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Abstract. We propose an optimization model of automatic grouping
(clustering) based on the k-means model with the Mahalanobis distance
measure. This model uses training (parameterization) procedure for the
Mahalanobis distance measure by calculating the averaged estimation of
the covariance matrix for a training sample. In this work, we investigate
the application of the k-means algorithm for the problem of automatic
grouping of devices, each of which is described by a large number of
measured parameters, with various distance measures: Euclidean, Man-
hattan, Mahalanobis. If we have a sample with the composition known
in advance, we use it as a training (parameterizing) sample from which
we can calculate the averaged estimation of the covariance matrix of
homogeneous production batches using the Mahalanobis distance. We
propose a new clustering model based on the k-means algorithm with
the Mahalanobis distance with the averaged (weighted average) estima-
tion of the covariance matrix. We used various optimization models based
on the k-means model in our computational experiments for the auto-
matic grouping (clustering) of electronic radio components based on data
from their non-destructive testing results. As a result, our new model of
automatic grouping allows us to reach the highest accuracy by the Rand
index.
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1 Introduction

The increasing complexity of modern technology leads to an increase in the
requirements for the quality, of industrial products reliability and durability.
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Determination of product quality is carried out by production tests. The quality
of products within a single production batch is determined by the stability of the
product parameters. Moreover, an increase in the stability of product parame-
ters in manufactured batches can be achieved by increasing the stability of the
technological process.

In order to exclude the possibility of potentially unreliable electronic and
radio components (ERC) intended to be installed in the onboard equipment of a
spacecraft with a long period of active existence, the entire electronic component
base passes through specialized technical test centers [1,2]. These centers carry
out operations of the total input control of the ERC, total additional screening
tests, total diagnostic non-destructive testing and the selective destructive phys-
ical analysis (DPA). To expand the results of the DPA to the entire batch of
products obtained, we must be sure that the products are manufactured from a
single batch of raw materials. Therefore, the identification of the original homo-
geneous ERC production batches from the shipped lots of the ERC is one of the
most important steps during testing [1].

The k-means model in this problem is well established [1,3–10]. Its appli-
cation allows us to achieve a sufficiently high accuracy of splitting the shipped
lots into homogeneous production batches. The problem is solved as a k-means
problem [11]. The aim is to find k points (centers or centroids) X1, . . . , Xk in
a d-dimensional space, such that the sum of the squared distances from known
points (data vectors) A1, . . . , AN to the nearest of the required points reaches
its minimum (1):

argminF (X1, . . . , Xk) =
N∑

i=1

minj∈{1,k}‖ Xj − Aj ‖2. (1)

Factor analysis methods do not significantly reduce the dimension of the space
without loss of accuracy in solving problems [12]. However, in some cases, the
accuracy of partitioning into homogeneous batches (the proportion of objects
correctly assigned to “their” cluster representing a homogeneous batch of prod-
ucts) can be significantly improved, especially for samples containing more than 2
or 3 homogeneous batches. In addition, the methods of factor analysis, although
they do not significantly reduce the dimension of the search space, show the
presence of linear statistical dependencies (correlations) between the parameters
of the ERC in a homogeneous batch.

A slight increase in accuracy is achieved by using an ensemble of mod-
els [3]. We also applied some other clustering models, such as the Expectation-
Maximization (EM) model and Self-organized Cohonen Maps (COM) [12].

Distance measure used in practical tasks of automatic objects grouping in
real space depends on the features of space. Changing distance measures can
improve the accuracy of automatic ERC grouping.

The idea of this work is to use the Mahalanobis distance measure in the k-
means problem and study the accuracy of clustering results. We proposed a new
algorithm, based on k-means model using the Mahalanobis distance measure
with an averaged estimation of the covariance matrix.
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2 Mahalanobis Distance

In k-means, k-median [13–15] and k-medoid [16–18] models, various distance
measures may be applied [19,20]. The use of correlation dependencies can be
involved by moving from a search in space with a Euclidean or rectangular
distance to a search in space with a Mahalanobis distance [21–24]. The square
of the Mahalanobis distance DM defined as follows (2):

DM (X) =
n∑

i=1

(X − µ)TC−1(X − µ), (2)

where X is vector of values of measured parameters, µ is vector of coordinate
values of the cluster center point (or cluster center), C is the covariance matrix.

Experiments on automatic ERC grouping with the k-medoid and k-median
models using the Mahalanobis distance show a slight increase in the clustering
accuracy in simple cases (with 2–4 clusters) [25].

3 Data and Preprocessing

In this study, we used data of test results performed in the testing center for the
batches of integrated circuits (microchips) [26]. The source data is a set of some
ERC parameters measured during the mandatory tests. The sample (mixed lot)
was originally composed of data on products belonging to different homogeneous
batches (in accordance with the manufacturer’s markup). The total amount of
ERC is 3987 devices. Batch 1 contains 71 device, 116 devices for Batch 2, 1867 for
Batch 3, 1250 for Batch 4, 146 for batch 5, 113 for Batch 6, 424 for Batch 7. The
items (devices) in each batch are described by 205 input measured parameters.

Computationally, the k-means problem, in which the sum of squared dis-
tances acts as the minimized objective function, is more convenient than the
k-median model using the sum of distances, because when using the sum of the
squared distances, the center point of the cluster (the centroid) coincides with
the average coordinate value of all objects in the cluster. When passing to the
sum of squared Mahalanobis distances, this property is preserved.

Nevertheless, the use of the Mahalanobis distance in the problem of automatic
ERC grouping in many cases leads to accuracy decrease in comparison with the
results achieved with the Euclidean distance due to the loss of the advantage of
the special data normalization approach (Table 1, hit percentage computed as
the sum of hits of algorithm (True Positives) in every batch divided by number
of products in the mixed lot).

The assumption that the statistical dependences of the parameter values
appear in different batches of ERC in a similar way has experimental grounds.
As can be seen from Fig. 1, the span and variance of the parameters of different
batches vary significantly. Even if the difference in the magnitude of the span
and variance of any parameters is insignificant among separate batches, they
differ significantly from the span and variance of the entire mixed lot (Fig. 2).
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Table 1. Comparison of the clustering results with different measures of distance,
number of exact hits (proportion of hits)

Batches Squared
Euclidean
distance

Squared
Mahalanobis
distance

Rectangular
(Manhattan)
distance

Cosine
distance

Correlation
distance

Four-batch mixed lot (n = 446)

Batch 1 (n = 71) 70 (0.99) 47 (0.66) 71 (1.00) 70 (0.99) 70 (0.99)

Batch 2 (n = 116) 78 (0.67) 83 (0.72) 64 (0.55) 78 (0.67) 84 (0.72)

Batch 5 (n = 146) 96 (0.66) 88 (0.60) 105 (0.72) 96 (0.66) 104 (0.71)

Batch 6 (n = 113) 44 (0.39) 91 (0.81) 50 (0.44) 44 (0.39) 38 (0.37)

Average 0.65 0.69 0.65 0.65 0.66

Sum of distances 473.174 26146.350 401.4 0.0012 0.0011

Full mixed lot (n = 3987)

Batch 1 (n = 71) 67 (0.94) 70 (0.99) 68 (0.96) 67 (0.94) 71 (1.00)

Batch 2 (n = 116) 4 (0.03) 4 (0.03) 4 (0.03) 4 (0.03) 78 (0.67)

Batch 3 (n = 1867) 578 (0.31) 223 (0.12) 558 (0.30) 578 (0.31) 0 (0.00)

Batch 4 (n = 1250) 403 (0.32) 127 (0.11) 446 (0.36) 406 (0.33) 227 (0.18)

Batch 5 (n = 146) 66 (0.45) 81(0.55) 63 (0.43) 64 (0.44) 78 (0.53)

Batch 6 (n = 113) 88 (0.78) 113 (1.00) 82 (0.73) 88 (0.78) 32 (0.28)

Batch 7 (n = 424) 311 (0.73) 404 (0.95) 303 (0.72) 311 (0.73) 314 (0.74)

Average 0.38 0.26 0.38 0.38 0.20

Sum of distances 5008.127 248808.6 1755.8 0.007 0.004

Fig. 1. Statistical dependence of the ERC parameters 57, 58

Thus, it is erroneous to take the variance and covariance coefficients in each
of the homogeneous batches equal to the variance and covariance coefficients
for the whole sample. Experiments with the automatic grouping model based
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Fig. 2. Statistical dependence of the ERC parameters 23, 24

on a mixture of Gaussian distributions by maximizing the likelihood function
by the EM algorithm [27] show a relatively high model adequacy only when
using diagonal covariance matrices (i.e. uncorrelated distributions), moreover,
equal for all distributions. Apparent correlations between the parameters are
not taken into account.

Mahalanobis distance is scale invariant [28]. Due to this property, data nor-
malization does not matter if this distance is applied. At the same time, binding
of the boundaries of the parameters to the boundaries, determined by their
physical nature, sets a scale proportional to the permissible fluctuations of these
parameters under operating conditions, without reference to the span and vari-
ance of these values in a particular production batch. The solution to the prob-
lem of preserving the scale could be to use the Mahalanobis distance with the
correlation matrix R instead of the covariance matrix C (3):

DM (X) =
n∑

i=1

(X − µ)TR−1(X − µ). (3)

Each element of the matrix R is calculated as follows (4):

rXY =
∑N

i=1(Xi − X)(Yi − Y )
(N − 1)SXSY

, (4)

where SX and SY are standard deviations of parameters X and Y , X and Y are
their average values.

As shown by experiments, the results of which are given below, this approach
does not show advantages compared to other methods.
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4 The K-Means Model with Supervised Mahalanobis
Distance Measure

The clustering problem is a classical example of the unsupervised learning app-
roach. However, in some cases, when solving the problem of automatic grouping,
we have a sample of a known composition. This sample can serve as a train-
ing (parameterizing) sample. In this case, a unique covariance matrix C (see
(2)) is calculated on this training sample and then used on other data. We call
the Mahalanobis distance (2) with the covariance matrix C pre-calculated on a
training sample the supervised (or parameterized) Mahalanobis distance.

If there is no training sample, well-known cluster analysis models can be
used to isolate presumably homogeneous batches with some accuracy. With this
approach, a presumably heterogeneous batch can be divided into the number of
presumably homogeneous batches, determined by the silhouette criterion [29–
31]. At the same time, a mixed lot can be divided into a larger number of
homogeneous batches than it actually is: smaller clusters are more likely to
contain data of the same class, i.e. the probability of false assignment of objects
of different classes to one cluster reduces. The proportion of objects of the same
class, falsely assigned to different classes, is not so important for assessing the
statistical characteristics of homogeneous groups of objects.

In the next experiment, there were training sample contains 6 batches: Batch
1 (71 device), Batch 2 (116 devices), Batch 4 (1250 devices), Batch 5 (146
devices), Batch 6 (113 devices), Batch 7 (424 devices). Using covariance matrix
C, datasets contain 2 batches in all combinations were clustered with the use of
various distance measure. The result was compared with the traditional k-means
clustering method with the squared Mahalanobis distance (unsupervised squared
Mahalanobis distance, Tables 2, 3, 4 proportion of hits computed as the sum of
hits of algorithm in every batch divided by number of products in the batch),
and with Euclidean and rectangular distances. For each model, we performed 5
experiments. Average clustering results are shown in Tables 2, 3, 4.

Table 2. Comparison of the clustering results with different measures of distance,
number of exact hits (proportion of hits) (Part 1)

Batches Supervised
squared
Mahalanobis
distance

Unsupervised
squared
Mahalanobis
distance

Squared
Euclidean
distance

Rectangular
(Manhattan)
distance

Batch 4 (n = 1250) 850 (0.68) 685 (0.55) 741 (0.59) 895 (0.72)

Batch 7 (n = 424) 390 (0.92) 256 (0.60) 228 (0.54) 423 (1.00)

Average 0.74 0.56 0.58 0.79

Avg. total squared distance 94467 100898 7119 12272

Batch 7 (n = 424) 253 (0.60) Singular 416 (0.98) 415 (0.98)

Batch 1 (n = 71) 71 (1.00) Matrix 71 (1.00) 71 (1.00)

Average 0.65 - 0.98 0.98

Avg. total squared distance 17551 - 1233 2795
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The experiment showed that the results of solving the k-means problem with
a supervised Mahalanobis distance measure are higher in comparison with the
results of a model with unsupervised Mahalanobis distance, however, it is still
lower than in case of Euclidean and rectangular distances.

5 The K-Means Model with Supervised Mahalanobis
Distance Measure Based on Averaged Estimation of
the Covariance Matrix

Since the original covariance matrices are of the same dimension, we are able to
calculate the average estimation of the covariance matrix among all homogeneous
batches of products in the training (parameterizing) sample:

C =
1
n

k∑

j=1

Cjnj , (5)

where nj is number of objects (components) in jth production batch, n is
total sample size, Cj are covariance matrices calculated on separate production
batches, each of which can be calculated by (6):

Cj = E[(X − EX)(E − EY )T ]. (6)

We propose the k-means algorithm using the Mahalanobis distance measure
with averaged estimation of the covariance matrix. Convergence of the k-means
algorithm using a Mahalanobis distance reviewed in [32]. Optimal k value was
found by silhouette criterion [30]:

Algorithm 1

Step 1. Divide randomly initial sample into k clusters.
Step 2. Calculate for each cluster a centroid µi. A centroid is defined as the

arithmetic mean of all points in a cluster (7):

µi =
1
m

m∑

j=1

Xji (7)

where m is number of points, Xj is vector of measured parameter values (j =
1..m), i = 1..n (n is a number of parameters).

Step 3. Calculate the averaged estimation of the covariance matrix (5). If
the averaged estimation of the covariance matrix is singular, then proceed to
Step 4, else proceed to step 5.

Step 4. Increase the number of clusters by (k + 1) and repeat steps 1 and 2.
Form new clusters with squared Euclidean distance measure (8):

D(Xj , µi) =
n∑

i=1

(Xji − µi)
2 (8)
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where n is a number of parameters.
Return to step 3 with new training sample.
Step 5. Assign each point to the nearest centroid using the squared Maha-

lanobis distance with averaged estimation of the covariance matrix to form new
clusters.

Step 6. Repeat algorithm from step 2 until clusters do not change.

Table 3. Comparison of the clustering results with different measures of distance,
number of exact hits (proportion of hits) (Part 2)

Batches Supervised

squared

Mahalanobis

distance

Unsupervised

squared

Mahalanobis

distance

Squared

Euclidean

distance

Rectangular

(Manhattan)

distance

Batch 7 (n = 424) 223 (0.53) Singular 244 (0.58) 282 (0.67)

Batch 6 (n = 113) 113 (1.00) Matrix 92 (0.81) 84 (0.75)

Average 0.63 - 0.63 0.68

Avg. total squared distance 18190 - 1396 3300

Batch 7 (n = 424) 216 (0.51) Singular 217 (0.51) 274 (0.65)

Batch 2 (n = 116) 116 (1.00) Matrix 95 (0.82) 97 (0.84)

Average 0.62 - 0.58 0.69

Avg. total squared distance 18190 - 1123 3090

Batch 7 (n = 424) 424 (1.00) 218 (0.51) 380 (0.90) 385 (0.91)

Batch 5 (n = 146) 136 (0.93) 85 (0.58) 146 (1.00) 146 (1.00)

Average 0.98 0.53 0.92 0.93

Avg. total squared distance 34385 34282 1250 3202

Batch 1 (n = 71) 71 (1.00) 47 (0.66) 71 (1.00) 71 (1.00)

Batch 4 (n = 1250) 471 (0.38) 653 (0.52) 772 (0.62) 642 (0.51)

Average 0.41 0.53 0.64 0.54

Avg. total squared distance 82458 79599 7237 11120

Batch 4 (n = 1250) 410 (0.33) 648 (0.52) 735 (0.59) 570 (0.46)

Batch 6 (n = 113) 102 (0.90) 59 (0.52) 67 (0.59) 85 (0.75)

Average 0.38 0.52 0.59 0.48

Avg. total squared distance 82649 82054 5452 10014

Batch 4 (n = 1250) 412 (0.33) 622 (0.50) 769 (0.62) 485 (0.39)

Batch 2 (n = 116) 98 (0.85) 69 (0.59) 76 (0.66) 96 (0.82)

Average 0.37 0.51 0.62 0.43

Avg. total squared distance 82693 82318 5410 9996

Batch 4 (n = 1250) 953 (0.76) 772 (0.62) 772 (0.62) 873 (0.70)

Batch 5 (n = 146) 91 (0.62) 91 (0.62) 146 (1.00) 146 (1.00)

Average 0.75 0.62 0.66 0.73

Avg. total squared distance 99605 83963 6689 11619

Batch 1 (n = 71) 71 (1.00) Singular 71 (1.00) 71 (1.00)

Batch 6 (n = 113) 111 (0.98) Matrix 113 (1.00) 113 (1.00)

Average 0.99 - 1.00 1.00

Avg. total squared distance 6500 - 354 797

(continued)
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Table 3. (continued)

Batches Supervised

squared

Mahalanobis

distance

Unsupervised

squared

Mahalanobis

distance

Squared

Euclidean

distance

Rectangular

(Manhattan)

distance

Batch 1 (n = 71) 71 (1.00) Singular 71 (1.00) 71 (1.00)

Batch 2 (n = 116) 116 (1.00) Matrix 112 (0.97) 114 (0.98)

Average 1.00 - 0.98 0.99

Avg. total squared distance 6481 - 325 747

Batch 1 (n = 71) 71 (1.00) 39 (0.56) 70 (0.99) 71 (1.00)

Batch 5 (n = 146) 84 (0.58) 80 (0.55) 99 (0.68) 108 (0.74)

Average 0.71 0.55 0.78 0.83

Avg. total squared distance 22199 13004 223 841

Batch 2 (n = 116) 91 (0.78) Singular 89 (0.77) 70 (0.60)

Batch 6 (n = 113) 87 (0.77) Matrix 37 (0.33) 48 (0.42)

Average 0.78 - 0.55 0.52

Avg. total squared distance 7319 - 282 903

Table 4. Comparison of the clustering results with different measures of distance,
number of exact hits (proportion of hits) (Part 3)

Batches Supervised
squared
Mahalanobis
distance

Unsupervised
squared
Mahalanobis
distance

Squared
Euclidean
distance

Rectangular
(Manhattan)
distance

Batch 5 (n = 146) 96 (0.66) 81 (0.55) 146 (1.00) 146 (1.00)

Batch 6 (n = 113) 113 (1.00) 66 (0.59) 105 (0.93) 109 (0.75)

Average 0.81 0.57 0.97 0.99

Avg. total squared distance 23172 6564 512 1246

Batch 2 (n = 116) 116 (1.00) 67 (0.57) 108 (0.93) 109 (0.94)

Batch 5 (n = 146) 78 (0.54) 80 (0.55) 146 (1.00) 146 (1.00)

Average 0.74 0.56 0.97 0.97

Avg. total squared distance 23070 15710 458 1175

6 Computational Experiments

A series of experiments was carried out on the data set described above. This
mixed lot is convenient due to its composition is known in advance, which allows
us to evaluate the accuracy of the applied clustering models. Moreover, this data
set is difficult for grouping by well-known models: some homogeneous batches
in its composition are practically indistinguishable from each other, and the
accuracy of known clustering models on this sample is low [12,33].

As a measure of the clustering accuracy, we use the Rand Index (RI) [34],
which determines the proportion of objects for which the reference and resulting
cluster splitting are similar.
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To train the model with the averaged Mahalanobis distance measure from
the components of the mixed lot, new combinations of batches were compiled
containing devices belonging to different homogeneous batches. New combina-
tions consists of 2–7 homogeneous batches. Training sample include the entire
data from each batch.

Experiments conducted with 5 different clustering models:

Model DM1: K-means with the Mahalanobis distance measure, the estimation
of the covariance matrix calculates for the entire training sample. The objective
function defines as the sum of the squared distances.

Model DC: K-means with a distance measure similar to the Mahalanobis dis-
tance, but using a correlation matrix instead of a covariance matrix (3). The
objective function defines as the sum of the squared distances.

Model DM2: K-means algorithm with Mahalanobis distance measure based on
averaged estimation of the covariance matrix (4). The objective function defines
as the sum of the squared distances.

Model DR: K-means with Manhattan distance measure. The objective function
defines as the sum of the distances.

Model DE: K-means with Euclidean distance measure. The objective function
defines as the sum of the squared distances.

This paper presents the results of three groups of experiments. In each of
the groups of experiments, for each working sample, the k-means algorithm was
run 30 times with each of the five studied clustering models. In these groups
of experiments the highest RI value was shown by K-means algorithm with
Mahalanobis distance measure based on averaged estimation of the covariance
matrix.

First Group. The training set corresponds to the working sample for which clus-
tering was carried out. Five series of experiments were carried out. In each series
of experiments, the sample is composed of a combination of products belonging
to 2–7 homogeneous batches. Table 5 presents the maximum, minimum, mean

Table 5. An experiment of the 1st group

Rand index Objective function

DM1 DC DM2 DR DE DM1 DC DM2 DR DE

Max 0.755 0.66 0.822 0.739 0.745 255921 3843 2645 18902 6008

Min 0.560 0.64 0.732 0.702 0.704 250558 3706 2600 17785 5010

Mean 0.627 0.65 0.771 0.716 0.721 253041 372289 261582 18225 5298

σ 0.051 0.00 0.024 0.010 0.009 1178 261.01 989.3 433.12 290.276

V 0.466 0.701 0.378 2.377 5.479

R 5363 1369 4517 1117 998
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value and standard deviation for the Rand index and objective function for the 7-
batches sample. For objective function also calculated the coefficient of variation
(V) and span factor (R, where R = Max − Min).

Second Group. Training and work samples do not match. In practice, the test
center can use retrospective data from the supply and testing of products of
the same type as a training sample. In this series of experiments, no more than
seven homogeneous batches are presented in the training set. The working sample
is represented by a new combination of products belonging to different homo-
geneous batches. In Table 6 represented results for 5-batches working set and
7-batches training set.

Table 6. An experiment of the 2nd group

Rand index Objective function

DM1 DC DM2 DR DE DM1 DC DM2 DR DE

Max 0.7490 0.645 0.8524 0.7337 0.73567 254822 38704 263405 20509 9194.61

Min 0.4312 0.631 0.7470 0.6955 0.68932 249355 37856 257534 19408 6554.1

Mean 0.5660 0.636 0.8117 0.7079 0.71919 251694 37982 259689 19674 7119.85

σ 0.0519 0.003 0.0324 0.0153 0.01002 1462.8 203.55 1502.09 289.63 571.119

V 0.581 0.536 0.578 1.472 8.022

R 5467 848 5871 1102 2641

Third Group. The training and working samples also do not match, but the
results of the automatic product grouping were used as the training sample
(k-means in multistart mode with Euclidean distance measure). In each series
of experiments, the training set consists of 10 batches, which in turn are the
result of applying the k-means algorithm to the training set containing the entire
sample. The working sample is represented by a new combination of products
belonging to different homogeneous batches. In Table 7 showed results for 7-
batches working set.

Table 7. An experiment of the 3rd group

Rand index Objective function

DM1 DC DM2 DR DE DM1 DC DM2 DR DE

Max 0.7672 0.6579 0.7489 0.73969 0.73456 255886 379167 281265 18897 6495

Min 0.5618 0.6453 0.6958 0.70286 0.70466 250839 36997 274506 17785 5009

Mean 0.6317 0.6499 0.7246 0.71359 0.71935 252877 37178 277892 18240 5250

σ 0.0468 0.0032 0.0160 0.0081 0.0063 1164.5 152.84 2358.92 452.73 367.5

V 0.461 0.411 0.849 2.482 6.981

R 5047 920 6759 1112 1485
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In most cases, the coefficient of variation of the objective function values is
highest for the DE model, where the Euclidean distance measure used. The span
factor of the objective function, in the opposite, has most high values for the DM2
model, where the Mahalanobis distance measure with the average estimation of
the covariance matrix used. Therefore, obtaining consistently good values of the
objective function requires multiple attempts to run the k-means algorithm, or
using other algorithms based on the k-means model, such as j-means [35] or
greedy heuristic algorithms [36] or others.

According to Rand index, DM2 model shows the best accuracy among the
presented models (Fig. 3(a)–3(c)) in almost all series of experiments. And in
all cases, the DM2 model surpasses the traditional DE model, where Euclidean
distance measure used (Fig. 3(b), 3(c)).

Experiments showed that there is no correlation between the values of the
objective function and the Rand index in series of experiments with model DM1
in any combinations of training and working samples (Fig. 4(a)). In other mod-
els with an increase the volume of training and working samples (nt and nw,
respectively), the clustering accuracy becomes constant (Fig. 4(b)). For DM2
model there is an inverse correlation between the achieved value of the objective
function and the clustering accuracy RI on a small sample (Fig. 5(a)).

Fig. 3. The mean value of the Rand index for a) 1st group; b) 2nd group; c) 3rd group

In addition, the fact deserves attention that when applying the Euclidean
distance measure, the best (smaller) values of the objective function do not
correspond to the best (large) accuracy values. (Fig. 5(b)). This fact shows that
the model with the Euclidean distance measure is not quite adequate: the most
compact clusters do not exactly correspond to homogeneous batches.
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Fig. 4. Dependence of the Rand index on the value of the objective function for a)
DM1 model (nt = 3987, nw = 2054); b) DM2 model (nt = 3987, nw = 3987)

Fig. 5. Dependence of the Rand index on the value of the objective function for a)
DM2 model (nt = 187, nw = 187); b) DE model (nt = 187, nw = 187)

7 Conclusion

The proposed clustering model and algorithm which uses the k-means model
with Mahalanobis distance and an averaged (weighted average) estimation of the
covariance matrix was compared with the k-means model with the Euclidean and
rectangular distances in solving the problem of automatic grouping of industrial
products by homogeneous production batches.
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Taking into account the higher average Rand Index value, the proposed opti-
mization model and algorithm applied for the electronic radio components clus-
tering by homogeneous production batches has an advantage over the models
with traditionally used Euclidean and rectangular (Manhattan) metrics.
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Federation.

References

1. Orlov, V.I., Kazakovtsev, L.A., Masich, I.S., Stashkov, D.V.: Algorithmic support
of decision-making on selection of microelectronics products for space industry.
Siberian State Aerospace University, Krasnoyarsk (2017)

2. Kazakovtsev, L.A., Antamoshkin, A.N.: Greedy heuristic method for location prob-
lems. Vestnik SibGAU 16(2), 317–325 (2015)

3. Rozhnov, I., Orlov, V., Kazakovtsev, L.: Ensembles of clustering algorithms for
problem of detection of homogeneous production batches of semiconductor devices.
In: 2018 School-Seminar on Optimization Problems and their Applications, OPTA-
SCL 2018, vol. 2098, pp. 338–348 (2018)

4. Kazakovtsev, L.A., Antamoshkin, A.N., Masich, I.S.: Fast deterministic algorithm
for EEE components classification. IOP Conf. Ser. Mater. Sci. Eng. 94. https://
doi.org/10.1088/1757-899X/04/1012015. Article ID 012015

5. Li, Y., Wu, H.: A clustering method based on K-means algorithm. Phys. Procedia
25, 1104–1109 (2012). https://doi.org/10.1016/j.phpro.2012.03.206

6. Ansari, S.A., et al.: Using K-means clustering to cluster provinces in Indonesia. J.
Phys. Conf. Ser. 1028, 521–526 (2018). 012006

7. Hossain, Md., Akhtar, Md.N., Ahmad, R.B., Rahman, M.: A dynamic K-means
clustering for data mining. Indones. J. Electr. Eng. Comput. Sci. 13(521), 521–526
(2019)

8. Perez-Ortega, J., Almanza-Ortega, N.N., Romero, D.: Balancing effort and benefit
of K-means clustering algorithms in Big Data realms. PLoS ONE 13(9), e0201874
(2018). https://doi.org/10.1371/journal.pone.0201874

9. Patel, V.R., Mehta, R.G.: Modified k-Means clustering algorithm. In: Das, V.V.,
Thankachan, N. (eds.) CIIT 2011. CCIS, vol. 250, pp. 307–312. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-25734-6 46

10. Na, S., Xumin, L., Yong, G.: Research on k-means clustering algorithm: an
improved k-means clustering algorithm. In: 2010 Third International Symposium
on Intelligent Information Technology and Security Informatics, Jinggangshan, pp.
63–67 (2010)

11. MacQueen, J.: Some methods for classification and analysis of multivariate observa-
tions. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics
and Probability, vol. 1, pp. 281–297 (1967)

12. Shkaberina, G.S., Orlov, V.I., Tovbis, E.M., Kazakovtsev, L.A.: Identification of
the optimal set of informative features for the problem of separating of mixed
production batch of semiconductor devices for the space industry. In: Bykadorov,
I., Strusevich, V., Tchemisova, T. (eds.) MOTOR 2019. CCIS, vol. 1090, pp. 408–
421. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33394-2 32

https://doi.org/10.1088/1757-899X/04/1012015
https://doi.org/10.1088/1757-899X/04/1012015
https://doi.org/10.1016/j.phpro.2012.03.206
https://doi.org/10.1371/journal.pone.0201874
https://doi.org/10.1007/978-3-642-25734-6_46
https://doi.org/10.1007/978-3-030-33394-2_32


On the Optimization Models for Automatic Grouping of Industrial Products 435

13. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall, Englewood
Cliffs (1981)

14. Bradley, P.S., Mangasarian, O.L., Street, W.N.: Clustering via concave minimiza-
tion. In: Advances in Neural Information Processing Systems, vol. 9, pp. 368–374
(1997)

15. Har-Peled, S., Mazumdar, S.: Coresets for k-Means and k-Median clustering and
their applications. In: Proceedings of the 36th Annual ACM Symposium on Theory
of Computing, pp. 291–300 (2003)

16. Maranzana, F.E.: On the location of supply points to minimize transportation
costs. IBM Syst. J. 2(2), 129–135 (1963). https://doi.org/10.1147/sj.22.0129

17. Kaufman, L., Rousseeuw, P.J.: Clustering by means of Medoids. In: Dodge, Y.
(ed.) Statistical Data Analysis Based on the L1-Norm and Related Methods, pp.
405–416. North-Holland, Amsterdam (1987)

18. Park, H.-S., Jun, C.-H.: A simple and fast algorithm for K-medoids clustering.
Expert Syst. Appl. 36(2), 3336–3341 (2009). https://doi.org/10.1016/j.eswa.2008.
01.039

19. Davies, D.L., Bouldin, D.W.: A cluster Separation measure. IEEE Trans. Pattern
Anal. Mach. Intell. PAMI–1(2), 224–227 (1979)

20. Deza, M.M., Deza, E.: Metrics on normed structures. In: Encyclopedia of Distances,
pp. 89–99. Springer, Heidelberg (2013) https://doi.org/10.1007/978-3-642-30958-
8 5

21. De Maesschalck, R., Jouan-Rimbaud, D., Massart, D.L.: The Mahalanobis dis-
tance. Chem. Intell. Lab. Syst. 50(1), 1–18 (2000). https://doi.org/10.1016/S0169-
7439(99)00047-7

22. McLachlan, G.J.: Mahalanobis distance. Resonance 4(20), 1–26 (1999). https://
doi.org/10.1007/BF02834632

23. Xing, E.P., Jordan, M.I., Russell, S.J., Ng, A.Y.: Distance metric learning with
application to clustering with side-information. In: Advances in Neural Information
Processing Systems, vol. 15, pp. 521–528 (2003)

24. Arathiand, M., Govardhan, A.: Performance of Mahalanobis distance in time series
classification using shapelets. Int. J. Mach. Learn. Comput. 4(4), 339–345 (2014)

25. Orlov, V.I., Shkaberina, G.S., Rozhnov, I.P., Stupina, A.A., Kazakovtsev, L.A.:
Application of clustering algorithms with special distance measures for the problem
of automatic grouping of radio products. Sistemy upravleniia I informacionnye
tekhnologii 3(77), 42–46 (2019)

26. Orlov, V.I., Fedosov, V.V.: ERC clustering dataset (2016). http://levk.info/
data1526.zip

27. Kazakovtsev, L.A., Orlov, V.I., Stashkov, D.V., Antamoshkin, A.N., Masich, I.S.:
Improved model for detection of homogeneous production batches of electronic
components. IOP Conf. Ser. Mater. Sci. Eng. 255 (2017). https://doi.org/10.1088/
1757-899x/255/1/012004

28. Shumskaia, A.O.: Evaluation of the effectiveness of Euclidean distance metrics and
Mahalanobis distance metrics in identifying the origin of text. Doklady Tomskogo
gosudarstvennogo universiteta system upravleniia I radioelektroniki 3(29), 141–145
(2013)

29. Kaufman, L., Rousseeuw, P.: Finding Groups in Data: An Introduction to Cluster
Analysis. Wiley, New York (1990)

30. Rousseeuw, P.: Silhouettes: a graphical aid to the interpretation and validation of
cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

https://doi.org/10.1147/sj.22.0129
https://doi.org/10.1016/j.eswa.2008.01.039
https://doi.org/10.1016/j.eswa.2008.01.039
https://doi.org/10.1007/978-3-642-30958-8_5
https://doi.org/10.1007/978-3-642-30958-8_5
https://doi.org/10.1016/S0169-7439(99)00047-7
https://doi.org/10.1016/S0169-7439(99)00047-7
https://doi.org/10.1007/BF02834632
https://doi.org/10.1007/BF02834632
http://levk.info/data1526.zip
http://levk.info/data1526.zip
https://doi.org/10.1088/1757-899x/255/1/012004
https://doi.org/10.1088/1757-899x/255/1/012004


436 G. Sh. Shkaberina et al.

31. Golovanov, S.M., Orlov, V.I., Kazakovtsev, L.A.: Recursive clustering algorithm
based on silhouette criterion maximization for sorting semiconductor devices by
homogeneous batches. IOP Conf. Ser. Mater. Sci. Eng. 537 (2019). 022035

32. Lapidot, I.: Convergence problems of Mahalanobis distance-based k-means cluster-
ing. In: IEEE International Conference on the Science of Electrical Engineering in
Israel (ICSEE) (2018). https://doi.org/10.1109/icsee.2018.8646138

33. Shkaberina, G.Sh., Orlov, V.I., Tovbis, E.M., Sugak, E.V., Kazakovtsev, L.A.:
Estimation of the impact of semiconductor device parameters on the accuracy of
separating a mixed production batch. IOP Conf. Ser. Mater. Sci. Eng. 537 (2019).
https://doi.org/10.1088/1757-899X/537/3/032088. 032088

34. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am.
Stat. Assoc. 66(336), 846–850 (1971). https://doi.org/10.1080/01621459.1971.
10482356

35. Hansen, P., Mladenovic, N.: J-means: a new local search heuristic for minimum
sum of squares clustering. Pattern Recogn. 34(2), 405–413 (2001). https://doi.
org/10.1016/S0031-3203(99)00216-2

36. Kazakovtsev, L.A., Antamoshkin, A.N.: Genetic algorithm with fast greedy heuris-
tic for clustering and location problems. Informatica 38(3), 229–240 (2014)

https://doi.org/10.1109/icsee.2018.8646138
https://doi.org/10.1088/1757-899X/537/3/032088
https://doi.org/10.1080/01621459.1971.10482356
https://doi.org/10.1080/01621459.1971.10482356
https://doi.org/10.1016/S0031-3203(99)00216-2
https://doi.org/10.1016/S0031-3203(99)00216-2

	On the Optimization Models for Automatic Grouping of Industrial Products by Homogeneous Production Batches
	1 Introduction
	2 Mahalanobis Distance
	3 Data and Preprocessing
	4 The K-Means Model with Supervised Mahalanobis Distance Measure
	5 The K-Means Model with Supervised Mahalanobis Distance Measure Based on Averaged Estimation of the Covariance Matrix
	6 Computational Experiments
	7 Conclusion
	References




