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Abstract. We consider the well-known cutting stock problem (CSP).
The gap of a CSP instance is the difference between its optimal function
value and optimal value of its continuous relaxation. For most instances
of CSP the gap is less than 1 and the maximal known gap 6/5 = 1.2 was
found by Rietz and Dempe [11]. Their method is based on constructing
instances with large gaps from so-called sensitive instances with some
additional constraints, which are hard to fulfill. We adapt our method
presented in [15] to search for sensitive instances with required proper-
ties and construct a CSP instance with gap 77/64 = 1.203125. We also
present several instances with large gaps much smaller than previously
known.
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1 Introduction

In the classical formulation, the cutting stock problem (CSP) is stated as follows:
there are infinite pieces of stock material of fixed length L. We have to produce
m ∈ N groups of pieces of different lengths l1, · · · , lm and demanded quantities
b1, · · · , bm by cutting initial pieces of stock material in such a way that the
number of used initial pieces is minimized.

The cutting stock problem is one of the earliest problems that have been
studied through methods of operational research [6]. This problem has many real-
world applications, especially in industries where high-value material is being
cut [3] (steel industry, paper industry). No exact algorithm is known that solves
practical problem instances optimally, so there are lots of heuristic approaches.
The number of publications about this problem increases each year, so we refer
the reader to bibliography [18] and the most recent survey [2].

Throughout this paper we abbreviate an instance of CSP as E := (L, l, b).
The total number of pieces is n =

∑m
i=1 bi. W.l.o.g., we assume that all numbers

in the input data are positive integers and L ≥ l1 > · · · > lm > 0.
The classical approach for solving CSP is based on the formulation by

Gilmore and Gomory [5]. Any subset of pieces (called a pattern) is formalized as
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a vector a = (a1, · · · , am)� ∈ Z
m
+ where ai ∈ Z+ denotes the number of pieces i

in the pattern a. A pattern a of E is feasible if a�l ≤ L. So, we can define the
set of all feasible patterns P f (L, l) = {a ∈ Z

m
+ | a�l ≤ L}. For a given set of

patterns P = {a1, · · · , ar}, let A(P ) be the (n × r)-matrix whose columns are
given by the patterns ai. Then the CSP can be formulated as follows:

z(E) :=
r∑

i=1

xi → min subject to A(P f (L, l))x = b, x ∈ Z
r
+.

The common approximate solution approach involves considering the contin-
uous relaxation of CSP

zC(E) :=
r∑

i=1

xC
i → min subject to A(P f (L, l))xC = b, xC ∈ R

r
+.

Here z(E) and zC(E) are called the optimal function values for the instance
E. The difference Δ(E) = z(E)−zC(E) is called the gap of instance E. Practical
experience and numerous computations have shown that for most instances the
gap is very small. An instance E has the integer round up property (IRUP)
if Δ(E) < 1. Otherwise, E is called a non-IRUP instance. This notation was
introduced by Baum and Trotter [1].

Subsequently, the largest known gap was increased. In 1986 Marcotte con-
structed the first known non-IRUP instance with the gap of exactly 1 [9].
Fieldhouse found an instance with gap 31/30 ≈ 1.033333 in 1990 [4]. In 1991
Schiethauer and Terno slightly improved this result to 137/132 ≈ 1.037879 [16].
Rietz, Scheithauer and Terno subsequently constructed non-IRUP instances with
gaps 10/9 ≈ 1.111111 and 7/6 ≈ 1.166666 in 1998 and 2000 respectively [12,13]
(both papers were published in 2002). Finally, Rietz constructed an instance
with gap 6/5 = 1.2 and published it in his PhD thesis in 2003 [10] and a slightly
smaller instance with the same gap together with Dempe in 2008 [11].

The MIRUP (modified IRUP) conjecture [17] states that Δ(E) < 2 for
all CSP instances E, but it is still open. More investigations about non-IRUP
instances can be found in [7,8,14].

The main idea of our paper is to connect our algorithm for enumeration of
instances published in [15] together with ideas of Rietz and Dempe [11] in aim
to construct CSP instances with the gap larger than currently known.

The paper has the following structure. In Sect. 2, we describe the construction
of Rietz and Dempe, in Sect. 3, we describe our enumeration algorithm. In Sect. 4,
we present the computational results and, finally, we draw a conclusion in Sect. 5.

2 Preliminaries

The construction principles of Rietz and Dempe are based on the instance

E0(p, q) = (33+ 3p+ q, (21+ p+ q, 19+ p+ q, 15+ p+ q, 10+ p, 9+ p, 7+ p, 6+ p, 4+ p)�, b0),
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where p and q are positive integers, b0 = (1, 1, 1, 1, 1, 2, 1, 1)�, and the following
theorem:

Theorem 1 (Rietz and Dempe). Consider an instance E = (L, l, b) of CSP
with the following properties: l1 > l2 > . . . > lm−1 > 2lm and lm ≤ L/4.
Moreover, assume that this instance is sensitive, i.e. its optimal function value
increases if bm is increased by 1. Then, there are integers p and q such that
instance E′ = E ⊕ E0(p, q) has gap Δ(E′) = 1 + Δ(E).

Here ⊕ means a composition of instances. Let E1 = (L1, l1, b1) and E2 =
(L2, l2, b2) denote two instances of CSP having n1 and n2 pieces respectively
and with L1 = L2. The composed instance E := E1 ⊕ E2 of CSP consists of
the task of cutting all the n1 + n2 pieces of lengths from the both vectors l1
and l2 and with demands according to both vectors b1 and b2. In case when L1

and L2 are different, they can be multiplied by one common multiplier (together
with piece lengths) to adjust the stock material lengths of both instances. For
example, the instances (2, (1)�, (1)�) and (5, (2)�, (2)�) can be composed into
the new instance (2, (1)�, (1)�) ⊕ (5, (2)�, (2)�) = (10, (5, 4)�, (1, 2)�).

Note that bm = 0 is possible in Theorem 1, this means that the maximal
possible trimloss in a cutting pattern used in an optimal solution is smaller than
half of the length of the shortest piece.

Searching for sensitive instances with properties described in Theorem 1 is
a very difficult task. An example of a suitable instance mentioned by Rietz and
Dempe in their paper is the following:

EST ′ = (132, (44, 33, 12)�, (2, 3, 5)�).

Indeed, this instance is sensitive, because its optimal function value
z(EST ′) = 2 increases to 3 when we insert an additional piece of length 12.
Also, l1 > l2 > 2l3 and l3 < L/4. Δ(EST ′) = 17/132, so by Theorem 1 there are
integers p and q such that Δ(E0(p, q) ⊕ EST ′) = 149/132 ≈ 1.128787. Namely,
the instance E1 = E0(p, q) ⊕ EST ′ for p = 74 and q = 669 is the following:

E1 = (924, (764, 762, 758, 308, 231, 84, 83, 81, 80, 78)�, (1, 1, 1, 2, 3, 6, 1, 2, 1, 1)�).

3 Enumeration Algorithm

Consider an instance E = (L, l, b). If L and l are fixed, then the matrix of pat-
terns A(P f (L, l)) is fixed too. We will consider vector b as a vector of variables.
Setting l = (L − lm, L − lm − 1, . . . , 2lm + 2, 2lm + 1, lm), where lm ≤ L/4, we
ensure that the most of required properties of Theorem 1 are satisfied, and now
we have to ensure that E is sensitive.

We will enumerate all sensitive instances with a fixed objective function value.
Namely, let Sk(L, l) be the set of all patterns b such that z((L, l, b)) = k and b
corresponds to a sensitive instance (L, l, b).

Consider the set of inextensible feasible patterns P f
∗ (E) = {a ∈ Z

m
+ | a�l ≤

L ∧ a�l + l1 > L}. Obviously, S0(L, l) = {0}, and S1(L, l) = P f
∗ (L, l). Now
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we will build the set Si+1(L, l) from Si(L, l) by adding vectors from P f
∗ (E) and

considering only those patterns which lead to sensitive instances.
To transform the set Si(L, l) into the set Si+1(L, l) we need a data structure

called a “map”, which contains a set of pairs <key, value> (all keys are pairwise
distinct) and allows us to make the following operations: insert a pair, find a
value by a key (or determine that there is no pair with this key), modify a value
by a key and return the list of all pairs. The algorithm is the following:

1 create an empty map A
2 for all s ∈ Si(L, l)
3 for all a ∈ P f

∗ (L, l)
4 x ← (s1 + a1, . . . , sm−1 + am−1)
5 y ← sm + am

6 if A has no key x, then
7 insert into A the pair (x, y)
8 else A[x] ← max(A[x], y)
9 Si+1(L, l) = {(x1, . . . , xm−1, y) | (x, y) ∈ A}

To find a sensitive instance with maximum gap with fixed L, l and k we
generate Sk(L, l) and then simply calculate Δ(E) over all E = (L, l, s), s ∈
Sk(L, l).

4 Results

We implemented our algorithm as a C++ program using CPLEX 12.7. The
program was run on an Intel Core i7-5820K 4.2 GHz machine with 6 cores and
32 Gb RAM.

Results for the runs where l = (L − lm, L − lm − 1, . . . , 2lm + 1, lm) are
presented in Table 1 and Table 2. Maximum gaps greater than 0.1 are marked
in bold, and the maximal gap in every column is underlined.

Several sensitive instances with large gaps found during the search are pre-
sented in Table 3. Here E1, E2 and E3 correspond to some maximum gaps
presented in Table 1 and Table 2. For instance E4 we continued the search up to
L = 250 setting l = (
L/2�, 
L/2� − 1, . . . , 2lm + 1, lm). The gap 0.1875 is the
maximal over all considered instances with k ≤ 4.

The instance E5 is built from E4 and a non-IRUP instance

ET (t) = (3t, (t + 4, t + 3, t, t − 2, t − 6)�, (1, 1, 2, 1, 1)�)

for some integer t. E6 is a combination of E4 and some pieces from two copies
of ET (t) with different values of t.

Using Theorem 1, we constructed a series of non-IRUP instances E′
1, . . . , E

′
6

from the sensitive instances E1, . . . , E6. They are presented in Table 4. In Table 5
we compare our instances with the previously known ones considering the num-
ber of piece types m.
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Table 1. Maximum gaps for sensitive instances with fixed L, lm and k ≤ 4

L\lm 2 3 4 5 6 7

8 0.000000

9 0.000000

10 0.100000

11 0.000000

12 0.083333 0.000000

13 0.000000 0.000000

14 0.071429 0.000000

15 0.083333 0.100000

16 0.062500 0.100000 0.000000

17 0.058824 0.083333 0.000000

18 0.100000 0.083333 0.000000

19 0.075000 0.083333 0.000000

20 0.068182 0.071429 0.100000 0.000000

21 0.066667 0.119048 0.100000 0.000000

22 0.078947 0.100000 0.100000 0.000000

23 0.066667 0.093750 0.083333 0.000000

24 0.083333 0.129630 0.083333 0.000000 0.000000

25 0.060606 0.100000 0.083333 0.100000 0.000000

26 0.078125 0.083333 0.083333 0.100000 0.000000

27 0.069444 0.111111 0.119048 0.100000 0.000000

28 0.071429 0.100000 0.119048 0.100000 0.000000 0.000000

29 0.064815 0.087500 0.113636 0.083333 0.000000 0.000000

30 0.076389 0.125000 0.145833 0.083333 0.100000 0.000000

31 0.097222 0.129630 0.083333 0.100000 0.000000

32 0.100000 0.127907 0.083333 0.100000 0.000000

33 0.102564 0.106061 0.119048 0.100000 0.000000

34 0.096154 0.129630 0.119048 0.100000 0.000000

35 0.092857 0.111111 0.125000 0.083333 0.100000

36 0.106061 0.133333 0.138889 0.083333 0.100000

37 0.105263 0.145833 0.083333 0.100000

38 0.125000 0.131579 0.083333 0.100000

39 0.128788 0.153333 0.119048 0.100000

40 0.130435 0.138889 0.119048 0.100000

41 0.105263 0.136364 0.125000 0.083333

42 0.125000 0.136364 0.142857 0.083333

43 0.133333 0.138889 0.083333

44 0.136364 0.156250 0.083333

45 0.130952 0.161458 0.119048

46 0.133333 0.149123 0.119048

47 0.136364 0.144068 0.125000

48 0.136364 0.156863 0.142857

49 0.136364 0.142857

50 0.148148 0.140000

51 0.141026 0.166667
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Table 2. Maximum gaps for sensitive instances with fixed L, lm and k ≤ 4

L lm = 7 L lm = 8 L lm = 9 L lm = 10

45 0.119048 51 0.119048 57 0.119048 63 0.119048

46 0.119048 52 0.119048 58 0.119048 64 0.119048

47 0.125000 53 0.125000 59 0.125000 65 0.125000

48 0.142857 54 0.142857 60 0.142857 66 0.142857

49 0.142857 55 0.142857 61 0.142857 67 0.142857

50 0.140000 56 0.142857 62 0.142857 68 0.142857

51 0.166667 57 0.149123 63 0.150794 69 0.150794

52 0.150000 58 0.171875 64 0.149123 70 0.150794

53 0.160000 59 0.167969 65 0.175000 71 0.149123

54 0.154762 60 0.166667 66 0.166667 72 0.177083

55 0.151515 61 0.153333 67 0.171875 73 0.171875

56 0.145833 62 0.161765 68 0.160000 74 0.175000

57 0.166667 63 0.166667 69 0.172043 75 0.166667

58 0.156863 64 0.161765 70 0.166667 76 0.171875

Table 3. Sensitive instances with required properties and large gaps

Ei z(Ei) Δ(Ei)

E1 = (30, (14, 13, 10, 4)�, (1, 1, 2, 2)�) 2 7/48 0.145833

E2 = (51, (23, 22, 19, 17, 16, 7)�, (2, 1, 1, 1, 1, 3)�) 3 1/6 0.166667

E3 = (72, (32, 31, 28, 25, 24, 22, 10)�, (2, 1, 1, 1, 2, 2, 3)�) 4 17/96 0.177083

E4 = (183, (81, 79, 65, 64, 61, 59, 55, 25)�, (1, 1, 2, 1, 2, 1, 1, 4)�) 4 3/16 0.187500

E5 = (1281, (567, 553, 455, 448, 430, 427, 425, 413, 385, 175)�, 5 19/96 0.197917

(1, 1, 2, 1, 2, 1, 1, 2, 1, 4)�)

E6 = (1281, (567, 553, 455, 448, 431, 430, 427, 425, 421, 413, 385, 175)�, 6 13/64 0.203125

(1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 4)�)

Table 4. Non-IRUP instances with large gaps

E′
i = E0(p, q) ⊕ Ei z(E′

i) Δ(E′
i)

E′
1 = (300, (228, 226, 222, 140, 130, 100, 40, 39, 37, 36, 34)�, 6 55/48 1.145833

(1, 1, 1, 1, 1, 2, 3, 1, 2, 1, 1)�)

E′
2 = (510, (378, 376, 372, 230, 220, 190, 170, 160, 70, 69, 67, 66, 64)�, 7 7/6 1.166667

(1, 1, 1, 2, 1, 1, 1, 1, 4, 1, 2, 1, 1)�)

E′
3 = (720, (528, 526, 522, 320, 310, 280, 250, 240, 220, 100, 8 113/96 1.177083

99, 97, 96, 94)�, (1, 1, 1, 2, 1, 1, 1, 2, 2, 4, 1, 2, 1, 1)�)

E′
4 = (1830, (1338, 1336, 1332, 810, 790, 650, 640, 610, 590, 550, 250, 8 19/16 1.187500

249, 247, 246, 244)�, (1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 5, 1, 2, 1, 1)�)

E′
5 = (12810, (9318, 9316, 9312, 5670, 5530, 4550, 4480, 4300, 9 115/96 1.197917

4270, 4250, 4130, 3850, 1750, 1749, 1747, 1746, 1744)�,

(1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 5, 1, 2, 1, 1)�)

E′
6 = (12810, (9318, 9316, 9312, 5670, 5530, 4550, 4480, 4310, 4300, 10 77/64 1.203125

4270, 4250, 4210, 4130, 3850, 1750, 1749, 1747, 1746, 1744)�,

(1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 5, 1, 2, 1, 1)�)
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Table 5. The number of piece types in old and new non-IRUP instances

m Old New

3 137/132 1.0378787

4

5 16/15 1.0666667

6 38/35 1.0857143

7 11/10 1.1000000

8 10/9 1.1111111

9

10 149/132 1.1287879

11 55/48 1.1458333

12

13 7/6 1.1666667

14 51/44 1.1590909 113/96 1.1770833

15 19/16 1.1875000

16 7/6 1.1666667

17 115/96 1.1979167

18 13/11 1.1818182

19 77/64 1.2031250
...

28 6/5 1.2000000

5 Conclusion

We have combined the construction of Rietz and Dempe and our enumeration
algorithm for searching for sensitive instances. We have found a lot of sensi-
tive instances with large gaps. This allowed us to construct a lot of non-IRUP
instances with gap, say, greater than 1.17. We also constructed a non-IRUP
instance with gap 1.203125 which is greater than the previously known world
record 1.2. Also the non-IRUP instances with large gaps that we found are
smaller than the previously known ones.

Producing instances with large gaps using our search method requires a lot
of computational resources, so we do not expect that it will handle the MIRUP
conjecture directly. But the instances we found may provide the hints about
improved constructions. In the future research we are going to improve our tech-
nique of combining instances (using which we produced E5 and E6) and construct
new instances with much larger gaps.

Acknowledgements. The authors would like to thank the anonymous referees for
their valuable remarks.
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