest profiles, 
building an average profile of the joined pro-
files, and repeating until the entire tree is built. 
K-means clustering builds k clusters or groups 
automatically. The algorithm begins by pick-
ing k representative profiles randomly. Then 
each gene is associated with the representative 
to which it is closest, as defined by the dis-
tance metric being employed. Then the center 
of mass of each cluster is determined using all 
of the member gene’s profiles. Depending on 
the implementation, either the center of mass 
or the nearest member to it becomes the new 
representative for that cluster. The algorithm 
then iterates until the new center of mass and 
the previous center of mass are within some 
threshold. The result is k groups of genes 
that are regulated similarly. One drawback of 
K-means is that one must chose the value for 
k. If  k is too large, logical “true” clusters may 
be split into pieces and if  k is too small, there 
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will be clusters that are merged. One way to 
determine whether the chosen k is correct is to 
estimate the average distance from any mem-
ber profile to the center of mass. By varying 
k, it is best to choose the lowest k where this 
average is minimized for each cluster. Another 
drawback of K-means is that different initial 
conditions can give different results, therefore 
it is often prudent to test the robustness of the 
results by running multiple runs with different 
starting configurations (.  Fig. 9.3).

The future clinical usefulness of these algo-
rithms cannot be overstated. In 2002, van’t Veer 
et  al. (2002) found that a gene expression pro-
file could predict the clinical outcome of breast 
cancer. The global analysis of gene expression 
showed that some cancers were associated with 
different prognosis, not detectable using tradi-
tional means. Another exciting advancement 
in this field is the potential use of microarray 
expression data to profile the molecular effects 
of known and potential therapeutic agents. This 
molecular understanding of a disease and its 
treatment will soon help clinicians make more 
informed and accurate treatment choices (for 
more, see 7  Chap. 26).

9.4.4.1	 �Classification and Prediction
A high level description of some common 
approaches to classification or supervised 
learning are described below, but note that 
entire courses could be, and are, taught on 
each of these methods. For further details we 
refer readers to the suggested texts at the end 
of this chapter.

One of the simplest methods for clas-
sification is that of k-nearest-neighbor, or 
KNN.  Essentially, KNN uses the classifica-
tion of the k closest instances to a given input 
as a set of votes regarding how that instance 
should be classified. Unfortunately, KNN 
tends not to be useful for omics-based classifi-
cation because it tends to break down in high-
dimensional space. For high-dimensional 
data, KNN has difficulty in finding enough 
neighbors to make prediction, which will 
lead to large variation in the classification. 
This breakdown is one aspect of the “curse 
of dimensionality,” described in more detail 
below (Hastie et al. 2009).

A more general statistical approach to 
supervised learning, and one which encom-
passes a number of popular methods, is that 
of function approximation. In this approach, 
one attempts to find a useful approximation of 
the function f(x) that underlies the actual rela-
tion between the inputs and outputs. In this 
case, one chooses a metric by which to judge 
the accuracy of the approximation, for exam-
ple the residual sum of squares, and uses this 
metric to optimize the model to fit the training 
data. Bayesian modeling, logistic regression, 
and Support Vector Machines all use varia-
tions on this approach.

Finally, there is the class of rule-based clas-
sifiers. This type of classifier may be thought 
of as a series of rules, each of which splits the 
set of instances based on a given characteris-
tic. Details such as what criteria are used to 
choose the feature on which to base a rule, 
and whether the algorithm uses enhancements 
such ensemble learning (i.e., multiple models 
together) determine the specifics of the clas-
sifier type, for example decision trees, random 
forests, or covering rules.

Which approach to use depends both on 
the nature of the data and the question being 

.      . Fig. 9.3  The exponential growth of  GEN-
BANK. This plot shows that since 1982 the number of 
bases in GENBANK has grown by five full orders of 
magnitude and continues to grow by a factor of  10 every 
4 years
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asked. The question might prioritize sensitivity 
over specificity or vice versa. For example, for a 
test to detect a life-threatening infection that is 
easily treatable by readily available antibiotics, 
one might want to err on the side of sensitivity. 
In addition, data may be numeric or categori-
cal or have differing degrees of noise, missing 
values, correlated features or non-linear inter-
actions among features. These different quali-
ties are better handled by different methods. In 
many cases the best approach is actually to try 
a number of different methods and to compare 
the results. Such comparative analysis is facili-
tated through freely available software pack-
ages such as R/Bioconductor22 and Weka.23

9.4.5	 �The Curse of Dimensionality

In the post-genomic era, there is no shortage 
of data to analyze. Rather, many researchers 
have more data than they know what to do 
with. However this overabundance tends to 
be a factor of the dimensionality of the data, 
rather than the number of subjects. This mis-
match can lead to challenges for experimental 
design and statistical analysis. Type 1 error, 
or the tendency to incorrectly reject the null 
hypothesis and say that indeed there is statisti-
cal significance to a pattern (see 7  Chap. 13), 
is amplified by looking at high-dimensional 
data. This is one aspect of what is known as 
the “curse of dimensionality” (Hastie et  al. 
2009). Consider analysis of gene expression 
data for 20,000 genes, trying to detect a pattern 
that can predict outcome. In a sample of, say, 
30 subjects—a reasonable number when test-
ing a single hypothesis—by random chance, 
some number of genes will correlate with 
outcome. Essentially one is testing not one 
but 20,000 hypotheses simultaneously. One 
must therefore correct for multiple hypoth-
esis testing. The Bonferroni method is a com-
mon and straightforward approach to correct 

22	 7  http://bioconductor.org/ (accessed December 1, 
2018).

23	 7  http://www.cs.waikato.ac.nz/ml/weka/ (accessed 
December 1, 2018).

for multiple hypothesis testing.24 It entails 
dividing the threshold p-value one would use, 
traditionally 0.05, by the number of hypoth-
eses. So, for a test of 20,000 genes, one would 
require a p-value of 2.5 × 10−6 to call a gene 
significant. Typically, analyses using high 
dimensional data such as gene expression are 
not sufficiently powered to pass this stringent 
test. One would need thousands of samples to 
be sufficiently powered. Another approach is 
to use q-value, or false discovery rate (Storey 
and Tibshirani 2003), rather than p-value. 
This approach relies on empirical permuta-
tion to determine the expected number of 
false positives if  indeed the null hypothesis 
is correct, which enables approximation of 
the proportion of false positives among all 
reported positives. Consider again the micro-
array experiment above in which each array 
includes 20,000 genes. We want to know 
whether gene X was differentially expressed 
in cases versus controls. Choosing a threshold 
p-value, or false positive rate, of 0.05 means 
that 1 time in 20 we will erroneously reject 
the null hypothesis and predict a false posi-
tive. If  a statistical test returns 2000 positives, 
i.e. 2000 genes appear to be significantly dif-
ferentially expressed, we expect 1 in 20 of the 
genes being analyzed (20,000 × (1/20) = 1000) 
or approximately half  of them to be false 
positives. A false discovery rate of 0.05, on 
the other hand, would mean that 5% of those 
called positive, in this case 100 out of 2000, 
are false positives. Q-value is thus less strin-
gent than p-value, but may be of greater util-
ity in a high-dimensional omics context than 
a traditional p-value or correction for multiple 
hypotheses.

Another approach to analysis of high 
dimensional data sets is to use dimensionality 
reduction methods such as feature selection 
or feature extraction. Feature selection entails 
extracting only a subset of the features at 
hand, in this case genes. This may be done in 
a number of ways, based on which genes vary 
the most, or on which genes seem to best pre-
dict the categorization at hand. In contrast, 

24	 7   http://en.wikipedia.org/wiki/Bonferroni_correc-
tion (accessed December 1, 2018).
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feature extraction creates a new smaller set of 
features that captures the essence of the origi-
nal variation. As an example, imagine a plane 
flight from Seattle, WA to Key West, FL. One 
could use a 3-dimensional vector consist-
ing of latitude and longitude to describe the 
plane’s position at any given point along the 
way. In this case, one value would describe 
how far the plane had gone in the north/south 
direction, and one would indicate how far 
the plane had gone in the east/west direction. 
However, if  we change the axis along which 
we are measuring to instead be the direct route 
along which the plane is flying, then we only 
need 1 dimension to describe where the plane 
is located. The distance flown tells us where 
the plane is located at any given time. This 
approach of changing the axes is the basis for 
principle components analysis (PCA), a com-
mon method for feature extraction. Instead of 
going from two dimensions to one, PCA on 
gene expression data typically goes from tens 
of thousands of features to just a few. Both 
for feature selection and feature extraction, 
it is important to replicate the findings in an 
independently generated data set in order to 
be sure the model is not over fitting the data 
on which it was trained.

9.5	 �Current Application Successes 
from Bioinformatics

Biologists have embraced the Internet in a 
remarkable way and have made access to data 
a normal and expected mode for doing busi-
ness. Hundreds of databases curated by indi-
vidual biologists create a valuable resource 
for the developers of computational methods 
who can use these data to test and refine their 
analysis algorithms. With standard Internet 
search engines, most biological databases can 
be found and accessed within moments. The 
large number of databases has led to the devel-
opment of meta-databases that combine infor-
mation from individual databases to shield the 
user from the complex array that exists. There 
are various approaches to this task.

The National Center for Biotechnology 
Information (NCBI) suite of databases and 
software (previously known as the ‘Entrez’ 

gives integrated access to the biomedical litera-
ture, protein, and nucleic acid sequences, mac-
romolecular and small molecular structures, 
and genome project links (including both 
the Human Genome Project and sequenc-
ing projects that are attempting to determine 
the genome sequences for organisms that are 
either human pathogens or important experi-
mental model organisms) in a manner that 
takes advantages of either explicit or com-
puted links between these data resources.25 
Newer technologies are being developed that 
will allow multiple heterogeneous databases 
to be accessed by search engines that can com-
bine information automatically, thereby pro-
cessing even more intricate queries requiring 
knowledge from numerous data sources. One 
example is the Bioconductor project, a tool-
box for bioinformatics in the R programming 
language.26

9.5.1	 �Data Sharing

In 1996, the First International Strategy 
Meeting on Human Genome Sequencing was 
held in Bermuda. In this meeting, a set of prin-
ciples was agreed upon regarding sharing of 
human genome sequencing data. These prin-
ciples came to be known as the Bermuda prin-
ciples. They stipulated that (1) all sequence 
assemblies larger than 1 kb should be released 
as soon as possible, ideally within 24  h; (2) 
finished annotated sequences should be pub-
lished immediately to public databases; and 
(3) that all human sequence data generated in 
large-scale sequencing centers should be made 
available in the public domain.27

Increasingly, journals and funders require 
that researchers deposit all types of research 
data in publicly available repositories (Fischer 
and Zigmond 2010). In 2009, President 
Obama announced an Open Government 

25	 7  https://www.ncbi.nlm.nih.gov/search/ (accessed 
December 7th, 2020).

26	 7  http://bioconductor.org/ (accessed December 1, 
2018).

27	 7   http://www.ornl.gov/sci/techresources/Human_
Genome/research/bermuda.shtml (accessed Decem-
ber 1, 2018).
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Directive that included plans to make fed-
erally funded research data available to the 
public.28 This announcement describes the 
NIH’s policy regarding published manuscripts 
in particular, but also notes that the results of 
vgovernment-funded research can take many 
forms, including data sets. Currently the NIH 
requires that proposals for funding of over 
$500,000 include a data sharing plan.29

To that end, a significant advancement in 
bioinformatics is in making research datasets 
more available and reusable. From the com-
munity of researchers who are enabling this 
effort the concept of FAIR data has emerged. 
FAIR datasets are Findable, Accessible, 
Interoperable and Reusable. FAIR data 
principles lay out a framework to encourage 
increased sharing and use of scientific data-
sets. Findable data includes the use of global 
persistent identifiers and metadata standards. 
Accessible data is available on the Internet 
and searchable through metadata usage. 
Interoperable data use a “formal, accessible, 
shared and broadly applicable language for 
knowledge representation”. Finally, reusable 
data have clear attribution and license that 
enables reuse. The webportal FAIRsharing 
provides curated resources on datasets, stan-
dards and collections that are more FAIR.30 
Resources such as BioCaddie DataMed 
enable discovery of datasets through a Data 
Discovery Index.31

9.5.2	 �Data Standards, Metadata 
and Biomedical Ontologies

7  Chapter 7 on standards in biomedical 
informatics addresses standardized terminol-
ogies as well as standards for data exchange, 
and terminologies for translational research 
are discussed in 7  Chap. 27. The develop-

28	 7   http://edocket.access.gpo.gov/2009/E9-29322.
htm (accessed December 1, 2018).

29	 7   http://grants.nih.gov/grants/guide/notice-files/
NOT-OD-03-032.html (accessed December 1, 
2018).

30	 7  https://fairsharing.org/ (accessed December 1, 
2018).

31	 7  https://datamed.org/ (accessed April 20, 2019).

ment of such schemes necessitates the cre-
ation of terminology standards, just as in 
clinical informatics. There are now many con-
trolled vocabularies (or ontologies) and meta-
data standards for annotation of genomic 
or proteomic data. Metadata standards help 
define information which should be collected 
and annotated upon various types of datas-
ets. Furthermore, a great many tools have 
been developed to help researchers access and 
analyze this data. For example, the previously 
mentioned Bioconductor project provides 
bioinformatic tools in the R language for 
solving common problems. Other commonly 
used tools include BioPerl, BioPython and 
MATLAB.32

Biomedical ontologies have become a key 
component in the development of metadata 
standards for the management and exchange 
of bioinformatic datasets and in making data 
more FAIR (see 7  Sect. 9.5.1). The open bio-
medical ontologies consortium (OBO) has 
developed a number of reference ontologies 
that are in wide use in bioinformatics including 
Gene Ontology, Human Phenotype Ontology 
and the UBERON anatomy ontology (Smith 
et  al. 2007). For example, Gene Ontology 
(GO) is an ontology used for annotation of 
gene function, and arguably the most widely 
used ontology in basic research. Ontologies 
enable indexing, exchange and computing 
with biomedical datasets and metadata.

Metadata standards for bioinformat-
ics datasets are an intellectual challenge for 
researchers to enable the sharing and interop-
erability of data and to make data more 
FAIR. There are a number of tools and web 
portals such as the Center for Expanded Data 
Annotation and Retrieval (CEDAR) provide 
tools for creation and sharing of metadata 
about datasets.33 Metadata can include infor-
mation about an experiment such as the pro-
tocol, the time the experiment was performed, 
who performed the experiment and technology 
used to generate or analyze the experiment, but 

32	 7  http://www.open-bio.org/ (accessed December 1, 
2018).

33	 7  https://metadatacenter.org/ (accessed December 
1, 2018).
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can also include information such as organism, 
disease model, tissue, conditions, etc.

9.5.2.1	 �Sequence and Genome 
Databases

The main types of sequence information 
that must be stored are DNA and protein. 
One of the largest DNA sequence databases 
is GENBANK, which is managed by the 
NCBI.23 GENBANK is growing rapidly as 
genome-sequencing projects feed their data 
(often in an automated procedure) directly 
into the database. .  Figure  9.3 shows the 
logarithmic growth of data in GENBANK 
since 1982. NCBI Gene curates some of the 
many genes within GENBANK and presents 
the data in a way that is easy for the researcher 
to use (.  Fig. 9.4).

In addition to GENBANK, there are 
numerous special-purpose DNA databases 
for which the curators have taken special care 
to clean, validate, and annotate the data. The 
work required of such curators indicates the 
degree to which raw sequence data must be 

interpreted cautiously. GENBANK can be 
searched efficiently with a number of algo-
rithms and is usually the first stop for a scien-
tist with a new sequence who wonders “Has a 
sequence like this ever been observed before? 
If  one has, what is known about it?” There are 
increasing numbers of stories about scientists 
using GENBANK to discover unanticipated 
relationships between DNA sequences, allow-
ing their research programs to leap ahead 
while taking advantage of information col-
lected on similar sequences.

A database that has become very useful 
recently is the University of California Santa 
Cruz Genome Browser34 (.  Fig.  9.5). This 
data set allows users to search for specific 
sequences in the UCSC version of the human 
genome. Powered by the similarity search tool 
BLAT, users can quickly find annotations on 
the human genome that contain their sequence 
of interest. These annotations include known 

34	 7  http://genome.ucsc.edu/ (accessed December 1, 
2018).

.      . Fig. 9.4  The NCBI Gene entry for the digestive 
enzyme chymotrypsin. Basic information about the 
original report is provided, as well as some annotations 

of  the key regions in the sequence and the complete 
sequence of  DNA bases (a, g, t, and c) is provided as a 
link. (Courtesy of  NCBI)
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variations (mutations and SNPs), genes, com-
parative maps with other organisms, and 
many other important data.

9.5.3	 �Structure Databases

Although sequence information is obtained 
relatively easily, structural information 
remains expensive on a per-entry basis. The 
experimental protocols used to determine 
precise molecular structural coordinates 
are expensive in time, materials, and human 
power. Therefore, we have only a small num-
ber of structures for all the molecules char-
acterized in the sequence databases. The two 
main sources of structural information are the 
Cambridge Structural Database35 for small 

35	 7   https://www.ccdc.cam.ac.uk/solutions/csd-sys-
tem/components/csd/ (accessed December 15, 
2018).

molecules (usually less than 100 atoms) and 
the PDB36 for macromolecules (see 7  Sect. 
9.3.2), including proteins and nucleic acids, 
and combinations of these macromolecules 
with small molecules (such as drugs, cofac-
tors, and vitamins). The PDB has approxi-
mately 75,000 high-resolution structures, but 
this number is misleading because many of 
them are small variants on the same struc-
tural architecture. There are approximately 
100,000 proteins in humans; therefore, many 
structures remain unsolved (e.g., Burley and 
Bonanno 2002). In the PDB, each structure is 
reported with its biological source, reference 
information, manual annotations of interest-
ing features, and the Cartesian coordinates of 
each atom within the molecule. Given knowl-
edge of the three-dimensional structure of 

36	 7  https://www.rcsb.org/ (accessed December 18, 
2018).

.      . Fig. 9.5  Screen from the UC Santa Cruz genome 
browser showing the chymotrypsin C gene. The rows in 
the browser show annotations on the gene sequence. 
The browser window here shows a small segment of 
human chromosome 15, as if  the sequence of  a, g, c and 

t are represented from left to right (5–3). The annota-
tions include gene predictions and annotations as well 
as an alignment of  the similarity of  this region of  the 
genome when compared with the mouse genome

Bioinformatics
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molecules, the function sometimes becomes 
clear. For example, the ways in which the med-
ication methotrexate interacts with its biologi-
cal target have been studied in detail for two 
decades. Methotrexate is used to treat cancer 
and rheumatologic diseases, and it is an inhib-
itor of the protein dihydrofolate reductase, an 
important molecule for cellular reproduction. 
The three-dimensional structure of dihydro-
folate reductase has been known for many 
years and has thus allowed detailed studies 
of the ways in which small molecules, such as 
methotrexate, interact at an atomic level. As 
the PDB increases in size, it becomes impor-
tant to have organizing principles for thinking 
about biological structure. SCOP237 provides 
a classification based on the overall structural 
features of proteins. It is a useful method for 
accessing the entries of the PDB.

9.5.4	 �Analysis of Biological 
Pathways and Understanding 
of Disease Processes

The ECOCYC project is an example of a com-
putational resource that has comprehensive 
information about biochemical pathways. 
ECOCYC is a knowledge base of the meta-
bolic capabilities of E. coli; it has a repre-
sentation of all the enzymes in the E. coli 
genome and of the chemical compounds 
those enzymes transform.38 It also links these 
enzymes to their genes, and genes are mapped 
to the genome sequence.

EcoCyc also encodes the genetic regula-
tory network of E. coli, describing all protein 
and RNA regulators of E. coli genes. The 
network of pathways within ECOCYC pro-
vides an excellent substrate on which useful 
applications can be built. For example, they 
provide: (1) the ability to guess the function 
of a new protein by assessing its similarity to 
E. coli genes with a similar sequence, (2) the 
ability to ask what the effect on an organism 
would be if  a critical component of a path-

37	 7  http://scop2.mrc-lmb.cam.ac.uk/ (accessed Dece
mber 15, 2018).

38	 7  http://ecocyc.org/ (accessed December 15, 2018).

way were removed (would other pathways be 
used to create the desired function, or would 
the organism lose a vital function and die?), 
and (3) the ability to provide a rich user inter-
face to the literature on E. coli metabolism. 
Similarly, the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) provides pathway 
datasets for organism genomes.39

9.5.5	 �Integrative Databases

A integrative database is a postgenomic data-
base that bridges the gap between molecular 
biological databases with those of clinical 
importance. One excellent example of a post-
genomic database is the Online Mendelian 
Inheritance in Man (OMIM) database, which 
is a compilation of known human genes and 
genetic diseases, along with manual annota-
tions describing the state of our understanding 
of individual genetic disorders.40 Each entry 
contains links to special-purpose databases and 
thus provides links between clinical syndromes 
and basic molecular mechanisms (.  Fig. 9.6).

9.6	 �Future Challenges 
as Bioinformatics and Clinical 
Informatics Converge

Bioinformatics didn’t solve all of its problems 
with the sequencing of the human genome. 
There is a series of challenges for which 
the completion of the first human genome 
sequence is only the beginning.

9.6.1	 �Linkage of Molecular 
Information with Symptoms, 
Signs, and Patients

There is currently a gap in our understand-
ing of disease processes. Although we have 
a good understanding of the principles by 

39	 7   http:/ /www.genome.jp/kegg/pathway.html 
(accessed December 1, 2018).

40	 7  http://www.ncbi.nlm.nih.gov/omim/ (accessed 
December 1, 2018).
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which small groups of molecules interact, we 
are not able to explain fully how thousands of 
molecules interact within a cell to create both 
normal and abnormal physiological states. As 
the databases continue to accumulate infor-
mation ranging from patient-specific data to 
fundamental genetic information, a major 
challenge is creating the conceptual links 
among these databases to create an audit trail 
from molecular-level information to macro-
scopic phenomena, as manifested in disease. 
The availability of these links will facilitate 
the identification of important targets for 
future research and will provide a scaffold for 
biomedical knowledge, ensuring that impor-
tant literature is not lost within the increasing 
volume of published data.

9.6.2	 �Computational 
Representations 
of the Biomedical Literature

An important opportunity within bioinfor-
matics is the linkage of biological experimen-
tal data with the published papers that report 
them. Electronic publication of the biologi-

cal literature provides exciting opportunities 
for making data easily available to scientists. 
Already, certain types of simple data that 
are produced in large volumes are expected 
to be included in manuscripts submitted for 
publication, including new sequences that are 
required to be deposited in GENBANK and 
new structure coordinates that are deposited 
in the PDB.  However, there are many other 
experimental data sources that are currently 
difficult to provide in a standardized way, 
either because the data are more intricate than 
those stored in GENBANK or PDB or they 
are not produced in a volume sufficient to fill a 
database devoted entirely to the relevant area. 
Knowledge base technology can be used, 
however, to represent multiple types of highly 
interrelated data.

Knowledge bases can be defined in many 
ways (see 7  Chap. 24); for our purposes, we 
can think of them as databases in which (1) 
the ratio of the number of tables to the num-
ber of entries per table is high compared with 
usual databases, (2) the individual entries (or 
records) have unique names, and (3) the values 
of many fields for one record in the database 
are the names of other records, thus creating 

.      . Fig. 9.6  Screen from the Online Mendelian Inheri-
tance in Man (OMIM) database showing an entry for 
pancreatic insufficiency, an autosomal recessive disease 

in which chymotrypsin (NCBI Gene entry shown in 
.  Fig.  9.2) is totally absent (as are some other key 
digestive enzymes). (Courtesy of  NCBI)

Bioinformatics

https://doi.org/10.1007/978-3-030-58721-5_24


296

9

a highly interlinked network of concepts. The 
structure of knowledge bases often leads to 
unique strategies for storage and retrieval of 
their content. To build a knowledge base for 
storing information from biological experi-
ments, there are some requirements. First, 
the set of experiments to be modeled must 
be defined. Second, the key attributes of each 
experiment that should be recorded in the 
knowledge base must be specified. Third, the 
set of legal values for each attribute must be 
specified, usually by creating a controlled ter-
minology for basic data or by specifying the 
types of knowledge-based entries that can 
serve as values within the knowledge base.

9.6.3	 �Computational Challenges 
with an Increasing Deluge 
of Biomedical Data

An increasing challenge in biomedicine is stor-
ing, interpreting and integrating the massive 
amount of datasets the biomedical commu-
nity is generating, largely from modern tech-
nologies in high throughput experimentation. 
The amount of DNA sequence data being 
generated over time has dwarfed Moore’s 
Law, for example. This issue is important for 
all areas of biomedical informatics, and is dis-
cussed in more detail in the on Translational 
Bioinformatics (7  Chap. 26).

9.7	 �Conclusion

Bioinformatics is closely allied to transla-
tional and clinical informatics. It differs in its 
emphasis on a reductionist view of biologi-
cal systems, starting with sequence informa-
tion and moving to structural and functional 
information. The emergence of the genome 
sequencing projects and the new technolo-
gies for measuring metabolic processes within 
cells is beginning to allow bioinformaticians 
to construct a more synthetic view of bio-
logical processes, which will complement the 
whole-organism, top-down approach of clini-
cal informatics. More importantly, there are 
technologies that can be shared between bio-

informatics and clinical informatics because 
they both focus on representing, storing, 
and analyzing biological or biomedical data. 
These technologies include the creation and 
management of standard terminologies and 
data representations, the integration of het-
erogeneous databases, the organization and 
searching of the biomedical literature, the use 
of machine learning techniques to extract new 
knowledge, the simulation of biological pro-
cesses, and the creation of knowledge-based 
systems to support advanced practitioners in 
the two fields.
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Durbin, R., Eddy, S. R., Krogh, A., & Mitchison, 
G. (1998). Biological sequence analysis: 
Probabilistic models of proteins and nucleic 
acids. Cambridge: Cambridge University Press. 
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This edited volume provides an excellent intro-
duction to the use of probabilistic representa-
tions of sequences for the purposes of 
alignment, multiple alignment, and analysis.

Gusfield, D. (1997). Algorithms on strings, trees 
and sequences: Computer science and compu-
tational biology. Cambridge: Cambridge 
University Press. Gusfield’s text provides an 
excellent introduction to the algorithmics of 
sequence and string analysis, with special atten-
tion paid to biological sequence analysis prob-
lems.

Malcolm, S., & Goodship, J. (Eds.). (2007). 
Genotype to phenotype (2nd ed.). Oxford: 
BIOS Scientific Publishers. This volume illus-
trates the different efforts to understand how 
diseases are linked to genes.

Pevsner, P. (2009). Bioinformatics and functional 
genomics. Hoboken: Wiley. A widely used 
excellent introduction to bioinformatics algo-
rithms.

?? Questions for Discussion
	1.	 How are DNA and protein sequence 

information changing the way that med-
ical records are managed? Which types 
of systems are or will be most affected 
(laboratory, radiology, admission and 
discharge, financial, order entry)?

	2.	 It has been postulated that clinical infor-
matics and bioinformatics are working 
on the same problems, but in some areas 
one field has made more progress than 
the other. Identify three common themes. 
Describe how the issues are approached 
by each subdiscipline.

	3.	 Why should an awareness of bioinfor-
matics be expected of clinical informatics 
professionals? Should a chapter on bioin-
formatics appear in a clinical informatics 
textbook? Explain your answers.

	4.	 Why should an awareness of clinical 
informatics be expected of bioinformat-
ics professionals? Should a chapter on 
clinical informatics appear in a bioinfor-
matics textbook? Explain your answers.

	5.	 One major problem with introducing 
computers into clinical medicine is the 
extreme time and resource pressure 
placed on physicians and other health 
care workers. Do you think that the same 

problems are arising in basic biomedical 
research?

	6.	 Why have biologists and bioinformati-
cians embraced the Web as a vehicle for 
disseminating data so quickly, whereas 
clinicians and clinical informaticians 
have been more hesitant to put their pri-
mary data online?

	7.	 If  a patient’s entire genome were present 
in their medical record how would one go 
about interpreting it clinically? Similarly, 
if  we had an entire electronic health 
record database that included human 
genomes, how would a researcher go 
about finding new or novel genetic asso-
ciations?

	8.	 With the many high throughput 
experiments that are used in biomedical 
research, how are some ways to integrate 
those datasets using systems biology? 
For example, if  you had a microarray 
dataset that annotated gene expression 
levels and a proteomics dataset that 
identified protein interactions, how 
could you jointly use both datasets to 
identify markers for a disease?
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