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Abstract. Many definitions of business processes refer to business goals,
value creation, profits, etc. Nevertheless, the focus of formal methods
research on business processes lies on the correctness of the execution
semantics of models w.r.t. properties like deadlock freedom, liveness, or
completion guarantees. However, the question of whether participants
are interested in working towards completion – or in participating in the
process at all – has not been addressed as of yet.

In this work, we investigate whether inter-organizational business pro-
cesses give participants incentives for achieving the business goals: in
short, whether incentives are aligned within the process. In particular,
fair behavior should pay off and efficient completion of tasks should be
rewarded. We propose a game-theoretic approach that relies on algo-
rithms for solving stochastic games from the machine learning commu-
nity. We describe a method for checking incentive alignment of process
models with utility annotations for tasks, which can be used for a priori
analysis of inter-organizational business processes. Last but not least, we
show that the soundness property is a special case of incentive alignment.

Keywords: Inter-organizational business processes · Incentive
alignment · Collaboration · Choreography

1 Introduction

Many definitions of what a business process is refer to business goals [29] or
value creation [7], but whether process participants are actually incentivized to
contribute to a process has not been addressed as yet. For intra-organizational
processes, this question is less relevant; motivation to contribute is often based
on loyalty, bonuses if the organization performs well, or simply that tasks in a
process are part of one’s job. Instead, economic modeling of intra-organizational
processes often focuses on cost, e.g. in activity-based costing [12], which can be
assessed using model checking tools [9] or simulation [5].

For inter-organizational business processes, such indirect motivation cannot
be assumed. A prime example of misaligned incentives was the $2.5B write-off
in Cisco’s supply chain in April 2001 [20]: success of the overall supply chain
was grossly misaligned with the incentives of individual participants. (This hap-
pened despite the availability of several game theoretic approaches for analyzing
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incentive structures for the case of supply chains [4].) Furthermore, modeling
incentives accurately is actually possible in cross-organizational processes, e.g.,
based on contracts and agreed-upon prices. With the advent of blockchain tech-
nology [30], it is possible to execute cross-organizational business processes or
choreographies as smart contracts [18,28]. The blockchain serves as a neutral,
participant-independent computational infrastructure, and as such enables col-
laboration across organizations even in situations characterized by a lack of trust
between participants [28]. However, as there is no central role for oversight, it is
important that incentives are properly designed in such situations, e.g., to avoid
unintended –possibly devastating– results, like those encountered by Cisco. In
fact, a main goal of the Ethereum blockchain is, according to its founder Vitalik
Buterin, to create “a better world by aligning incentives”1.

In this paper, we present a framework for incentive alignment of inter-
organizational business processes based on game theory. We consider bpmn mod-
els with suitable annotation concerning the utility2 of activities, very much in
the spirit of activity-based costing (abc) [12, Chapter 5]. In short, fair behavior
should pay off and participants should be rewarded for efficient completion of
process instances. In more detail, we shall consider bpmn models as stochastic
games [24] and formalize incentive alignment as “good” equilibria of the result-
ing game. Which equilibria are the desirable ones depends on the business goals
w.r.t. which we want align incentives. In the present paper, we focus on proper
completion and liveness of activities. Interestingly, the soundness property [2]
will be rediscovered as the special case of incentive alignment within a single
organization that rewards completion of every activity.

The overall contribution of the paper is a framework for incentive align-
ment of business process models, particularly in inter-organizational settings.
Our approach is based on game theory and inspired by advances on the solution
of stochastic games from the machine learning community, which has developed
algorithms for the practical computation of Nash [22] and correlated equilib-
ria [16,17]. The framework focuses on checking incentive alignment as an a pri-
ori analysis of business processes specified as bpmn models with activity-based
utility annotations. Specifically, we:

1. describe a principled method for translating bpmn-models with activity-based
costs to stochastic games [24]

2. propose a notion of incentive alignment that we prove to be a conservative
extension of Van der Aalst’s soundness property [2],

3. illustrate the approach with a simplified order-to-cash (o2c) process.

We pick up the idea of incentive alignment for supply chains [4] and set
out to apply it in the realm of inter-organizational business processes. From a
technical point of view, we are interested in extending the model checking tools
for cost analysis [9] for bpmn process models to proper collaborations, which
we model as stochastic games [24]. This is analogous to how the model checker
1 https://www.ikiguide.com/ethereum/, accessed 8-3-2020.
2 We shall use utility functions in the sense of von Neumann and Morgenstern [19].

https://www.ikiguide.com/ethereum/
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prism has been extended from Markov decision processes to games [14]. We keep
the connection with established concepts from the business process management
community by showing that incentive alignment is a conservative extension of
the soundness property (see Theorem 1). Our approach hinges on algorithms
[16,22] for solving the underlying stochastic games of bpmn process models,
which are sufficient for checking incentive alignment.

The remainder of the paper is structured as follows. We introduce concepts
and notations in Sect. 2. On this basis, we formulate two versions of incentive
alignment in Sect. 3. Finally, we draw conclusions in Sect. 4. The proof of the
main theorem can be found in the extended version [8].

2 Game Theoretic Concepts and the Petri Net Tool Chest

We now introduce the prerequisite concepts for stochastic games [24] and ele-
mentary net systems [23]. The main benefit of using a game theoretic approach
is a short list of candidate definitions of equilibrium, which make precise the
idea of a “good strategy” for rational actors that compete as players of a game.
We shall require the following two properties of an equilibrium: (1) no player
can benefit from unilateral deviation from the “agreed” strategy and (2) players
have the possibility to base their moves on information from a single (trusted)
mediator. The specific instance that we shall use are correlated equilibria [3,10]
as studied by Solan and Vieille [25].3 We take ample space to review the latter
two concepts, followed by a short summary of the background on Petri nets.

We use the following basic concepts and notation. The cardinality and the
powerset of a set M are denoted by |M | and ℘M , respectively. The set of real
numbers is denoted by R and [0, 1] ⊆ R is the unit interval. A probability
distribution over a finite or countably infinite set M is a function p : M → [0, 1]
whose values are non-negative and sum up to 1, in symbols

∑
m∈M p(m) = 1.

The set of all probability distributions over a set M is denoted by Δ(M).

2.1 Stochastic Games, Strategies, Equilibria

We proceed by reviewing core concepts and central results for stochastic
games [24], introducing notation alongside; we shall use examples to illustrate
the most important concepts. The presentation is intended to be self-contained
such that no additional references should be necessary. However, the interested
reader might want to consult standard references or additional material, e.g.,
textbooks [15,21], handbook articles [11], and surveys [26]. We start with the
central notion.

Definition 1 (Stochastic game). A stochastic game G is a quintuple G =
〈N, S, A, q, u〉 that consists of

3 Nash equilibria are a special case, which however have drawbacks that motivate
Aumann’s work on the more general correlated equilibria [3,10].
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Fig. 1. A simplified order-to-cash process

– a finite set of players N = {1, . . . , |N |} (ranged over by i, j, in, etc.);
– a finite set of states S (ranged over by s, s′, sn, etc.);
– a finite, non-empty set of action profiles A =

∏|N |
i=1 Ai (ranged over by a, an,

etc.), which is the Cartesian product of a player-indexed family {Ai}i∈N of
sets Ai , each of which contains the actions of the respective player (ranged
over by ai , ai

n, etc.);
– a non-empty set of available actions Ai(s) ⊆ Ai , for each state s ∈ S and

player i;
– probability distributions q(· | s, a) ∈ Δ(S), for each state s ∈ S and every

action profile a ∈ A, which map each state s′ ∈ S to q(s′ | s, a), the transition
probability from state s to state s′ under the action profile a; and

– the payoff vectors u(s, a) = 〈u1(s, a), . . . , u|N |(s, a)〉, for each state s ∈ S and
every action profile a = 〈a1, . . . , a|N |〉 ∈ A.

Note that players always have some action(s) available, possibly just a dedicated
idle action, see e.g. [13].

The bpmn model of Fig. 1 can be understood as a stochastic game played by
a shipper, a customer, and a supplier. Abstracting from data, precise timings,
and similar semantic aspects, a state of the game is a state of an instance of
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the process, which is represented as a token marking of the bpmn model. The
actions of each player are the activities and events in the respective pool, e.g., the
ship task, which Supplier performs after receiving an order from the Customer
and payment of the postage fee to Shipper. Action profiles are combinations
of actions that can (or must) be executed concurrently. For example, sending
the order and receiving the order after the start of the collaboration may be
performed synchronously (e.g., via telephone). The available actions of a player
in a given state are the tasks or events in the respective pool that can be executed
or happen next – plus the idle action. The transition probabilities for available
actions in this bpmn process are all 1, such that if players choose to execute
certain tasks next, they will be able to do so if the chosen activities are actually
available actions. As a consequence, all other transition probabilities are 0.

One important piece of information that we have to add to a bpmn model
via annotations is the utility of tasks and events. In analogy to the abc method,
which attributes a cost to every task, we shall assume that each task has a certain
utility for every role – and be it just zero. Utility annotations are the basis for the
subsequent analysis of incentive alignment, vastly generalizing cost minimization.
Note that, in general, it is non-trivial to chose utility functions, especially in
competitive situations. However, the o2c process comes with natural candidates
for utilities, e.g., postage fees can be looked up from one’s favorite carrier, the
cost for gas, maintenance, and personnel for shipping is fairly predictable, and
finally there is the profit for selling a good.

A single instance of the o2c process exhibits the phenomenon that Customer
has no incentive to pay. However, we want to stress that – very much for the same
reason – Shipper would not have any good reason to perform delivery, once the
postage fee is paid. Thus, besides the single instance scenario, we shall consider
an unbounded number of repetitions of the process, but only one active process
instance at each point in time.4 In the repeating variant, the rational reason
for the shipper to deliver (and return damaged goods) is expected revenue from
future process instances.

One distinguishing feature of the o2c collaboration is that participants do not
have to make any joint decisions. Let us illustrate the point with another exam-
ple. Alice and Bob are co-founders of a company, which is running so smoothly
that it suffices when, any day of the week, only one of them is going to work.

Alice suggests that their secretary Mrs. Medina could help them out by rolling
a 10-sided die each morning and notifying them about who is going to go to work
that day, dependent on whether the outcome is smaller or larger than six. This
elaborate process (as shown in Fig. 2), lets Bob work 60% and Alice 40% of the
days, respectively. Alice’s reasoning behind it is the observation that Alice is
50% more efficient than Bob when it comes to generating revenue, as indicated
by the amount of $ signs in the process.

In game theoretic terminology, Mrs. Medina is taking the role of a common
source of randomness that is independent of the state of the game and does not

4 We leave the very interesting situation of interleaved execution of several process
instances for future work.
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Fig. 2. The To work or not to work? collaboration

need to observe the actions of the players. The specific formal notion that we
shall use is that of an autonomous correlation device [25, Definition 2.1].

Definition 2 (Autonomous correlation device). An autonomous correla-
tion device is a family of pairs D =

{〈{M i
n}i∈N , dn〉}

n∈N
(that is indexed over

natural numbers n ∈ N) each of which consists of

– a family of finite sets of signals M i
n, (additionally) indexed over players; and

– a function dn that maps lists of signal vectors 〈x1, . . . , xn−1〉 ∈ ∏n−1
k=1 Mk

to probability distributions dn〈x1, . . . , xn−1〉 ∈ Δ(Mn) over the Cartesian
product Mn =

∏|N |
i=1 M i

n of all signal sets M i
n.

We shall refer to operators of autonomous correlation devices as mediators, which
guide the actions of players during the game.

Each correlation device for a game induces an extended game, which proceeds
in stages. In general, given a game and an autonomous correlation device, the n-
th stage begins with the mediator drawing a signal vector xn ∈ Mn =

∏|N |
i=1 M i

n

according to the device distribution dn〈x1, . . . , xn−1〉 – e.g., Mrs. Medina rolling
the die – and sending the components to the respective players – the sending of
messages to Bob and Alice (in one order or the other). Then, each player i chooses
an available action ai

n. This choice can be based on the respective component
xi

n of the signal vector xn ∈ Mn, information about previous states sk of the
game G, and moves aj

k of (other) players from the history.5 After all players
made their choice, we obtain an action profile an = 〈a1

n, . . . , a|N |
n 〉.

5 In the present paper, we only consider games of perfect information, which is suitable
for business processes in a single organization or which are monitored on a blockchain.
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While playing the extended game described above, each player makes obser-
vations about the state and the actions of players; the role of the mediator is
special insofar as it does not need and is also not expected to observe the run of
the game. The “local” observations of each player are the basis of their strategies.

Definition 3 (Observation, strategy, strategy profile). An observation at
stage n by player i is a tuple h = 〈s1, xi

1, a1, . . . , sn−1, xi
n−1, an−1, sn, xi

n〉 with

– one state sk, signal xi
k, and action profile ak, for each number k < n,

– the current state sn, also denoted by sh, and
– the current signal xi

n.

The set of all observations is denoted by Hi
n(D). The union Hi(D) =⋃

n∈N
Hi

n(D) of observations at any stage is the set of observations of player i.
A strategy is a map σi : Hi(D) → Δ(Ai) from observations to probability dis-
tributions over actions that are available at the current state of histories, i.e.,
σi

h(ai) = 0 if ai /∈ Ai(sh), for all histories h ∈ Hi(D). A strategy profile is a
player-indexed family of strategies {σi}i∈N .

Thus, each of the players observes the history of other players, including the
possibility of punishing other players for not heeding the advice of the mediator.
This is possible since signals might give (indirect) information concerning the
(mis-)behavior of players in the past, as remarked by Solan and Vieille [25,
p. 370]: by revealing information about proposed actions of previous rounds,
players can check for themselves whether some player has ignored some signal
of the mediator.

The data of a game, a correlation device, and a strategy profile induce proba-
bilities for finite plays of the game, which in turn determine the expected utility
of playing the strategy. Formally, an autonomous correlation device and a strat-
egy profile with strategies for every player yield a probabilistic trajectory of a
sequence of “global” states, signal vectors of all players, and complete action
profiles, dubbed history. The formal details are as follows.

Definition 4 (History and its probability). A history at stage n is a tuple
h = 〈s1, x1, a1, . . . , sn−1, xn−1, an−1, sn, xn〉 that consists of

– one state sk, signal vector xk, and action profile ak, for each number k < n,
– the current state sn, often denoted by sh, and
– the current signal vector xn.

The set of all histories at state n is denoted by Hn(D). The union H (D) =⋃
n∈N

Hn(D) of histories at arbitrary stages is the set of finite histories. The
probability of a finite history h = 〈s1, x1, a1, . . . , sn−1, xn−1, an−1, sn, xn〉 in the
context of a correlation device D, an initial state s, and a strategy profile σ is
defined as follows, by recursion over the length of histories.

n = 1: PD,s,σ(〈s1, x1〉) =
{

0 if s �= s1

d1〈〉(x1) otherwise
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n > 1: PD,s,σ(〈�, an−1, sn, xn〉) = p〈�〉(an−1)
︸ ︷︷ ︸∏
i∈N

σi

〈�〉(a
i
n−1)

q(sn | sn−1, an−1) pdn−1(xn)
︸ ︷︷ ︸

dn−1〈x1,...,x
n−1〉(x

n
)

Again, note that the autonomous correlation device does not “inspect” the states
of a history, in the sense that the distributions over signal vectors dn are not
parameterized over states from the history, but only over previously drawn signal
vectors – whence the name.

Definition 5 (Mean expected payoff). The mean expected payoff of player i

for stage n is γ̄i
n(D, s, σ) =

∑
h∈Hn+1(D)

PD,s,σ(h)
n

∑n
k=1 ui(sk, ak) where h =

〈s1, x1, a1, . . . an, sn+1, xn+1〉.
At this point, we can address the question of what a good strategy profile

is and fill in all the details of the idea that an equilibrium is a strategy profile
that does not give players any good reason to deviate unilaterally. We shall tip
our hats to game theory and use the notation (πi , σ−i) for the strategy profile
which is obtained by “overwriting” the single strategy σi of player i with a
strategy πi (which might, but does not have to be different); thus, the expression
‘(πi , σ−i)’ denotes the unique strategy subject to equations (πi , σ−i)i = πi and
(πi , σ−i)j = σj (for i �= j).

Definition 6 (Autonomous correlated ε-equilibrium). Given a positive
real ε > 0, an autonomous correlated ε-equilibrium is a pair 〈D, σ∗〉, which
consists of an autonomous correlation device D and a strategy profile σ∗ for which
there exists a natural number n0 ∈ N such that for any alternative strategy σi of
any player i, the following inequality holds, for all n ≥ n0 and all states s ∈ S.

γ̄i
n(D, s, σ∗) ≥ γ̄i

n

(D, s, (σi , σ∗−i)
) − ε (1)

Thus, a strategy is an autonomous correlated ε-equilibrium if the benefits that
one might reap in the long run by unilateral deviation from the strategy are
negligible as ε can be arbitrarily small. In fact, other players will have ways to
punish deviation from the equilibrium [25, § 3.2].

2.2 Petri Nets and Their Operational Semantics

We shall use the definitions concerning Petri nets that have become established
in the area of business processes management [2].

Definition 7 (Petri net, marking, and marked Petri net). A Petri net is
a triple N = (P, T, F) that consists of

– a finite set of places P;
– a finite set of transitions T that is disjoint from places, i.e., T ∩ P = ∅; and
– a finite set of arcs F ⊆ (P × T) ∪ (T × P) (a.k.a. the flow relation).
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An input place (resp. output place) of a transition t ∈ T is a place p ∈ P s.t.
(p, t) ∈ F (resp. (t, p) ∈ F). The pre-set •t (resp. post-set t•) of a transition t ∈ T
is the set of all input places (resp. output places), i.e.,

•t = {p ∈ P | p is an input place of t} t• = {p ∈ P | p is an output place of t}.

A marking of a Petri net N is a multiset of places m, i.e., a function m : P → N

that assigns to each place p ∈ P a non-negative integer m(p) ≥ 0. A marked
Petri net is a tuple N = (P, T, F, m0) whose first three components (P, T, F)
are a Petri net and whose last component m0 is the initial marking, which is a
marking of the latter Petri net.

One essential feature of Petri nets is the ability to execute several transitions con-
currently – possibly several occurrences of one and the same transition. However,
we shall only encounter situations in which a set of transitions fires. To avoid
proliferation of terminology, we shall use the general term step. We fix a Petri
net N = (P, T, F) for the remainder of the section.

Definition 8 (Step, step transition, reachable marking). A step in the
net N is a set of transitions t ⊆ T. The transition relation of a step t ⊆ T relates
a marking m to another marking m′, in symbols m [t〉 m′, if the following two
conditions are satisfied, for every place p ∈ P.

1. m(p) ≥ |{t ∈ t | p ∈ •t}|
2. m′(p) = m(p) − |{t ∈ t | p ∈ •t}| + |{t ∈ t | p ∈ t•}|
We write m [〉 m′ if m [t〉 m′ holds for some step t and denote the reflexive
transitive closure of the relation [〉 by [〉∗. A marking m′ is reachable in a marked
Petri net N = (P, T, F, m0) if m0 [〉∗

m′ holds, in the net (P, T, F).

For a transition t ∈ T, we write m [t〉 m′ instead of m [{t}〉 m′. Thus the empty
step is always fireable, i.e., for each marking m, we have an “idle” step m [∅〉 m.

Recall that a marked Petri net N = (P, T, F, m0) is safe if all reachable
markings m′ have at most one token in any place, i.e., if they satisfy m′(p) ≤ 1,
for all p ∈ P. Thus, a marking m corresponds to a set m̂ ⊆ P satisfying p ∈ m̂
iff m(p) > 0; for convenience, we shall identity a safe marking m with its set of
places m̂. The main focus will be on Petri nets that are safe and extended free
choice, i.e., if the pre-sets of two transitions have a place in common, the pre-
sets coincide. Also, recall that the conflict relation, denoted by #, relates two
transitions if their pre-sets intersect, i.e., t # t′ if •t ∩ •t′ �= ∅, for t, t′ ∈ T; for
extended free choice nets, the conflict relation is an equivalence relation. We call
a marked Petri net an elementary net system [23] if all pre-sets and post-sets of
transitions are non-empty and every place is input or output to some transition.
The latter encompass the following class of Petri nets that is highly relevant to
formal methods research of business processes.

Definition 9 (Workflow net (WF-net)). A Petri net N = (P, T, F) is a
Workflow net or WF-net, for short, if
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1. there are unique places i, o ∈ P such that i is not an output place of any
transition and o is not an input place of any transition and

2. if we add a new transition t∗ and the two arcs (o, t∗), (t∗, i), the resulting
directed graph (P ∪ T ∪ {t∗}, F ∪ {(o, t∗), (t∗, i)}) is strongly connected.

Finally, let us recall the soundness property [1]. A Workflow net is

sound if and only if the following three requirements are satisfied:
(1) option to complete: for each case it is always still possible to reach
the state which just marks place end, (2) proper completion: if place end is
marked all other places are empty for a given case, and (3) no dead tran-
sitions: it should be possible to execute an arbitrary activity by following
the appropriate route

where end is place o, each case means every marking reachable from the initial
marking {i}, state means marking, marked means marked by a reachable mark-
ing, activity means transition, and following the appropriate route means after
executing the appropriate firing sequence.

3 Incentive Alignment

Soundness of business processes in the sense of Van der Aalst [2] implies termi-
nation if transitions are governed by a strongly fair scheduler [1]; indeed, such a
scheduler fits the intra-organizational setting. However, as discussed for the o2c
process model, unfair scheduling practices could arise in the inter-organizational
setting if undesired behavior yields higher profits. We consider incentive align-
ment to rule out scenarios that lure actors into counterproductive behavior. We
even can check whether all activities in a given bpmn model with utility anno-
tations are relevant and profitable.

As bpmn models have established Petri net semantics [6], it suffices to con-
sider the latter for the game theoretic aspects of incentive alignment. As a
preparatory step, we extend Petri nets with utility functions as pioneered by
von Neumann and Morgenstern [19]. Then we describe two ways to associate
a stochastic game to a Petri net with transition-based utilities: the first game
retains the state space and the principal design choice concerns transition prob-
abilities; the second game is the restarting version of the first game. Finally, we
define incentive alignment in formally based on stochastic games and show that
the soundness property for Workflows nets [2] can be “rediscovered” as a special
case of incentive alignment; in other words, the original meaning of soundness
is conserved, and thus we extend soundness conservatively in our framework for
incentive alignment.

3.1 Petri Nets with Utility and Role Annotations

We assume that costs (respectively profits) are incurred (resp. gained) per task
and that, in particular, utility functions do not depend on the state. Note that the
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game theoretic results do not require this assumption; however, this assumption
does not only avoid clutter, but also retains the spirit of the abc method [12]
and is in line with the work of Herbert and Sharp [9].

Definition 10 (Petri net with transition payoffs and roles). For a set of
roles R, a Petri net with transition payoffs and roles is a triple (N , u, ρ) where

– N = (P, T, F, m0) is a marked Petri net with initial marking m0,
– u : R → T → R is a utility function, and
– ρ : T ⇀ R is a partial function, assigning at most one role to each transition.

The utility ui(t) of a step t ⊆ T is the sum of the utilities of its elements, i.e.,
ui(t) =

∑
t∈t ui(t), for each role i ∈ R.

As a consequence of the definition, the idle step has zero utility. We have included
the possibility that some of the transitions are .not controlled by any of the roles
(of a bpmn model) by using a partial function from transitions to roles; we take
a leaf out of the game theorist’s book and attribute the missing role to nature.

Fig. 3. Extending Petri nets with role and utility annotations

Figure 3 displays a Petri net on the left. The names of the places p1, . . . , p4 will
be convenient later. In the same figure on the right, we have added annotations
that carry information concerning roles, costs, and profits in the form of lists of
role-utility pairs next to transitions. E.g., the transition t0 is assigned to role a
and firing t0 results in utility −1 for a, i.e., one unit of cost. The first role in
each list denotes responsibility for the transition and we have omitted entries
with zero utility. We also have colored transitions with the same color as the
role assigned to it. If we play the token game for Petri nets as usual, each firing
sequence gives cumulative utilities for each one of the roles; each transition gives
an immediate reward. These rewards will influence the choice between actions
that are performed by roles as made precise in the next subsection.

There are natural translations from bpmn models with payoff annotations for
activities to Petri nets with payoffs and roles (relative to any of the established
Petri net semantics for models in bpmn [6]). If pools are used, we take one role
per pool and each task is assigned to its enclosing pool; for pairs of sending and
receiving tasks or events, the sender is responsible for the transition to be taken.
The only subtle point concerns the role of nature. When should we blame nature
for the data on which choices are based? The answer depends on the application
at hand. For instance, let us consider the o2c model of Fig. 1: whether or not
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the goods will be damaged during shipment is only partially within the control
of the shipper; thus, we shall blame nature for any damage or praise her if
everything went well against all odds. In a first approximation, we simply let
nature determine whether goods will arrive unscathed.

3.2 Single Process Instances and the Base Game with Fair Conflicts

We now describe how each Petri net with transition payoffs and roles gives rise
to a stochastic game, based on two design choices: each role can execute only
one (enabled) transition at a time and conflicts are resolved in a probabilistically
fair manner. For example, for the net on the right in Fig. 3, we take four states
p0, p1, p2, p3, one for each reachable marking. The Petri net does not prescribe
what should happen if roles a and c both try to fire transitions t1 and t′ simul-
taneously if the game is in state p2. The simplest probabilistically fair solution
consists of flipping a coin; depending on the outcome, the game continues in
state p1 or in state p3. For the general case, let us fix a safe, extended free-
choice net (N , u, ρ) with payoffs and roles whose initial marking is m0 where the
marked net N is an elementary net system (e.g., a WF-net).

Definition 11 (The base game with fair conflicts). Let X ⊆ ℘T be the
partitioning of the set of transitions into equivalence classes of the conflict rela-
tion on the set of transitions, i.e., X = {{t′ ∈ T | t′ # t} | t ∈ T}; its members
are called conflict sets. Given a safe marking m ⊆ P and a step t ⊆ T, a maximal
m-enabled sub-step is a step t′ that is enabled at the marking m, is contained
in the step t, and contains one transition of each conflict set that has a non-
empty intersection with the step, i.e., such that all three of m [t′〉, t′ ⊆ t and
|t′| = |{X ∈ X | t ∩ X �= ∅}| hold. We write t′ �m t if the step t′ is a maximal
m-enabled sub-step of the step t.

The base game with fair conflicts 〈N, S, A, q, u〉 of the net (N , u, ρ) is defined
as follows.

– The set of players N := R ∪ {⊥} is the set of roles and nature, ⊥ /∈ R.
– The state space S is the set of reachable markings, i.e., S = {m′ | m0 [〉∗

m′}.
– The action set of an individual player i is Ai := {∅} ∪ {{t} | t ∈ T, ρ(t) = i},

which consists of the empty set and possibly singletons of transitions, where
ρ(t) = ⊥ if ρ(t) is not defined. We identify an action profile a ∈ A =

∏|N |
i=1 Ai

with the union of its components a ≡ ⋃
i∈N ai .

– In a given state m, the available actions of player i are the enabled transitions,
i.e., Ai(m) = {{t} ∈ Ai | m [t〉}.

– q(m′ | m, t) =
∑

t′�mt s.t. m[t′〉m′
∏

X∈X s.t. t∩X 
=∅

1
|t∩X|

– ui(m, t) =
∑

t∈t ui(t) if i ∈ R and u⊥(m, t) = 0, for all t ⊆ T, and m ⊆ P.

Let us summarize the stochastic game of a given Petri net with transition pay-
offs and roles. The stochastic game has the same state space as the Petri net,
i.e., the set of reachable markings. The available actions for each player at a
given marking are the enabled transitions that are assigned to the player, plus
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the “idle” step. Each step comes with a state-independent payoff, which sums up
the utilities of each single transition, for each player i. In particular, if all players
chose to idle, the corresponding action profile is the empty step ∅, which gives
0 payoff. The transition probabilities implement the idea that all transitions of
an action profile get a fair chance to fire, even if the step contains conflicting
transitions. Let us highlight the following two points for a fixed marking and
step: (1) given a maximal enabled sub-step, we roll a fair “die” for each conflict
set where the “die” has one “side” for each transition in the conflict set that also
belongs to the sub-step (unless the “die” has zero sides); (2) there might be sev-
eral choices of maximal enabled sub-steps that lead to the same marking. In the
definition of transition probabilities, the second point is captured by summation
over maximal enabled sub-steps of the step and the first point corresponds to a
product of probabilities for each outcome of “rolling” one of the “dice”.

We want to emphasize that if additional information about transition proba-
bilities are known, it should be incorporated. In a similar vein, one can adapt the
approach of Herbert and Sharp [9], which extends the bpmn language with prob-
ability annotations for choices. However, as we are mainly interested in a priori
analysis, our approach might be preferable since it avoids arbitrary parameter
guessing. The most important design choice that we have made concerns the role
of nature, which we consider as absolutely neutral; it is not even concerned with
progress of the system as it does not benefit from transitions being fired.

Now, let us consider once more the o2c process. If the process reaches the
state in which customer’s next step is payment, there is no incentive for paying.
Instead, customer can choose to idle, ad infinitum. In fact, this strategy yields
maximum payoff for the customer. The bpmn-model does not give any means for
punishing customer’s payment inertia. However, even earlier there is no incentive
for shipper to pick up the goods. Incentives in the single instance scenario can
be fixed, e.g., by adding escrow. However, in the present paper, we shall give yet
a different perspective: we repeat the process indefinitely.

3.3 Restarting the Game for Multiple Process Instances

The single instance game from Definition 11 has one major drawback. It allows
to analyze only a single instance of a business process. We shall now consider a
variation of the stochastic game, which addresses the case of multiple instances
in the simplest form. The idea is the same as the one for looping versions of
Workflow nets that have been considered in the literature, e.g., to relate sound-
ness with liveness [1, Lemma 5.1]: we simply restart the game in the initial state
whenever we reach a final marking.

Definition 12 (Restart game). A safe marking m ⊆ P is final if it does
not intersect with any pre-set, i.e., if m ∩ •t = ∅, for all transitions t ∈ T; we
write m ↓ if the marking m is final, and m � ↓ if not. Let 〈N, S, A, q, u〉 be the
base game with fair conflicts of the net (N , u, ρ). The restart game of the net
(N , u, ρ) is the game 〈N, S̊, Å, q̊, u〉 with
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– S̊ = S \ {m′′ ⊆ P | m′′ ↓};

– q̊(m′ | m, t) =
{

q(m′ | m, t) if m′ �= m0

q(m0 | m, t) +
∑

m′′↓ q(m′′ | m, t) if m′ = m0

for all m, m′ ∈ S̊; and the available actions restricted to S̊ ⊆ S, i.e., Åi(s) =
Ai(s), for s ∈ S̊.

Fig. 4. Restarting process example

For WF-nets, the variation amounts to identifying the final place with the
initial place. The passage to the restart game is illustrated in Fig. 4. The restart
game of our example is drastically different from the base game. Player c will
be better off “cooperating” and never choosing the action t′, but instead idly
reaping benefits by letting players a and b do the work. As a consequence, the
transition t′ will probably never occur since the responsible role has no interest
in executing it. Thus, if we assume that the process may restart, the net from
Fig. 3 is an example where incentives are aligned w.r.t. completion but not with
full liveness.

3.4 Incentive Alignment w.r.t. Proper Completion and Full Liveness

We now formalize the idea that participants want to expect benefits from tak-
ing part in a collaboration if agents behave rationally – the standard assump-
tion of game theory. The proposed definition of incentive alignment is in prin-
ciple of qualitative nature, but it hinges on quantitative information, namely
the expected utility for each of the business partners of an inter-organizational
process.

Let us consider a Petri net with payoffs (N , u, ρ), e.g., the Petri net seman-
tics of a bpmn model. Incentive alignment amounts to existence of equilibrium
strategies in the associated restart game 〈N, S̊, Å, q̊, u〉 (as per Definition 12)
that eventually will lead to positive utility for every participating player. The
full details are as follows.

Definition 13 (Incentive alignment w.r.t. completion and full live-
ness). Given an autonomous correlation device D, a correlated strategy profile σ
is eventually positive if there exists a natural number n̄ ∈ N such that, for all
larger natural numbers n > n̄, the expected payoff of every player is positive, i.e.,
for all i ∈ N , γ̄i

n(D, m0, σ) > 0. Incentives in the net (N , u, ρ) are aligned with
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– proper completion if, for every positive real ε > 0, there exist an autonomous
correlation device D and an eventually positive correlated ε-equilibrium strat-
egy profile σ of the restart game 〈N, S̊, Å, q̊, u〉 such that, for every natural
number n̄ ∈ N, there exists a history h ∈ Hn(D) at stage n > n̄ with current
state sh = m0 that has non-zero probability, i.e., PD,m0,σ(h) > 0;

– full liveness if, for every positive real ε > 0, there exist an autonomous correla-
tion device D and an eventually positive correlated ε-equilibrium strategy pro-
file σ of the restart game 〈N, S̊, Å, q̊, u〉 such that, for every transition t ∈ T,
for every reachable marking m′, and for every natural number n̄ ∈ N, there
exists a history h = 〈m′, x1, a1, . . . , sn−1, xn−1, an−1, sn, xn〉 ∈ Hn(D) at
stage n > n̄ with t ∈ an−1 and PD,m′,σ(h) > 0.

Both variations of incentive alignment ensure that all participants can expect
to gain profits on average, eventually; moreover, something “good” will always
be possible in the future where something “good” is either restart of the game
(upon completion) or additional occurrences of every transition.

There are several interesting consequences. First, incentive alignment w.r.t.
full liveness implies incentive alignment w.r.t. proper completion, for the case
of safe, conflict-free elementary net systems where the initial marking is only
reachable via the empty transition sequence; this applies in particular to Work-
flow nets. Next, note that incentive alignment w.r.t. full liveness implies the
soundness property for safe, free-choice Workflow nets. The main insight is that
correlated equilibria cover a very special case of strongly fair schedulers, not only
for the case of a single player. However, we can even obtain a characterization
of soundness in terms of incentive alignment w.r.t. full liveness.

Theorem 1 (Characterization of the soundness property). Let N be a
Workflow net that is safe and extended free-choice; let (N , ρ : T → {Σ}, 1) be the
net with transition payoffs and roles where Σ is a unique role, ρ : T → {Σ} is the
unique total role assignment function, and 1 is the constant utility-1 function.
The soundness property holds for the Workflow net N if, and only if, we have
incentive alignment w.r.t. full liveness in (N , ρ : T → {Σ}, 1).

The full proof can be found in the extended version [8, Appendix A]. How-
ever, let us outline the main proof ideas. The first observations is that, w.l.o.g.,
schedulers that witness soundness of a WF-net can be assumed to be stochastic;
in fact, truly random scheduling is strongly fair (with probability 1). Somewhat
more detailed, if a WF-net is sound, the scheduler is the only player and schedul-
ing the next best random transition at every point in time yields maximum payoff
for the single player. Now, the random choice of a transition at each point in
time is the simplest example of an equilibrium strategy (profile); moreover, no
matter what the current reachable state of the net, any transition will occur
again with non-zero probability, by soundness of the net.

Conversely, incentive alignment w.r.t. strong liveness entails that the unique
player – which we might want to think of as the scheduler – will follow a strategy
that will eventually fire a transition of the “next instance” of the “process”. In
particular, we always will have an occurrence of an initial transition by which we
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mean a transition that consumes the unique token from the initial marking. After
firing an initial transition (of which there will be one by the structure of the net)
we are in a state that does not allow us to fire another initial transition. However,
strong liveness entails that it has to occur with non-zero probability again if we
follow a witnessing equilibrium strategy (profile). Thus, with probability 1, the
“current instance” of the “process” will complete such that we will again be able
to fire an initial transition.

Finally, the reader may wonder why we consider the restarting game. First,
let us emphasize that the restart games are merely a means to an end to reason
about incentive alignment of bpmn models with suitable utility annotations
by use of their execution semantics, i.e., Petri nets with transition payoffs and
roles. If these Petri nets do not have any cycles, one could formalize the idea
of incentive alignment using finite extensive form games for which correlated
equilibria have been studied as well [27]. However, this alternative approach is
only natural for bpmn models without cycles. In the present paper we have opted
for a general approach, which does not impose the rather strong restriction on
nets to be acyclic. Notably, while we work with restart games, we derive them
from arbitrary free-choice safe elementary net systems – i.e., without assuming
that the input nets are restarting. The restart game is used to check whether
incentives are aligned in the original Petri net with transition payoffs and roles.

4 Conclusions and Future Work
We have described a game theoretic perspective on incentive alignment of inter-
organizational business processes. It applies to bpmn collaboration models that
have annotations for activity-based utilities for all roles. The main theoretical
result is that incentive alignment is a conservative extension of the soundness
property, which means that we have described a uniform framework that applies
the same principles to intra- and inter-organizational business processes. We have
illustrated incentive alignment for the example of the order-to-cash process and
an additional example that is tailored to illustrate the game theoretic element
of mediators.

The natural next step is the implementation of a tool chain that takes a
bpmn collaboration model with annotations, transforms it into a Petri net with
transition payoffs and roles, which in turn is analyzed concerning incentive align-
ment, e.g., using algorithms for solving stochastic games [17]. A very challenging
venue for future theoretical work is the extension to the analysis of interleaved
execution of several instances of a process.
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