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Abstract. Predictive process monitoring aims to predict future char-
acteristics of an ongoing process case, such as case outcome or remain-
ing timestamp. Recently, several predictive process monitoring methods
based on deep learning such as Long Short-Term Memory or Convo-
lutional Neural Network have been proposed to address the problem
of next event prediction. However, due to insufficient training data or
sub-optimal network configuration and architecture, these approaches
do not generalize well the problem at hand. This paper proposes a novel
adversarial training framework to address this shortcoming, based on
an adaptation of Generative Adversarial Networks (GANs) to the realm
of sequential temporal data. The training works by putting one neural
network against the other in a two-player game (hence the “adversar-
ial” nature) which leads to predictions that are indistinguishable from
the ground truth. We formally show that the worst-case accuracy of the
proposed approach is at least equal to the accuracy achieved in non-
adversarial settings. From the experimental evaluation it emerges that
the approach systematically outperforms all baselines both in terms of
accuracy and earliness of the prediction, despite using a simple network
architecture and a naive feature encoding. Moreover, the approach is
more robust, as its accuracy is not affected by fluctuations over the case
length.

1 Introduction

Predictive business process monitoring is an area of process mining that is con-
cerned with predicting future characteristics of an ongoing process case [19,21].
Different machine learning techniques, and more recently deep learning meth-
ods, have been employed to deal with different prediction problems, such as
outcome prediction [20], remaining time prediction [18], suffix prediction (i.e.
predicting the most likely continuation of an ongoing case) [1,12,18], or next
event prediction [1,2,12,16,18]. In this paper, we are specifically interested in
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the latter problem: given an ongoing process case (proxied by a prefix of a com-
plete case), and an event log of completed cases for the same business process,
we want to predict the most likely next event by determining both its label (i.e.
the name of the next process activity to be performed) and its timestamp (i.e.
when such activity will start or complete). This problem has been addressed
in [1,2,12,18] using Recurrent Neural Networks (RNNs) with Long-Short-Term
Memory (LSTM), while [16] uses Convolutional Neural Networks (CNNs) for
predicting the next event label only.

Despite their popularity, deep learning methods such as LSTM or CNN,
often feature thousands to millions of parameters to estimate, and for this rea-
son require lots of labeled training data to be able to generalize well the dataset
at hand, as well as to learn salient patterns [3]. In our context, this challenge is
exacerbated by the limited size of real-life event logs available for training, com-
pared to the number of parameters to be estimated. For example, an LSTM with
one hidden layer containing 100 neurons has at least 4×(100+1)2 parameters to
be estimated, which in turn requires at least the same number of unique training
instances, i.e. the same number of unique process cases in the event log. This is
hardly the case in practice, as event logs typically contain several thousand or
(at best) several million complete cases, of which only a subset are unique.

Motivated by Generative Adversarial Nets (GANs) [4], this paper proposes a
novel adversarial training framework to address the problem of next event pre-
diction. The framework is based on the establishment of a minmax game between
two players, each modeled via an RNN, such that each network’s goal is to max-
imize its own outcome at the cost of minimizing the opponent’s outcome. One
network predicts the next event’s label and timestamp, while the other network
determines how realistic this prediction is. Training continues until the predic-
tions are almost indistinguishable from the ground truth. During training, one
player learns how to generate sequences of events close to the training sequences
iteratively. Thus, it eliminates the need for a large set of ground truth sequences.

To the best of our knowledge, this is the first paper that adapts GANs to
the realm of temporal sequential data, for predictive process monitoring. This
approach comes with several advantages. First, we formally show that the train-
ing complexity of the proposed adversarial net is of the same order as that of
a net obtained via conventional (i.e. non-adversarial) training. Second, we show
that the worst-case accuracy of our approach is not lower than that obtained
via conventional training, meaning that the approach never underperforms a
conventional approach such as LSTM with the same architecture.

We instantiated our framework using a simple LSTM architecture for the
two networks, and a naive one-hot encoding of the event labels in the log. Using
this implementation, we evaluated the accuracy of our approach experimentally
against three baselines targeted at the same prediction problem, using real-life
event logs.

The rest of this paper is organized as follows. The background and related
work are provided in Sect. 2. The presented approach is Sect. 3 while the eval-
uation is discussed in Sect. 4. Finally, Sect. 5 concludes the paper and discusses
opportunities for future work.
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2 Background and Related Work

In this section we provide background knowledge on machine learning with a
focus on deep learning methods. Next, we discuss related work in predictive
process monitoring, with a focus on next event prediction using deep learning.

2.1 Machine Learning and Deep Learning

The goal of machine learning is to develop methods that can automatically
detect patterns in data, and these patterns to predict future data or other out-
comes of interest under uncertainty [13]. Depending on the underlying mecha-
nisms, the learning model can be labelled as generative or discriminative. The
objective of a generative model is to generate new data instances according to
the given training set. In detail, it learns a joint probability distribution over the
input’s features. The naive Bayes classifier is an example of generative models.
In contrast, a discriminative model directly determines the label of an input
instance by estimating a conditional probability for the labels given the input’s
features. Logistic regression is an example of discriminative models. Discrim-
inative models can only be used in supervised learning tasks, whereas gener-
ative models are employed in both supervised and unsupervised settings [14].
Figure 1, sketches the differences between the mentioned approaches; A discrim-
inative model learns a decision boundary that separates the classes whereas a
generative model learns the distribution that governs input data in each class.

Fig. 1. Differences between a generative and discriminative approaches; x is the input’s
features, and y is the corresponding label

Deep Neural Networks (DNNs) are extremely powerful machine learning
models that achieve excellent performance on difficult tasks such as speech recog-
nition, machine translation, and visual object recognition [7,10,11]. DNNs aim
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at learning feature hierarchies at multiple levels of abstraction that allow a sys-
tem to learn complex functions mapping the input to the output directly from
data, without depending completely on human-crafted features. The learning
process in a DNN equals to estimating its parameters, and one can do it via
Stochastic Gradient Descent (SGD) or its modifications that are the dominant
training algorithms for neural networks [3].

Recurrent Neural Networks (RNNs) are a family of DNNs with cyclic struc-
tures that make them suitable for processing sequential data [17]. RNNs exploit
the notion of parameter sharing that employs a single set of parameters for dif-
ferent parts of a model. Therefore, the model can be applied to examples of
different forms (different lengths) and generalize across them [6]. Such sharing is
particularly important when a specific piece of information can occur at multiple
positions within the input sequence. Two main issues in training an RNNs are
catasrophic forgetting, i.e., the model forgets the learned patterns, and optimiza-
tion instability, i.e., the optimization does not converge [3]. The first issue can
be alleviated by invoking the Long Short-Term Memory (LSTM) architecture
[8] which uses a few extra variables to control the information flow and thus
causes the network to learn long-term patterns as well. The second issue can be
mitigated by monitoring the gradient’s norm of each parameter and scaling it
down when it exceeds a threshold, a.k.a., gradient clipping [15].

Fig. 2. Generative adversarial nets [4]; the generator produces fake examples from
Gaussian noise, and the discriminator determines which of its input is real or fake.

Generative Adversarial Nets (GANs). [4] is a framework that employs two neural
network models, called players, simultaneously, see Fig. 2. The two players cor-
respond to a generator and a discriminator. The generator takes Gaussian noise
to produce instances, i.e., fake instances, which are similar to input instances,
i.e., real instances. The discriminator is a binary classifier such as logistic regres-
sion whose job is to distinguish real instances from generated instances, i.e., fake
instances. The generator tries to create instances that are as realistic as possible;
its job is to fool the discriminator, whereas the discriminator’s job is to identify
the fake instances irrespective of how well the generator tries to fool it. It is an
adversarial game because each player wants to maximize its own outcome which
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results in minimization of the other player’s outcome. The game finishes when
the players reach to Nash equilibrium that determines the optimal solution. In
the equilibrium point the discriminator is unable to distinguish between real and
fake instances.

GANs provide enormous advantages compared to other strategies for training
generative models. For instance, one can learn the input’s joint probability even
it is very sharp and degenerated, although, it needs accurate coordination of the
players, i.e., neural nets, according to the problem at hand. Thus, depending on
the input type, a GAN gives rise to a robust generative model that synthesizes
high-quality images, texts, and sequences. Also, the GAN’s discriminator can
be viewed as a feature selection mechanism since it selects the most important
features of its inputs to discriminate fake and real instances [5].

2.2 Predictive Process Monitoring of Next Event

This section reviews work on next event prediction using deep learning tech-
niques. The interested reader can find an overview and comparative evaluation
of different predictive process monitoring approaches in [19,21].

The work by Evermann et al. [2] uses the LSTM architecture for the next
activity prediction of an ongoing trace, although the authors mention that one
can predict other attributes such as the event’s duration time. It uses embed-
ding techniques to represent categorical variables by high dimensional contin-
uous vectors; it uses a two hidden layer LSTMs with one hundred epochs, the
input’s dimension varies according to the embedding representation, ten-fold
cross-validation, and dropout for each cell is 0.2.

Tax et al. [18] propose a similar architecture based on LSTMs. This work uses
a one-hot vector encoding to represent categorical variables. Given an ongoing
process execution, the approach predicts the next activity and its timestamp,
and the remaining cycle time and suffix until the end of the process execution.
Suffix prediction is made by next activity predictions iteratively. The proposed
approach uses a variety of architectures. However, the best results are based
on two hidden layers (shared and multi-task) LSTM with one hundred neurons
in each layer for all the prediction tasks. Their results show that the proposed
framework outperforms the technique in [2].

The work in [16] uses a Convolutional Neural Network (CNN) for the next
activity prediction task in a running process execution. The authors propose
a data engineering schema to represent the spatial structure in a running case
like a two-dimensional image. In experiments the approach starts with a prefix
of length one and increases the prefix length during the training until the best
accuracy can be obtained on the validation set. They use three convolutional and
max-pooling layers with 32, 64, and 128 filters, respectively. The experiments
show an improvement over [2,18].

Camargo et al. [1] employ a composition of LSTMs and feedforward layers
to predict the next activity and its timestamp and the remaining cycle time and
suffix for a running case. The approach uses embedding techniques similar to
[2] to learn continuous vectors for categorical variables and then use them for



242 F. Taymouri et al.

the prediction task via LSTMs. Similar to [18], different settings such as “spe-
cialized”, “shared categorical”, and “full shared” architectures are considered
in the experiments. Also, different configurations are considered randomly from
a full search space of 972 combinations. The experiments show improvements
over [2,18], and for the next activity prediction task this approach sometimes
outperforms that in [16].

Lin et al. [12] propose an encoder-decoder framework based on LSTMs to
predict the next activity and the suffix of an ongoing case. Unlike the previous
approaches, it uses all available information in input log, i.e., both control-flow
and performance attributes, for the prediction tasks. Random embedding is used
for each event and its attribute. The encoder maps an input sequence into a set of
high dimensional vectors and the decoder returns it back into new sequence that
can be used for the prediction tasks. The experimental setup of this approach is
different from [1,2,16,18]. Specifically, while the previous approaches aim to fit a
predictive model for each prefix length, [12] considers all possible prefix lengths
at once during the training and testing phases.

3 Approach

The main aim of predictive process monitoring is to predict the corresponding
attributes of ongoing process executions one or a few steps ahead of time. This
paper, for an ongoing process execution (prefix), predicts an event’s label and
its timestamp one step ahead of time. To this end, we propose an adversarial
framework inspired by GANs [4], which coordinates players, i.e., the generator,
and discriminator, in a novel way for process mining context, see Fig. 3. It has
two main parts, data prepossessing, and adversarial predictive process monitoring
net. The first part prepares the input data in the form of prefixes for the predic-
tion task, and adopts the required encoding to deal with categorical variables. It
uses one-hot encoding to manifest the viability of the proposed adversarial net.
The second part establishes a minmax game between generator and discrimina-
tor by proposing fake and real prefixes. Real prefixes are those in the training
set, and fake prefixes are formed from the generator’s output, i.e., predictions.
The training runs as a game between two players, where the generator’s goal is
to maximize the accuracy of the prediction to fool the discriminator, and the dis-
criminator’s goal is to minimize its error in distinguishing real and fake prefixes,
see flows (1), (2) in Fig. 3. It is an adversarial game since the generator and
the discriminator compete with each other, i.e., learning from the opponent’s
mistake, see flows (1), (3) in Fig. 3. Thus maximizing one objective function
minimizes the other one and vice versa.

The proposed adversarial net in this work has a number of major differ-
ences from the original GANs proposed by Goodfellow et al. [4], i.e., Vanilla
GAN, which are the core contributions of this paper. In our work, both the dis-
criminator and the generator are composed of RNNs (LSTM architecture) and
feedforward neural networks, rather than only feedforward networks. This is due
to the fact that we apply GANs for sequential temporal data that LSTMs have
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Fig. 3. Overall approach for next event prediction

been shown to perform well on [8]. Besides, the fake examples are formed by
the generator’s predictions and the input prefix; this is in contrast to Vanilla
GAN that creates fake examples from Gaussian noise, see Fig. 2. In this way,
one can adopt GAN-like frameworks to the wide range of process mining appli-
cations. Finally, the proposed framework guarantees that, in the worst case, the
generator has performance as if it was trained conventionally, i.e., no adversarial
game, thus, it reduces the effects of mode collapse in Vanilla GAN wherein the
generator fails to model the distribution of the training data well enough, which
in turn results in underfitting the input data and causes poor performance.

The rest of this section is organized as follows. First, the preliminary defini-
tions are presented. Following that, we formalize the required data prepossessing.
Next, RNNs training will be provided in detail, which will be used later in our
framework. Finally, we give details of the adversarial predictive process moni-
toring net, including its training and optimization.

3.1 Preliminaries and Definitions

This section provides the required preliminaries and definitions for the formal-
ization of the proposed approach.

Definition 1 (Vector). A vector, x = (x1, x2, . . . , xn)T , is a column array
of elements where the ith element is shown by xi. If each element is in R and
vector contains n elements, then the vector lies in R

n×1, and the dimension of
x, dim(x), is n × 1.

We represent a vector by a lowercase name in bold typeface. Beside, a set of d
vectors as x(1),x(2), . . . ,x(d), where x(i) ∈ R

n×1. Also, they can be represented
by a matrix M = (x(1),x(2), . . . ,x(d)) where M ∈ R

n×d. We denote the ith row
of a matrix by Mi,:, and likewise the ith column by M:,i.

Definition 2 (Gradient). For a function f(x) with f : Rn → R, the partial
derivative ∂

∂xi
f(x) shows how f changes as only variable xi increases at point

x. With that said, a vector containing all partial derivatives is called gradient,
i.e., ∇xf(x) = ( ∂

∂x1
f(x), ∂

∂x2
f(x), . . . , ∂

∂xn
f(x))T .
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Definition 3 (Probability Distribution). For a random variable (vector)
x ∈ R

n, a probability distribution is a function that is defined as follow: p : Rn →
[0, 1]. Similarly, for two random variables x ∈ R

n,y ∈ R
m, a joint probability

distribution is defined as: p : Rn × R
m → [0, 1].

Definition 4 (Expectation, Kullback–Leibler (KL) Divergence). The
expectation of a function f(x) where the input vector x that has a probability
distribution p(x) is defined as: Ex∼p[f(x)] =

∮
p(x)f(x)dx. Given two probability

distributions p1() and p2(), KL divergence measures the dissimilarity between two
distributions as follows: DKL(p1 ‖ p2) = Ex∼p1 [logp1(x) − logp2(x)].

A similar concept to measure the dissimilarity between two distribution is the
cross-entropy and defined as H(p1, p2) = −Ex∼p1 [logp2(x)].

Definition 5 (Event, Trace, Event Log). An event is a tuple (a, c, t, (d1, v1),
. . . , (dm, vm)) where a is the activity name (label), c is the case id, t is the
timestamp, and (d1, v1) . . . , (dm, vm) (where m ≥ 0) are the event attributes
(properties) and their associated values. A trace is a non-empty sequence σ =
〈e1, . . . , en〉 of events such that ∀i, j ∈ {1, . . . , n} ei.c = ej .c. An event log L is a
multiset {σ1, . . . σn} of traces.

A trace (process execution) also can be shown by a sequence of vectors, where a
vector contains all or part of the information relating to an event, e.g., event’s
label and timestamp. Formally, σ = 〈x(1),x(2), . . . ,x(t)〉, where x(i) ∈ R

n is a
vector, and the superscript shows the time-order upon which the events hap-
pened.

Definition 6 (k-Prefix (Shingle)). Given a trace σ = 〈e1, . . . , en〉, a k-
prefix is a non-empty sequence 〈ei, ei+1, . . . , ei+k−1〉, with i ∈ {1, 2, . . . , n −
k + 1}, which is obtained by sliding a window of size k from the left to the right
of σ.

The above definition, a.k.a. k-gram, holds when an input trace is shown by a
sequence of vectors. For example, the set of 2-prefix for σ = 〈x(1),x(2),x(3),x(4)〉,
is {〈x(1),x(2)〉, 〈x(2),x(3)〉, 〈x(3),x(4)〉}.

3.2 Data Preprocessing

This section elaborates on preparing k-prefixes which constitute the training
and test set. In detail, the approach in this paper learns a function that given
a k-prefix, 〈x(1),x(2), . . . ,x(k)〉, returns a vector, y(k), that can be viewed as
the next attribute (property) prediction. For the sake of simplicity, we only
predict the next activity and its timestamp, see Definition 5. For the timestamp
attribute, we consider the relative time between activities, calculated as the time
elapsed between the timestamp of one event and the event’s timestamp that
happened one step before. However, without loss of generality, one can include
the prediction of other attributes.
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There are several methods in literature to encode and represent categorical
variables. Unlike the techniques in [1,2,12], which learn embedding representa-
tions for categorical variables, this paper, uses one-hot encoding. The reason to
adopt this rudimentary encoding is to manifest that the viability of the presented
approach owes to the adversarial architecture and not to the data engineering
part. Indeed, one can integrate various embedding representations.

In a nutshell, the one-hot vector encoding of a categorical variable is a way
to create a binary vector (except a single dimension which is one, the rest are
zeros) for each value that it takes. Besides, we use 〈EOS〉 to denote the end of
a trace. Formally:

Definition 7 (One-Hot Encoding). Given a universal set of activity names
E, including 〈EOS〉, and trace σ, one-hot encoding is a function, f(σ, E), that
maps σ into a sequence of vectors 〈x(1),x(2), . . . ,x(|σ|)〉, where, x(i) ∈ {1} ∪
{0}E−1, ∀i ∈ {1, 2, . . . , |σ|}.
For example, given E = {a1, a2, a3, a4, a5, 〈EOS〉}, and σ = 〈a1, a3, a4, 〈EOS〉〉.
The one-hot vector encoding of σ is the following sequence of vectors:

f(σ, E) = 〈(1, 0, 0, 0, 0, 0
︸ ︷︷ ︸

a1

), (0, 0, 1, 0, 0, 0
︸ ︷︷ ︸

a3

), (0, 0, 0, 1, 0, 0
︸ ︷︷ ︸

a4

), (0, 0, 0, 0, 0, 1
︸ ︷︷ ︸

〈EOS〉

)〉

Furthermore, if x(i) shows the one-hot vector of ei, then, one can augment the
former with the other attributes of the latter. In this paper, as mentioned already,
we augment one-hot vectors with the time elapsed between the timestamp of one
event and the event’s timestamp time that happened one step before.

Table 1. Preprocessing of input k-prefix

x(t)

︷ ︸︸ ︷

y(t)

︷ ︸︸ ︷

Input 3-prefix One-hot vector Timestamp (s) One-hot vector (next)

〈(a1, 26/12/2019 00:30 AM), (1, 0, 0, 0, 0, 0) 0 (0, 0, 1, 0, 0, 0)

(a3, 26/12/2019 01:02 AM), (0, 0, 1, 0, 0, 0) 1920 (0, 0, 0, 1, 0, 0)

(a4, 26/12/2019 01:18 AM), (0, 0, 0, 1, 0, 0) 960 (0, 0, 0, 0, 0, 1)

(〈EOS〉)〉 (0, 0, 0, 0, 0, 1) 0 null

For each k-prefix, 〈x(1),x(2), . . . ,x(k)〉, we couple another k-prefix 〈y(1),y(2),
. . . ,y(k)〉, where y(t), ∀t ∈ {1, 2, . . . , k}, is the next ground truth vector after
visiting x(t). It is worth noting that, x(t) and y(t) might have different dimen-
sions. For example, the former can be a one-hot vector, whereas the latter refers
to the next activity’s timestamp, which is scalar. A set of such paired k-prefixes
is considered for training and test set. For the above example, Table 1 shows the
augmented vectors, i.e., x(t), containing one-hot vectors and non-standardized
events timestamps, as well as the respective next attribute, i.e., y(t). The last
row shows the end of prefix which is discarded for the since it does not provide
useful information.



246 F. Taymouri et al.

3.3 Training Recurrent Neural Networks

This section provides the training of RNNs in detail, which we will use it later in
our proposed framework. For the ease of exposition, we present the training for
the traditional RNN [17], although, the concepts hold for any RNN architectures
such as LSTM.

Fig. 4. (a) An RNN, (b) Time-unfolding of an RNN architecture

Given a sequence of inputs 〈x(1),x(2), . . . ,x(k)〉, an RNN computes sequence
of outputs 〈o(1),o(2), . . . ,o(k)〉 via the following recurrent equations:

o(t) = φo(V
Th(t) +b), h(t) = φh(WTh(t−1) +UTx(t) + c), ∀t ∈ {1, 2, . . . , k} (1)

where o(t) is the RNN’s prediction for ground truth vector y(t); φh and φo

are nonlinear element-wise functions, and the set θ = {W,U,V, c,b}, is the
network’s parameters. An RNN’s architecture, and its time-unfolded graph are
shown in Fig. 4 (a) and (b) respectively, where we hide vectors c, b, and functions
φh, φo for the purpose of transparency.

One can estimate (learn) an RNN’s parameters, i.e., θ, via the maximum
likelihood principle, in which θ is estimated to maximize the likelihood of training
instances. This way, an RNN is trained to estimate the conditional distribution
of the next vector’s attribute, y(t), given the past input, x(1),x(2), . . . ,x(t). In
detail, to estimate θ, one minimizes the following loss function:

J(θ) =
k

∑

t=1

L(t), where L(t) = −log pm(y(t)|x(1),x(2), . . . ,x(t)) (2)

where pm, gives the likelihood (probability) that the RNN generates the
ground truth vectors. Besides, L(t), boils down to the cross-entropy between
softmax(o(t)) and y(t) whenever the latter is a one-hot vector, and it becomes
‖ y(t) − o(t) ‖2, a.k.a., Mean Square Error (MSE), for a continues ground truth
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vector. Finally, in an iterative way, the network’s parameters are updated via
SGD algorithm, wherein, the gradient of J(θ), i.e., ∇θJ , is computed by back-
propagation through time (BPTT) [17].

One can see that training an RNN or an LSTM in this way gives rise
to a discriminative model, see Eq. 2 and Fig. 1. However, according to the
Bayes’ theorem the estimated conditional distribution in Eq. 2 is propor-
tional to the joint probability distribution, i.e., pm(y(k)|x(1),x(2), . . . ,x(k)) ∝
pm(x(1),x(2), . . . ,x(k),y(k)). Thus, one can consider LSTMs or RNNs as gener-
ative models by using the learned distribution pm which is an approximation to
the input’s ground truth joint distribution pd. We will exploit this issue in our
proposed framework.

3.4 Adversarial Predictive Process Monitoring Nets

This section presents the core contribution of this paper by proposing an adver-
sarial process to estimate a generative model for the predictive process moni-
toring tasks. The proposed framework is inspired by the seminal work in [4],
i.e., Vanilla GAN, which has been used for synthesizing images. However, our
proposed adversarial net is devised to work with time-series data, including cat-
egorical and continuous variables; Therefore, it is fully adaptable to a wide range
of process mining applications.

In the proposed adversarial architecture, shown in Fig. 5, both the generator
and the discriminator are LSTMs, as explained in Sect. 3.3, and are denoted
by G(; θg), and D(; θd) respectively. Precisely, the output of G is a sequence,
however, the last prediction is of our concern. D is equipped with an extra
dense feedforward layer which assigns a probability to its input as a real prefix.
The networks’ parameters are denoted by θg and θd, which are adjusted during
training.

Fig. 5. Proposed GAN architecture for predicting next attributes

The generator in Fig. 5 given a k-prefix 〈x(1),x(2), . . . ,x(k)〉 and its ground
truth 〈y(1),y(2), . . . ,y(k)〉, generates sequence 〈o(1),o(2), . . . ,o(k)〉 according to
Eq. 1. Thus, we want the G’s last prediction, o(k), to be as close as possible to
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ground truth y(k), such that, D gets confused in discriminating o(k) and y(k).
To make this more concrete we define the followings fake and real prefixes.

X(k) = 〈x(1),x(2), . . . ,x(k),y(k)

︸ ︷︷ ︸

Real prefix

〉, Z(k) = 〈x(1),x(2), . . . ,x(k),o(k)

︸ ︷︷ ︸

Fake prefix

〉 (3)

Where X(k) and Z(k) are sampled from pd and pm distributions respectively, and
differ only in their the last elements. Thus, the minmax game, as an optimization,
is as follow:

arg min
G

max
D

= EX(k)∼pd
[log D(X(k))

︸ ︷︷ ︸

(a)

] + EZ(k)∼pm
[log (1 − D(Z(k)))

︸ ︷︷ ︸

(b)

] (4)

Equation 4 drives D to maximize the probability of assigning X(k) to a real
prefix, see (a), and assigning Z(k) to a fake prefix, see (b). Simultaneously, it
drives G in generating fake prefixes, i.e., Z(k)s, to fool D into believing its prefixes
are real. In short, G minimizes the cross-entropy between the ground truths and
its predictions. Hence, the training procedure is presented in Algorithm1.

Algorithm 1. Stochastic gradient descent training of the proposed adversarial
net
1: for number of epochs do � Number of training iterations

2: for each 〈x(1),x(2), . . . ,x(k)〉 do � A k-prefix

3: •Generate 〈o(1),o(2), . . . ,o(k)〉 using G via Eq. 1
4: •Create fake and real prefixes, i.e., Z(k) and X(k), according to Eq. 3
5: •Update the discriminator, D, by ascending its gradient:

θd ← θd + ε

(

∇θd [logD(X(k)) + log(1 − D(Z(k)))]

)

6: •Update the generator, G, by descending its gradient:

θg ← θg − ε

(

∇θg [log(1 − D(Z(k))) + J(θg)]

)

7: end for
8: end for

Algorithm 1 computes gradients for all prefixes in each epoch, although, one
can use batches to speed up training time as well. Besides, the learning rate, i.e.,
ε, can be different for G and D. Line 5 shows that the parameters of the discrimi-
nator, i.e., θd, are updated (maximizing) for each pair of real and fake prefixes by
ascending the gradient of mistakes. Next, in line 6, we update (minimizing) the
parameters of the generator, i.e., θg, by descending the gradients of two terms. In
the fist term, the generator exploits the discriminator’s mistake in determining
a fake prefix, i.e., Z(k), to update its parameters (see flow (3) in Fig. 3). This
way, the generator learns how to fool the discriminator in the next iterations by
generating more realistic prefixes. The second term is the loss function as defined
in Eq. 2. We incorporated this term because in some situations the D’s mistake
for a fake prefix, i.e., log(1 − D(Z(k))), does not provide sufficient gradient for
G to update its weight. It happens at the beginning of training, when D easily
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discriminates fake and real prefixes, e.g., log(1−D(Z(k))) = log(1−0) = 0, thus,
adding J(θg) facilitates the generator’s learning process.

Convergence: At equilibrium, the generator’s prefixes, i.e., fake prefixes, are
indistinguishable from real prefixes, and it means that the generator has learnt
the input data distribution, i.e., pd. Thereby, its predictions must be enough
close to ground truths. However, learning in GANs is a difficult task, since the
minmax game in Eq. 4, in general, is not a convex function, thus, no global
optimum solution is guaranteed to obtain. In addition, in a minmax game where
each player reducing their own cost at the expense of the other player, reaching
Nash equilibrium is not guaranteed. Consequently, either of the mentioned issues
causes GANs to underfit the input’s data distribution which give rises to poor
results [4]. Algorithm 1 alleviates the mentioned issues by invoking J(θg) during
training. Thus, in the worst case, the generator’s ability to capture pd for the
prediction task is lower bounded as if it was trained conventionally, i.e., no
adversarial process.

Complexity: The complexity of Algorithm 1 boils down to computing gra-
dients for the generator and the discriminator. In detail, for a k-prefix
〈x(1),x(2), . . . ,x(k)〉 that is paired with 〈y(1),y(2), . . . ,y(k)〉 , suppose that
x(t),y(t) ∈ R

m, ∀t ∈ {1, 2, . . . , k}, and U,W,V ∈ R
m×m. Therefore, to com-

pute gradients of an RNN (or an LSTM architecture), one must do a for-
ward propagation pass from left to right of the time-unfolded graph to gen-
erate 〈o(1),o(2), . . . ,o(k)〉 and to compute J(), see Fig. 4 (b). Following that,
a backward propagation pass moving right to left through the time-unfolded
graph for computing gradients. In summary, either a forward or a backward
pass requires O(km2) operations [22]. Thus, for a training set containing n k-
prefixes, O(knm2) operations are required in each iteration. Thereby, the pro-
posed adversarial net’s complexity is of the same order as conventional training,
i.e., no minmax game. Besides, it is noteworthy that the updates of the discrimi-
nator and the generator, i.e., lines 5 and 6, can be done in parallel after creating
Z(k) and X(k).

4 Evaluation

We implemented our approach in Python 3.6 via PyTorch 1.2.0 and used this
prototype tool to evaluate the approach over four real-life event logs, against
three baselines [1,16,18]. The choice of the baselines was determined by the
availability of a working tool, either publicly or via the authors. For this reason,
we excluded from the experiment the work by Lin et al. [12], whose tool we were
not able to obtain. Moreover, the work by Evermann et al. [2] was excluded as
Tax et al. [18] have already shown to outperform this approach.

The experiments were run on an Intel Core i8 CPU with 2.7 GHz, 64GB
RAM, running MS Windows 10. The reason to use CPU rather than GPU is
that the baselines were designed for CPU execution. However, our implantation
also allows one to train discriminator and generator on separate GPUs. Running
of CPU instead of GPU only affects performance, not accuracy.
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4.1 Experimental Setup

Datasets: The experiments were conducted using four publicly-available real-
life logs obtained from the 4TU Centre for Research Data.1 Table 2 shows the
characteristics of these logs while the description of the process covered is pro-
vided below.

– Helpdesk: It contains traces from a ticketing management process of the
help desk of an Italian software company.

– BPI12: It contains traces from an application process for a personal loan or
overdraft within a global financing organization. This process contains three
sub-processes from which one of them is denoted as W and used already in
[1,2,18]. As such, we extract two logs from this dataset: BPI12 and BPI12(W).

– BPI17: It contains traces for a loan application process of a Dutch financial
institute. The data contains all applications filed through an online system
in 2016 and their subsequent events until February 1st 2017.

Table 2. Descriptive statistics of the datasets (|σ| is the trace length, Δt is the time
difference between two consecutive event timestamps)

Log Traces Events Labels Max |σ| Min |σ| Avg |σ| Avg Δt,
days

St Dev(Δt),
days

Helpdesk 3,804 13,710 9 14 1 3.60 3.379 6.613

BPI12 13,087 262,200 23 175 3 20.03 0.453 1.719

BPI12(W) 9,658 72,413 6 74 1 7.49 1.754 3.075

BPI17 31,509 1,202,267 26 180 10 38.15 0.588 3.211

All the above logs feature event attributes capturing process resources. This
information is used by the baseline in [1] to extract extra signal for training.

Evaluation Measures: For consistency, we reuse the same evaluation measures
adopted in the baselines. Specifically, to measure the accuracy of predicting the
next event’s label, we use the fraction of correct predictions over the total number
of predictions. For the timestamp prediction, we report Mean Absolute Error
(MAE), that is the average of absolute value between predictions and ground
truths.

Training Setting: For both generator and discriminator we use a two layer
LSTM. In addition, the discriminator is equipped with a dense layer for the
binary classification task. In detail:

– We use 25 epochs and split the data into 80%–20% for training and testing
respectively, by preserving the temporal order between cases. However, early
stopping is used to avoid over-training. In addition, we use a batch of size
five to speed up the training procedure.

1 https://data.4tu.nl/repository/collection:event logs real.

https://data.4tu.nl/repository/collection:event_logs_real
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– For each log, we consider different prefix lengths to be used for the predic-
tion task, i.e., k-prefixes, where k ∈ {2, 4, 6, 8, 10, 15, 20, 25, 30, 35, 40, 45, 50},
provided such k-lengths exist in the log. In detail, we train the proposed
framework for each k-length case prefix and report the value of prediction
accuracy and MAE, for that k. In this way, we can also observe the earliness
of a prediction, i.e. see how the predictions accuracy and MAE evolve over
the prefix length. This experimental setup is in-line with that of [1,2,16,18].
Moreover, since the training and test set size varies for each prefix, we report
the weighted average over all k-lengths for both accuracy and MAE.

– For each LSTM, we dynamically adjust the size of hidden units in each layer,
and it is twice the input’s size. For example if the augmented vectors dimen-
sion is 10, then each layer has 2 × 10 hidden units.

– Adaptive Moment Estimation (ADAM) is used as an optimization algorithm
for both generator and discriminator. It accelerates the learning procedure
by mitigating the effects of highly curvature search space [9]. The learning
rate, i.e., ε, was set to 0.0002 for both LSTMs to avoid gradient explosion
during the training. In addition, we applied gradient clipping [15] to scale
down the gradient of each layer in every iteration. More specifically, let us
use g to denote the gradient vector of a layer. Then, if ‖g‖2

|batch| > 10, we scale
the gradient as g = 10g

‖g‖2
. The threshold value of 10, only affects the learning

speed and does not alter the learning outcome [15].

For the baselines, we used the best parameter settings, as discussed in the respec-
tive papers, or provided by the authors. These settings are provided in our tool
distribution.

Table 3. Weighted average accuracy for next label prediction, and Weighted average
MAE for next timestamp prediction

Approach Weighted average accuracy Weighted average MAE (days)

Helpdesk BPI12(W) BPI12 BPI17 Helpdesk BPI12(W) BPI12 BPI17

Ours 0.9518 0.9158 0.9401 0.9256 0.8621 0.6528 0.3471 0.4225

Tax et al. [18] 0.7419 0.7077 0.7495 0.8941 3.660 1.5530 0.3716 0.5026

Camargo et al. [1] 0.7384 0.7543 0.7182 0.8568 2.8996 1.8405 0.5201 0.3646

Pasquadibisceglie

et al. [16]

0.7677 0.7734 0.7424 0.8676 – – – –

4.2 Results

Next Label Prediction: The second to fifth column of Table 3 show the
weighted average accuracy of our approach and of the baselines, for each of
the four logs. We can see that our approach provides a considerably more accu-
rate overall prediction compared to the baselines for each dataset. In Fig. 6 we
break this result for each k-prefix length, per log. From these charts we can
draw several observations. First, our approach has an accuracy that is system-
atically higher than that of each baseline, at any given prefix length, obtaining
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Fig. 6. Accuracy of next event label prediction on the test set for different k-prefixes,
k ∈ {2, 4, . . . , 50}; Our approach vs. baselines

at least 98% accuracy for all logs at the longest considered prefix length. This
is achieved by using a naive feature encoding (one-hot vector) of event labels,
without extracting features from further event attributes such as resources. Sec-
ond, the accuracy monotonically increases (though not strictly) with the length
of the prefix. In contrast, the baselines exhibit fluctuations in accuracy as the
length of the prefix increases. This is mainly due to the way a neural network is
trained, and secondly, to the number of training examples (sequences of events
in our case) used. In detail, our approach trains a neural network via a minmax
game (adversarial) in addition to the conventional training, which allows us to
obtain better generalization of the datasets at hand. Above that, the proposed
approach is much less sensitive to the number of training sequences since the
generator learns the input’s distribution, through which it can then generate
training sequences close to ground truth ones, thus eliminating the need for a
large training data. The lack of sufficient training data severely impacts the base-
lines. For example, [1] loses accuracy faster than the other baselines as the prefix
length increases. This is most likely because this approach extracts features from
process resource, besides event labels and timestamps, and as such it requires a
much larger training data for a larger number of parameters.

Next Timestamp Prediction: The last four columns in Table 3 show the
weighted average MAE in days, for each log and for each approach, except [16]
as it does not support timestamp prediction. The detailed MAE for each pre-
fix length in provided in Fig. 7. The results are consistent with those for next
event label prediction, in terms of accuracy (lower error), earliness and stability.
Specifically, from the charts we can see that for nearly all prefixes, our approach
outperforms the baselines, except for k = 2 in BPI12, BPI12(W) and for k = 2–



Predictive Business Process Monitoring via Generative Adversarial Nets 253

Fig. 7. MAE of next event timestamp prediction on the test set for different k-prefixes,
k ∈ {2, 4, . . . , 50}; Our approach vs. baselines

15 in BPI17, where [1] provides slightly better MAE. For the BPI12 log, our
approach reaches an MAE of 0.0169 at the longest prefix length, while the best
result, achieved by [18] is 0.2457 (14 times higher). Given that MAE is measured
as number of days, this means that there is an error of 14 days in the timestamp
prediction. Looking at the weighted average MAE, we can observe the most sig-
nificant improvements in the Helpdesk log, where our approach achieves up to 4
times lower MAE than the baselines.

The higher MAE values of [1] for certain prefix lengths, especially in the
BPI17 log, are attributable to the use of resources in the log, and are in-line
with the aggregate results in Table 3, where [1] outperforms our approach for
the weighted average MAE in BPI17 (0.3646 instead of 0.4225). To confirm this
intuition, we re-executed the experiment without using resources (we note that
[1] is the only baseline that extracts features from resources) and the accuracy
obtained was lower (e.g. for BPI17, [1] obtains a weighted average MAE of 0.5537
instead of 0.3646).

In terms of stability, we can see that while we do not achieve monotonicity
as in the case of next label prediction, the amplitude of the fluctuations of MAE
in our approach is very small across all logs, with a clear downward trend as
prefix length increases.

Behavior of the Convergence: We concluded our experiment by studying the
convergence behavior of the generator and the discriminator while performing
the minmax game in Algorithm 1. We provide three patterns that we observed
in our experiments, as shown in Fig. 8, which plots the loss function of generator
and discriminator. The patterns are the same for all datasets. As an example,
we explain the pattern for the BPI17 log. Figure 8 (a) is an example where
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Fig. 8. Convergence patterns based on loss functions of generator and discriminator
when training for BPI17: a) no convergence; b) late convergence; c) early Convergence

no convergence is made for this log. In other words, neither of the players can
overcome the other. In this situation, the training continues with conventional
training, as one can see from Fig. 6 where our accuracy for BPI17 and for k = 15
is slightly better than that in [18]. In contrast, Fig. 8 (b) and (c) are examples of
late, respectively, early convergence. Here the generator exploits the adversarial
game since, after many iterations, it fools the discriminator as the discrimina-
tor’s loss function increases significantly, and the generator’s loss function drops.
In such situations, the generator has learned the input’s distribution correctly.
Thus, the discriminator makes mistakes in distinguishing the ground truth from
the generator’s predictions. The effect of this gain can be seen in Fig. 6 for BPI17
at k = 45 or 50, where our approach outperforms the baselines by far.

5 Conclusion

This paper put forward a novel adversarial framework for the prediction of next
event label and timestamp, by adapting Generative Adversarial Nets to the
realm of sequential temporal data. The training is achieved via a competition
between two neural networks playing a minmax game. The generator maximizes
its performance in providing accurate predictions, while the discriminator mini-
mizes its error in determining which of the generator’s outputs are ground-truth
sequences. At convergence, the generator confuses the discriminator in its task.
The training complexity of the proposed framework is of the same order as that
of conventional training, and more importantly, we showed, both formally and
empirically, that given the same network’s architecture, our minmax training
outperforms a network trained in conventional settings.

The results of the experimental evaluation highlight the merits of our app-
roach, which systematically outperforms all the baselines, both in terms of
accuracy and earliness. The results also show that the behavior of our app-
roach is more robust as it does not suffer from accuracy fluctuations over the
prefix length. This in turn confirms the generator’s ability to learn the input
distribution for generating predictions close to the ground truth, eliminating the
need for a large number of training instances.
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The experimental setting is limited to four (real-life) logs and three baselines.
More extensive experiments should be conducted to confirm the results of this
study. A further avenue for future work is to investigate alternative architec-
tures within the proposed adversarial framework, to deal with other prediction
problems such as case outcome or remaining time. More broadly, our adaptation
of GANs to sequential temporal data lends itself well to various applications in
process mining. For example, we foresee its use for variant analysis, automated
process discovery, alignment computation in conformance checking, and process
drift detection. We plan to investigate some of these opportunities in the future.

Reproducibility. The source code of our tool as well as the parameter settings
used in our approach and in the baselines, in order to reproduce the experiments,
can be found at https://github.com/farbodtaymouri/GanPredictiveMonitoring.
This link also provides detailed experiment results.
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