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Abstract. Business processes have to adapt to constantly changing
requirements at a large scale due to, e.g., new regulations, and at a
smaller scale due to, e.g., deviations in sensor event streams such as
warehouse temperature in manufacturing or blood pressure in health
care. Deviations in the process behavior during runtime can be detected
from process event streams as so called concept drifts. Existing work has
focused on concept drift detection so far, but has neglected why the drift
occurred. To close this gap, this paper provides online algorithms to ana-
lyze the root cause for a concept drift using sensor event streams. These
streams are typically gathered externally, i.e., separated from the process
execution, and can be understood as time sequences. Supporting domain
experts in assessing concept drifts through their root cause facilitates
process optimization and evolution. The feasibility of the algorithms is
shown based on a prototypical implementation. Moreover, the algorithms
are evaluated based on a real-world data set from manufacturing.

Keywords: Online process mining - Concept drift - Sensor event
stream - Root cause analysis + Time sequence - Dynamic Time Warping

1 Introduction

“World-class organizations leverage business process change as a means to
improve performance, reduce costs, and increase profitability” [23]. Companies
can react by adapting their business process to the changing requirements at a
large scale, e.g., new regulations, and at a smaller scale, e.g., deviations in sensor
streams in manufacturing or medicine. In any case, adaptations of the process
logic result in a so called concept drift [25].

When adapting business processes, a concept drift might be known in case
of explicitly defined and applied process changes, but also unknown and “only”
recorded in so called process event logs that store information on business pro-
cess execution in an event-based manner. If the process execution events are
continuously collected during runtime, we call this a process event stream. Exist-
ing techniques detect concept drifts from process event logs in an offline manner
(ex post) based on process execution logs [4] or in an online way based on pro-
cess event streams [15,19,27], i.e., during runtime as the processes are executed.
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Online concept drift detection can be crucial to react on process changes in
time. However, approaches to analyze and identify the reason why a concept
drift happened, i.e., its root cause, are missing although knowing the root cause
contributes to, e.g., optimizing future occurrences of similar concept drifts.

Hence the basic question is how to identify and analyze the root cause for
concept drifts at runtime. Several examples suggest that data from IoT devices,
i.e., external sources such as sensors can influence the execution behavior of a
process. Temperature, for example, might cause exceptions in logistics processes
[3]. Variations in parameters might indicate the quality of products in manufac-
turing [8,12]. The data emitted by sensors is called sensor event streams and is
captured externally, i.e., outside the process execution [16]. Sensor event streams
constitute time sequence data [12]. Informally, a time sequence holds quantita-
tive, time-stamped data. We opted to analyze time sequence data instead of time
series data as the latter requires equidistant time intervals what is not always
the case for the real world cases to be considered.

In order to facilitate root cause analysis for concept drifts, this work addresses
the following research questions:

RQ1: How can drifts in sensor event streams associated with process instances
be identified?

RQ2: How can the analysis of these drifts help domain experts, to assess root
causes and thus propose concept drifts/process evolution?

The approach takes a process history [19] as input. The process history holds
an ordered sequence of process models that have been mined online and are
connected to per-instance sensor event streams. These sensor event streams are
time sequences, and the deviations between the streams of different instances
of each model are determined using dynamic time warping (DTW). DTW cal-
culates the distance between two time sequences. The challenge is to interpret
the drifts in the sensor event streams to identify future concept drifts in the
process model (in contrast to [19], which deals with the identification of concept
drifts ex-post). The approach was implemented for a real-world IoT application
from the manufacturing domain and a data set was gathered that is used to
evaluate the approach. Specifically, we show how the results of the analysis sup-
port domain experts in understanding why a drift happened (root cause) and
to learn what can be done to efficiently deal with it. The objective is therefore
to evaluate the applicability of this approach in finding the cause for a concept
drift, to evaluate the performance of this approach, i.e., how many reasons can
be correctly detected in which time and to give information on how to adapt the
current process model to the current situation.

This paper is outlined as follows: In Sect. 2, a running example as well as pre-
liminaries are introduced. Section 3 features two algorithms to determine drifts in
event streams from external sources. Section 4 evaluates these algorithms based
on a real world IoT application. Related work is reflected in Sect.6. Section 7
summarizes this work and gives a brief outlook of the planned future work.
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2 Running Example and Fundamentals

Figure 1(a) shows the process model of a medical round for a patient of a health
care facility. This model represents the current care plan for one specific patient.
The general health status of a patient is checked, the blood pressure is measured,
and drugs are administered. During runtime process instances are created and
executed based on the process model. The execution information is stored in
a process event log. Assume that a concept drift occurs, which results in the
process model depicted in Fig. 1(b), i.e., an additional hydration check is added
in parallel to checking the blood pressure. Another drift could be detected in the
data elements of a process instance, for example, the task “Blood Pressure” is
in (b) done by nurses, while it has been done in (a) by medical doctors. Existing
approaches [14,15,19,27] enable drift detection, but do not explain why the drift
happened in the first place.

Unlike process data such as resource or patient age, typically, the temperature
and humidity of the patient’s room are constantly monitored by external sensors.
The sensors produce event streams which consist of data points representing a
single measurement. These measurements are typically not stored in a process
execution log, but in a different database, since the tasks are not directly linked
to any process data. We investigate whether and how such sensor event streams
can be exploited in order to analyze and explain why a concept drift happened.
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iastolic: 80mm Hg
resource: Nurse

-data elements
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Fig. 1. Concept drift resulting in adapted process model — medical example

This work exploits process histories [19] to store drift information reflected
by deviations in process models. A process history HP := <My, My, .., My, ..>
contains a list of viable process models M;,i = 0,1,.. that reflect the natural
evolution of a business process P. While previous work [20] focuses on data
that is part of the business logic of a process (e.g., resources as in Fig. 1), this
paper addresses high velocity time sequence data that is collected from external
sensors, but is otherwise not utilized in the context of processes or sub-processes.

A time sequence is defined as follows in [10, p. 208]: A sequence of
time-stamped data for which the attribute values are the result of measure-
ments of a quantitative real-valued state variable, denoted by y € Ry =

(y(t1), y(ta), .y y(tn))-
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The challenge is to compare the time sequences in order to detect differences
in the associated sensor event streams that can lead to drifts. To compare two
time sequences, an alignment is calculated to determine the distances from one
sequence to another. The most common distances measure are the Euclidean
Distance (ED) [9] and Dynamic Time Warping (DTW) [2]. While ED has several
advantages like linear computing time and being straightforward, it requires time
sequences to be of the same length and is deceptive for noise. DTW is also able to
globally find the best alignment and can cope with sequences of different length.
The complexity is quadratic, since a m X n matrix has to be constructed, where
m and n are the lengths of the time sequence.
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We use DTW as we are dealing with sequences of different lengths. Figure 2
shows time sequences A and B, together with a table containing the exact values
at every timestamp. The m x n matrix D for the alignment between A and B
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is constructed by starting in the bottom row and filling every value from left
to right, as can be seen in Fig.3. The distance as absolute difference between
the actual values is calculated, so in the bottom left corner it is |28 — 27| = 1.
Afterwards the cheapest cost from one of the cells before is used, so D(n,m1),
D(ny,mq) and D(ny,m) is added to the distance and assigned to D(n,m). The
definition follows [18]: D(i,j) = Dist(i,j) + min[D(i — 1,j),D(i,5 — 1), D(i —
1,7 1)

The distance is found in the top right corner of Fig. 3. The alignment can be
found using back-tracing starting in the top right corner and following the path
back to the start cell in the bottom left corner, i.e., the green cells.

This work employs the DTW Barycenter Averaging (DBA) [17] algorithm.
DBA uses DTW as distance measure and calculates the average time sequence
for a set of time sequences. It starts by an arbitrary average sequence and adapts
it iteratively by trying to minimize the sum of squared DTW distances from the
average sequence to the set of sequences. The computation time of this technique
is again quadratic, since a DTW matrix has to be created for each iteration.

3 Time Sequence Assignment and Root Cause Detection

This section details the main contribution of this work, i.e., how to utilize time
sequence data from sensor event streams to flag process instances for closer
inspection when performing a root cause analysis for concept drifts. Note that
an analysis for both cases is possible, i.e., finding reasons for concept drifts
that have already been detected (ex post) and — particularly during runtime —
detecting and analyzing deviations in the sensor event streams that might lead
to a future concept drift, i.e., a process evolution.

We start with the architecture of the solution presented in this work (cf.
Fig.4) as foundation for the subsequent considerations. Note that the compo-
nents Time Sequence Module and Drift Decision Detection (both red) realize
the contribution of this paper.

For detecting drifts, sensor event streams are taken as input. They can be fed
into the system by any process execution engine. In the manufacturing scenario
presented throughout this paper, the Cloud Process Execution Engine CPEE!
is utilized. The sensor components provide data streams collected through tasks
in @ (Fig. 7). The process history is therefore extended to include all the data
from the sensors. Further implementation details will be described in Sect. 4.

3.1 Time Sequence Module

This component enriches the process history by adding the average time sequence
of every sensor to each new viable process model M,,. To relate a time sequence
of an event stream produced by a sensor to a specific process instance, the
timestamps of the first and currently last event of the stream are taken into

! http://cpee.org/.
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Fig. 4. Proposed architecture: red parts denote the contribution of this paper (Color
figure online)

account and the corresponding time sequence is cut out for the process instance.
In the example (cf. Fig.1), time sequences between the start time of “Check
patient” and end time “Administer Drugs” are mapped to a process instance for
both sensors, temperature and humidity.

Algorithm 1 shows the pseudo code for the Time Sequence Module. The set of
unfitting traces T is provided by the process history, i.e., those traces that do not
conform to the current model M,,. The time sequences are provided by external
sensors through the process history. In line 1, the return value is initialized as an
empty dictionary. A dictionary here reflects a hash table [6] data structure with
a key and a related value to it. Line 2 starts the iteration over time sequences
of each sensor. At first, the time sequence for each trace out of T is collected
starting in line 6. We map a time sequence from a sensor to a trace by beginning
from the first time stamp of this trace to the last known time stamp of this
trace, as can be seen in line 9. Since we are working in an online environment,
it is possible that traces just started and contain only one event, which results
in no time sequence for this specific trace.

Another important aspect of the online setting is, that each trace could have
greatly varying execution times, since we do not know how long a complete
trace is going to take. To diminish the impact of outliers and faulty or aborted
instances, we exclude sequences with a duration shorter than the first quartile
minus 1.5 times the IQR (Interquartile Range) or with a duration greater than
the third quartile plus 1.5 times the IQR, similar to boxplots. The IQR is calcu-
lated here between third and first quartile. Other methods for detecting outliers
can be applied here or even working with every trace.

We calculate the quartile at (lines 11 and the IQR at line 12). Afterwards
the outliers of the collected time sequences are removed. Otherwise the time
sequence will be taken into account (lines 14-17). In the last step (line 18), the
averaged time sequence is put into the dictionary AT'S with its corresponding
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sensor id as key. The dictionary of averaged time sequences is then sent back to
the process history. The current viable process model in the process history is
thereby extended by this dictionary, which is then used by the Drift Decision
Detection component.

Input: ST: dictionary of a time sequence for each sensor ID
Result: AT'S: dictionary of an averaged time sequence for each sensor ID
ATS = dict()
for w,ts in ST do
// w is id of sensor, ts its corresponding time sequence
temp_ts_list = list()
stats = list()
for ¢ in ts do
if |t| < 2 then
‘ next
temp_ts_list.append(time_sequence(t.first_event.timestamp,t.last_event.timestamp))
stats.append(temp-_ts_list.last.length)
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first,second,third,fourth = quartile(stats)
x = igr(stats)
ts_list = list()
for t in temp_ts_list do
if |t| < first —x || |t| > third+z then
‘ next
ts_list.append(t)
ATS[w] = dba(ts_list)
19 return ATS

o
N 0 ok WN

[
I*J

Algorithm 1: Find relevant time sequences and compute avg. time sequence

w
o
=)

—— time sequence
—— average sequence
— .- outlier sequence

N
©
)

N
~
o

: > 4 6 8 10 12
time passed in seconds

temperature in C°
N
©
o

Fig. 5. Exemplary Result of Algorithm 1. The red line is the average sequence calcu-
lated using DBA. The green dashed lines represent outliers, potentially due to a faulty
process instance. (Color figure online)

Figure5 shows an example of Algorithm 1 where the following 5 sequences
for the room temperature have been collected: (27,29), (27,27,28,27,29,27,
29,28], [30,30, 30,30,29,27), (27,30,29,30,29,27), (30,27,29,29,28, 28,30,
29, 30, 29, 30, 29, 28,29). The third quartile for the lengths of these sequences
would be 8, the first quartile is 6. Therefore the IQR equals 2. This excludes
sequences which are shorter than 3 or longer than 11. The first sequence (27, 29)
and the last sequence (30,27,29,29,28, 28, 30,29, 30,29, 30,29, 28,29) are not
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taken into account for the calculation and are printed in a green dashed line.
The red time sequence shows the calculated average time sequence with DBA.

3.2 Drift Decision Detection

The second component of the solution proposed in this work is the Drift
Decision Detection component.

Input: M: A list of process models with averaged time sequence dictionary
T H: Dictionary of thresholds for similarity

Result: D: Set of sensor IDs that are likely to have caused a drift
1 D = set()
2 for ws_id in M .second.ATS.keys do
if ws_id not in M .first. ATS.key then

‘ next

ts_a = M first. ATS[ws_id]
ts_b = M .last. ATS[ws_id]
if dtw(ts_a,ts_-b) > T H[ws_id] then
8 | D.add(ws_id)
9 return D

N 0 otk oW

Algorithm 2: Detecting a set of sensor data streams which caused a drift

Algorithm 2 shows the detection of the most likely external sensors that can
have caused the drift in the process model. The process history sends two pro-
cess models to this component in order to receive a set of external sensors which
caused a drift from the first model to the second model. Each of these pro-
cess models contains its average time sequence for each external sensor. The
dictionary T H is user defined and contains for every external sensor, a related
threshold for the distance between the two average time sequences. A different
threshold for each external sensor is needed, because the dynamic warp distance
is calculated using the differences in the data points. Assume that for the running
example (cf. Fig. 1), the ideal temperature ranges between 27° and 29° C. Thus
similar time sequences have a low absolute cost depending on the length of the
alignment. A sensor keeping track of parts with higher tolerances can therefore
have a higher warping distance for similar sequences. These thresholds can be
approximated using a test set for the classification, where an expert has to define
sensitivity and specificity for the sensor data. At the start, the return value D is
initialized as an empty set in line 1. The loop iterates over every key that is in
the dictionary of averaged time sequences (ATS) in the second model in line 2.
It is to be noted that the models could have different events attached to them,
but the external sensors should be the same. If a specific sensor is not present
in both models, we cannot take it into account, see lines 3. The average time
sequence for one sensor is retrieved for both models in line 5 and 6. If the cost
of the alignment, which is reflected in the top right cell of the warping matrix,
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see Fig. 3, is greater than the corresponding threshold to the sensor, this sensor
is added to the return value D in line 8. This set of external sensors is then
returned to the process history, where it is stored.

3.3 Performance Optimizations

One problem with DTW is the computation time, since a m X n matrix has to
be constructed, where m is the length of one time sequence and n the length of
the other time sequence.

One approach that can be used to optimize the performance of Algorithm 1
and Algorithm 2 is FastDTW [18]. FastDTW aims at performing DTW in linear
time with 3 steps. First the time sequence is shrunk into smaller time sequences
that reflect the same curve approximately. Then the minimum distance warp
path is computed for the smaller time sequence. Afterwards this warp path is
adjusted to the original time sequence. For a length of 10000 data points the
computation time can be reduced from 57.45s to 8,42s. The error rate for this
approximation is below 1%.

Another way to speed up time warping is early abandoning [11,24]. In this
strategy, if the warping distance is above a certain threshold while creating the
warping matrix, the algorithm can stop the execution and label it as an outlier.

Both methods are suitable optimizations for Algorithm 2, since it uses user
defined thresholds for each external sensor, but not for Algorithm 1. This is
because the average time sequence is computed using the complete DTW dis-
tance score, thus not exact methods like FastDTW and early abandoning cannot
be used. In Sect. 4, Algorithm 2 is evaluated using DTW and FastDTW.

4 Evaluation

The algorithms and components presented in Sect. 3 are pro-
totypically implemented and tested based on a real-world
IoT application from the manufacturing domain in order .
to prove the effectiveness and feasibility of the approach:
The Austrian Center for Digital Production? produces parts
called GV12 for a gas-turbine (see Fig.6) as a prototypi-
cal solution for a customer. The requirements for the part Fig.6. GV12 part
include high precision manufacturing (low tolerances, i.e.
some aspects allow for deviations of only 0.02mm), and strict quality assurance
for each part, including (a) detailed tracking of manufacturing data for each part
and (b) measuring the adherence to tolerances for more than 12 features with
automated precision measurement equipment.

The entire production is carried out automatically by implementing the inter-
action between the involved machines through industrial robots and transport
systems. We focus on the manufacturing and quality control as shown in Fig. 7.

2 https://www.acdp.at/.
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Currently more than 20 processes and sub-processes are involved, and orches-
trated during production of up to 40 parts per batch. Figure7 illustrates the
basic manufacturing logic:

- @ Batches of up to 40 pieces are ordered, the manufacturing is scheduled.

— @ The interaction between all machines and robots is orchestrated, while
enforcing industrial safety principles.?
- @ Individual parts are produced by using the following three steps:

e Machining of a part from hardened steel, which takes about 4 min per
part.

e Measuring of the part by a high-speed optical micrometer,* while the next
part is machined. This takes about 12s per part.

e Measuring of a part with automated precision measurement equipment,®
which takes about 8 min per part, and is also done in parallel to the
machining,.

- @ A generic machine monitoring process determines when to start data
collection for both, machining and measuring.

— @ A generic data collection process produces a continuous stream of values
when the laser of the high-speed optical micrometer is scanning the surface
of the part.

The “Measure with Keyence” task is done automatically by a Keyence mea-
suring machine at no additional cost in parallel to the production of the next
part. As the Keyence machine is very compact, fast, and operates without touch-
ing the part, this step is done after the robot extracted the part from the produc-
tion machine, and before it puts it on the palett. On the palett it is transported
to the MicroVu measuring machine, which is rather big and has to be operated in
a location with low vibrations and special light and temperature conditions. The
task “Measure with MicroVu”, as opposed to the task “Measure with Keyence”,
is required by the customer, because it basically creates an objective report
about the quality of a part.

After some time, deviations in the process event stream collected by @ can
be observed. These deviations can happen based on

— physical effects due to deteriorating machining tools, or temperature fluctu-
ations.

— problems stemming from accumulating debris that affects the production
quality as well as measurement quality.

Up to this point only the extreme values of the time sequence (i.e. min, max)
from the Keyence machine were used, which are sufficient for detecting (a) if
the part has been dropped by the robot (no part), or (b) the part appears to
be too big (i.e., it is engulfed by chips). However, the extreme values proved

3 https://www.iso.org/standard /51330.html.
* https://www.keyence.com /products/measure/micrometer /ls-9000/index.jsp.
5 https:/ /www.microvu.com/products/vertex.html.
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not to be effective for early detection of parts which do not comply to the
quality requirements. If an early reliable estimation of the quality was available,
it could be used to skip the ‘Measure with MicroVu” altogether, which would
save valuable resources.

Hence, our approach for this evaluation is instead of taking only the extreme
values of the measurement into account, to analyze the complete time sequence
of the measurement. Every time the process history detects a drift in the data
elements, i.e, “Measure with MicroVu” detects only faulty instances, a drift
has been detected in the data model. Algorithm 1 calculates then the average
sequence, e.g., Fig. 8. The threshold for Algorithm 2 is here calculated ex-post,
with the results of “Measure with MicroVu”.

4.1 Prototypical Implementation — RQ1

The orchestration of the BPMN 2.x based process models on the factory floor (cf.
Fig. 7) is driven by the process engine CPEE!. The process history component
subscribes to the CPEE in order to receive information about every executing
event. The external sensor represented by activity “Measure with MicroVu” is a
high-speed optical micrometer.®

The data set” contains 1026 traces in the XES® format for 37 parts and is
available at the figshare repository [21]. The traces are produced by 13 different

6 https://www.keyence.com /products/measure/micrometer /ls-9000/index.jsp.
" http://gruppe.wst.univie.ac.at/data/timesequence.zip.
8 http://xes-standard.org/.
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process models. The sensor values amount for 6.2 MiB out of 1GiB of total
data. A time sequence for this event contains on average about 776 data points.
Measurements from a time sequence range from 4.09 up to 37.87 mm.

The process history creates the process models as described in [19]. The
process history uses a sliding window approach to deal with infinite amount of
data that is being captured by listening to streams, i.e., only a specified number
of traces are used for detecting a new process model in the history.

The Time Series Module component is
implemented in Python as we are using the
tslearn package [22] because it provides func-
tions for computing an alignment using DTW as
well as DBA for finding the average time series.
The results of this component are retrievable
via a RESTful web service as well. The Drift
Decision Detection component also uses these 0 3 4 6 8 1o 12 14
libraries. The result of Algorithm 1 on the data time passed in seconds
set is depicted in Fig.8. Each grey sequence
relates to one specific trace and shows the mea- Fig.8. Result of implementa-
surement data points of one part. As it can be tion. The red line represents
seen, one time sequence only lasts for about the average sequence (Color
8s, while the other ones last about 12 to 14s. Hgwre online)

The average sequence, calculated using DBA is

depicted in red. This sequence is stored as additional information in the process
history for the current process model. Since this log only provides one sensor, i.e.,
“Keyence”, only one sequence has to be calculated using DBA. To determine the
feasibility of the implementation, we furthermore looked at the following ques-
tions:

35
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— How are parameters such as the duration of a process instance or the number
of traces in the process history sliding window, affecting the algorithms?
— What is the performance of these algorithms?

The performance of Algorithm 2 is only depending on the length of the aver-
age time sequence, which is hard to tweak with parameters of the process history
and the number of sensors. It can be adapted by changing the amount of data
points that are to be stored per time unit. The performance of Algorithm 1 on
the other hand is highly dependent of the parameters set for the pI‘OCbe history.

In order to rate the effectiveness
of the approach it is possible to rely
on the data provided by “Measure
with MicroVu”. Out of 37 parts, 18
parts were faulty. With this knowl-
edge we first varied the threshold in
order to achieve 0% false negative 3 a6 & o
detection of parts. In other words: time passed in seconds
no parts that are faulty should be
delivered to the customer, on the Fig.9. Chips on GV12 - wrong measurement

diameter in mm
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other hand it is acceptable that some parts that are actually good are detected
as faulty. The optimal threshold proved to be 22.

When varying the window size, i.e., the number of traces to be analyzed
during the drift detection, the following results emerge:

Table 1. Results of both Algorithms

Window size | False positives | False negatives | Runtime
1 45% 0% 14s
5 0% 0% 10.3s

10 0% 0% 20.7s

As can be seen in Table 1, a window size of 5 and a threshold of 22 is sufficient
for our scenario. With these values 100% of the faulty parts can be identified,
without relying on the time intensive “Measure with MicroVu” task. This means
that for a rate of 18 faulty tasks, almost 50% of the production time can be saved,
based on calculation of drift for sensor event streams.

4.2 Concept Drift Prediction/Process Evolution - RQ2

Turn

Signal Machining End
Chip Removal
Measure with Keyence
Calculate Concept Drift
exclusive

Concept Drift > X%

@e Measure with MicroVu

Fig. 10. GV12 prototype part

For the task “Measure with Keyence”
in Fig.7, as collected by process
@, the deviations for the measure-
ments between parts have some seri-
ous repercussions that can lead to
multiple possible process evolutions.
The results were discussed with
three domain experts involved in the
production of the GV12 parts. When
discussing the results from the drift
analysis, the domain experts came up
with the following discussion points.
As can be seen in Fig.9, the
machining produced long chips, which
entangled the part. Furthermore, the
comparison of the drift for “Mea-
sure with Keyence” with the quality
data from “Measure with MicroVu”
(see Fig.7) was deemed sufficient
for predicting the quality of a part,
thus allowing for immediate removal
of faulty parts from production
which decreases the overall time per
batch greatly: the less “Measure with



Analyzing Process Concept Drifts Based on Sensor Event Streams 215

Table 2. Runtime of Algorithm 1.

Datapoints/ Sequences | 10 100 | 1000

5 1.17s|1.22s 3.53s
10 1.18s|1.31s 7.01s
50 1.29s|4,43s| 75.83s
100 1.22s|4.63s133.00s

Table 3. Runtime of Algorithm 2.

Datapoints | DTW | FastDTW
10 0.88s | 0.0002s
100 0.87s | 0.0003s
1000 0.91s | 0.001s
10000 4.70s | 0.01s

MicroVu” the better. This led to the proposal of the concept drifts / process
evolutions shown in Fig. 10. Overall, the concept drifts can be classified as fol-
lows:

— Static Evolution @ : an extra activity “Chip Removal” was proposed to be
inserted, based on the observed drifts. A robot blows compressed air on the
part, to remove debris and chips, which allows for more accurate measuring.
This will allow for lower possible thresholds in future/similar scenarios.

— Dynamic Evolution @—i—@ : The drift is to be actively calculated at run-
time, based on previous process instances, and made available to the current
instance. A decision @ is proposed to be inserted, that allows for terminating
single parts without “Measure with MicroVu”.

Performance Evaluation: Table 2 shows the runtime of Algorithm 1 to analyze
the applicability of this solution. We generated random time sequences with 10,
100, and 1000 data points on average. Algorithm 1 is then applied on a set
consisting of 5, 10, 50, and 100 time sequences. The results of 10 data points
on average show, that the execution time of Algorithm 1 for 100 sequences is
even lower as the one for 50 sequences. This happens, because the time for the
calculation is so small, that other currently running tasks of the operating system
may interfere with the execution.

With 100 data points, Algorithm 1 affects the total execution time to a greater
extent, especially with more sequences: 50 sequences result in a more than 3
times longer execution time than 10 sequences. With 1000 data points, the exe-
cution time with more than 50 sequences is increased by more than 10 times the
execution time with 10 sequences.

Table 3 shows the comparison between DTW and FastDTW (cf. Sect.3.3)
in terms of speed. As expected, FastDTW is the faster technique as it works in



216 F. Stertz et al.

linear time. Unfortunately the results differ greatly for DTW when compared to
FastDTW. While, for example, the distance between 2 sequences with random
values between 90 and 110 and 10000 data points was 343.2 when using DTW,
the distance equals to 45299 when using FastDTW. Since both algorithms are
highly depending on the global maximum of the alignment of sequences, Fast-
DTW is not a suitable option.

Assessment by Domain Experts: We presented the results to a machine
operator, a mechanical engineer, and a measurement engineer. All three experts
were overall satisfied with the results. They highlighted that to the best of their
knowledge in order to achieve similar results, additional — hard to configure —
software would be necessary.

5 Discussion

Possible limitations in the context of the presented approach include:

e Performance: An important aspect for the performance of this approach is the
number of data points in a time sequence. As can be seen in Table 2, even with
1000 data points and 10 time sequences the implementation took about 7s.
This of course increases linearly with number of sensors. Other techniques like
FastDTW instead of DTW, reduce the runtime drastically, but the alignment
using FastDTW varies greatly from the globally best alignment using DTW,
which leads to worse results.

e Sensors selection: While in general IoT devices such as external sensors pro-
vide a valuable source for detecting the cause of a concept drift, choosing the
“right” IoT device may be hard in some cases. The reason is that in many
real-world scenarios there is a plethora of devices creating data streams and
therefore time sequences. Taking an external sensor into account, that has
no relation to the process model, for example, can produce wrong results,
since the time sequences of this sensor may vary to a great extent and hence
be incorrectly identified as the source of a drift. In addition, the runtime is
heavily depending on the number of sensors, hence not significant sensors
should be excluded. Therefore it is recommended that an expert addition-
ally validates the results. If no sensors can be excluded by experts, a parallel
optimization is advised of Algorithm 1 where each sensor can be calculated
separately. This reduces the execution time of the algorithm to the execution
time of the sensor with the most data points.

e Thresholds: Another important aspect is finding the threshold for Algorithm 2
automatically. If there is a training set, the threshold can be calculated until
a specified sensitivity and specificity are met. Otherwise, an expert sets the
threshold.

Also, the following threats to validity have to be considered: The data set
of the evaluation comprises the data of one sensor. Hence, the selection of the
sensors cannot be evaluated. While the increase of the runtime is predictable,
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the quality of the results can differ greatly, if not related sensors are taken into
account. The real-world case comes from the manufacturing domain, where the
selection of the sensors may be easier, since the conditions of the events are often
in a controlled environment, like a factory. In other domains, like the medical
domain or logistic domain where numerous external data stream sources can
affect the execution of a process, the selection may be more difficult. In future
work, experiments in different domains are planned.

6 Related Work

Several algorithms for offline process discovery exist [1]. Existing work shows that
a selection of these algorithms can be used for online process discovery as well.
This includes the heuristics miner [5], which takes the frequency of events into
account and the inductive miner [13], which tries to find a certain block structure
to find splits for the process model. Concept drift detection can also conducted
in an offline [4] and online manner [14,15,19,27]. However, the mentioned online
mining techniques neither consider external data nor analyze the root cause for
concept drifts. [26] enables the visual exploration of the concept drift type. This
work, by contrast, analyzes sensor event streams as time sequence data. Time
series data in process mining domain have been analyzed for finding decision
points by [7] in an offline manner. Other approaches exploit sensor data for
outcome predictions for process instances [3] and manufacturing systems [12],
but do not address concept drifts.

7 Conclusion

This paper elaborates a novel approach to predict the root cause of a concept
drift in a business process based on external sensor streams. Two algorithms
are introduced to compare the time sequences associated with the sensor event
streams in combination with the process event stream. In the evaluation, it is
shown that the algorithms are capable of detecting the drifts in the external
sensor event stream with high accuracy, given a certain amount of traces for a
specific setting. A big factor for this approach, is the type of available sensors. A
domain expert has to distinguish which sensors are important, and is used best
to verify a drift in certain aspects of a produced part. Otherwise the computa-
tion time is increased with no benefit, as some external sensors are not able to
contribute to a drift in the process. Furthermore, three domain experts, based
on the highlighted drifts, verified root causes, and proposed multiple concept
drifts/process evolutions, thus showing the validity of the solution.
Future work aims at algorithms for predicting and explaining future drifts.
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