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Abstract. The execution of (business) processes generates valuable tra-
ces of event data in the information systems employed within companies.
Recently, approaches for monitoring the correctness of the execution of
running processes have been developed in the area of process mining, i.e.,
online conformance checking. The advantages of monitoring a process’
conformity during its execution are clear, i.e., deviations are detected as
soon as they occur and countermeasures can immediately be initiated to
reduce the possible negative effects caused by process deviations. Existing
work in online conformance checking only allows for obtaining approx-
imations of non-conformity, e.g., overestimating the actual severity of
the deviation. In this paper, we present an exact, parameter-free, online
conformance checking algorithm that computes conformance checking
results on the fly. Our algorithm exploits the fact that the conformance
checking problem can be reduced to a shortest path problem, by incre-
mentally expanding the search space and reusing previously computed
intermediate results. Our experiments show that our algorithm is able
to outperform comparable state-of-the-art approximation algorithms.

Keywords: Process mining · Conformance checking · Alignments ·
Event streams · Incremental heuristic search

1 Introduction

Modern information systems support the execution of different business pro-
cesses within companies. Valuable traces of event data, describing the various
steps performed during process execution, are easily extracted from such sys-
tems. The field of process mining [3] aims to exploit such information, i.e., the
event data, to better understand the overall execution of the process. For exam-
ple, in process mining, several techniques have been developed that allow us to
(i) automatically discover process models, (ii) compute whether the process, as
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Fig. 1. Overview of online process monitoring. Activities are performed for different
process instances, identified by a case-id, over time. Whenever a new activity is exe-
cuted, the sequence of already executed activities within the given case/process instance
is checked for conformance w.r.t. a reference process model

reflected by the data, conforms to a predefined reference model and (iii) detect
performance deficiencies, e.g., bottleneck detection.

The majority of existing process mining approaches work in an offline setting,
i.e., data is captured over time during process execution and process mining anal-
yses are performed a posteriori. However, some of these techniques benefit from
an online application scenario, i.e., analyzing the process at the moment it is exe-
cuted. Reconsider conformance checking, i.e., computing whether a process’ exe-
cution conforms to a reference model. Checking conformance in an online setting
allows the process owner to detect and counteract non-conformity at the moment
it occurs (Fig. 1). Thus, potential negative effects caused by a process deviation
can be mitigated or eliminated. This observation inspired the development of
novel conformance checking algorithms working in an online setting [7,8,22].
However, such algorithms provide approximations of non-conformity and/or use
high-level abstractions of the reference model and the event data, i.e., not allow-
ing us to obtain an exact quantification of non-conformance.

In this paper, we propose a novel, exact solution for the online confor-
mance checking problem. We present a parameter-free algorithm that computes
exact conformance checking results and provides an exact quantification of non-
conformance. Our algorithm exploits the fact that the computation of confor-
mance checking results can be reduced to a shortest path problem. In fact,
we extend the search space in the course of a process instance execution and
compute shortest paths by utilizing previous results every time new behavior is
observed. Moreover, we explicitly exploit specific properties of the search space
when solving the conformance checking problem. Therefore, the proposed incre-
mental algorithm is specifically designed for online conformance checking and
cannot be directly applied to general shortest path problems. The conducted
experiments show that the proposed approach outperforms existing approxima-
tion algorithms and additionally guarantees exact results.

The remainder of this paper is structured as follows. In Sect. 2, we present
related work regarding conformance checking and incremental search algorithms.
In Sect. 3, we present preliminaries. In Sect. 4, we present the main algorithm.
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In Sect. 5, we prove the correctness of the proposed algorithm. We evaluate the
proposed algorithm and present the results of the experiments conducted in
Sect. 6. Finally, we conclude the paper in Sect. 7.

2 Related Work

In this section, we first focus on (online) conformance checking techniques. Sub-
sequently, we present related work regarding incremental search algorithms.

Two early techniques, designed to compute conformance statistics, are token-
based replay [21] that tries to replay the observed behavior on a reference model
and footprint-based comparison [3], in which the event data and the process
model are translated into the same abstraction and then compared. As an alter-
native, alignments have been introduced [2,4] that map the observed behavioral
sequences to a feasible execution sequence as described by the (reference) pro-
cess model. Alignments indicate whether behavior is missing and/or whether
inappropriate behavior is observed. The problem of finding an alignment was
shown to be reducible to the shortest path problem [4].

The aforementioned techniques are designed for offline usage, i.e., they work
on static (historical) data. In [22], an approach is presented to monitor ongoing
process executions based on an event stream by computing partially completed
alignments each time a new event is observed. The approach results in approxi-
mate results, i.e., false negatives occur w.r.t. deviation detection. In this paper,
we propose an approach that extends and improves [22]. In [7], the authors
propose to pre-calculate a transition system that supports replay of the ongo-
ing process. Costs are assigned to the transition system’s edges and replaying a
deviating process instance leads to larger (non-zero) costs. Finally, [8] proposes
to compute conformance of a process execution based on all possible behavioral
patterns of the activities of a process. However, the use of such patterns leads
to a loss of expressiveness in deviation explanation and localization.

In general, incremental search algorithms find shortest paths for similar
search problems by utilizing results from previously executed searches [15].
In [13], the Lifelong Planning A∗ algorithm is introduced that is an incremental
version of the A∗ algorithm. The introduced algorithm repeatedly calculates a
shortest path from a fixed start state to a fixed goal state while the edge costs
may change over time. In contrast, in our approach, the goal states are con-
stantly changing in each incremental execution, whereas the edge costs remain
fixed. Moreover, only new edges and vertices are incrementally added, i.e., the
already existing state space is only extended. In [14], the Adaptive A∗ algorithm
is introduced, which is also an incremental version of the A∗ algorithm. The
Adaptive A∗ algorithm is designed to calculate a shortest path on a given state
space from an incrementally changing start state to a fixed set of goal states. In
contrast to our approach, the start state is fixed in each incremental execution.
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Table 1. Example event log fragment

Case Activity Resource Time-stamp

· · · · · · · · · · · ·
13152 Create account (a) Wil 19-04-08 10:45

13153 Create account (a) Bas 19-04-08 11:12

13154 Request quote (c) Daniel 19-04-08 11:14

13155 Request quote (c) Daniel 19-04-08 11:40

13152 Submit order (b) Wil 19-04-08 11:49

· · · · · · · · · · · ·

time

(13152, a), (13153, a), (13154, c), · · ·

Fig. 2. Schematic example of an
event stream

3 Background

In this section, we present basic notations and concepts used within this paper.
Given a set X, a multiset B over X allows us to assign a multiplicity to

the elements of X, i.e., B : X → N0. Given X = {x, y, z}, the multiset [x5, y]
contains 5 times x, once y and no z. The set of all possible multisets over a
set X is denoted by B(X). We write x ∈+ B if x is contained at least once in
multiset B.

A sequence σ of length n, denoted by |σ| = n, over a base set X assigns
an element to each index, i.e., σ : {1, . . . , n} → X. We write a sequence σ
as 〈σ(1), σ(2), ..., σ(|σ|)〉. Concatenation of sequences is written as σ·σ′, e.g.,
〈x, y〉·〈z〉 = 〈x, y, z〉. The set of all possible sequences over base set X is denoted
by X∗. For element inclusion, we overload the notation for sequences, i.e., given
σ ∈ X∗ and x ∈ X, we write x ∈ σ if ∃ 1 ≤ i ≤ |σ| (σ(i) = x), e.g., b ∈ 〈a, b〉.

Let σ ∈ X∗ and let X ′ ⊆ X. We recursively define σ↓X′ ∈ X ′∗ with: 〈〉↓X′ =
〈〉, (〈x〉·σ)↓X′ = 〈x〉·σ↓X′ if x ∈ X ′ and (〈x〉·σ)↓X′ = σ↓X′ if x /∈ X ′. For example,
let X ′ = {a, b}, X = {a, b, c}, σ = 〈a, c, b, a, c〉 ∈ X∗ then σ↓X′ = 〈a, b, a〉.

Let t = (x1, ..., xn) ∈ X1 × · · · × Xn be an n-tuple, we let π1(t) =
x1, . . . , πn(t) = xn denote the corresponding projection functions that extract
a specific component from the tuple, e.g., π3((a, b, c)) = c. Correspondingly,
given a sequence σ = 〈(x1

1, . . . , x
1
n), . . . , (xm

1 , . . . , xm
n )〉 with length m contain-

ing n-tuples, we define projection functions π∗
1(σ) = 〈x1

1, . . . , x
m
1 〉, . . . , π∗

n(σ) =
〈x1

n, . . . , xm
n 〉 that extract a specific component from each tuple and concatenate

it into a sequence. For instance, π∗
2 (〈(a, b) , (c, d) , (c, b)〉) = 〈b, d, b〉.

Event Logs. The data used in process mining are event logs, e.g., consider
Table 1. Each row corresponds to an event describing the execution of an activity
in the context of an instance of the process. For simplicity, we use short-hand
activity names, e.g., a for “create account”. The events related to Case-id 13152
describe the activity sequence 〈a, b〉.
Event Streams. In this paper, we assume an event stream rather than an event
log. Conceptually, an event stream is an (infinite) sequence of events. In Fig. 2,
we depict an example. For instance, the first event, (13152, a), indicates that for
a process instance with case-id 13152 activity a was performed.
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p1

a

t1

create account

p2

τ

t2

b

t3

submit order

c

t4

request quote

p3

Fig. 3. Example WF-net N1 with visualized initial marking [p1] and final marking [p3]
describing a simplified ordering process. First “create account” is optionally executed.
Next, either “submit order” or “request quote” is executed

Definition 1 (Event; Event Stream). Let C denote the universe of case
identifiers and A the universe of activities. An event e ∈ C × A describes the
execution of an activity a ∈ A in the context of a process instance identified by
c ∈ C. An event stream S is a sequence of events, i.e., S ∈ (C × A)∗.

As indicated in Table 1, real-life events contain additional information, e.g.,
resource information, and are usually uniquely identifiable by an event id. How-
ever, for the purpose of this paper, we are only interested in the executed activity,
the case-id of the corresponding process instance and the order of events.

Process Models. Process models allow us to describe the (intended) behavior
of a process. In this paper, we focus on sound Workflow nets [1]. A Workflow net
(WF-net) is a subclass of Petri nets [20]. Sound WF-nets, in turn, are a subclass
of WF-nets with favorable behavioral properties, e.g., no deadlocks and live-
locks. Consider Fig. 3, where we depict a sound WF-net. We use WF-nets since
many high-level process modeling formalism used in practice, e.g. BPMN [10],
are easily translated into WF-nets. Moreover, it is reasonable to assume that an
experienced business process designer creates sound process models.

Petri nets consist of a set of places P , visualized as circles, and a set of tran-
sitions T , visualized as rectangular boxes. Places and transitions are connected
by arcs which are defined by the set F = (P × T ) ∪ (T × P ). Given an element
x ∈ P ∪ T , we write x• = {y ∈ P ∪ T | (x, y) ∈ F} to define all elements y that
have an incoming arc from x. Symmetrically, •x = {y ∈ P ∪ T | (y, x) ∈ F}, e.g.,
•p2 = {t1, t2} (Fig. 3).

The state of a Petri net, i.e., a marking M , is defined by a multiset of places,
i.e., M ∈ B(P ). Given a Petri net N with a set of places P and a marking
M ∈ B(P ), a marked net is written as (N,M). We denote the initial marking
of a Petri net with Mi and the final marking with Mf . We denote a Petri net
as N = (P, T, F,Mi,Mf , λ). The labeling function λ : T → A ∪ {τ} assigns an
(possibly invisible, i.e., τ) activity label to each transition, e.g., λ(t1) = a in
Fig. 3.

The transitions of a Petri net allow to change the state. Given a marking
M ∈ B(P ), a transition t is enabled if ∀p ∈ •t (M(p) > 0). An enabled transition
can fire, yielding marking M ′ ∈ B(P ), where M ′(p) = M(p) + 1 if p ∈ t • \ • t,
M ′(p) = M(p) − 1 if p ∈ •t \ t•, otherwise M ′(p) = M(p). We write (N,M)[t〉 if
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a b c

t1 � t4

a b c

t1 t3 �
a � b � c

� t2 � t3 �

Fig. 4. Three possible alignments for WF-net N1 (Fig. 3) and trace 〈a, b, c〉

t is enabled in M and we write (N,M) t−→(N,M ′) to denote that firing transition
t in marking M yields marking M ′. In Fig. 3, we have (N1, [p1])[t1〉 as well as
(N1, [p1])

t1−→(N1, [p2]). If a sequence of transitions σ ∈ T ∗ leads from marking
M to M ′, we write (N,M) σ−→(N,M ′). We let R(N,M) = {M ′ ∈ B(P ) | ∃σ ∈
T ∗(N,M) σ−→(N,M ′)} denote the state space/all reachable markings of N given
an initial marking M .

A WF-net N = (P, T, F, [pi], [po], λ) is a Petri net with a unique source place
pi and a unique sink place po, i.e., Mi = [pi] and Mf = [po]. Moreover, every
element x ∈ P ∪ T is on a path from pi to po.

Alignments. To explain traces in an event log w.r.t. a reference model, we use
alignments [4], which map a trace onto an execution sequence of a model. Exem-
plary alignments are depicted in Fig. 4. The first row of an alignment (ignoring
the skip symbol �) equals the trace and the second row (ignoring �) represents
a sequence of transitions leading from the initial to the final marking.

We distinguish three types of moves in an alignment. A synchronous move
(light-gray) matches an observed activity to the execution of a transition, where
the transition’s label must match the activity. Log moves (dark-gray) indicate
that an activity is not re-playable in the current state of the process model. Model
moves (white) indicate that the execution of a transition cannot be mapped
onto an observed activity. They can be further differentiated into invisible- and
visible model moves. An invisible model move consists of an inherently invisible
transition (λ(t) = τ). Visible model moves indicate that an activity should have
taken place w.r.t the model but was not observed at that time.

In an online setting, an event stream is assumed to be infinite. A new event
for a given process instance can occur at any time. Hence, we are interested in
explanations of the observed behavior that still allow us to reach the final state
in the reference model, i.e., prefix-alignments. The first row of a prefix-alignment
also corresponds to the trace, but the second row corresponds to a sequence of
transitions leading from the initial marking to a marking from which the final
marking can still be reached. For a formal definition, we refer to [4].

Since multiple (prefix-)alignments exist, we are interested in an alignment
that minimizes the mismatches between the trace and the model. Therefore, we
assign costs to moves. We use the standard cost function, which assigns cost 0
to synchronous moves and invisible model moves, and cost 1 to log- and visible
model moves. A (prefix-)alignment is optimal if it has minimal costs.

To compute an optimal (prefix-)alignment, we search for a shortest path in
the state-space of the synchronous product net (SPN) [4]. An SPN is com-
posed of a trace net and the given WF-net. In Fig. 5a, we depict an example
trace net. We refer to [4] for a formal definition of the trace net. In Fig. 5b
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(a) Trace net of the trace 〈a, b, c〉
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(�, b)
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(�, τ)
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(�, c)

(�, t4)
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p′
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(a, �)

(t′
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1

(b, �)

(t′
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2

(c, �)

(t′
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3

trace net part

p1

(�, a)

(�, t1) p2

(�, b)

(�, t3)

(�, τ)

(�, t2)

(�, c)

(�, t4)
p3

process net part

(b) SPN NS
1 of 〈a, b, c〉 and the WF-net N1

Fig. 5. Construction of a trace net and a synchronous product net (SPN)

we depict an example SPN. Each transition in the SPN corresponds to a
(prefix-)alignment move. Hence, we can assign costs to each transition. Any
path in the state-space (sequence of transitions in the SPN) from [p′

0, p1] to
[p′

3, p3] corresponds to an alignment of N1 and 〈a, b, c〉. For the given example, a
shortest path with cost 1, which corresponds to the first alignment depicted in
Fig. 4, is:

(NS
1 , [p′

0, p1])
(t′

1,t1)−−−−→(NS
1 , [p′

1, p2])
(t′

2,�)−−−−→(NS
1 , [p′

2, p2])
(t′

3,t4)−−−−→(NS
1 , [p′

3, p3])

To compute a prefix-alignment, we look for a shortest path from the initial
marking to a marking M ∈ R(NS

1 , [p′
0, p1]) such that M(p′

3) = 1, i.e., the last
place of the trace net part is marked. Next, we formally define the SPN.

Definition 2 (Synchronous Product Net (SPN)). For a given trace σ, the
corresponding trace net Nσ = (P σ, T σ, F σ, [pσ

i ], [pσ
o ], λσ) and a WF-net N =

(P, T, F, [pi], [po], λ) s.t. P σ ∩ P = ∅ and F σ ∩ F = ∅, we define the SPN NS =
(PS , TS , FS ,MS

i ,MS
f , λS) s.t.:

– PS = P σ ∪ P
– TS = (T σ × {�}) ∪ ({�} × T ) ∪ {(t′, t) ∈ T σ × T | λ(t) = λσ(t′) �= τ}
– FS = {(p, (t′, t)) ∈ PS × TS | (p, t′) ∈ F σ ∨ (p, t) ∈ F} ∪ {((t′, t), p) ∈

TS × PS | (t′, p) ∈ F σ ∨ (t, p) ∈ F}
– MS

i = [pσ
i , pi] and MS

f = [pσ
o , po]

– λS : TS → (A ∪ {τ} ∪ {�}) × (A ∪ {τ} ∪ {�}) (assuming �/∈ A ∪ {τ}) s.t.:
• λS(t′,�) = (λσ(t′),�) for t′ ∈ T σ

• λS(�, t) = (�, λ(t)) for t ∈ T
• λS(t′, t) = λS(λσ(t), λ(t)) for t′ ∈ T σ, t ∈ T

Next, we briefly introduce the shortest path algorithm A� since our proposed
algorithm is based on it and it is widely used for alignment computation [4,9].
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Fig. 6. Overview of the proposed incremental prefix alignment approach

A� algorithm. The A� algorithm [12] is an informed search algorithm that
computes a shortest path. It efficiently traverses a search-space by exploiting,
for a given state, the estimated remaining distance, referred to as the heuristic/h-
value, to the closest goal state. The algorithm maintains a set of states of the
search-space in its so-called open-set O. For each state in O, a path from the
initial state to such a state is known and hence, the distance to reach that state,
referred to as the g value, is known. A state from O with minimal f -value, i.e.,
f = g + h, is selected for further analysis until a goal state is reached. The
selected state itself is moved into the closed set C, which contains fully inves-
tigated states for which a shortest path to those states is known. Furthermore,
all successor states of the selected state are added to the open set O. Note that
the used heuristic must be admissible [12]. If the used heuristic also satisfies
consistency [12], states need not be reopened.

4 Incremental Prefix-Alignment Computation

In this section, we present an exact algorithm to incrementally compute opti-
mal prefix-alignments on an event stream. First, we present an overview of the
proposed approach followed by a detailed description of the main algorithm.

4.1 Overview

The core idea of the proposed algorithm is to exploit previously calculated
results, i.e., explored parts of the state-space of an SPN. For each process
instance, we maintain an SPN, which is extended as new events are observed.
After extending the SPN, we “continue” the search for an optimal prefix-
alignment.

In Fig. 6 we visualize a conceptual overview of our approach. We observe
a new event (c, a) on the event stream. We check our SPN cache and if we
previously built an SPN for case c, we fetch it from the cache. We then extend
the SPN by means of adding activity a to the trace net part. Starting from
intermediate results of the previous search, i.e., open & closed set used in the
A� algorithm, we find a new, optimal prefix-alignment for case c.
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Algorithm 1: Incremental Prefix-Alignment Computation
input: N=(P, T, F, [pi], [po], λ), S∈(C×A)∗

begin
1 forall c ∈ C do

Dσ(c) ← 〈〉, DC(c) ← ∅; // initialize cache

2 i ← 1;
3 while true do
4 e ← S(i); // get i-th event of event stream

5 c ← π1(e); // extract case-id from current event

6 a ← π2(e); // extract activity label from current event

7 Dσ(c) ← Dσ(c)·〈a〉; // extend trace for case c

8 let NS=(P S , T S , F S , MS
i , MS

f , λS) from N and Dσ(c);
// construct/extend synchronous product net

9 let h : R(NS , MS
i )→R≥0; // define heuristic function

10 let d : T S→R≥0; // define standard cost function

11 if |Dσ(c)|=1 then // initialization for first run regarding case c

12 DO(c) ← {MS
i }; // initialize open set

13 Dg(c) ← MS
i �→0; // initialize cost-so-far function

14 Dp(c) ← MS
i �→(null,null); // initialize predecessor function

15 Dγ(c), DO(c), DC(c), Dg(c), Dp(c) ← A�
inc(N

S , Dσ(c), DO(c), DC(c),
Dg(c), Dp(c), h, d); // execute/continue shortest path search

16 i ← i + 1;

In Algorithm 1 we depict the overall algorithm. As input we assume a refer-
ence process model, i.e., a WF-net N , and an event stream S. The algorithm
processes every event on the stream S in the order in which they occur. First, we
extract the case id and the activity label from the current event. Next we either
construct the SPN if it is the first activity for the given case or we extend the
previously constructed SPN. For the SPN’s state space we then define a heuris-
tic function h and the standard cost function d. If we process the first activity
for a given case, we initialize the open set O with the SPN’s initial marking.
Afterwards, we calculate a prefix alignment by calling a modified A∗ algorithm,
i.e., A�

inc. We obtain an optimal prefix-alignment γ, open set O, closed set C,
cost-so-far function g and the predecessor function p. The function g assigns
to already discovered states the currently known cheapest costs and function p
assigns the corresponding predecessor state to reach those. We cache the results
to reuse them when computing the next prefix-alignment upon receiving a new
event for the given case. Afterwards, we process the next event.

Note that, the approach theoretically requires infinite memory since it stores
all intermediate results for all occurring cases because in general, we do not
know when a case is completed in an online dimension. However, this is a general
research challenge in process mining on streaming data, which is not addressed
in this paper.
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Fig. 7. Incremental extension of the SPN for the process model N1 and a trace that
was extended by a new activity b, i.e., 〈a〉·〈b〉

The following sections are structured according to the overview shown in
Fig. 6. First, we explain the SPN extension. Subsequently, we present a revised
A∗ algorithm to incrementally compute optimal prefix-alignments, i.e., A�

inc.
Moreover, we present a heuristic function for the prefix-alignment computation.

4.2 Extending SPNs

Reconsider WF-net N1 (Fig. 3) and assume that the first activity we observe is
a. The corresponding SPN is visualized by means of the solid elements in Fig. 7a
and the state space in Fig. 7b. Any state in the state-space containing a token in
p′
1 is a suitable goal state of the A� algorithm for an optimal prefix-alignment.

Next, for the same process instance, we observe an event describing activity
b. The SPN for the process instance now describing trace 〈a, b〉 as well as its
corresponding state-space is expanded. The expansion is visualized in Fig. 7 by
means of dashed elements. In this case, any state that contains a token in p′

2

corresponds to a suitable goal state of the optimal prefix-alignment search.

4.3 Incrementally Performing Regular A�

Here, we present the main algorithm to compute prefix-alignments on the basis
of previously executed instances of the A� algorithm.

The main idea of our approach is to continue the search on an extended search
space. Upon receiving a new event (c, a), we apply the regular A� algorithm
using the cached open- and closed-set for case identifier c on the corresponding
extended SPN. Hence, we incrementally solve shortest path problems on finite,
fixed state-spaces by using the regular A� algorithm with pre-filled open and
closed sets from the previous search. Note that the start state remains the same
and only the goal states differ in each incremental step.
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Algorithm 2: A�
inc (modified A∗ algorithm that computes prefix-

alignments from pre-filled open and closed sets)
input: NS = (P S , T S , F S , MS

i , MS
f , λS), O, C⊆R(NS , MS

i ),
g : R(NS , MS

i )→R≥0, p : R(NS , MS
i )→T S × R(NS , MS

i ),
h : R(NS , MS

i )→R≥0, d : T S→R≥0

begin
1 let p|σ| be the last place of the trace net part of NS ;

2 forall m ∈ R(NS , MS
i ) \ O ∪ C do // initialize undiscovered states

3 g(m) ← ∞;
4 f(m) ← ∞;

5 forall m∈O do
6 f(m) = g(m) + h(m); // recalculate heuristic and update f-values

7 while O �=∅ do
8 m ← arg min

m∈O
f(m); // pop a state with minimal f-value from O

9 if p|σ|∈+m then
10 γ ← prefix-alignment that corresponds to the sequence of

transitions (t1, ..., tn) where tn = π1(p(m)), tn−1 = π1(π2(p(m))),
etc. until there is a marking that has no predecessor, i.e., MS

i ;
11 return γ, O, C, g, p;

12 C ← C ∪ {m};
13 O ← O \ {m};

14 forall t∈T S s.t. (NS , m)[t〉(NS , m′) do // investigate successor states

15 if m′ /∈C then
16 O ← O ∪ {m′};
17 if g(m) + d(t) < g(m′) then // a cheaper path to m′ was found

18 g(m′) ← g(m) + d(t); // update costs to reach m′

19 f(m′) ← g(m′) + h(m′); // update f-value of m′

20 p(m′) ← (t, m); // update predecessor of m′

In Algorithm 2, we present an algorithmic description of the A� approach.
The algorithm assumes as input an SPN, the open- and closed-set of the pre-
viously executed instance of the A� algorithm, i.e., for the process instance at
hand, a cost-so-far function g, a predecessor function p, a heuristic function h,
and a cost function d (standard cost function). First, we initialize all states
that have not been discovered yet (line 2). Since the SPN is extended and the
goal states are different with respect to the previous run of the algorithm for
the same process instance, all h-values are outdated. Hence, we recalculate the
heuristic values and update the f -values for all states in the open set (line 6)
because we are now looking for a shortest path to a state that has a token in the
newly added place in the trace net part of the SPN. Hence, the new goal states
were not present in the previous search problem. Note that the g values are not
affected by the SPN extension. Thereafter, we pick a state from the open set
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with smallest f -value (line 7). First, we check if the state is a goal state, i.e.,
whether it contains a token in the last place of the trace net part (line 9). If so,
we reconstruct the sequence of transitions that leads to the state, and thus, we
obtain a prefix-alignment (using predecessor function p). Otherwise, we move
the current state from the open- to the closed set and examine all its successor
states. If a successor state is already in the closed set, we ignore it. Otherwise, we
add it to the open set and update the f -value and the predecessor state stored
in p if a cheaper path was found.

Heuristic for Prefix-Alignment Computation. Since the A� algorithm uses
a heuristic function to efficiently traverse the search space, we present a heuris-
tic for prefix-alignment computation based on an existing heuristic [4] used for
conventional alignment computation. Both heuristics can be formulated as an
Integer Linear Program (ILP). Note that both heuristics can also be defined as a
Linear Program (LP) which leads to faster calculation but less accurate heuristic
values.

Let NS = (PS , TS , FS ,MS
i ,MS

f , λS) be an SPN of a WF-net N =
(P, T, F, [pi], [po], λ) and a trace σ with corresponding trace net Nσ =
(P σ, T σ, F σ, [pσ

i ], [pσ
o ], λσ). Let c : TS → R≥0 be a cost function that assigns

each (prefix-)alignment move, i.e., transition in the SPN, costs. We define a
revised heuristic function for prefix-alignment computation as an ILP:

– Variables: X = {xt | t ∈ TS} and ∀xt ∈ X : xt ∈ N0

– Objective function: min
∑

t∈TS xt·c(t)
– Constraints:

• Trace net part: MS
f (p) =

∑
t∈•p xt − ∑

t∈p• xt ∀p ∈ PS : p ∈ P σ

• Process model part: 0 ≤ ∑
t∈•p xt − ∑

t∈p• xt ∀p ∈ PS : p ∈ P

The revised heuristic presented is a relaxed version of the existing heuristic
used for conventional alignment computation. Admissibility and consistency can
be proven in a similar way as for the existing heuristic. We refer to [4,9].

Reducing Heuristic Recalculations. In this section, we describe an approach
to reduce the number of heuristic calculations. Reconsider line 6 in Algorithm2.
Before we continue the search on an extended search space, we recalculate the
heuristic for all states in the open set. This is needed because the goal states differ
in each incremental execution. However, these recalculations are computational
expensive. Instead of recalculating the heuristic in advance (Algorithm2, line
6), we mark all states in the open set that have an outdated heuristic value.
Whenever we pop a state from the open set with an outdated heuristic value (line
8), we update its h-value, put it back in the open set and skip the remainder of
the while body (from line 9). Thereby, we do not have to recalculate the heuristic
value for all states in the open set. This approach is permissible because the goal
states are “further away” in each iteration and hence, h-values can only grow.

5 Correctness

In this section, we prove the correctness of the approach. We show that states in
the closed set do not get new successors upon extending the SPN. Furthermore,
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we show that newly added states never connect to “older” states. Finally, we
show that the open set always contains a state which is part of an optimal
prefix-alignment of the extended trace.

Lemma 1 (State-space growth is limited to frontier). Let σi−1 =
〈a1, . . . , ai−1〉, σi = σi−1 · 〈ai〉, and σi+1 = σi·〈ai+1〉. For a WF-net, N let
NS

i−1 = (PS
i−1, T

S
i−1, F

S
i−1,M

S
ii−1

,MS
fi−1

, λS
i−1) be the SPN of N and σi−1, NS

i

and NS
i+1 analogously.

∀M ∈ B(PS
i−1)∀t ∈ TS

i+1

(
(NS

i+1,M)[t〉 ⇒ t ∈ TS
i

)

Proof (By construction of the SPN). Observe that PS
i−1 ⊂ PS

i ⊂ PS
i+1 and

TS
i−1 ⊂ TS

i ⊂ TS
i+1. Let p|σi| ∈ PS

i+1 be the i-th place of the trace net part (note
that p|σi| /∈ PS

i−1) and let ti+1 ∈ TS
i+1 \TS

i . By construction of the SPN, we know
that p|σi| ∈ •ti+1 and ∀j ∈ {1, . . . , i − 1} : p|σj | /∈ •ti+1. ��

Observe that, when searching for an alignment for σi, Algorithm 2 returns
whenever place pσi is marked. Moreover, the corresponding marking remains in
O. Hence, each state in C is “older”, i.e., already part of PS

i−1. Thus, Lemma 1
proves that states in the closed set C do not get new successors upon extending
the SPN.

Lemma 2 (New states do not connect to old states). Let σi =
〈a1, . . . , ai〉 and σi+1 = σi·〈ai+1〉. For a given WF-net N , let NS

i =
(PS

i , TS
i , FS

i ,MS
ii

,MS
fi

, λS
i ) (analogously NS

i+1) be the SPN of N and σi.

∀M ∈ B(PS
i+1) \ B(PS

i )∀M ′ ∈ B(PS
i )

(
�t ∈ TS

i+1

(
(NS

i+1,M)[t〉(NS
i+1,M

′)
))

Proof (By construction of the SPN). Let ti+1 ∈ TS
i+1 \ TS

i . Let p|σi+1| ∈ PS
i+1

be the (i + 1)-th place (the last place) of the trace net part. We know that
p|σi+1| ∈ ti+1• and p|σj | /∈ ti+1 • ∀j ∈ {1, . . . , i}. For all other t ∈ TS

i we know
that �M ∈ B(PS

i+1) \ B(PS
i ) such that (NS ,M)[t〉. ��

From Lemma 1 and 2 we know that states in the closed set are not affected
by extending the SPN. Hence, it is feasible to continue the search from the open
set and to not reconsider states which are in the closed set.

Lemma 3. (Exists a state in the O-set that is on the shortest path).
Let σi = 〈a1, ..., ai〉, σi+1 = σi · 〈ai+1〉, NS

i , NS
i+1 the corresponding SPN for

a WF-net N , Oi and Ci be the open- and closed set after the prefix-alignment
computation for σi. Let γi+1 be an optimal prefix-alignment for σi+1.

∃j ∈ {1, . . . , |γi+1|}, γ′
i+1 = (γi+1(1), . . . , γi+1(j)) s.t.

(NS
i+1,M

S
i+1)

π∗
2 (γ

′
i+1)↓T−−−−−−−→(NS

i+1,MO) and MO ∈ Oi
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Proof. γi+1 corresponds to a sequence of markings,
i.e., S = (MS

i+1, . . . ,M
′,M ′′, ...,M ′′′). Let Xi+1 = B(PS

i+1) \ Ci ∪ Oi. It holds
that Xi+1 ∩ Oi = Xi+1 ∩ Ci = Oi ∩ Ci = ∅. Note that M ′′′ ∈ Xi+1 because
M ′′′ /∈ B(PS

i ). Assume ∀M ∈ S : M /∈ Oi ⇒ ∀M ∈ S : M ∈ Ci ∪ Xi+1. Observe
that MS

i = MS
i+1 ∈ Ci since initially MS

i ∈ O0and in the very first iteration MS
i

is selected for expansion because it is not a goal state, Algorithm 2. We know
that for any state pair M ′,M ′′ it cannot be the case that M ′ ∈ Ci,M ′′ ∈ Xi+1.
Since we know that at least MS

i ∈ Ci and M ′′′ ∈ Xi+1
c there ∃M ′,M ′′ ∈ S such

that M ′ ∈ Ci,M ′′ ∈ Oi. ��
Hence, it is clear from Lemmas 1–3 that incrementally computing prefix-

alignments, continuing the search from the previous open- and closed set, leads
to optimal prefix-alignments.

6 Evaluation

We evaluated the algorithm on publicly available real event data from various
processes. Here, we present the experimental setup and discuss the results.

6.1 Experimental Setup

The algorithm introduced in [22] serves as a comparison algorithm. We refer to
it as Online Conformance Checking (OCC). Upon receiving an event, OCC par-
tially reverts the previously computed prefix-alignments (using a given maximal
window size) and uses the corresponding resulting state of the SPN as start state.
Hence, the algorithm cannot guarantee optimality, i.e., it does not search for a
global optimum. However, OCC can also be used without partially reverting,
i.e., using window size ∞. Hence, it naively starts the computation from scratch
without reusing any information, however, optimality is then guaranteed. We
implemented our proposed algorithm, incremental A� (IAS), as well as OCC in
the process mining library PM4Py [5]. The source code is publicly available1.
Although, the OCC algorithm was introduced without a heuristic function [22],
it is important to note that both algorithms, IAS and OCC, use the previously
introduced heuristic in the experiments to improve objectivity.

We use publicly available datasets capturing the execution of real-life pro-
cesses [6,11,17–19]. To mimic an event stream, we iterate over the traces in
the event log and emit each preformed activity as an event. For instance,
given the event log L = [〈a, b, c〉, 〈b, c, d〉, . . . ], we simulate the event stream
〈(1, a), (1, b), (1, c), (2, b), (2, c), (2, d), . . . 〉. For all datasets except CCC19 [19]
that contains a process model, we discovered reference process models with the
Inductive Miner infrequent version (IMf) [16] using a high threshold. This results
in process models that do not guarantee full replay fitness. Moreover, the dis-
covered process models contain choices, parallelism and loops.
1 https://github.com/fit-daniel-schuster/online process monitoring using incremental

state-space expansion an exact algorithm.

https://github.com/fit-daniel-schuster/online_process_monitoring_using_incremental_state-space_expansion_an_exact_algorithm
https://github.com/fit-daniel-schuster/online_process_monitoring_using_incremental_state-space_expansion_an_exact_algorithm
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6.2 Results

In Table 2, we present the results. OCC-Wx represents the OCC algorithm with
window size x, OCC with an infinite window size. Moreover, we present the
results for the IAS algorithm that does not use the approach of reducing heuristic
recalculations as presented in Sect. 4.3, we call it IASR. Note that only IAS(R)
and OCC guarantee optimality. Furthermore, note that a queued state corre-
sponds to a state added to the open set and a visited state corresponds to a
state moved into the closed set. Both measures indicate the search efficiency.

We observe that reducing the number of heuristic re-calculations is valu-
able and approximately halves the number of solved LPs and hence, reduces the
computation time. As expected, we find no significant difference in the other
measured dimensions by comparing IAS and IASR. We observe that IAS clearly
outperforms all OCC variants regarding search efficiency for all used event logs
except for CCC19 where OCC variants with small window sizes have a better
search efficiency. This results illustrate the relevance of IAS compared to OCC
and OCC-Wx and show the effectiveness of continuing the search on an extended
search space by reusing previous results. Regarding false positives, we observe
that OCC-Wx variants return non-optimal prefix-alignments for all event logs.
As expected, the number of false positives decreases with increasing window
size. In return, the calculation effort increases with increasing window size. This
highlights the advantage of the IAS’ property being parameter-free. In general,
it is difficult to determine a window size because the traces, which have an
impact on the “right” window size, are not known in an online setting upfront.

Table 2. Results of the conducted experiments for various real-life event logs

Event log
≈ avg. queued states per trace ≈ avg. visited states per trace
IASR IAS OCC OCC-

W1
OCC-
W2

OCC-
W5

OCC-
W10

IASR IAS OCC OCC-
W1

OCC-
W2

OCC-
W5

OCC-
W10

CCC 19 [19] 774 766 14614 312 431 885 1622 756 751 12557 212 283 506 932
Receipt [6] 31 29 65 37 50 82 104 18 17 26 19 23 33 42
Sepsis [17] 73 70 532 102 146 285 450 44 43 232 47 62 103 166
Hospital [18] 21 21 42 32 41 65 71 11 11 15 14 17 23 26
BPIC 19 [11] 28 28 257 41 57 90 107 18 18 154 21 27 40 48

Event log
# traces with false positives # variants with false positives
IASR IAS OCC OCC-

W1
OCC-
W2

OCC-
W5

OCC-
W10

IASR IAS OCC OCC-
W1

OCC-
W2

OCC-
W5

OCC-
W10

CCC 19 [19] 0 0 0 7 8 1 1 0 0 0 7 8 1 1
Receipt [6] 0 0 0 8 5 3 1 0 0 0 8 5 3 1
Sepsis [17] 0 0 0 59 60 6 1 0 0 0 58 59 6 1
Hospital [18] 0 0 0 88 88 69 32 0 0 0 49 49 39 19
BPIC 19 [11] 0 0 0 318 259 193 90 0 0 0 272 206 145 75

Event log
≈ avg. computation time (s) per
trace

≈ avg. number solved LPs
(heuristic functions) per trace

IASR IAS OCC OCC-
W1

OCC-
W2

OCC-
W5

OCC-
W10

IASR IAS OCC OCC-
W1

OCC-
W2

OCC-
W5

OCC-
W10

CCC 19 [19] 12.2 5.69 35.7 0.74 0.85 1.51 2.61 3345 1889 8443 338 393 658 1066
Receipt [6] 0.12 0.04 0.05 0.04 0.04 0.07 0.09 89.2 42 53 40 50 75 91
Sepsis [17] 0.59 0.28 0.6 0.09 0.11 0.23 0.35 518 226 343 104 138 247 356
Hospital [18] 0.05 0.03 0.03 0.02 0.03 0.04 0.05 63 30 35 34 42 61 66
BPIC 19 [11] 0.4 0.19 0.79 0.06 0.09 0.12 0.14 128 71 136 44 57 81 91
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Regarding calculation time, we note that the number of solved LPs has a sig-
nificant influence. We observe that IAS has often comparable computation time
to the OCC-wx versions. Comparing optimality guaranteeing algorithms (IAS
& OCC), IAS clearly outperforms OCC in all measured dimensions for all logs.

6.3 Threats to Validity

In this section, we outline the limitations of the experimental setup. First, the
artificial generation of an event stream by iterating over the traces occurring
in the event log is a simplistic approach. However, this allows us to ignore the
general challenge of process mining on streaming data, deciding when a case is
complete, since new events can occur at any time on an (infinite) event stream.
Hence, we do not consider the impact of multiple cases running in parallel.

The majority of used reference process models are discovered with the IMf
algorithm. It should, however, be noted that these discovered models do not
contain duplicate labels. Finally, we compared the proposed approach against
a single reference, the OCC approach. To the best of our knowledge, however,
there are no other algorithms that compute prefix-alignments on event streams.

7 Conclusion

In this paper, we proposed a novel, parameter-free algorithm to efficiently moni-
tor ongoing processes in an online setting by computing a prefix-alignment once
a new event occurs. We have shown that the calculation of prefix-alignments
on an event stream can be “continued” from previous results on an extended
search space with different goal states, while guaranteeing optimality. The pro-
posed approach is designed for prefix-alignment computation since it utilizes
specific properties of the search space regarding prefix-alignment computation
and therefore, generally not transferable to other shortest path problems. The
results show that the proposed algorithm outperforms existing approaches in
many dimensions and additionally ensures optimality.

In future work, we plan to implement the proposed approach in real applica-
tion scenarios and to conduct a case study. Thereby, we want to focus on limited
storage capacities, which requires to decide whether a case is considered to be
completed to free storage.
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