
Characterizing Machine Learning Processes:
A Maturity Framework

Rama Akkiraju(B), Vibha Sinha, Anbang Xu, Jalal Mahmud, Pritam Gundecha,
Zhe Liu, Xiaotong Liu, and John Schumacher

IBM Watson, IBM Almaden Research Center, San Jose, CA, USA
{akkiraju,vibha.sinha,anbangxu,jumahmud,psgundec,liuzh,

Xiaotong.Liu,jfs}@us.ibm.com

Abstract. Academic literature on machine learning modeling fails to address
how to make machine learning models work for enterprises. For example, existing
machine learning processes cannot address how to define business use cases for
an AI application, how to convert business requirements from product managers
into data requirements for data scientists, and how to continuously improve AI
applications in term of accuracy and fairness, how to customize general purpose
machine learningmodels with industry, domain, and use case specific data tomake
them more accurate for specific situations etc. Making AI work for enterprises
requires special considerations, tools, methods and processes. In this paper we
present a maturity framework for machine learning model lifecycle management
for enterprises. Our framework is a re-interpretation of the software Capability
Maturity Model (CMM) for machine learning model development process. We
present a set of best practices from authors’ personal experience of building large
scale real-world machine learning models to help organizations achieve higher
levels of maturity independent of their starting point.

Keywords: Machine learning models ·Maturity model ·Maturity framework ·
AI model life cycle management

1 Introduction

Software and Services development has gone through various phases of maturity in the
past few decades. The community has evolved lifecycle management theories and prac-
tices to disseminate best practices to developers, companies and consultants alike. For
example, in software field, Software Development Life Cycle (SDLC) Management,
capability maturity models (CMM) Application Life Cycle Management (ALM), Prod-
uct Life Cycle Management (PLM) models prescribe systematic theories and practical
guidance for developing products in general, and software products in particular. Infor-
mation Technology Infrastructure Library (ITIL) organization presents a set of detailed
practices for IT Services management (ITSM) by aligning IT services with business
objectives. All these practices provide useful guidance for developers in systematically
building software and services assets. However, these methods fall short in managing

© Springer Nature Switzerland AG 2020
D. Fahland et al. (Eds.): BPM 2020, LNCS 12168, pp. 17–31, 2020.
https://doi.org/10.1007/978-3-030-58666-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58666-9_2&domain=pdf
https://doi.org/10.1007/978-3-030-58666-9_2


18 R. Akkiraju et al.

a new breed of software services being developed rapidly in the industry. These are
software services built with machine learnt models.

We are well into the era of Artificial Intelligence (AI), spurred by algorithmic, and
computational advances, the availability of the latest algorithms in various software
libraries, Cloud technologies, and the desire of companies to unleash insights from the
vast amounts of untapped unstructured data lying in their enterprises. Companies are
actively exploring and deploying trial versions of AI-enabled applications such as chat
bots, personal digital assistants, doctors’ assistants, radiology assistants, legal assistants,
health and wellness coaches in their enterprises. Powering these applications are the
AI building block services such as conversation enabling service, speech-to-text and
text to speech, image recognition service, language translation and natural language
understanding services that detect entities, relations, keywords, concepts, sentiments and
emotions in text. Several of these services aremachine learnt, if not all. Asmore andmore
machine learnt services make their way into software applications, which themselves
are part of business processes, robust life cycle management of these machine learnt
models becomes critical for ensuring the integrity of business processes that rely on
them. We argue that two reasons necessitate a new maturity framework for machine
learning models. First, the lifecycle of machine learning models is significantly different
from that of the traditional software and therefore a reinterpretation of the software
capability maturity model (CMM) maturity framework for building and managing the
lifecycle of machine learning models is called for. Second, building machine learning
models that work for enterprises requires solutions to a very different set of problems
than the academic literature on machine learning typically focuses on. We explain these
two reasons below a bit more in detail.

1.1 Traditional Software Development vs.Machine LearningModel Development

While traditional software applications are deterministic, machine learning models are
probabilistic. Machine learning models learn from data. They need to be trained while
traditional software applications are programmed to behave as per the requirements and
specifications. As a result, traditional software applications are always accurate barring
defects, whereas machine learning models typically need multiple iterations of improve-
ments to achieve acceptable levels of accuracy, and it may or may not be possible to
achieve 100% accuracy. Data in traditional software applications tends to be transac-
tional in nature and mostly of structured type whereas data for machine learning models
can be structured, or unstructured. Unstructured data can further come in multiple forms
such as text, audio, video and images. In addition, data management in machine learning
pipeline has multiple stages, namely data acquisition, data annotation, data preparation,
data quality checking, data sampling, data augmentation steps – each involving their own
life cycles thereby necessitating a whole new set of processes and tools. Machine learn-
ing models have to deal with fairness, trust, transparency, explainability that traditional
software doesn’t have to deal with. Machine learning pipeline has a whole new set of
roles such as data managers, data annotators, data scientists, fairness testers etc. in addi-
tion to traditional software engineering roles.While one has to deal with code versioning
and code diff functions in traditional software application development, machine learn-
ing models bring interesting twists with training data and testing data diffs and model



Characterizing Machine Learning Processes: A Maturity Framework 19

diffs. A full version of compare and contrast is the sole subject of a different paper under
preparation.

All these new aspects in machine learning model lifecycle need explication, disci-
plinedmanagement and optimization lest organizations end upwith chaotic, poor quality
models thereby leaving a trail of dissatisfied customers.

1.2 Making Machine Learning and AI Work for Enterprises

Making AI work for enterprises requires special considerations, tools, methods and
processes. This necessitates a new maturity framework for machine learning models.

To address these problems, based on our own experience of building practical, large-
scale, real-world, machine learning models, we present a new interpretation of CMM
maturity framework for managing the lifecycle of machine learnt models. To the best of
our knowledge, this is the first of its kind.

In this paper we use machine learning model and AI model synonymously, although
we understand that machine learning models are only a type of AI models.

2 Related Work

Our work is related to software maturity model [1], Big data maturity models [3, 4, 6,
7], and knowledge discovery process.

Humphrey proposed capability maturity model (CMM) for Software [1]. He
described five levels of process maturity for Software: initial, repeatable, defined, man-
aged, optimizing.Anorganization’smaturity is considered initialwhen there is no control
of the process and no orderly progress of process improvement is possible. An organi-
zation can reach repeatable level when it has achieved a stable process with repeatable
level of statistical control by initiating rigid project management of commitments, cost,
schedule and changes. Defined level can be attained when the organization has defined
the process to ensure consistent implementation and provide a basis for better under-
standing of the process. An organization attains a managed level when it has initiated
comprehensive process measurements beyond those of cost and schedule performance.
An organization reaches optimizing level when the organization has a foundation for
continuous improvement and optimization of the process. Our work is inspired by such
process maturity definitions. In our work, we propose a set of required processes for
organizations building machine learning models.

3 Machine Learning Model Lifecycle

In this section we describe the AI Service development lifecycle, along with roles
involved in each. AI lifecycle include: data pipeline, feature pipeline, train pipeline,
test pipeline, deployment pipeline, and continuous improvement pipeline. Each step is
an iterative and requires continuous improvements in itself. This iterative process is illus-
trated in Fig. 1. A brief introduction to each step is given in this section. The sections
that follow provide deep-dives and maturity assessment questionnaire.



20 R. Akkiraju et al.

Fig. 1. AI model lifecycle

3.1 Model Goal Setting and Product Management

A product manager kicks off the AI model development process by setting goals for the
AImodel i.e., whatmust it be good at, creates test cases andminimum required thresholds
upon which the models’ quality and runtime performance targets are to be measured.
This person also defines thresholds for model competitiveness and the associated levels.
A product manager must set goals for an AI model considering the current state as well
as achievable levels with stretch targets. The goals must apply not only the model quality
and runtime metrics but also to the process by which the models are built so that the
outcomes are predictable, consistent and repeatable.

3.2 Content Management Strategy

A content manager is responsible for proactively identifying suitable training data
sources from public and private legal sources, checking the legality of data, establishing
governance process around data, data vendor contract negotiations, pricing, data budget
management and data lineage management.

3.3 Data Pipeline

Data collection and preparation is a key step in training an AI model. In this step, an AI
Service Data Lead leads the efforts around data collection and labeled data preparation.
Themodel needs to see enough instances of each kind that you are trying to detect/predict.
For example, a Sentiment Analyzer service needs to see enough instances of positive,
negative and neutral sentiment samples in order to learn to classify them correctly. This
stage of data collection and ground truth preparation involves many activities such as
identifying right type of data in right distributions, sampling the data so as to guide
the model performance, enriching the data via labeling, storing the lineage of the data,
checking the quality of the labeled and prepared data, establishing specific metrics for



Characterizing Machine Learning Processes: A Maturity Framework 21

measuring the quality of the data, storing and analyzing the data. This step may also
involve augmenting the training data via data synthesis techniques or with adversarial
examples to enhance the robustness of models. Each step is iterative in itself and goes
through multiple iterations before the data is readied for training.

3.4 Feature Preparation

This step involves preparing the features from the collected data to initiate the training
models. The actual preparation steps depend on the type of AI service being developed.
Figure 1 shows the preparatory steps involved in text processing and audio signal pro-
cessing for building natural language understanding (NLU) and speech-to-text type of
services. Typically, these include, developing tokenizers, sentence segmentation capa-
bilities, part-of-speech taggers, lemmatization, syntactic parsing capabilities etc. In the
case of audio data, these things include developing phonetic dictionaries, text normal-
izers etc. These assets and services once prepared are then used in training algorithms.
Typically, a Training Lead works closely with the Data Lead to prepare these assets.

3.5 Model Training

A Training Lead leads this activity. A Training Lead makes decisions about what algo-
rithms to experiment with the prepared data and the feature assets that are prepared. This
includes making decisions about what frameworks to use (TensorFlow/Pytorch/Keras
etc.), if neural nets are involved, how many hidden layers and the specific activa-
tion functions at each layer etc. A Training Lead then trains the models, after mak-
ing the train/dev/test set splits on labeled data and runs multiple experiments before
finally making the model selection. Throughout the training process, Training Lead
makes many decisions on the various hyper parameters and strives to optimize the net-
work/architecture of the training algorithm to achieve best results. A Training Lead also
conducts error analysis on failed training and dev/cross-validation cases and optimizes
the model to reduce those errors. A Training Lead does not have access to the test cases.

3.6 Testing and Benchmarking

ATest Lead leads the testing and benchmarking activity. Finalizedmodel is tested against
multiple datasets that are collected. The model is also tested against various competitor
services, if accessible, and applicable. Comparing the quality and run-time performance
of the model with competitor’s services and all known competing AI models to establish
its quality for each model version is a critical aspect of testing phase. As noted earlier, a
test lead is also responsible for conducting detailed and thorough error analysis on the
failed test cases and sharing the observations and patterns with the Training Lead so as
to help improve the AI model in future iterations.

3.7 Model Deployment

This is the step where critical decisions are made by the Deployment Lead on the
deployment configuration of the model. In Software-as-a-Service (SaaS) services, this



22 R. Akkiraju et al.

often involves, infrastructure components, memory, disk, CPUs/GPUs, and number of
pods needed based on the expected demand. Very often as part of deployment, significant
engineering might be required to make the feature extraction steps production-grade
and wrap the trained model into a software package that can be invoked from the larger
business application.

3.8 AI Operations Management

Any AI Service’s lifecycle hardly ends when the first model is deployed for the first time
by following the steps described above. Each AI model has to continuously improve
overtime by learning from themistakes it makes.With each iteration, with each feedback
loop, with each new model version, the model continuously evolves. Managing these
iterations that lead to continuous learning ofAI services is what we call as AIOperations,
and is a joint activity between the operations, data and training team.

Deployment team is responsible for logging the payloads ofAImodels, andmanaging
the governance of payload data with help of Data Lead. During continuous improvement
cycle, the new incoming data is included by Train Lead to re-do training process and
prepare a model that is more accurate for the data it is being used for. The payload data is
also used to detect and address aspects such as biases, errors, model drifts, misalignments
and explainability.

In the following sections we elaborate on each of these pipeline stages. In Appendix
A we present a small snippet of our maturity framework. A more detailed maturity
framework could not be attached due to space limitations but will be made available via
company website.

4 Data Pipeline

Given input data X, A machine learning model approximates a mapping function f to
predict an output value y such that f(X) = y. Training machine learning models is a
data intensive effort. Training data must have enough representation of the world that
the model wants to approximate. Real-world data is often messy and must be cleaned
and prepared to make it usable for training AI models. Since data plays a pivotal role
in AI, managing the data pipeline effectively, and aligning data curation efforts with the
business goals and requirements can be key differentiators for organizations. Below, we
describe some strategies for managing one’s data pipelines effectively.

4.1 Define Data Requirements According to Business Needs

Mature organizations aspiring to produce high quality AI models start with defining
goals for their AI models. A model product manager must first define the scope, purpose
and expected minimum quality thresholds for an AI model. In organizations just starting
with machine learning, this strategic job is left to data scientists responsible for training.
While data scientists do their best to build a good model, it is not their job or role to
define what it must be good at. For example, asking data scientists to ‘build a world-
class face recognition AI model’ is too broad and vague. A more specific and focused



Characterizing Machine Learning Processes: A Maturity Framework 23

goal would look like this: ‘build a face recognition service that can detect male, female
genders, these specified age groups, and these specified subset of races, and ethnicities,
which are defined in the requirements document (the requirements document may point
to a more specific taxonomy of races and ethnicities to be detected from a neutral entity
such as the United Nations Race and Ethnicity taxonomy) with at least 90% accuracy
on ‘these’ given specific test datasets where ‘these’ test datasets were carefully crafted
by the product management team to have an even distribution of all the genders, age
groups, specific races, and ethnicities for which the model is supposed do well. That
is a specific, focused and measurable goal that a data scientist can build a model for.
Such a focused goal is also non-disputable. If the business purpose and goal is not clear,
organizations have to deal with poor performance and unfairness claims once the model
goes into production where users may complain that the face recognition is biased and
doesn’t recognize faces of certain races and ethnicities. Such a specific goal also sets
specific objectives for data and training leads in collecting the right kind of data and
setting right type of train, and dev splits respectively while building the model. This
way, instead of shooting in the dark, an organization managing a mature data pipeline
can convert high-level business goals (e.g. target industries, domains, scenario and etc.)
into specific data requirements.

4.2 Define a Data Acquisition Strategy

A mature data pipeline should be able to consider the time and cost of data curation and
correlate and quantify the performance gains of AI models with the curated data. This
way, an organization can justify the data curation efforts while maximizing performance
gains for their AI solutions.

4.3 Apply Data Selection to Select Suitable Training Data

The goal of data selection is to select representative, unbiased and diverse data. This
is a funneling process. Data cleansing and data selection both reduce data as the result
of processing. Therefore, in order to achieve desired quantities of representative data,
organizations may have to be prepared to collect more data than they may end up using.
If data selection is not done, on the other hand, i) models may end up with undesirable
biases as proper representation may not be achieved ii) organizations may have to pay
for labeling data that may or may not be useful, adding to the costs and iii) too much
unselected datamayunnecessarily add to the processing time and computational capacity
requirements of themachine learning process. Therefore, it is critical to apply appropriate
sampling techniques in order to generate quality training data sets in reasonable sizes.

4.4 Create Data Annotation Guidelines to Achieve Consistency with Data
Labeling

In general, themore the available annotated data, the better themodel performs.However,
labeling data can be difficult and expensive. To deliver high-quality annotated data in
an efficient way, an organization should consider the following three aspects: (i) create



24 R. Akkiraju et al.

unambiguous definitions for terms, prepare clear annotation guidelines and continuously
refine the guidelines anddefinitionswith user feedback.Amature pipeline should support
a rapid feedback loop between data scientists and data annotators, (ii) use a combination
of internal team of annotators and external crowd workers to get data annotated at scale,
(iii) use machine learning to pre-annotate data that human annotators can validate. This
can greatly speed up the human annotation process.

4.5 Augment Data Using Synthetic Techniques as Applicable

In machine learning algorithms, there is often a need to synthetically augment data,
to increase the amount of training data to cover scenarios where real data might be
difficult to get by. For example, in the case of audio data for training a Speech-to-Text
model, a given set of audio files can be augmented by superposition of noise tracks,
echoes, reverberations etc. Also, rate, pitch modulation can be performed on audio files
to synthesize additional data. In the case of image recognition modeling, an image can
be tilted, rotated, and colors changed to generate additional training data. As a best
practice, we recommend organizations to have a strategy and develop a pipeline for data
augmentation and align the augmented data

5 Feature Pipeline

The success or failure of the machine learning algorithms is intimately tied to how the
data is represented. In this section, we present some best practices for managing the
feature pipeline:

5.1 Keep Your Options Open During Feature Selection

Researchers have explored different types of training algorithms that aim to exploit dif-
ferent types of feature representations. These feature representations can be grouped into
3 types, (1) raw-features (2) expert-designed features and (3) latent-features. Characters,
pixels or audio waves are prime example of raw features. Raw features require minimal
pre-processing and transformations to data before being fed to the training algorithms.
From engineering point-of-view, it has resulted in much simpler training and testing
pipelines. However, this comes at the cost of need for large amounts of data for training.
Other extreme to using raw features is using expert-designed features. Experts often
bring domain knowledge to create these features. However, applying learning from one
domain to other is often the Achilles heel for such algorithms. The over-dependence on
expert users is often seen as a limitation in terms of time and cost. In the last decade, in
particular with image and speech applications, state-of-the-art models have often used
lower-level features than expert-level features. Recent advancement of deep-learning
algorithms made a consistent case for third type of features known as latent-features.
These features typically come from unsupervised pre-trained models. Intuitively, these
features compress the high-quality information that goes beyond explicitly created fea-
tures. Success ofWord embeddings is a primary example of usefulness of latent features.
Recent advancement in GPU technologies fueled the possibility of training complex



Characterizing Machine Learning Processes: A Maturity Framework 25

unsupervised models at a much faster-rate. Hence, unsupervised deep-learning based
techniques are consistently providing much better latent features in varieties of appli-
cations that deal with texts, audios, images, and videos. The main drawback of these
features is that it’s very hard to explain them. Hence, building the explainable model
using latent features is an open research problem. A mature organization implementing
machine learning pipeline should always keep the option of using all types of features
and be aware of which features make more sense for a given task.

5.2 Understand Performance Tradeoffs with Feature Processing

If feature-pipeline has to support real-world applications, then often response time of the
model in production environment becomes a bottleneck in addition to the effectiveness
of features. Hence, understanding the trade-offs between response times andmodel qual-
ity is necessary. Since most of these trade-offs are influenced by the available training
datasets at the time, these trade-offs need be revisited when underlying datasets, training
algorithms or requirements change significantly. To better generalize a machine learn-
ing service, organizations often collect datasets from various sources. Features are key
to understanding the differences between these sources. Since collecting high-quality
datasets is costly, powerful feature analysis provide clues on when to collect and how to
diversify data for the training algorithms.

5.3 Master the Art of Feature Representation

Preparing features for a given task often requires creativity. Many-a-times organization
needs task-specific features to build the best model. For example, in text analysis, it’s
important to pay attention to how sentences are getting tokenized. Successful tokenizer
segments emoticons, slangs, abbreviations to improve the overall perception of the senti-
ment analysis system. Organizations often need to be flexible to modify or even re-write
the tokenizer to keep the task specific features. Similarly, for effective speech recognition
system, creating language or even dialect specific phonetic dictionaries have shown to
have better generalization with less amount of labeled data.

6 Train Pipeline

We present some best practices from our own experience of training large scale AI
models deployed to production.

6.1 From Experimentation to Production: Design Your Compute Strategy

The train step in an AI project often starts with a single data scientist working on
developing a model that learns the input and output relationship from the training data.
In quest of implementing the best model, the data scientist experiments with multiple
algorithms, frameworks, and configurations. While, initially, it might be sufficient to
run these experiments on a local machine or couple of servers, very soon the number of
experiments that need to be executed starts getting constrained by available compute.



26 R. Akkiraju et al.

Furthermore, often special compute is required for running specific machine learning
algorithms e.g. for deep learning GPUs are preferred. Speech training requires large
amount of storage when compared to storage required for running training on text data.
Hence, a scalable infrastructure strategy is needed to support training needs. It is better
to plan for such compute needs as soon as the initial experiments and approach shows
promise.

6.2 Data and Model Versioning for Efficient Collaboration and Experimentation

As the initial train experiments start showing promise, the data science team also grows.
In order to support collaboration, coordination and reuse in a growing team version
management of models become imperative. However, it is no longer just train and fea-
ture extraction code that needs to be versioned, but also the training data, along with
experiment settings so any of the train experiments can be reproduced.

6.3 Modularizing Train Code and Plan for Train to Serve Handoff Management

Modularizing train code, so it becomes easy to plug in different components, is another
productivity booster. A data scientist might have started off with a monolithic piece of
code where data pre-processing, feature engineering, training code are all inter-twined.
However, this soon becomes a problem as data science team would need to experi-
ment with different machine learning approaches, different features, different data pre-
processing steps, with different teammembers focusing on different pieces, and different
frameworks being used for each.

While data scientists focus on building themost accuratemodel, the engineering team
focuses on the nonfunctional aspects such as run-time performance, capacity planning,
and scaling approach. Often at this step, the serve and train pipelines start differing
as train is an offline process, and test is an online one. Long times to productize an
AI model is a big challenge many AI projects face. As organizations mature there is
increased demand for experimentation-production parity because of use of standardized
frameworks, development of common pre-processing, feature engineering packages and
so on. Therefore, closer collaboration between data scientists and engineers to arrive
at shared understanding of nonfunctional serve requirements also helps close the gap
between train and serve code.

6.4 AI Models Are Rarely Perfect on Day-One. Plan for Continuous
Improvements

AI models are not static, they need to improve or adjust to data over time. In order to
improve the model, it is important to have access to data that is representative of real data
the model is getting used on. In traditional software projects, limited exception and error
logging is done in production. The main reason for logging is to help developers debug
any production issues that might arise. However, in AI implementations it is important
to have a strategy to collect payloads, as they are the real examples of data the model is
being used for. Payload data needs to be brought back into the train pipeline to improve



Characterizing Machine Learning Processes: A Maturity Framework 27

the model. Once more training data is available data scientists are again required to
go through the data through train pipeline to arrive at improved model, followed by
engineering team who needs to optimize for performance and deploy. This makes model
improvement a recurring and continuous process.

6.5 Automate the Train Pipeline

Having automated training pipelines can help significantly reduce the time a data scientist
has to spend in improving model. When new training data comes in, the train pipeline
would be executed, and as part of this, multiple experiments are auto executed. Data
scientists can then select the best model and push it for deployment. Best practices and
tooling for continuous integration and delivery from traditional software development
life cycle (SDLC) can help reduce engineering time spent in deploying a new model.

Organizations that rely on AI models as part of their daily operations have made
significant progress in maturing their train pipelines. New tools to manage train and
serve pipeline are regularly being released in market, e.g. version manage AI projects,
integrated environments to build and run AI models.

7 Test Pipeline

Testing is an investigation process conducted to derive insights about the quality of the
machine learning models under test. Here, we share some of the best practices in testing
based on our experience.

7.1 Be Prepared to Iterate Between Train and Test

While we often have lots of choices to learn and apply various machine learning algo-
rithms on our data sets, selecting the final best model out of many good working models
is a challenging and time-consuming task. In practice, train data scientists and testers
often work together to compare the performance of models generated with different
algorithm parameters before deciding which parameters to use; they may also compare
performance of the models using different feature-based representations to ensure the
selected features are improving the models as expected.

7.2 Testing Is not just a One-Time Build Activity. It Is Continuous Throughout
an AI Model’s Lifecycle. Keep the Test Datasets Updated

In AI services, there is a notion of continuously improving the accuracy of the models
as more data becomes available either via continuous data acquisition process or from
payload data. While each iteration of the machine learning model can be tested on the
same set of standard datasets it can be unfair to test systems on only one set when the
newer models have ‘seen more of the world’ via more training data. As more and more
training data is added from different sources, testing should be an iterative and dynamic
process wherein test cases are continuously updated to improve the test coverage to
represent the new world they live in. This makes comparing models from one version to



28 R. Akkiraju et al.

another difficult. There is no perfect solution for this. We have noted that maintaining
old and new test cases and testing model versions on all test cases each time gives a
comprehensive view of the quality of the current and past models.

7.3 Whose Side Is the Real ‘Truth’? Sometimes Machine Learning Models Are
Both Right and Wrong!

The ‘ground-truth’ can be different for different people in certain domains. For exam-
ple, what appears as a complaint to some may appear as a neutral statement to others.
Therefore, user acceptance testing of AI-based services may depend on individual user
perceptions. Special user perception testing needs to be instituted in addition to con-
ventional performance testing in cases where ground truth can be ambiguous. As the
predictions of models from one version to another can often be different, such user
perception testing has to be done continuously to allow testers to select the best user
perceived model in some cases.

7.4 Adversarial and Long Tail Testing for Robustness

A mature organization needs to do proactive testing for understanding and guiding
effective AI model testing to ensure their robustness. Proactive testing differs from
conventional testing metrics in two aspects. First, it extends the coverage of the testing
dataset by dynamically collecting supplementary data. Second, AI developers can collect
additional data belonging to certain categories to target corner cases. To create failed
cases at scale, adversarial sample has attracted attention inmachine learning communities
in recent years. For example, different perturbation strategies (e.g., insertion, deletion,
and replacement) have been proposed to evade DNN-based text classifiers.

8 Model Fairness, Trust, Transparency, Error Analysis
and Monitoring

8.1 Set Proper Goals for AI Models to Mitigate Undesirable Biases and Start
with Test Cases

Statistical machine learning models rely on biases in data to learn patterns. Therefore,
the concept of data bias by itself is not bad. What people mean, when they say biases
is ‘undesirable biases’. We argue that undesirable biases creep in because of lack of
discipline in setting proper goals for theAImodels. Proper goals can be set for AImodels
by preparing test cases upfront and setting specific objectives on what is expected of
the model. As noted in the data requirements section, asking data scientists to ‘build a
world-class face recognition AI model’ is too broad, vague and leads to unanticipated
biases. A more specific and focused goal such as: ‘build a face recognition service that
can detect male/female genders, with pre-defind specific age groups, and these specific
subset of races, and ethnicities in the requirements document (which is grounded in a
standard taxonomy from a neutral organization such as the United Nations Race and
Ethnicity taxonomy)) with at least 90% accuracy on ‘these’ given specific test datasets’



Characterizing Machine Learning Processes: A Maturity Framework 29

where ‘these’ test datasets were carefully crafted by the product management ream to
have an even distribution of all the genders, age groups, specific races, and ethnicities
for which the model is supposed do well. That is a specific, focused and measurable goal
that a data scientist can build a model for. Such a focused goal is also non-disputable,
measurable and tested for biases. It is this lack of specificity that leads to undesirable
biases.

8.2 Declare Your Biases to Establish Trust

Rarely do organization have unlimited budgets and time to collect representative samples
to prepare most comprehensive datasets that can avoid undesirable biases completely.
One can, at best, mitigate biases with careful planning. Therefore, we’d argue that it is
more practical for a machine learning model to declare its biases than to pretend that it
is unbiased or that it can ever be fully unbiased. That is, product managers must declare
what the model is trained on. That way, the consumers of the model know exactly what
they are getting. This establishes trust inAImodels. This is akin to having nutrition labels
on processed and packaged foods. People can judge based on the contents, whether a
particular snack item is right for them or not. While not all machine learning model
builders may have the incentive to declare the secrets of their ingredients, it may be
required in some regulated industries.

8.3 Do We Always Need Full Explainability? Let the Use Case Drive the Needs
and Select Machine Learning Algorithms Accordingly

We still don’t knowwhy and how certainmedicines work in human body and yet patients
rarely question when a doctor prescribes a medicine. They inherently the trust the doctor
to give them the best treatment and trust their choice of medicine. Citing such analogies,
some argue whether full explainability may not be always needed. Whether or not the
medical analogy is appropriate for a business domain, one thing is clear. Some use cases
demand full transparency while others are more forgiving. For example, a sentiment
prediction model which aims to predict consumer sentiments against products from
social media data may not need the same level of transparency as a loan approval AI
model which is subject to auditability. Therefore, based on the use case and need, AI
model development team must set transparency goals ahead of time. A data scientist
training an AI model can use these requirements in making the right kind of AI model
that might offer more explainability or not.

8.4 Diagnose Errors at Scale

Traditionally, error analysis is often manually performed on fixed datasets at a small
scale. This cannot capture errors made by AI models in practice. A mature error analysis
process should enable data scientists to systemically analyze a large number of “unseen”
errors and develop an in-depth understanding of the types of errors, distribution of errors,
and sources of errors in the model.



30 R. Akkiraju et al.

8.5 Error Validation and Categorization

A mature error analysis process should be able to validate and correct mislabeled data
during testing. Compared with traditional methods such as Confusion Matrix, a mature
process for an organization should provide deeper insights into when an AI model fails,
how it fails and why. Creating a user-defined taxonomy of errors and prioritizing them
based not only on the severity of errors but also on the business value of fixing those
errors is critical to maximizing time and resources spent in improving AI models.

8.6 Version Models and Manage Their Lineage to Better Understand Model
Behavior Over Time

An organization may have multiple versions of a machine learning model. A mature
organization needs to maintain different versions in a data-store. They should also keep
the lineage of training data used to building such models. In addition, they should be
able to run automated tests to understand the difference between such models using
well defined metrics, and test sets. With each version, they should track whether model
quality is improving for such test sets.

In conclusion, we have presented a set of best practices applicable to building and
managing the life cycle ofmachine learningmodels. AppendixA contains snippets of our
framework for select stages of the pipeline. We are unable to publish the full framework
in this paper due to space limitations. However, we intend to make it available on our
company website for reference.

9 Conclusions and Discussion

In this paper we argued that traditional software development lifecycle methodologies
fall short when managing AI models as AI lifecycle management has many differences
from traditional software development lifecycle. We presented a re-interpretation of
software capability maturity model (CMM) for AI mode lifecycle management.

We argued that AI models need to be robust (R), accurate (A), continuously improv-
ing (C), explainable (E), fair (F), accountable (A), transparent (T), and secure (S). When
put together, they form a pneumonic ‘RACE your FACTS’ – as an easy way to remem-
ber. We have presented various best practices and a maturity assessment framework
(Appendix A) for addressing these topics.

Implementing these best practices requires many innovations, tools and techniques.
SomuchAI is needed throughout the AI lifecycle management to build andmanagement
AI models. We are excited about the research and innovation possibilities and frontiers
that this offers. A journey informed by best practices and maturity awareness is the best
way to get there.

Appendix A

A snippet of our Machine Learning Maturity Framework is attached below. A more
detailed one could not be attached due to space limitations but will be made available
upon request or posted on the company website shortly.



Characterizing Machine Learning Processes: A Maturity Framework 31

References

1. Humphrey, W.S.: Characterizing the software process: a maturity framework. IEEE Softw.
5(2), 73–79 (1988)

2. Braun, H.T.: Evaluation of big data maturity models–a benchmarking study to support big data
maturity assessment in organizations (2015)

3. Halper, F., Krishnan, K.: TDWi big data maturity model guide. Interpreting your assessment
score. TDWI Research 1, 16 (2013)

4. Nott, C.: A maturity model for big data and analytics. IBM (2015). https://www.ibm.
com/developerworks/community/blogs/bigdataanalytics/entry/A_maturity_model_for_big_
data_and_analytics?lang=en_us

5. Schmarzo, B.: Big data business model maturity index guide. Dell EMC (2016). https://inf
ocus.dellemc.com/william_schmarzo/big-data-business-model-maturity-index-guide/

6. Dhanuka, V.: Hortonworks big data maturity model. Hortonworks (2017). http://hortonworks.
com/wp-content/uploads/2016/04/Hortonworks-Big-Data-Maturity-Assessment.pdf

7. El-Darwiche, B., Koch, V., Meer, D., Shehadi, R.T., Tohme, W.: Big data maturity: an action
plan for policymakers and executives. Glob. Inf. Technol. Rep. 43, 51 (2014)

https://www.ibm.com/developerworks/community/blogs/bigdataanalytics/entry/A_maturity_model_for_big_data_and_analytics%3flang%3den_us
https://infocus.dellemc.com/william_schmarzo/big-data-business-model-maturity-index-guide/
http://hortonworks.com/wp-content/uploads/2016/04/Hortonworks-Big-Data-Maturity-Assessment.pdf

	Characterizing Machine Learning Processes: A Maturity Framework
	1 Introduction
	1.1 Traditional Software Development vs. Machine Learning Model Development
	1.2 Making Machine Learning and AI Work for Enterprises

	2 Related Work
	3 Machine Learning Model Lifecycle
	3.1 Model Goal Setting and Product Management
	3.2 Content Management Strategy
	3.3 Data Pipeline
	3.4 Feature Preparation
	3.5 Model Training
	3.6 Testing and Benchmarking
	3.7 Model Deployment
	3.8 AI Operations Management

	4 Data Pipeline
	4.1 Define Data Requirements According to Business Needs
	4.2 Define a Data Acquisition Strategy
	4.3 Apply Data Selection to Select Suitable Training Data
	4.4 Create Data Annotation Guidelines to Achieve Consistency with Data Labeling
	4.5 Augment Data Using Synthetic Techniques as Applicable

	5 Feature Pipeline
	5.1 Keep Your Options Open During Feature Selection
	5.2 Understand Performance Tradeoffs with Feature Processing
	5.3 Master the Art of Feature Representation

	6 Train Pipeline
	6.1 From Experimentation to Production: Design Your Compute Strategy
	6.2 Data and Model Versioning for Efficient Collaboration and Experimentation
	6.3 Modularizing Train Code and Plan for Train to Serve Handoff Management
	6.4 AI Models Are Rarely Perfect on Day-One. Plan for Continuous Improvements
	6.5 Automate the Train Pipeline

	7 Test Pipeline
	7.1 Be Prepared to Iterate Between Train and Test
	7.2 Testing Is not just a One-Time Build Activity. It Is Continuous Throughout an AI Model’s Lifecycle. Keep the Test Datasets Updated
	7.3 Whose Side Is the Real ‘Truth’? Sometimes Machine Learning Models Are Both Right and Wrong!
	7.4 Adversarial and Long Tail Testing for Robustness

	8 Model Fairness, Trust, Transparency, Error Analysis and Monitoring
	8.1 Set Proper Goals for AI Models to Mitigate Undesirable Biases and Start with Test Cases
	8.2 Declare Your Biases to Establish Trust
	8.3 Do We Always Need Full Explainability? Let the Use Case Drive the Needs and Select Machine Learning Algorithms Accordingly
	8.4 Diagnose Errors at Scale
	8.5 Error Validation and Categorization
	8.6 Version Models and Manage Their Lineage to Better Understand Model Behavior Over Time

	9 Conclusions and Discussion
	Appendix A
	References




