
Decomposition/Aggregation K-means
for Big Data

Alexander Krassovitskiy1(B) , Nenad Mladenovic1,2 ,
and Rustam Mussabayev1(B)

1 Institute of Information and Computational Technologies, Pushkin Str. 125,
Almaty, Kazakhstan

akrassovitskiy@gmail.com, rmusab@gmail.com
2 Khalifa University, Abu Dhabi 41009, United Arab Emirates

nenad.mladenovic@ku.ac.ae

Abstract. Well-known and widely applied k-means clustering heuristic
is used for solving Minimum Sum-of-Square Clustering problem. In solv-
ing large size problems, there are two major drawbacks of this technique:
(i) since it has to process the large input dataset, it has heavy compu-
tational costs and (ii) it has a tendency to converge to one of the local
minima of poor quality. In order to reduce the computational complex-
ity, we propose a clustering technique that works on subsets of the entire
dataset in a stream like fashion. Using different heuristics the algorithm
transforms the Big Data into Small Data, clusters it and uses obtained
centroids to initialize the original Big Data. It is especially sensitive for
Big Data as the better initialization gives the faster convergence. This
approach allows effective parallelization. The proposed technique eval-
uates dynamically parameters of clusters from sequential data portions
(windows) by aggregating corresponding criteria estimates. With fixed
clustering time our approach makes progress through a number of partial
solutions and aggregates them in a better one. This is done in comparing
to a single solution which can be obtained by regular k-means-type clus-
tering on the whole dataset in the same time limits. Promising results
are reported on instances from the literature and synthetically generated
data with several millions of entities.

Keywords: k-means · Parallel · Clustering · Big Data · MSSC ·
Dataset · Decomposition · Aggregation

1 Introduction

Recently, clustering methods have attracted much attention as effective tools in
theoretical and applied problems of machine learning that allows to detect pat-
terns in raw/poorly structured data. Another motivation is the need to process

This research is conducted within the framework of the grant num. BR05236839 “Devel-
opment of information technologies and systems for stimulation of personality’s sus-
tainable development as one of the bases of development of digital Kazakhstan”.

c© Springer Nature Switzerland AG 2020
Y. Kochetov et al. (Eds.): MOTOR 2020, CCIS 1275, pp. 409–420, 2020.
https://doi.org/10.1007/978-3-030-58657-7_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58657-7_32&domain=pdf
http://orcid.org/0000-0003-2948-374X
http://orcid.org/0000-0001-6655-0409
http://orcid.org/0000-0001-7283-5144
https://doi.org/10.1007/978-3-030-58657-7_32

410 A. Krassovitskiy et al.

large data sets to obtain a natural grouping of data. Therefore, one of the main
aspects for clustering methods is their scalability [9,15].

There are a number of studies aimed at improving clustering quality using
methods with high cost and time complexity [15–17,19]. This type of meth-
ods usually has a significant drawback: it is practically intractable to cluster
medium and large data sets (approximately 105–107 objects or more). These
methods cannot work with huge databases, because the computational complex-
ity in time/space (memory) growths (polynomially) very rapidly. Therefore, it
has a sense to look for algorithms with reasonable trade-offs between effective
scalability and the quality of clustering [7,8,10,11].

One of the known methods of data clustering is the k-means algorithm, which
is widely used due to its simplicity and good characteristics [18,20]. A number
of algorithms and technologies have improved this method by clustering input
data objects in portions. There are algorithms that use the data stream clustering
or decomposition approach, for example, mini-batch k-means [3,8,13]. It has a
weighted version of k-means algorithm with many applications [10].

Meta-heuristics can be of great help when the exact solution is difficult or
expensive in terms of used computation time and space. Some heuristics for
k-means that accelerate calculations have been developed and implemented:
part of the heuristics is devoted to accelerating the convergence of the method,
another discards redundant or insignificant intermediate calculations. The fol-
lowing meta-heuristics have shown their effectiveness in clustering big data:

– deletion at each iteration of data patterns that are unlikely to change their
membership in a particular cluster, as in [11,12];

– using the triangle inequality in [14];
– combinations of various techniques [1,4].

For many machine learning algorithms, processing of big data is problematic
and severely limits functionality usage. Our approach is directed to make an
advantage out of this drawback, i.e., the more data is given, the better estimates
can be obtained. The k-means is one of the fastest algorithms, so we use it as
the underlying basis in our approach. In this paper, we use the k-means++
modification to build an algorithmic meta-heuristic that uses some subsets from
the entire dataset at each step. We note that ++ version of the k-means has a
special initialization of centroids [6].

Formally, given a set of objects X = {x1, ..., xN} in Euclidean space to be
clustered and a set of corresponding weights {w1, ..., wN}, for wl ∈ R+, l ∈
1, ..., N . Then {C1, ..., Ck} is a partition of X in k clusters if it satisfies (i)
Ci �= ∅, (ii) Ci ∩ Cj = ∅, i �= j, i, j = 1, 2, ..., k, and (iii)

⋃
Ci = X. Then,

minimum sum-of-squared clustering problem is defined as following:

MSSD = min
C1,...,Ck

N∑

l=1

wl min
j=1,...,k

||xl − cj ||2,

Decomposition/Aggregation K-means for Big Data 411

where centroids cj =
∑

l∈arg(Cj)
wlxl/

∑
l∈arg(Cj)

wl. Correspondingly, SSD cri-
teria gives an estimate on a particular clustering partition:

SSD(C1, ..., Ck) =
N∑

l=1

wl min
j=1,...,k

||xl − cj ||2.

In case the weights of objects are not specified, then wl = 1 for l ∈ 1, ..., N.
Decomposing the dataset can be technically realized by a stream like meth-

ods. Streaming to process a window may be considered as searching dependencies
between the obtained essential information and the one gathered previously by
the computational model. The principal goal of the study is to investigate meth-
ods of dataset decomposition in a stream-like fashion for computing k-means
centroid initialization of clustering that produces convincing results regarding
MSSD criteria (Minimum Sum-of-Squared Distance) [5]. Shortly, methods for
finding close to optimal k-means initialization, while having fast computational
speed.

The idea of merging clusters obtained by partial clusterings is known in the
literature: there are formal approximations that guarantee certain estimates on
performance, and quality [9]. Known clustering algorithm STREAM with k-
median l1-metric in [13] weights each center by the number of points assigned to
it. The stream clustering usually assumes processing the input data in sequential
order. Unlike this we use decomposition that may use essential the parallelization
of the clustering of the input dataset portions. In our algorithm we add additional
heuristic SSD estimates to the weighting. This algorithm can be used in cases
the dataset is replenished dynamically, on fly, and possibly in real time. The
clustering of additional portions clarifies the clustering structure.

The goal of this work is to create a decomposition method for the k-means
algorithm on large-scale datasets to initialize centroids in order to obtain qual-
itative results with respect to the MSSD criteria. In other words, we use the
method of finding the initialization of k-means so that it is close to optimal
while having a high calculation speed. Different types of meta-heuristics are
used in the task of clustering k-means by processing the obtained data in a sec-
ondary (high-level) clustering procedure. Another goal of this work is to study
the influence of meta-parameters to the algorithm behaviour with glance to the
time and the SSD (Sum-of-Squared Distance) criterion minimization. Another
purpose of our research is to define the bounds of such algorithm efficiency and
its behaviour regarding meta-parameters.

2 Algorithm

The idea of the algorithm is to make a partition of the dataset into smaller
portions, then find the corresponding clustering structure and replace them by
single centroid points. On this stage we obtain compact representation of initial
dataset that preserves its most essential structural information. Then aggregate
and clusterize these centroids in different possible ways getting new heuristic for

412 A. Krassovitskiy et al.

generalized centroids. Shortly, transform the Big Data into Small Data, cluster
them and use obtained centroids to initialize the original Big Data.

More formally, by this approach, first, we decompose the entire dataset entries
shuffled randomly on subsets of fixed size (taking either all, or representative
portion of elements). Next step is to do k-means clustering of some of these
subsets (batches/windows). We use the term ‘window’ (along the term ‘batch’
from the literature) to stress that the data subsets are taken in sizes proportional
to the entire dataset.

(Meta-) parameters of the algorithm:

– k is the number of required clusters.
– N is the number of objects in the entire data set.
– d is the window size (number of objects in one window). The sizes of the

windows are chosen in proportion to the entire dataset. E.g., taking 5 wins
decomposition means taking the size of the windows equal to [N/5].

– n is the number of windows used for independent initialization of k-means
during Phase 1, see next section.

– m(≥ n) is the total number of windows used for the clustering. The union of
m windows may or may not cover the entire dataset.

By using SSD estimates on their corresponding clusterings we make heuristics
for better initialization of the algorithm on the entire dataset.

We considered the following two modes for the windows (wins) generation:
1. Segmentation of the entire data set on windows, then a random permutation
of objects in the data set is created. The data set is segmented into successive
windows of size d. We refer to this as uniform window decomposition mode. 2. For
each window, d random objects are selected from the entire set. By repeating this,
the required number of windows is generated (objects may be picked repeatedly
in different wins). We refer to this mode as random window generation mode.

In order to simplify description we distinguish centroids according to algo-
rithmic steps at which they appear:

– centroids that results from k-means++ on separate windows and used for
subsequent initializations we call local centroids;

– set of generalized centroids is obtained by gathering (uniting) resulted local
centroids from clusterings on windows;

– basis centroids are obtained by k-means++ clusterings of the set of general-
ized centroids (considered as a small dataset of higher level representation of
windows);

– final centroids are obtained by computing k-means on the entire datasest,
initialized by basis centroids.

2.1 Phase 1: Aggregation of Centroids

An independent application of k-means++ algorithm on a fixed number n of win-
dows in order to obtain local centroids with following aggregation to generalized
set of centroids. The scheme for the algorithms is shown in Fig. 1. This centroids

Decomposition/Aggregation K-means for Big Data 413

are considered as higher level representation of clustered windows. Each object
of generalized set of centroids is assigned to the weight corresponding to the
normalized SSD value for the window in which it is calculated as centroid. The
weight of i-th object is calculated as follows:

wi = 1 − (SSDi − SSDmin)/(SSDmax − SSDmin), (1)

where SSDi is the SSD value for such window from which the i-th centroid is
taken as an object. Then, using k-means, the new dataset of generalized centroids
is divided into k-clusters, taking into account the weights wi of the objects. In
the case of degeneration, k-means is reinitialized. The resulting (basis) centroids
are used for:

1. initialization of k-means on the Input Dataset in order to obtain final cen-
troids;

2. evaluation of the SSD on the Input Dataset;
3. initialization Phase 2 of the algorithm described in the following sections.

Alternatively, during processing subsequent windows n + 1, n + 2, ..., m we
have considered the following options in Phase 2: parallel option, straightforward
option, and sequential option.

2.2 Phase 2: Parallel Option

The centroids obtained in the previous Phase 1 are used to initialize k-means
on each subsequent window n + 1, n + 2, ..., m. The resulting (local) centroids
and SSD estimates are stored if there is no centroid degeneration. The stopping
condition is the specified limit either on the computation time or on the number
of windows being processed. Similar to Phase 1 we do the clustering on the
generalized set of centroids. Subsequent use of its results is similar to clauses 1.1
and 1.2 of Phase 1. Both Phase 1. and parallel option of the Phase 2 are unified
in Fig. 1.

2.3 Phase 2: Straightforward Option

An alternative heuristic of splitting the entire dataset and an alternative way of
choosing centroids for the clustering initialization is used (see Fig. 2).

The idea of this heuristics is to evaluate and to use the best centroids regard-
ing SSD criteria for initialization of k-means on the subsequent window. While
each window is clustered the best obtained centroids are accumulated to process
them for final clustering, like in Phase 1.

Algorithm Sketch:

1. Make dataset decomposition on subsets win0, win1, ..., winl, ... of equal size.
2. Obtain list of initial centroids cent0 either by k-means++ on the first window

win0 or by Phase 1. Assign AC ← [cent0], c ← cent0, BestSSD ← SSD0,
l = 1.

414 A. Krassovitskiy et al.

Fig. 1. Scheme for the decomposition/aggregation clustering method. In Phase 1 k-
means++ initialization is performed independently on windows 1, ..., n. Resulted final
centroids are used for initialization during Phase 2 on windows n + 1, ...,m.

Fig. 2. Direct subsequent use of the best obtained SSD

3. (Start iteration) Use centroids c to initialize k-means with the next window
winl. Calculate centl and SSDl.

Decomposition/Aggregation K-means for Big Data 415

4. If degeneracy in the clustering is presented (i.e., the number of obtained non-
trivial clusters less then k, |centl| < k) then withdraw winl and continue from
step 3 for the next l ← l + 1.

5. If its clustering SSD is within the previously obtained or best SSD then
AC ← AC ∪ centl.

6. If its clustering SSD gives better score then mark it as the best and use for
the following initializations, i.e., BestSSD ← SSDl, c ← centl.

7. Repeat from step 3 until all windows have been processed or, time bounding
condition is satisfied.

8. The accumulated centroids AC are considered as elements for additional clus-
tering, while their SSD values are used to calculate corresponding weights like
in Phase 1.

9. The obtained centroids AC are used for the clustering (like in the previous
part) and its final SSD value has been compared with SSD of k-means++ on
the entire dataset.

2.4 Phase 2: Sequential Option

The following is the sequential version of the algorithm. It is schematically rep-
resented in Fig. 3.

Algorithm Sketch:

1. l = 1, init ← centroids from Phase 1, m is the fixed parameter
2. k-means clustering on the window m + l with initialization init.
3. If there is no degeneration during clustering then memorize the resulting

(local) centroids and the corresponding SSD values.
4. In order to obtain new centroids, we carry out clustering with weights on the

united set of centroids (similarly to Phase 1).
5. If the time limit has not been exhausted then init ← centroids obtained in

step 4, l = l + 1 and go to step 2, otherwise step 6.
6. Subsequent usage of obtained centroids is similar to clauses 1 and 2 of Phase 1.

3 Computational Experiments

In this section we show the testing results of our algorithm from Sect. 2.4 on
three datasets. We only present the results of computation by the sequential
version described in Phase 2, with the initial centroids precomputed (sequen-
tially) according to Phase 1. We do not include parallel version of Phase 2 as it
distinguishes in the way windows are clustered and it requires additionally efforts
in order to compare computational times (taking into account parallelism). The
straightforward case can be seen as a particular case of the window aggregation.

Table 1 summarizes clustering estimates of used datasets. Results of com-
putations on various meta-parameter sets from Table 2 are compared regarding
SSD/time estimates to the ones obtained by k-means++ and summarized in
Table 3. Each line of Table 3 corresponds to unique meta-parameter’s set and

416 A. Krassovitskiy et al.

Fig. 3. Sequential aggregation (accumulation) of the heuristically optimal SSD and
centroids

includes two SSD estimates, average time per clustering an proportion between
computation time of proposed decomposition algorithm and k-means++. The
first SSD estimate is obtained as following: we cluster corresponding entire
dataset by k-means++ with corresponding parameters and consider obtained
SSD criteria as a baseline value. Then, we do independent clusterings by our
algorithms on ranges of experiments to calculate basis centroids and compare
whether obtained SSD (on the basis centroids) values improves baseline values.
The rates are presented for the cases our algorithm finds better solution. We
present it in order to show what approximation our algorithm gives if the entire
dataset have not been involved. We note that in order to obtain basis centroids we
only need to process separate windows. The second SSD estimate is calculated in
the same way with addition of one more step. Specifically, k-means is processed
on the entire dataset while initialized by the basis centroids. Comparing these
two columns of SSD estimates in Table 3 on various parameters and datasets
allows us to consider obtained basis centroids as reasonable approximation to
MSSD on the entire dataset.

Datasets Description:
We used three datasets DS1, DS2, DS3 of real numbers.

Decomposition/Aggregation K-means for Big Data 417

Table 1. SSDs and computation times for datasets DS1, DS2, DS3. The k-means++
is performed with default parameters from the programming library sklearn [1], i.e.,
10 separate initializations are executed, the result of the best is presented.

Dataset Num SSD Time (sec) SSD

Clusters k-means++ k-means++ Ours

DS1 5 3.0625 × 108 389.69 3.0622 × 108

DS1 10 2.7270 × 108 617.70 2.7209 × 108

DS1 20 2.2960 × 108 836.44 2.2740 × 108

DS1 30 1.9482 × 108 677.52 1.9449 × 108

DS2 5 1.5947 × 108 118.23 1.5947 × 108

DS2 10 1.1111 × 108 198.92 1.1106 × 108

DS2 20 7.5041 × 107 627.57 7.4883 × 107

DS2 30 7.3088 × 107 3312.62 7.3080 × 107

DS3 5 1.5734 × 106 312.77 1.5734 × 106

DS3 10 1.2657 × 106 776.62 1.2657 × 106

DS3 20 1.0151 × 106 1279.21 1.0151 × 106

DS3 30 9.1251 × 105 2785.85 9.1173 × 105

Table 2. Meta-parameters of experiments from Table 3. Window sizes
are taken in the ranges (N/20, N/25, ..., N/100), (N/100, N/110, ..., N/250) and
(N/10, N/20, ..., N/150). ‘Allow repeats in windows’ refers to the mode how win-
dows are generated. Random window generation mode allows repeats in data objects
(TRUE), while uniform window decomposition does not allow it (FALSE).

Param id Window sizes (×N) Allow
repeats
in
windows

Number of clusters Time limit (sec)

1 1/20, ..., 1/100; step 1/5 FALSE 5 30

2 1/20, ..., 1/100; step 1/5 FALSE 10 30

3 1/20, ..., 1/100; step 1/5 FALSE 20 30

4 1/20, ..., 1/100; step 1/5 FALSE 30 30

5 1/100, ..., 1/250; step 1/10 FALSE 5 45

6 1/100, ..., 1/250; step 1/10 FALSE 10 45

7 1/100, ..., 1/250; step 1/10 FALSE 20 45

8 1/100, ..., 1/250; step 1/10 FALSE 30 45

9 1/10, ..., 1/150; step 1/10 TRUE 5 60

10 1/10, ..., 1/150; step 1/10 TRUE 10 60

11 1/10, ..., 1/150; step 1/10 TRUE 20 60

12 1/10, ..., 1/150; step 1/10 TRUE 30 60

418 A. Krassovitskiy et al.

Table 3. Experiments on different parameter sets from Table 2. SSD criteria and
computation times are presented. Two SSD estimates are considered: 1. the rates our
algorithm improves* computed SSD in regards to k-means++ (baseline), where cen-
troids are resulted from aggregation step, i.e., the criteria is estimated on basis cen-
troids; 2. the rate our algorithm improves** the baseline with final centroids, i.e., after
additional step with k-means initialized by basis centroids. The improvement rates are
given regarding k-means++ on windows from Table 1. Average times per clustering
procedure are given.

Dataset Param id Improves SSD rate % Avg. time in seconds
time(ours)

time(kmeans++)

*direct **global step

DS1 1 11.8 52.9 42.0 0.108

DS1 2 58.8 100.0 54.8 0.089

DS1 3 41.2 88.2 56.1 0.067

DS1 4 0.0 2 3.5 54.9 0.081

DS2 1 0.0 58.8 21.2 0.179

DS2 2 11.8 64.7 29.0 0.146

DS2 3 76.5 100.0 45.2 0.072

DS2 4 0.0 5.9 458.2 0.138

DS3 1 0.0 17.6 28.7 0.092

DS3 2 0.0 29.4 56.9 0.073

DS3 3 0.0 23.5 69.8 0.055

DS3 4 5.9 41.2 196.3 0.070

DS1 5 0.0 68.8 39.7 0.102

DS1 6 0.0 87.5 56.0 0.091

DS1 7 0.0 93.8 61.0 0.073

DS1 8 0.0 68.8 49.2 0.073

DS2 5 0.0 43.8 21.2 0.179

DS2 6 0.0 68.8 26.1 0.131

DS2 7 87.5 93.8 39.9 0.064

DS2 8 0.0 25.0 445.2 0.134

DS3 5 0.0 6.2 27.9 0.089

DS3 6 0.0 37.5 60.8 0.078

DS3 7 0.0 25.0 53.8 0.042

DS3 8 0.0 18.8 200.4 0.072

DS1 9 6.7 66.7 53.7 0.138

DS1 10 26.7 93.3 76.8 0.124

DS1 11 20.0 100.0 82.0 0.098

DS1 12 0.0 26.7 72.1 0.106

DS2 9 0.0 46.7 26.9 0.227

DS2 10 0.0 66.7 35.7 0.179

DS2 11 80.0 86.7 55.8 0.089

DS2 12 0.0 6.7 519.2 0.157

DS3 9 0.0 6.7 39.4 0.126

DS3 10 0.0 26.7 72.1 0.093

DS3 11 0.0 26.7 85.6 0.067

DS3 12 6.7 60.0 229.6 0.082

Decomposition/Aggregation K-means for Big Data 419

– DS1 contains 4 × 106 objects and number of attributes (features) is 25. The
structure of the data: 50 synthetic blobs having Gaussian distribution, each
having the same number of elements and the same standard deviation value.
There is no overlaps in separate blobs.

– DS2 contains 4 × 106 objects and number of attributes (features) is 20. The
structure of the data: 20 synthetic blobs having Gaussian distribution, each
blob has variable number of objects (from 104 to 40 × 104) and variable
standard deviation values (distributed randomly in the range from 0.5 to
1.5).

– DS3 is SUSY dataset from open UCI database [2]. The number of attributes
is 18 and the number of objects is 5 × 106. In our study we do not take into
account the true labelling provided by the database, i.e., the given predictions
for two known classes. The purpose of using such dataset is to search for
internal structure in the data. This dataset is preprocessed by normalization
prior the clustering.

4 Conclusions

In this approach we show that it is possible to achieve better results in the mean-
ing of SSD criteria by applying iteratively the clustering procedure on subsets
of the dataset. Obtained centroids are processed again by (meta-) clustering,
resulting to the final solution.

Some observations:

– One promising result is that centroids calculated by shown method on large
datasets provide reasonable good quality SSD values even without clustering
on the whole dataset. Step 6 in Part 2.2 and step 9 in Part 2.3 in many cases
may be omitted giving essential advantage in computational speed.

– It is observed there is no sense in splitting the dataset for a huge number of
windows as the number of degenerated clusters growths as well.

– Slight improvement is detected on normalized data and small number of clus-
ters.

– Our experiments mostly support the idea that quality and precision of clus-
tering results are highly dependant on the dataset-size and its internal data
structure, while it does not strongly depend on the clustering window/batch
size, as far as the majority of windows represents the clustering structure of
the entire dataset.

References

1. Comparing different clustering algorithms on toy datasets. http://scikit-learn.org/
stable/auto examples/cluster/plot cluster comparison.html

2. Online clustering data sets uci. https://archive.ics.uci.edu/ml/datasets.html
3. Comparison of the k-means and minibatch-kmeans clustering algorithms, Jan-

uary 2020. https://scikit-learn.org/stable/auto examples/cluster/plot mini batch
kmeans.html

http://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html
http://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html
https://archive.ics.uci.edu/ml/datasets.html
https://scikit-learn.org/stable/auto_examples/cluster/plot_mini_batch_kmeans.html
https://scikit-learn.org/stable/auto_examples/cluster/plot_mini_batch_kmeans.html

420 A. Krassovitskiy et al.

4. Abbas, O.A.: Comparisons between data clustering algorithms. Int. Arab J. Inf.
Technol. 5(3), 320–325 (2008). http://iajit.org/index.php?option=com content&
task=blogcategory&id=58&Itemid=281

5. Alguwaizani, A., Hansen, P., Mladenovic, N., Ngai, E.: Variable neighborhood
search for harmonic means clustering. Appl. Math. Model. 35, 2688–2694 (2011).
https://doi.org/10.1016/j.apm.2010.11.032

6. Arthur, D., Vassilvitskii, S.: K-means++: the advantages of careful seeding. In:
Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms
(2007)

7. Bagirov, A.M.: Modified global k-means algorithm for minimum sum-of-squares
clustering problems. Pattern Recogn. 41(10), 3192–3199 (2008). https://doi.
org/10.1016/j.patcog.2008.04.004. http://www.sciencedirect.com/science/article/
pii/S0031320308001362

8. Bahmani, B., Moseley, B., Vattani, A., Kumar, R., Vassilvitskii, S.: Scalable
k-means++. Proc. VLDB Endow. 5 (2012). https://doi.org/10.14778/2180912.
2180915

9. HajKacem, M.A.B., N’Cir, C.-E.B., Essoussi, N.: Overview of scalable partitional
methods for big data clustering. In: Nasraoui, O., Ben N’Cir, C.-E. (eds.) Clustering
Methods for Big Data Analytics. USL, pp. 1–23. Springer, Cham (2019). https://
doi.org/10.1007/978-3-319-97864-2 1

10. Capo, M., Pérez, A., Lozano, J.: An efficient approximation to the k-means clus-
tering for massive data. Knowl.-Based Syst. 117 (2016). https://doi.org/10.1016/
j.knosys.2016.06.031

11. Chiang, M.C., Tsai, C.W., Yang, C.S.: A time-efficient pattern reduction algorithm
for k-means clustering. Inf. Sci. 181, 716–731 (2011). https://doi.org/10.1016/j.ins.
2010.10.008

12. Cui, X., Zhu, P., Yang, X., Li, K., Ji, C.: Optimized big data K-means clustering
using MapReduce. J. Supercomput. 70(3), 1249–1259 (2014). https://doi.org/10.
1007/s11227-014-1225-7

13. Guha, S., Mishra, N., Motwani, R.: Clustering data streams. In: Annual Sympo-
sium on Foundations of Computer Science - Proceedings, pp. 169–186, October
2000. https://doi.org/10.1007/978-0-387-30164-8 127

14. Heneghan, C.: A method for initialising the k-means clustering algorithm using kd-
trees. Pattern Recogn. Lett. 28, 965–973 (2007). https://doi.org/10.1016/j.patrec.
2007.01.001

15. Karlsson, C. (ed.): Handbook of Research on Cluster Theory. Edward Elgar Pub-
lishing, Cheltenham (2010)

16. Krassovitskiy, A., Mussabayev, R.: Energy-based centroid identification and clus-
ter propagation with noise detection. In: Nguyen, N.T., Pimenidis, E., Khan, Z.,
Trawiński, B. (eds.) ICCCI 2018. LNCS (LNAI), vol. 11055, pp. 523–533. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-98443-8 48

17. Mladenovic, N., Hansen, P., Brimberg, J.: Sequential clustering with radius and
split criteria. Cent. Eur. J. Oper. Res. 21, 95–115 (2013). https://doi.org/10.1007/
s10100-012-0258-3

18. Sculley, D.: Web-scale k-means clustering. In: Proceedings of the 19th International
Conference on World Wide Web, WWW 2010, pp. 1177–1178. Association for
Computing Machinery, January 2010. https://doi.org/10.1145/1772690.1772862

19. Shah, S.A., Koltun, V.: Robust continuous clustering. Proc. Natl. Acad. Sci.
114(37), 9814–9819 (2017)

20. Wu, X., et al.: Top 10 algorithms in data mining. Knowl. Inf. Syst. 14, 1–37 (2007).
https://doi.org/10.1007/s10115-007-0114-2

http://iajit.org/index.php?option=com_content&task=blogcategory&id=58&Itemid=281
http://iajit.org/index.php?option=com_content&task=blogcategory&id=58&Itemid=281
https://doi.org/10.1016/j.apm.2010.11.032
https://doi.org/10.1016/j.patcog.2008.04.004
https://doi.org/10.1016/j.patcog.2008.04.004
http://www.sciencedirect.com/science/article/pii/S0031320308001362
http://www.sciencedirect.com/science/article/pii/S0031320308001362
https://doi.org/10.14778/2180912.2180915
https://doi.org/10.14778/2180912.2180915
https://doi.org/10.1007/978-3-319-97864-2_1
https://doi.org/10.1007/978-3-319-97864-2_1
https://doi.org/10.1016/j.knosys.2016.06.031
https://doi.org/10.1016/j.knosys.2016.06.031
https://doi.org/10.1016/j.ins.2010.10.008
https://doi.org/10.1016/j.ins.2010.10.008
https://doi.org/10.1007/s11227-014-1225-7
https://doi.org/10.1007/s11227-014-1225-7
https://doi.org/10.1007/978-0-387-30164-8_127
https://doi.org/10.1016/j.patrec.2007.01.001
https://doi.org/10.1016/j.patrec.2007.01.001
https://doi.org/10.1007/978-3-319-98443-8_48
https://doi.org/10.1007/s10100-012-0258-3
https://doi.org/10.1007/s10100-012-0258-3
https://doi.org/10.1145/1772690.1772862
https://doi.org/10.1007/s10115-007-0114-2

	Decomposition/Aggregation K-means for Big Data
	1 Introduction
	2 Algorithm
	2.1 Phase 1: Aggregation of Centroids
	2.2 Phase 2: Parallel Option
	2.3 Phase 2: Straightforward Option
	2.4 Phase 2: Sequential Option

	3 Computational Experiments
	4 Conclusions
	References

