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Abstract. We consider the following subset choice problems: given a
family of Euclidean vectors, find a subset having the largest a) norm of
the sum of its elements; b) square of the norm of the sum of its elements
divided by the cardinality of the subset. The NP-hardness of these prob-
lems was proved in two papers about ten years ago by reduction of 3-SAT
problem. However, that proofs were very tedious and hard to read. In
the current paper much easier and natural proofs are presented.
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1 Introduction

This paper deals with well-known vector subset choice problems that are induced
by data analysis and pattern recognition problems. A typical problem in data
analysis requires finding in a set of data a subset of the most similar elements
where the similarity is defined according to some criterion. The cardinality of
the sought subset could be known or unknown in advance. One of the possible
criteria is minimum of the sum of squared deviations. This criterion arises, in par-
ticular, in a noise-proof data analysis where the aim is to detect informationally
significant fragments in noisy datasets, to estimate them, and to classify them
afterwards [8,12]. The problem of finding a subset of vectors with the longest
sum has applications in the pattern recognition (finding a correct direction to a
certain object) [25].

Although these problems are known to be NP-hard both in the case of known
(given as a part of input) cardinality of a sought subset [3,8] and in the case of
unknown one [14,15,22], the latter proofs are much more complicated and hard
to read (see the discussion in the next section). In this paper we suggest much
more easy and natural NP-hardness proofs for the case of unknown size of the
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sought set. We believe that the new proofs can be helpful for analyzing related
problems with the unknown cardinalities of the sought subset.

The paper is organized as follows. In the next section the mathematical
formulation of the problems are given and the motivation of the research and
some related results are discussed. In Sect. 3 the main results of the paper are
presented. Section 4 concludes the paper.

2 Problem Formulation, Motivation and Related Results

The problem of noise-proof data analysis in noisy data sets [8,12,15] is as follows.
Each record of the data is a vector representing a set of measured characteristics
of an object transmitted via a noisy channel. The object can be either in an
active or in a passive state. In the passive state all characteristics are 0, while in
the active state all measured characteristics are stabile and at least one of them
must be non-zero. The noise has a d-dimensional normal distribution with zero
mean and an arbitrary dispersion. The goal is to determine the moments when
the object was in the active state and to evaluate the measured characteristics.

As it was shown in [8,12,15], this problem can be reduced to the following
optimization problem.

Problem 1. Given a set of vectors Y = {y1, . . . , yN} in d-dimensional Euclidean
space, find a non-empty subset C ⊆ Y maximizing

h(C) :=
‖∑

x∈C x‖2
|C| .

Everywhere in the paper the norm is Euclidean, unless otherwise stated.
A version of Problem1 with an additional restriction on the cardinality of the
sought set C is referred to as

Problem 2. Given a set of vectors Y = {y1, . . . , yN} in d-dimensional Euclidean
space and a positive integer M , find a subset C ⊆ Y of cardinality M maximizing
h(C).

The following two subset choice problems are very close in formulation to
these ones.

Problem 3. Given a set of vectors Y = {y1, . . . , yN} in d-dimensional Euclidean
space, find a non-empty subset C ⊆ Y maximizing ‖∑

x∈C x‖.

Problem 4. Given a set of vectors Y = {y1, . . . , yN} in d-dimensional Euclidean
space and a positive integer M , find a subset C ⊆ Y of cardinality M minimizing∑

x∈C ‖x − x‖2 where x = (
∑

x∈C x)/|C| is the centroid of the set C.

Note that the variant of Problem 3 with a given cardinality of the subset C is
equivalent to Problem 2, while the variant of Problem 4 without the restriction
on the cardinality of C is trivial (every subset of cadrinality 1 is an optimal
solution).
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Problem 3 has a following interpretation [25]. Each vector is a measurement
result of a direction to some interesting object. Each measurement result has
an additive error having a normal distribution, and there are some redundant
vectors in the set (related to other objects or reflections). The goal is to delete
the redundant vectors and find the correct direction. This can be done by finding
a subset of vectors having the longest sum.

If the dimension of the space d is fixed then all Problems 1–4 are polynomially
solvable. Namely, Problems 1 and 2 can be solved [9] in time O(dN2d+2); Problem
3 is a particular case of Shaped Partition problem [11], which yields an O(Nd)
algorithm for it; a better algorithm of complexity O(dNd−1 log N) is presented
in [25]. Problem 4 can be solved [1] in time O(dNd+1). The universal algorithm
solving Problems 1–4 in time O(dNd+1) using Voronoi diagrams can be found in
[24]. Note that this algorithm indeed can solve any vector subset choice problem
satisfying one of the following two locality properties:

– For every input there is a point x∗ such that the optimal solution consists of
the set of M closest to x∗ points of Y.

– For every input there is a vector y∗ such that the optimal solution consists of
the set of M vectors of Y having minimum scalar products with y∗.

If the dimension of the space d is a part of input then all four problems
mentioned above are NP-hard in a strong sense. Moreover, for Problems 2 and 3
an inapproximability bound (16/17)1/p was proved in [26] for an arbitrary norm
lp where p ∈ [1,∞).

There are a lot of approximation results for these problems. Let us mention
randomized algorithms finding (1 + ε)-approximate solution for Problems 2 and
3 of complexity O(d3/2N log log N/(2ε − ε2)(d−1)/2) in [10] and of complexity
O(dO(1)N(1 + 2/ε)d) with probability 1 − 1/e in [26]. For Problem 4 a (1 + ε)-
approximation algorithm of complexity O(N2(M/ε)d) was suggested in [19] and
a PTAS of complexity O(dN1+2/ε(9/ε)3/ε) was constructed in [23]. For Problem
1 a (1+ε)-approximation algorithm of complexity O(Nd(d+log N)(

√
(d − 1)/ε+

1)d−1) can be found in [15].
The NP-hardness of Problem 2 (i. e. in case of known—given as a part of

input—cardinality of a sought subset) was proved in [3,8]. The proof uses a
natural reduction from the classical NP-hard Clique problem. In this reduction,
each vector corresponds to a vertex of a graph and a subset C is optimal if and
only if the corresponding subset of vertices induces a clique in the graph. This
proof is so natural that the similar idea was used later, in particular, for proving
NP-hardness of Problem 4 in [16], of Maximum Diversity problem in [5] and of
1-Mean and 1-Median 2-Clustering Problem in [18].

The NP-hardness of Problem 1 was proved in [14,15]. It uses quite com-
plicated reduction of 3-SAT problem, where several vectors correspond to each
clause and to each variable, and some irrational numbers (square roots) are used
in their coordinates (and thus, additional arguments justifying the possibility
of rational approximation become necessary). The NP-hardness of Problem 3
was proved in [22] also by reduction of 3-SAT; although there are no irrational
numbers, the reduction still remains complicated and the proof is hard to follow.
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These reductions are highly inconvenient and hard to generalize. So, many other
vector choice or clustering problems with unknown cardinality of the sought set
stay open (see, for example, [18]). In this paper we present an easy and natu-
ral NP-hardness proof for Problems 1 and 3 with almost the same reduction of
Exact Cover by 3-Sets problem.

Let us mention some other problems that are related to Problems 1–4. Make
use of the following well-known folklore identities (the proofs can be found, for
instance, in [15,17]):

∑

y∈Y
‖y‖2 − ‖∑

x∈C x‖2
|C| =

∑

y∈C
‖y − y‖2 +

∑

y∈Y\C
‖y‖2

=

∑
y∈C

∑
z∈C ‖y − z‖2
2|C| +

∑

y∈Y\C
‖y‖2. (1)

Since the sum of the squared norms of all vectors from Y does not depend on C,
Problems 1 and 2 are equivalent to minimization of the function

∑

y∈C
‖y − y‖2 +

∑

y∈Y\C
‖y‖2,

that can be treated as a minimum sum of squares 2-clustering where the center
of one cluster is known. This problem is very close to a classical MSSC (min-
imum sum of squares clustering) problem also known as k-means [2,6,20,21],
but not equivalent to it. Note that in such equivalent formulations these prob-
lems admit polynomial 2-approximation algorithms of complexity O(dN2) both
for known [4] and unknown [13] cardinality of the sought set (cluster with an
unknown center). As far as we know, no polynomial approximation algorithm
with a guaranteed exactness bound is known for Problem 1.

3 Main Results

In this section we present the new NP-hardness proofs for Problems 1 and 3.

3.1 NP-hardness of Problem 1

Let us rewrite Problem 1 in the equivalent (due to (1)) form of the decision
problem.

Problem 5. Given a set of vectors Y = {y1, . . . , yN} in d-dimensional Euclidean
space and a number K > 0, is there a non-empty subset C ⊆ Y such that

f(C) :=
1

2|C|
∑

x∈C

∑

y∈C
‖x − y‖2 +

∑

z∈Y\C
‖z‖2 ≤ K?

We need the following well-known NP-hard [7] version of the Exact Cover by
3-Sets problem where each element lies in at most 3 subsets.
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Problem 6 (X3C3). Given a family E = {e1, . . . , em} of 3-element subsets of the
set V = {v1, . . . , vn} where n = 3q such that every v ∈ V meets in at most
3 subsets from E, find out whether there exist a subfamily E0 = {ei1 , . . . , eiq}
covering the set V , i. e. such that V = ∪q

j=1eij .

The main result of this subsection is the following theorem.

Theorem 1. Problem 1 is NP-hard in a strong sense.

Proof. Consider an arbitrary instance of X3C3 problem and reduce it to an
instance of Problem 5 in the following way. Put N = m, d = 3n + 1 and K =
18a2(m − 1) + m − q where a is a positive integer such that a2 > m(m − q)/6.
Each vector yi ∈ Y corresponds to a set ei ∈ E. For every i ∈ {1, . . . , n} refer
to the coordinates 3i, 3i − 1, 3i − 2 of a vector y ∈ Y as i-th coordinate triple.
Denote by yi(j) the j-th coordinate of yi. If vi �∈ ej then the i-th triple of the
vector yj contains zeroes: yj(3i − 2) = yj(3i − 1) = yj(3i) = 0. Otherwise, let
k = |{l < j | vi ∈ el}| be the number of subsets from E with lesser indices than
j containing the element vi. Since each vi lies in at most 3 subsets from E, we
have k ∈ {0, 1, 2}. Put

yj(3i − 2) = 2a, yj(3i − 1) = yj(3i) = −a, if k = 0;
yj(3i − 1) = 2a, yj(3i − 2) = yj(3i) = −a, if k = 1;
yj(3i) = 2a, yj(3i − 2) = yj(3i − 1) = −a, if k = 2.

Also, put yj(3n + 1) = 1 for all j ∈ {1, . . . , m}.

For example, if E = {(v1, v2, v3), (v1, v3, v4), (v1, v5, v6), (v2, v3, v5), (v4, v5, v6)}
then the family Y contains the following five vectors of dimension 19:

y1 = (2a,−a,−a | 2a,−a,−a | 2a,−a,−a | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 1);

y2 = (−a, 2a,−a | 0, 0, 0 | − a, 2a,−a | 2a,−a,−a | 0, 0, 0 | 0, 0, 0 | 1);

y3 = (−a,−a, 2a | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 2a,−a,−a | 2a,−a,−a | 1);

y4 = (0, 0, 0 | − a, 2a,−a | − a,−a, 2a | 0, 0, 0 | − a, 2a,−a | 0, 0, 0 | 1);

y5 = (0, 0, 0 | 0, 0, 0 | 0, 0, 0 | − a, 2a,−a | − a,−a, 2a | − a, 2a,−a | 1).

For the convenience, different coordinate triples are separated by the vertical
lines.

Note that ‖yi‖2 = 18a2 + 1 for all i and also

‖yi − yj‖2 =

⎧
⎪⎪⎨

⎪⎪⎩

36a2, if ei ∩ ej = ∅;
42a2, if |ei ∩ ej | = 1;
48a2, if |ei ∩ ej | = 2;
54a2, if |ei ∩ ej | = 3

for every i �= j.
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Assume first that an exact cover E0 exists. Put C = {yj | ej ∈ E0}. Then

f(C) =
q(q − 1)36a2

2q
+ (m − q)(18a2 + 1) = 18a2(m − 1) + m − q = K,

as required.
Assume now that there is a subset C of size t > 0 such that f(C) ≤ K. Note

that each coordinate triple can be non-zero in at most 3 vectors from C. For each
k ∈ {0, 1, 2, 3} denote by ak the number of coordinate triples that are non-zero
in exactly k vectors from C and estimate the contributions of such triples into
the first addend of f(C). Note that a0 + a1 + a2 + a3 = n = 3q. Clearly, the
contribution of a0 zero triples is 0. If a triple is non-zero in one vector from C
then it contributes

(t − 1)(4a2 + a2 + a2)
t

,

and the total contribution of such triples is

6a2a1(t − 1)
t

. (2)

If a triple is non-zero in two vectors from C then it contributes

2(t − 2)(4a2 + a2 + a2) + (9a2 + 9a2)
t

;

so, the total contribution of such triples is

6a2a2(2t − 1)
t

. (3)

Finally, the total contribution of triples that are non-zero in three vectors from
C is

(3(t − 3)6a2 + 3 · 18a2)a3

t
= 18a2a3. (4)

Since |ej | = 3 for all j, we have a1 + 2a2 + 3a3 = 3t. Using (2)–(4), estimate
the objctive function

f(C) =
6a2

t
((t − 1)a1 + (2t − 1)a2 + 3ta3) + (m − t)(18a2 + 1)

=
6a2

t
(3t2 − a1 − a2) + (m − t)(18a2 + 1) = 18ma2 + m − t − 6a2

t
(a1 + a2)

= K + 18a2 − 6a2

t
(a1 + a2) + q − t.

If t < q then f(C) > K since a1 + a2 ≤ 3t.
Assume now that t ≥ q and a2+a3 ≥ 1. Then a1+a2 = 3t−a2−2a3 ≤ 3t−1

and since t ≤ m we obtain

f(C) = K + 18a2 − 6a2

t
(a1 + a2) + q − t
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≥ K + 18a2 − 6a2(3t − 1)
t

+ q − t ≥ K +
6a2

m
+ q − m > K

by the choice of a.
Therefore, t ≥ q and a2 = a3 = 0. But then a1 = 3t and a0 + a1 = 3q, i. e.

a0 = 0 and t = q. Hence, the set E0 = {ej | yj ∈ C} induces an exact cover. �


3.2 NP-hardness of Problem 3

Since the norm is always non-negative, maximizing it is the same as maximizing
its square, which is much more convenient. So, the decision version of Problem
3 is equivalent to the following

Problem 7. Given a set of vectors Y = {y1, . . . , yN} in d-dimensional Euclidean
space and a number K, is there a non-empty subset C ⊆ Y such that

g(C) := ‖
∑

x∈C
x‖2 ≥ K?

In order to prove its NP-hardness we first need to show that X3C3 problem
remains NP-complete for 3-uniform family of subsets (i. e. if each vi ∈ V lies in
exactly 3 subsets from E). We refer to this variant of X3C3 problem as X3CE3
problem.

Proposition 1. The X3CE3 problem is NP-complete.

Proof. Consider an arbitrary instance of X3C3 problem. We may assume that
each vi lies in at least 2 subsets (if some vi lies in a unique subset then this
subset must always be in E0 and the instance can be simplified). Denote by
α and β the number of elements lying in 3 and 2 subsets from E respectively.
Since 3α + 2β = 3m, there must be β = 3γ. Enumerate the elements of V so
that v1, . . . , v3γ would lie in two subsets from E. Construct an instance of X3CE3
problem by adding to V a set of new elements U = {ui | i = 1, . . . , 3γ} and by
adding to E the subsets {v3i−2, u3i−2, u3i−1}, {v3i−1, u3i−2, u3i}, {v3i, u3i−1, u3i},
and {u3i−2, u3i−1, u3i} for all i = 1, . . . , γ. Clearly, no exact cover (a subfamily
E0) in the constructed instance can contain a subset that intersects both with
U and V . Therefore, the constructed instance of X3CE3 problem has an exact
cover if and only if the initial instance of X3C3 problem has one. �

Theorem 2. Problem 3 is NP-hard in a strong sense.

Proof. Consider an arbitrary instance of X3CE3 problem. Note that m = n =
3q. Reduce it to an instance of Problem 7 as follows. Put N = n, d = 3n+1 and
K = 6a2n + 4q2 where a is a positive integer such that a2 > (n2 − 4q2)/6, and
construct the set of vectors Y in exactly the same way as in proof of Theorem 1.

In an evident way, each C ⊆ Y corresponds to a subfamily E(C) ⊆ E. Put
u(C) =

∑
y∈C y. Since g(C) = ‖u(C)‖2, the contribution of the i-th coordinate

triple into the objective function g(C) is 6a2 if 1 or 2 vectors corresponding to
subsets containing vi lies in E(C), and the contribution is 0 otherwise.
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If there is an exact cover E0 in X3CE3 problem then let C contain all n−q =
2q vectors corresponding to the elements from E \ E0. Since each element of V
lies in exactly 2 subsets from E \ E0, we have g(C) = 6a2n + 4q2 = K.

Suppose now that there exists a subset C ⊆ Y of cardinality t > 0 such that
g(C) ≥ K. As in the proof of Theorem 1, for each k ∈ {0, 1, 2, 3} denote by ak

the number of coordinate triples that are non-zero in exactly k vectors from C.
We have a0 + a1 + a2 + a3 = n = 3q and a1 + 2a2 + 3a3 = 3t. It follows form the
arguments above that g(C) = 6a2(a1 + a2) + t2.

If t < 2q then g(C) < K since a1 + a2 ≤ n.
If t > 2q then 0 < 3t − 6q = a3 − a1 − 2a0 ≤ a3 and thus a3 ≥ 1 implying

a1 + a2 ≤ n − 1. Therefore,

g(C) ≤ 6a2(n − 1) + n2 = K − 6a2 + n2 − 4q2 < K

by the choice of a.
Hence, t = 2q and a1 + a2 = n, which implies a0 = a1 = a3 = 0 and a2 = 3q.

This means that each element vi ∈ V lies exactly in 2 subsets from E(C). But
then the subfamily E0 = E \ E(C) induces an exact cover in X3CE3 problem.�


4 Conclusions

In this paper we have presented two new NP-hardness proofs for the subset choice
problems with unknown cardinalities of the sought subsets. Namely, the prob-
lems of finding a subset with the longest sum and a subset with the maximum
squared norm of the sum normalized by the size of the subset were considered.
These problems find their applications in the areas of data analysis and pattern
recognition. Namely, the first problem can be used for finding a correct direc-
tion to a certain object, and the second one arises in problem of detection an
informationally significant fragment in a noisy data.

The suggested new NP-hardness proofs use an easy and natural reduction
from Ecact Cover by 3-Sets problem. We believe that new natural reductions
could be helpful for proving NP-hardness of related problems with unknown
cardinalities of the sought subsets.

Anknowledgement. The author is grateful to the unknown referees for their valuable
comments.
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