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Abstract. Event logs capture the execution of business processes in
terms of executed activities and their execution context. Since logs con-
tain potentially sensitive information about the individuals involved in
the process, they should be pre-processed before being published to pre-
serve the individuals’ privacy. However, existing techniques for such pre-
processing are limited to a process’ control-flow and neglect contextual
information, such as attribute values and durations. This thus precludes
any form of process analysis that involves contextual factors. To bridge
this gap, we introduce PRIPEL, a framework for privacy-aware event log
publishing. Compared to existing work, PRIPEL takes a fundamentally
different angle and ensures privacy on the level of individual cases instead
of the complete log. This way, contextual information as well as the long
tail process behaviour are preserved, which enables the application of a
rich set of process analysis techniques. We demonstrate the feasibility of
our framework in a case study with a real-world event log.

Keywords: Process mining · Privacy-preserving data publishing ·
Privacy-preserving data mining

1 Introduction

Process Mining [34] enables the analysis of business processes based on event
logs that are recorded by information systems. Events in these logs represent
the executions of activities as part of a case, including contextual information,
as illustrated for the handling of patients in an emergency room in Table 1. Such
rich event logs do not only enable discovery of a model of a process’ control-
flow, see [1], but provide the starting point for multi-dimensional analysis that
incorporates the impact of the context on process execution. An example is the
prediction of the remaining wait time of a patient based on temporal informa-
tion (e.g., arrival in night hours), patient characteristics (e.g., age and sex), and
activity outcomes (e.g., dispensed drugs) [23]. The inclusion of such contextual
information provides a means for a fine-granular separation of classes of cases in
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Table 1. Event log example

Patient ID Activity Timestamp Payload

2200 Registration 03/03/19 23:40:32 {Age: 37, Sex: M, Arrival: Ambulance}
2200 Triage 03/05/17 00:47:12 {HIV-Positive: True}
2200 Surgery 03/05/17 02:22:17 {Operator: House}
. . . . . . . . . . . .

2201 Registration 03/05/17 00:01:02 {Age: 67, Sex: F, Arrival: Check-In}
2201 Antibiotics 03/05/17 00:15:16 {Drug: Cephalexin}
. . . . . . . . . . . .

the analysis. Since the separation is largely independent of the frequency of the
respective trace variants, analysis is not limited to cases that represent common
behaviour, but includes cases that denote unusual process executions.

Event logs, particularly those that include contextual information, may con-
tain sensitive data related to individuals involved in process execution [26].
Even when explicit pointers to personal information, such as employee names,
are pseudonymised or omitted from event logs, they remain susceptible to re-
identification attacks [13]. Such attacks still allow personal data of specific indi-
viduals to be identified based on the contents of an event log [36]. Consequently,
publishing an event log without respective consent violates regulations such as
the GDPR, given that this regulation prohibits processing of personal data for
such secondary purposes [35]. This calls for the design of methods targeted specif-
ically to protect the privacy of individuals in event logs. Existing approaches
for privacy-preserving process mining [12,25] emphasise the control-flow dimen-
sion, though. They lack the ability to preserve contextual information, such as
timestamps and attribute values, which prevents any fine-granular analysis that
incorporates the specifics of different classes of cases. However, aggregations of
contextual information in the spirit of k-anonymity, see [12], are not suited to
overcome this limitation. Such aggregations lead to a loss of the long tail process
behaviour, i.e., infrequent traces of cases that are uncommon and, hence, of par-
ticular importance for any analysis (e.g., due to exceptional runtime character-
istics). The only existing anonymisation approach that incorporates contextual
information [31] achieves this using homomorphic encryption. As such, it fails
to provide protection based on any well-established privacy guarantee.

To overcome these gaps, this paper introduces PRIPEL, a framework for
privacy-preserving event log publishing that incorporates contextual information.
Our idea is to ensure differential privacy of an event log on the basis of individ-
ual cases rather than on the whole log. To this end, the PRIPEL framework
exploits the maxim of parallel composition of differential privacy. Based on a dif-
ferentially private selection of activity sequences, contextual information from
the original log is integrated through a sequence enrichment step. Subsequently,
the integrated contextual information is anonymised following the principle of
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local differential privacy. Ensuring privacy on the level of individual cases is a
fundamentally different angle, which enables us to overcome the aforementioned
limitations of existing work. PRIPEL is the first approach to ensure differential
privacy not only for the control-flow, but also for contextual information in event
logs, while preserving large parts of the long tail process behaviour.

Since differential privacy ensures that personal data belonging to specific
individuals can not longer be identified, the anonymisation achieved by PRIPEL
is in line with the requirements imposed by the GDPR [10,14].

We demonstrate the feasibility of our approach through a case study in the
healthcare domain. Applying PRIPEL to a real-world event log of Sepsis cases
from a hospital, we show that the anonymisation preserves utility on the level
of event-, trace-, and log-specific characteristics.

The remainder is structured as follows. In Sect. 2, we provide background in
terms of an event log model and privacy guarantees. In Sect. 3, we introduce
the PRIPEL framework. We present a proof-of-concept in Sect. 4, including an
implementation and a case study. We discuss our results and reflect on limitations
in Sect. 5, before we review related work in Sect. 6 and conclude in Sect. 7.

2 Background

This section presents essential definitions and background information. In partic-
ular, Sect. 2.1 presents the event log model we employ in the paper. Subsequently,
Sect. 2.2 defines the foundations of local differential privacy, followed by an intro-
duction to differential privacy mechanisms in Sect. 2.3.

2.1 Event Log Model

We adopt an event model that builds upon a set of activities A. An event
recorded by an information system, denoted by e, is assumed to be related to the
execution of one of these activities, which is written as e.a ∈ A. By E , we denote
the universe of all events. Each event further carries information on its execution
context, such as the data consumed or produced during the execution of an activ-
ity. This payload is defined by a set of data attributes D = {D1, . . . , Dp} with
dom(Di) as the domain of attribute Di, 1 ≤ i ≤ p. We write e.D for the value
of attribute D of an event e. For example, an event representing the activity
‘Antibiotics’ may be associated with the ‘Drug’ attribute that reflects the pre-
scribed medication, see Table 1. Each event e further comes with a timestamp,
denoted by e.ts, that models the time of execution of the respective activity
according to some totally ordered time domain.

A single execution of a process, i.e., a case, is represented by a trace. This is
a sequence ξ = 〈e1, . . . , en〉 of events ei ∈ E , 1 ≤ i ≤ n, such that no event occurs
in more than one trace and the events are ordered by their timestamps. We adopt
a standard notation for sequences, i.e., ξ(i) = ei for the i-th element and |ξ| = n
for the length. For two distinct traces ξ = 〈e1, . . . , en〉 and ξ′ = 〈e′

1, . . . , e
′
m〉,

their concatenation is ξ.ξ′ = 〈e1, . . . , en, e′
1, . . . , e

′
m〉, assuming that the ordering
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is consistent with the events’ timestamps. If ξ and ξ′ indicate the same sequence
of activity executions, i.e., 〈e1.a, . . . , en.a〉 = 〈e′

1.a, . . . , e′
m.a〉, they are of the

same trace variant. An event log is a set of traces, L = {ξ1, . . . , ξn}, and we
write L for the universe of event logs. Table 1 defines two traces, as indicated
by the ‘patient ID’ attribute. In the remainder, we assume the individuals of
interest to be represented in at most one case. In our example, this means that
only one treatment per patient is recorded in the log.

2.2 Foundations of Local Differential Privacy

Differential privacy is a definition for privacy that ensures that personal data of
individuals is indistinguishable in a data analysis setting. Essentially, differential
privacy aims to allow one to learn nothing about an individual, while learning
useful information from a population [7]. Achieving differential privacy means
that result of a query, performed on an undisclosed dataset, can be published
without allowing an individual’s personal data to be derived from the published
result. On the contrary, methods that achieve local differential privacy anonymise
a dataset itself in such a manner that it can be published while still guaranteeing
the privacy of an individual’s data [18]. This is achieved by applying noise to
the data, contrary to applying it to the result of a function performed on the
undisclosed data. The adoption of local differential privacy in industry is well-
documented, being employed by, e.g., Apple [32], SAP [19], and Google [9].

To apply this notion in the context of event logs, we define α : L → L as an
anonymisation function that takes an event log as input and transforms it into an
anonymised event log. This transformation is non-deterministic and is typically
realised through a stochastic function. Furthermore, we define img(α) ⊆ L as
the image of α, i.e., the set of all event logs that may be returned by α. Finally,
we define two event logs L1, L2 ∈ L to be neighbouring, if they differ by exactly
the data of one individual. In our setting, this corresponds to one case and,
hence, one trace, i.e., |L1\L2| + |L2\L1| = 1. Based on [18], we then define local
differential privacy as follows:

Definition 1 (Local Differential Privacy). Given an anonymisation func-
tion α and privacy parameter ε ∈ R, function α provides ε-local differential
privacy, if for all neighbouring pairs of event logs L1, L2 ∈ L, it holds that:

Pr[α(L1) ∈ img(α)] ≤ eε × Pr[α(L2) ∈ img(α)]

where the probability is taken over the randomness introduced by the anonymisa-
tion function α.

The intuition behind the guarantee is that it limits the information that
can be disclosed by one individual, i.e., one case. The strength of the guarantee
depends on ε, with lower values leading to stronger data protection.
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2.3 Ensuring Local Differential Privacy

Mechanisms that ensure local differential privacy strive to provide privacy guar-
antees while keeping as much useful information as possible, i.e., they aim to
maintain maximum utility of the dataset. The mechanisms typically do not
delete or generalize (parts of the) data, as is done to obtain other privacy guar-
antees [20]. Rather, they define an anonymisation function that inserts noise into
data, in order to obscure information about individuals, while retaining as many
characteristics about the general population as possible. Several such mecha-
nisms have been developed to anonymise various data types, including ones that
ensure differential privacy for numerical, categorical, and boolean data:
Numerical Data – Laplace Mechanism. The Laplace mechanism [5] is an
additive noise mechanism for numerical values. It draws noise from a Laplacian
distribution, that is calibrated based on the privacy parameter ε and the sensi-
tivity of the data distribution. The latter is defined as the maximum difference
one individual can cause.
Boolean Data - Randomized Response. To ensure differential privacy of
boolean data, one can use randomized response [37]. The algorithm is based on
the following idea: A fair coin toss determines if the true value of an individual
is revealed or if a randomized value is chosen instead. Here, the randomization
depends on the strength ε of the differential privacy guarantee. In this paper, we
will use a so-called binary mechanism [16].
Categorical Data - Exponential Mechanism. To handle categorical data,
it is possible to use the exponential mechanism [27]. It enables the definition of
a utility difference between the different potential values of the domain of the
categorical value. The probability of a value being exchanged by another value
depends on the introduced probability loss.
Parallel Composition of Differential Privacy. Given such mechanisms that
are able to provide differential privacy for various data types, a crucial property
of (local) differential privacy is that it is compositional. Intuitively, this means
that when the results of multiple ε-differential-private mechanisms, performed
on disjoint datasets, are merged, the merged result also provides ε-differential
privacy [28]. Adapted to our notion of attributes and timestamps of events,
this is formalized as follows: Let Mi(e.di), 1 ≤ i ≤ p, and M0(e.ts) be the
values obtained by some mechanisms M0,M1, . . . Mp for the attribute values
and the timestamp of an event e. Then, if all mechanisms provide ε-differential
privacy and under the assumption of all attributes (and the timestamp) being
independent, the result of their joint application to e also provides ε-differential
privacy.

This property forms a crucial foundation for our proposed framework to
privacy-aware event log publishing, as introduced next.

3 The PRIPEL Framework

The Privacy-Preserving event log publishing (PRIPEL) framework takes an
event log as input and transforms it into an anonymised one that includes
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Fig. 1. Overview of PRIPEL Framework

contextual information and guarantees ε-differential privacy. As depicted in
Fig. 1, the PRIPEL framework consists of three main steps. Given an event
log L, PRIPEL first applies a trace-variant query Q on L. The query returns
a bag of activity sequences that ensures differential privacy from a control-flow
perspective. Second, the framework constructs new traces by enriching the activ-
ity sequences obtained by Q with contextual information, i.e., timestamps and
attribute values, from the original log L. This is achieved in a sequence enrich-
ment step, which results in a matched event log Lm. Finally, PRIPEL anonymises
the timestamps and attribute values of Lm individually by exploiting the maxim
of parallel composition of differential privacy. The resulting event log L′ then
guarantees ε-differential privacy, while largely retaining the information of the
original log L.

Sections 3.1 through 3.3 outline instantiations of each of these three steps.
However, we note that the framework’s steps can also be instantiated in a differ-
ent manner, for instance by using alternative trace-variant queries or matching
techniques. It is therefore possible to tailor PRIPEL to specific use cases, such
as a setting in which traces become available in batches.

3.1 Trace Variant Query

The first step of our framework targets the anonymisation of an event log from
a control-flow perspective. In particular, the framework applies a trace variant
query, which returns a bag of activity sequences that captures trace variants and
their frequencies in a differentially private manner. Such a step is essential, given
that even the publication of activity sequences from an event log, i.e., with all
attribute values and timestamps removed, can be sufficient to link the identity
of individuals to infrequent activity sequences [12,25]. For example, uncommon
treatment paths may suffice to resolve the identity of a specific patient.

In PRIPEL, we adopt a state-of-the-art realisation of a privacy-preserving
trace variant query [25]. It employs a Laplace mechanism (see Sect. 2.3) to add
noise to the result of a trace variant query. As shown for an exemplary query
result in Table 2, this mechanism may alter the frequency of trace variants,
remove variants entirely, and introduce new ones. Note that the size of a trace
variant query typically differs from the number of traces in the original log.

The employed trace variant query is configured with two parameters, n and k,
which influence the prefix-tree that the mechanism uses to generate a query
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result. Here, n sets the maximum depth of the prefix-tree, which determines the
maximum length of an activity sequence returned by the query. Parameter k is
used to bound the mechanism’s state space in terms of the number of potential
activity sequences that are explored. A higher k means that only more com-
monly occurring prefixes are considered, which reduces the runtime, but may
negatively affect the resulting log’s utility. The runtime complexity of the query
depends on the maximal number of explored prefixes: O(|A|n). Yet, in practice,
the exponential runtime is mitigated by the pruning parameter k.

Below, we adopt a flattened representation of the result of the trace variant
query. By Q(L) ⊆ (A∗)∗, we denote a sequence of activity sequences derived by
duplicating each activity sequence returned by the trace variant query according
to its frequency, in some arbitrary order. For example, if the query returns the bag
[〈Registration,Triage〉2, 〈Registration,Triage,Antibiotics〉], Q(L) is defined as
{〈Registration,Triage〉, 〈Registration,Triage,Antibiotics〉, 〈Registration,Triage〉}.

Table 2. Illustration of a privacy-aware trace variant query

Trace variant Count Privatized count

〈Registration,Triage,Surgery〉 5 6

〈Registration,Triage,Antibiotics〉 7 5

〈Registration,Triage,Surgery ,Antibiotics〉 2 3

〈Registration,Triage,Antibiotics,Surgery ,Antibiotics〉 0 1

So far, no other designs for trace variant queries have been introduced in the
literature. However, we assume that alternative query formulations suited for
specific use cases will be developed in the future.

3.2 Sequence Enrichment

The second step of the framework enriches the activity sequences obtained by
the trace variant query with contextual information, i.e., with timestamps and
attribute values. This is achieved by establishing a trace matching between each
activity sequence from Q(L) and a trace of the original log L. The latter trace
determines how the activity sequence is enriched with contextual information
to construct a trace of the matched log Lm. Here, Lm should resemble the
original log: Distributions of attribute values and timestamps, along with their
correlation with trace variants in the original L shall be mirrored in the matched
log Lm.

To link the activity sequences in Q(L) and traces in log L, we define a match-
ing function fm : Q(L) � L. It is potentially partial and injective, i.e., it matches
each activity sequence (again, note that activity sequences obtained from the
trace variant query are duplicated according to their frequency) to a separate
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trace in L, such that fm(σ1) = fm(σ2) implies that σ1 = σ2 for all σ1, σ2 that
are part of Q(L). However, constructing such a mapping function requires to
address two challenges:

(i) Since the trace variant query introduces noise, some sequences from Q(L)
cannot be paired with traces in L that are of the exact same sequence of
activity executions. Given a sequence σ = 〈Registration,Triage,Release〉 of
Q(L) and a trace ξ with its activity executions being 〈Registration,Release〉,
for example, the trace does not provide attribute values to be assigned to a
‘Triage’ event. To preserve their order, the insertion of an additional event
may require the timestamps of other events to be changed as well.

(ii) Since Q(L) may contain more sequences than the original log L has traces,
some sequences in Q(L) might not be matched to any trace in L, i.e., fm is
partial. Since all sequences in Q(L) must be retained in the construction of
traces for the matched log to ensure differential privacy, also such unmatched
sequences must be enriched with contextual information.

Given these challenges, PRIPEL incorporates three functions: (1) a matching
function fm; (2) a mechanism fe to enrich a matched sequence σ with contextual
information from trace fm(σ) to construct a trace for the matched log Lm; and
(3) a mechanism fu to enrich an unmatched sequence to construct a trace for Lm.
In this paper, we propose to instantiate these functions as follows:
Matching Function. The matching function fm shall establish a mapping from
Q(L) to L such that the activity sequences and traces are as similar as possible.
This similarity can be quantified using a distance function. Here, we propose to
use the Levenshtein distance [21] to quantify the edit distance of some sequence
σ that is part of Q(L) and the sequence of activity executions derived from a
trace ξ ∈ L, denoted as ed(σ, ξ). Using assignment optimization techniques, the
matching function is instantiated, such that the total edit distance is minimized,
i.e., with Q(L) = 〈σ1, . . . , σn〉, we minimize

∑
1≤i≤n ed(σi, fm(σi)).

Matched Sequence Enrichment. Given a matched sequence σ of Q(L), the
sequence σ is enriched based on the context information of trace ξ = fm(σ)
to create a new trace ξσ. The proposed procedure for this is described by
Algorithm 1. To create the events for the new trace ξσ derived from σ, we iterate
over all activities in σ, create a new event, and check if there is a corresponding
event e′ of ξ. Using kσ as the number of times we have observed activity a in
the sequence σ (line 4), e′ shall be the kσ-th occurrence of an event in ξ with
e.a = a (line 7). If such an event e′ exists, we assign all its attribute values to the
new event e (line 9). Subsequently, we check if the timestamp of e′ occurs after
the timestamp of the last event of ξσ (line 10). If this is the case, we assign the
timestamp e′.ts of the original event to event e. Otherwise, we generate a new
timestamp based on the following equation, assuming that the current event is
the n-th event to be added to ξσ = 〈e1, . . . , en−1〉:

en.ts = en−1.ts + Δen−1.a,en.a (1)

Here, Δen−1.a,en.a denotes a timestamp difference randomly drawn from the dis-
tribution of these differences in the original log. That is, the distribution is
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Algorithm 1. Matched Sequence Enrichment
INPUT: An event log L; an activity sequence σ; the matched trace ξ = fm(σ).
OUTPUT: A trace ξσ derived by enriching σ based on ξ.

1: for 1 ≤ i ≤ |σ| do
2: e ← create new event
3: e.a ← σ(i).a � Assign activity to new event
4: kσ ← |{1 ≤ j ≤ |ξσ| | ξσ(j).a = e.a}| � Count a-events in new trace ξσ

5: kξ ← |{1 ≤ j ≤ |ξ| | ξ(j).a = e.a}| � Count a-events in original trace ξ
6: if kσ < kξ then � Get corresponding occurrence of a
7: e′ ← ξ(j) with ξ(j).a = e.a and |{1 ≤ l < j | ξ(l).a = e.a}| = kσ

8: for all D ∈ D do
9: e.D ← e′.D � Assign attribute values of e′ to e

10: if e′.ts > ξσ(|ξσ|).ts then
11: e.ts ← e′.ts
12: else
13: e.ts ← derive timestamp based on Equation 1

14: else � No corresponding event in ξ
15: for all D ∈ D do e.D ← draw random attribute value

16: e.ts ← draw random timestamp for activity e.a

17: ξσ ← ξσ.〈e〉
18: return ξσ � Return new trace

obtained by considering all pairs of subsequent events in the original traces that
indicate the execution of the respective activities. If no such pairs of events
appeared in the original log, we resort to the distribution of all timestamp dif-
ferences of all pairs of subsequent activities of the original log.

If no corresponding event e′ can be found for the newly created event e, we
assign randomly drawn attribute values and a timestamp to this event (lines 15–
16). We draw the attributes values from the overall distribution of each attribute
D in the original log L, while timestamps are calculated according to Eq. 1.

Unmatched Sequence Enrichment. For sequences in Q(L) without a match-
ing, we assign the attribute values randomly. To handle the timestamps, we
randomly draw a timestamp tstart for the event created for the first activity in
σ, from the overall distribution of all timestamps of the first events of all traces
ξ in the original log L. We generate the remaining timestamps based on Eq. 1.

The runtime complexity of the whole sequence enrichment step is dominated
by the assignment optimization problem, which requires O(|Q(L)|3) time.

3.3 Applying Local Differential Privacy

Next, starting with the matched log derived in the previous step, we turn to the
anonymisation of contextual information using local differential privacy. While
the treatment of attribute values follows rather directly from existing approaches,
we propose a tailored approach to handle timestamps. The runtime complexity
of this step is linear in the size of the matched log Lm, i.e., we arrive at O(|Lm|).
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Fig. 2. Illustration of timestamp anonymisation

Anonymising Attribute Values. We differentiate between attributes of three
data types: numerical, categorical, and boolean. For each type, we employ the
mechanism discussed in Sect. 2.3. Under the aforementioned assumptions for
parallel composition of differential privacy, the resulting values are ε-differentially
private. Note that for each attribute, a different privacy parameter ε may be
chosen. This way, the level of protection may be adapted to the sensitivity of
the respective attribute values.
Anonymising Timestamps. To anonymise timestamps, we introduce random
timestamp shifts, which is inspired by the treatment of network logs [38]. That
is, we initially alter all timestamps based on some randomly drawn noise value,
λshift, which is drawn, for instance, from a Laplacian distribution. The result
is illustrated in the middle sequence of Fig. 2. After this initial shift, we subse-
quently introduce noise to the time intervals between events, depicted as Δ1, Δ2,
and Δ3 in the figure. To this end, we add random noise to the length of each
interval, denoted by λ1, λ2, and λ3. To retain the order of events, we bound the
random timestamp shift to the size of the interval between two events. Since the
event order was already anonymised in the first step of the framework (Sect. 3.1),
introducing additional noise by re-ordering events here would just reduce the
event log’s utility.

After this final step, all aspects of the original log, i.e., control-flow and
contextual information, have been anonymised. Based on the maxim of parallel
composition, the resulting log provides ε-differential privacy.

4 Proof-of-Concept

This section presents a proof-of-concept of the PRIPEL framework. We first
report on a prototypical implementation (Sect. 4.1), which we apply in a case
study using a real-world event log (Sects. 4.2–4.3). In this manner, we aim to
show the feasibility of the framework in a realistic setting and investigate its
ability to preserve the utility of an event log while providing privacy guarantees.
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4.1 Prototypical Implementation

We implemented PRIPEL in Python and published our implementation under
the MIT licence on Github.1 The implementation uses the PM4Py library [2] to
parse and process event logs. To instantiate the framework, we implemented a
Python version of the trace-variant query by Mannhardt et al. [25]. The anonymi-
sation of contextual information is based on IBM’s diffprivlib library [15].

4.2 Case Study Setup

We show the feasibility of PRIPEL by applying our implementation to the Sepsis
event log [24]. We selected this event log given its widespread adoption as a basis
for case studies, as well as due to the relevance of its characteristics in the context
of our work. As shown in our earlier work [12], anonymisation techniques that
perform aggregations over the whole Sepsis log have a considerable impact on
the anonymised log’s utility. The reason being the long tail process behaviour
in terms of a relatively low number of re-occurring trace variants: 1,050 traces
spread over 846 trace variants. As such, the log’s challenging characteristics make
it particularly suitable for a proof-of-concept with our framework.

To parametrise our implementation, we test different values of the privacy
parameter ε, ranging from 0.1 to 2.0. Given that this parameter defines the
strictness of the desired privacy guarantees (lower being stricter), varying ε shall
show its impact on utility of the resulting anonymised log.

We select the maximal prefix length n = 30, to cover the length of over 95%
of the traces in the Sepsis event log. To cover all potential prefixes of the original
log, we would need to set n = 185. However, this would add a lot of noise and
increase the runtime significantly. Therefore, we opt for only looking into shorter
traces. For each event log, we opted for the lowest value for k that still computes
the query within a reasonable time, as will be detailed in the remainder.

4.3 Case Study Results

In this section, we first focus on the runtime of the PRIPEL framework. Sub-
sequently, we explore its ability to preserve event log utility while guaranteeing
ε-differential privacy.
Runtime. We measured the runtime of our PRIPEL implementation for various
parameter configurations, obtained on a MacBook Pro (2018) with an i5 Intel
Core CPU and 8 GB memory. As shown in Table 3, we were typically able to
obtain an anonymised event log in a manner of minutes, which we deem feasible
in most application scenarios. However, the runtime varies considerably across
the chosen configurations and the framework’s three main steps.

All besides one of the anonymised logs have far more traces than the original
log, due to the added noise as part of the trace variant query. However, this is
not true for the log with a ε = 1.5 differential privacy guarantee, which contains

1 https://github.com/samadeusfp/PRIPEL.

https://github.com/samadeusfp/PRIPEL
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only one third of the number of traces of the original log. This is due to the low
noise level and the fact that k = 2 cuts out all variants that appear only once.
This applies to nearly all the variants in the original log. Since only a few noisy
traces are added, the resulting log is significantly smaller than the original log.

Table 3. Runtime of PRIPEL for the Sepsis log

ε k |Q(L)| Query Enrichment Anonymisation Total

0.1 20 5,175 1 s 35 s 3 m 24 s 4 m 07 s

0.5 4 6,683 1 s 3 m 52 s 4 m 08 s 8 m 12 s

1.0 2 7,002 2 s 8 m 37 s 4 m 27 s 13 m 18 s

1.5 2 340 1 s 8 s 13 s 23 s

2.0 1 13,152 9 s 33 m 05 s 8 m 30 s 42 m 06 s

The trace variant query (Step 1 in PRIPEL), is executed in a manner of sec-
onds, ranging from one to nine seconds, depending on the configuration. However,
this runtime could be greatly exceeded for configurations with a higher n. While
a trace variant query with ε = 1.5 and k = 2 is answered in one second, a
configuration of ε = 1.5 and k = 1 does not lead to any result within an hour.

Sequence enrichment (Step 2) is the step with the largest runtime variance,
from 35 s to 33 min. In most configurations, this step also represents the largest
contribution to the total runtime. This is due to the polynomial runtime com-
plexity of the enrichment step, see Sect. 3.2. To reduce this runtime, a greedy
strategy may instead be used to match activity sequences and traces.

Anonymisation based on local differential privacy (Step 3) has a reasonable
runtime that increases linearly with the number of traces in the resulting log.

Based on these observations and the non-repetitive character of the anonymi-
sation task, we argue that it is feasible to apply our PRIPEL framework in
real-world settings. However, if runtime plays a crucial factor in an application
scenario, it should be clear that a suitable parameter configuration must be
carefully selected.
Event Log Utility. To illustrate the efficacy of PRIPEL, we analyse the utility
of anonymised event logs. In particular, we explore measures for three scopes:
(1) the event level, in terms of attribute value quality, (2) the trace level, in terms
of case durations, and (3) the log level, in terms of overall process workload.

Data Attribute Values: At the event level, we compare the value distribution of
data attributes in anonymised logs to the original distribution. The Sepsis log
primarily has attributes with boolean values. The quality of their value distribu-
tions is straightforward to quantify, i.e., by comparing the fraction of true values
in an anonymised log L′ to the fraction in L. To illustrate the impact of the
differential privacy parameter ε on attribute value quality, we assess the value
distribution for the boolean attribute InfectionSuspected. As depicted in Table 4,
the truth value of this attribute is true for 81% of the cases in the original log.
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Table 4. Sensitivity of attribute values to parameter ε

Attribute Original ε = 2.0 ε = 1.5 ε = 1.0 ε = 0.5 ε = 0.1

Infection suspected (fraction) 0.81 0.75 0.69 0.67 0.58 0.51

Avg. case duration (days) 28.47 36.93 7.95 37.77 37.16 34.2

Median case duration (days) 5.34 11.23 0.12 11.92 10.95 9.57

The anonymised distribution is reasonably preserved for the highest ε value,
i.e., the least strict privacy guarantee. There, the distribution has 75% true val-
ues. However, the accuracy of the distribution drops for stronger privacy guar-
antees, reaching almost full randomness for ε = 0.1. This illustrates that the
quality of attribute values can be preserved for certain privacy levels, but that
it may be impacted for stricter settings. Note that, given that these results are
obtained by anonymising individual values, the reduced quality for stronger pri-
vacy guarantees is inherently tied to the notion of differential privacy and is,
therefore, independent of the specifics of the PRIPEL framework.

Case Duration. Next, we investigate the accuracy of the case durations in the
anonymised logs. Unlike the previously discussed quality of individual event
attributes, the quality of case durations is influenced by all three steps of the
framework. Therefore, when interpreting the results depicted in Table 4, it is
important to consider that the maximal length of a trace is bound to 30 events
in anonymised logs (due to the selection of parameter n), whereas the original
log contains traces with up to 370 events. However, we can still observe longer
case durations in the anonymised logs due to the added noise. Additionally, in
all scenarios, the average case duration is far higher than the median case dura-
tion. This indicates that the log contains several outliers in terms of longer case
durations. All anonymised logs reveal this insight. We conclude that PRIPEL
preserves insights on the trace level, such as the duration of cases.

Process Workload. Finally, at the log level, we consider the total workload of a
process in terms of the number of cases that are active at any particular time.
Given that anonymised event logs can have a considerably higher number of
traces than the original log, we consider the progress of the relative number of
active cases over time, as visualized in Fig. 3. The red dots denote the original
event log, while blue triangles represent the anonymised event log with ε = 1.0.

The figure clearly shows that the general trend over time is sustained. How-
ever, the anonymised log shows a consistently higher workload than the original
log. Furthermore, the variance over time is less extreme for the anonymised log.
This shows that the necessary noise insertion smooths out some of the variability.
Nevertheless, the results illustrate PRIPEL’s ability to preserve utility for such
a log-level process analysis.
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Fig. 3. Active cases over time in original log (red) vs. anonymised log (blue) (Color
figure online)

5 Discussion

With PRIPEL, we introduced a framework that enables publishing of event logs
that retain contextual information while guaranteeing differential privacy. As
such, the anonymised event log can be used for rich process mining techniques
that incorporate a fine-granular separation of classes of cases, without violating
recent privacy regulations, such as the GDPR or CCPA.

While our general framework is generally applicable, the specific instanti-
ations introduced earlier impose two assumptions on the event logs taken as
input.

First, the employed notion for differential privacy assumes that any individ-
ual, such as a patient, is only represented in one case. To be able to guarantee
differential privacy in contexts where this assumption may not hold, one can
ensure that a single case exists per individual during the log extraction step, e.g.,
by limiting the selection of cases for which traces are derived or by constrain-
ing the time interval considered in the analysis. Alternatively, if the maximum
number of cases per individual is known, the degree of noise introduced in the
first step of the framework can be adjusted accordingly, by selecting the param-
eter ε. Finally, one may incorporate strategies that explicitly aim at adjusting
differential privacy to handle multiple occurrences of individuals, such as [17].

Second, we assume that all attributes can be anonymised independently.
Hence, the usefulness of anonymised values or the degree of privacy may
be reduced for strongly correlated attributes. For instance, the independent
anonymisation of the height and age of a child may result in improbable combi-
nations.

Also, an attribute may represent a measurement that appears repeatedly in
the trace, e.g., capturing the trend of a person’s weight. Since the measurements
are inter-related, the values to be anonymised are not independent, so that the
parallel composition of differential privacy is not applicable. In that case, one
can employ notions of differential privacy as developed for streaming settings [6].

Aside from these assumptions, we also acknowledge certain limitations
related to our instantiation of the framework’s steps. For instance, the approach
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chosen to determine the sensitivity of numerical attributes and timestamps is
prone to outliers. Therefore, it might be necessary to reduce the number of out-
liers in an event log during pre-processing, in order to maintain the utility of
the anonymised log. Yet, such limitations are inherent to any data anonymisa-
tion approach, since it has been shown that anonymisation reduces the utility of
data [3]. Another limitation relates to the applied trace variant query. For this
query mechanism, the size of the anonymised log can differ drastically from the
original log. This may diminish the utility of the log for certain analysis tasks,
such as the identification of performance bottlenecks.

Finally, we highlight that the PRIPEL framework, and the notion of differen-
tial privacy in general, is particularly suited for analysis techniques that aim to
aggregate or generalize over the traces in an (anonymised) event log. This means
that the resulting event logs are suitable for, e.g., process discovery (e.g., by a
directly-follows relation over all traces), log-level conformance checking (e.g., by
a frequency distribution of deviations observed in all traces), process enhance-
ment (e.g., by aggregate performance measures for activities), and predictive
monitoring (e.g., by models that generalize the correlations observed between
trace features and outcomes). However, the insertion of noise can lead to the
inclusion of process behaviour that never occurred in the original log, which
may lead to incorrect results when performing trace-level analysis, such as the
establishment of alignments for a single case. If it is important to avoid such
false positives, other anonymisation approaches, such as PRETSA [12], may be
more suitable.

6 Related Work

Privacy in process mining recently received a lot of attention [11,29]. The prob-
lem was raised in [26], noticing that most individuals might agree with the usage
of their data for process improvement. However, the analysis of personal data
for such a goal represents so-called secondary use, which is in violation of regu-
lations such as the GDPR and CCPA. Furthermore, in [36], it was shown that
even projections of event logs can lead to serious re-identification risks.

Several approaches have been proposed to address these privacy issues. In [12],
we proposed an algorithm to sanitize event logs for process discovery, which
ensures k-anonymity and t-closeness. Alternative approaches [4,31] use cryp-
tography to hide the confidential data in event logs. Other work focused on
ensuring privacy for specific process mining tasks, by directly adapting analysis
techniques. For instance, in [30] a technique to ensure confidentiality in role min-
ing was proposed, while [25] introduced privacy-preserving queries to retrieve
a directly-follows graph and the trace variants of a log. The work in [33] uses
encryption to calculate the output of the alpha miner in a privacy-preserving
manner. Other work considers process mining performed by multiple parties
on an inter-organizational business process. In [22], an approach to generate a
combined process model for such a business process was proposed. Similarly,
[8] introduces an approach based on secure multi-party computation to answer
queries relating the business process, such as the directly-follows query.
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7 Conclusion

In this paper, we introduced PRIPEL, a framework to publish anonymised event
logs that incorporates contextual information while guaranteeing differential pri-
vacy. In particular, PRIPEL ensures differential privacy on the basis of individ-
ual cases, rather than on an entire event log. We achieved this by exploiting the
maxim of parallel composition. By applying a prototypical implementation on
a real-world event log, we illustrate that the utility of anonymised event logs is
preserved for various types of analysis involving contextual information.

By incorporating contextual information, for the first time, PRIPEL offers
the use of rich process mining techniques in a privacy-preserving manner. In
particular, anonymised event logs are now suitable for analysis techniques that
incorporate a fine-granular separation of cases based on contextual information.
In future work, we intend to further explore the impact that strongly corre-
lated attributes have on the provided privacy guarantees. In addition, we aim to
incorporate the handling of ongoing cases in the PRIPEL framework.

Acknowledgements. This work was partly supported by the Alexander von
Humboldt Foundation.
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