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Abstract. Clustering problems form an important section of data anal-
ysis. In machine learning clustering problems are usually classified as
unsupervised learning. Semi-supervised clustering problems are also con-
sidered. In these problems relatively few objects are labeled (i.e., are
assigned to clusters), whereas a large number of objects are unlabeled.

We consider the most visual formalization of a version of semi-
supervised clustering. In this problem one has to partition a given set
of n objects into k clusters (k < n). A collection of k pairwise disjoint
nonempty subsets of objects is fixed. No two objects from different sub-
sets of this collection may belong to the same cluster and all objects from
any subset must belong to the same cluster. Similarity of objects is deter-
mined by an undirected graph. Vertices of this graph are in one-to-one
correspondence with objects, and edges connect similar objects. One has
to partition the vertices of the graph into pairwise disjoint groups (clus-
ters) minimizing the number of edges between clusters and the number
of missing edges inside clusters.

The problem is NP-hard for any fixed k ≥ 2. For k = 2 we present
a polynomial time approximation algorithm and prove a performance
guarantee of this algorithm.

Keywords: Graph clustering · Approximation algorithm ·
Performance guarantee

1 Introduction

The objective of clustering problems is to partition a given set of objects into
a family of subsets (called clusters) such that objects within a cluster are more
similar to each other than objects from different clusters. In pattern recognition
and machine learning clustering methods fall under the section of unsupervised
learning. At the same time, semi-supervised clustering problems are studied. In
these problems relatively few objects are labeled (i.e., are assigned to clusters),
whereas a large number of objects are unlabeled [1,3].
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One of the most visual formalizations of clustering is the graph clustering,
that is, grouping the vertices of a graph into clusters taking into consideration
the edge structure of the graph. In this paper, we consider three interconnected
versions of graph clustering, two of which are semi-supervised ones.

We consider only simple graphs, i.e., undirected graphs without loops and
multiple edges. A graph is called a cluster graph, if each of its connected com-
ponents is a complete graph [6].

Let V be a finite set. Denote by M(V ) the set of all cluster graphs on the
vertex set V . Let Mk(V ) be the set of all cluster graphs on V consisting of
exactly k nonempty connected components, 2 ≤ k ≤ |V |.

If G1 = (V,E1) and G2 = (V,E2) are graphs on the same labeled vertex set
V , then the distance ρ(G1, G2) between them is defined as follows

ρ(G1, G2) = |E1ΔE2| = |E1 \ E2| + |E2 \ E1|,

i.e., ρ(G1, G2) is the number of noncoinciding edges in G1 and G2.

Consider three interconnected graph clustering problems.

GCk (Graph k-Clustering). Given a graph G = (V,E) and an integer k,
2 ≤ k ≤ |V |, find a graph M∗ ∈ Mk(V ) such that

ρ(G,M∗) = min
M∈Mk(V )

ρ(G,M).

SGCk (Semi-supervised Graph k-Clustering). Given a graph G = (V,E),
an integer k, 2 ≤ k ≤ |V |, and a set Z = {z1, . . . zk} ⊂ V of pairwise different
vertices, find M∗ ∈ Mk(V ) such that

ρ(G,M∗) = min
M∈Mk(V )

ρ(G,M),

where minimum is taken over all cluster graphs M = (V,EM ) ∈ Mk(V ) with
zizj /∈ EM for all i, j ∈ {1, . . . k} (in other words, all vertices of Z belong to
different connected components of M).

SSGCk (Set Semi-supervised Graph k-Clustering). Given a graph G =
(V,E), an integer k, 2 ≤ k ≤ |V |, and a collection Z = {Z1, . . . Zk} of pairwise
disjoint nonempty subsets of V , find M∗ ∈ Mk(V ) such that

ρ(G,M∗) = min
M∈Mk(V )

ρ(G,M),

where minimum is taken over all cluster graphs M = (V,EM ) ∈ Mk(V ) such
that

1. zz′ /∈ EM for all z ∈ Zi, z
′ ∈ Zj , i, j = 1, . . . , k, i �= j;

2. zz′ ∈ EM for all z, z′ ∈ Zi, i = 1, . . . , k
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(in other words, all sets of the family Z are subsets of different connected com-
ponents of M).

Problem GCk is NP-hard for every fixed k ≥ 2 [6]. It is not difficult to
construct Turing reduction of problem GCk to problem SGCk and as a result
to show that SGCk is NP-hard too. Thus, problem SSGCk is also NP-hard as
generalization of SGCk.

In 2004, Bansal, Blum, and Chawla [2] presented a polynomial time 3-
approximation algorithm for a version of the graph clustering problem similar to
GC2 in which the number of clusters doesn’t exceed 2. In 2008, Coleman, Saun-
derson, and Wirth [4] presented a 2-approximation algorithm for this version
applying local search to every feasible solution obtained by the 3-approximation
algorithm from [2]. They used a switching technique that allows to reduce cluster-
ing any graph to the equivalent problem whose optimal solution is the complete
graph, i.e., the cluster graph consisting of the single cluster. In [5], we presented
a modified 2-approximation algorithm for problem GC2. In contrast to the proof
of Coleman, Saunderson, and Wirth, our proof of the performance guarantee of
this algorithm didn’t use switchings.

In this paper, we use a similar approach to construct a 2-approximation local
search algorithm for the set semi-supervised graph clustering problem SSGC2.
Applying this method to problem SGC2 we get a variant of 2-approximation
algorithm for this problem.

2 Problem SSGC2

2.1 Notation and Auxiliary Propositions

Consider the special case of problem SSGCk with k = 2. We need to introduce
the following notation.

Given a graph G = (V,E) and a vertex v ∈ V , we denote by NG(v) the set
of all vertices adjacent to v in G, and let NG(v) = V \ (NG(v) ∪ {v}).

Let G1 = (V,E1) and G2 = (V,E2) be graphs on the same labeled vertex set
V , n = |V |. Denote by D(G1, G2) the graph on the vertex set V with the edge
set E1ΔE2. Note that ρ(G1, G2) is equal to the number of edges in the graph
D(G1, G2).

Lemma 1. [5] Let dmin be the minimum vertex degree in the graph D(G1, G2).
Then

ρ(G1, G2) ≥ ndmin

2
.

Let G = (V,E) be an arbitrary graph. For any vertex v ∈ V and a set A ⊆ V
we denote by A+

v the number of vertices u ∈ A such that vu ∈ E, and by A−
v

the number of vertices u ∈ A \ {v} such that vu /∈ E.
For nonempty sets X,Y ⊆ V such that X ∩Y = ∅ and X ∪Y = V we denote

by M(X,Y ) the cluster graph in M2(V ) with connected components induced
by X,Y . The sets X and Y will be called clusters.
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The following lemma was proved in [5] for problem GC2. Its proof for prob-
lem SSGC2 is exactly the same.

Lemma 2. Let G = (V,E) be an arbitrary graph, M∗ = M(X∗, Y ∗) be an
optimal solution to problem SSGC2 on the graph G, and M = M(X,Y ) be an
arbitrary feasible solution to problem SSGC2 on the graph G. Then

ρ(G,M) − ρ(G,M∗) =
∑

u∈X∩Y ∗

(
(X ∩ X∗)−

u − (X ∩ X∗)+u + (Y ∩ Y ∗)+u − (Y ∩ Y ∗)−
u

)
+

∑

u∈Y ∩X∗

(
(Y ∩ Y ∗)−

u − (Y ∩ Y ∗)+u + (X ∩ X∗)+u − (X ∩ X∗)−
u

)
.

2.2 Local Search Procedure

Let us introduce the following local search procedure.

Procedure LS(M,X, Y, Z1, Z2).
Input: cluster graph M = M(X,Y ) ∈ M2(V ), Z1, Z2 are disjoint nonempty

sets, Z1 ⊂ X,Z2 ⊂ Y .
Output: cluster graph L = M(X ′, Y ′) ∈ M2(V ) such that Z1 ⊆ X ′,

Z2 ⊆ Y ′.

Iteration 0. Set X0 = X,Y0 = Y .
Iteration k(k ≥ 1).
Step 1. For each vertex u ∈ V \ (Z1 ∪ Z2) calculate the following quantity

δk(u) (possible variation of the value of the objective function in case of moving
the vertex u to another cluster):

δk(u) =
{

(Xk−1)−
u − (Xk−1)+u + (Yk−1)+u − (Yk−1)−

u for u ∈ Xk−1 \ Z1,
(Yk−1)−

u − (Yk−1)+u + (Xk−1)+u − (Xk−1)−
u for u ∈ Yk−1 \ Z2.

Step 2. Choose the vertex uk ∈ V \ (Z1 ∪ Z2) such that

δk(uk) = max
u∈V \(Z1∪Z2)

δk(u).

Step 3. If δk(uk) > 0, then set Xk = Xk−1 \ {uk}, Yk = Yk−1 ∪ {uk} in
case of uk ∈ Xk−1, and set Xk = Xk−1 ∪ {uk}, Yk = Yk−1 \ {uk} in case of
uk ∈ Yk−1; go to iteration k + 1. Else STOP. Set X ′ = Xk−1, Y ′ = Yk−1,
and L = M(X ′, Y ′).

End.

2.3 2-Approximation Algorithm for Problem SSGC2

Consider the following approximation algorithm for problem SSGC2.
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Algorithm A1.
Input: graph G = (V,E), Z1, Z2 are disjoint nonempty subsets of V .
Output: graph M1 = M(X,Y ) ∈ M2(V ), sets Z1, Z2 are subsets of different

clusters.

Step 1. For every vertex u ∈ V do the following:
Step 1.1. (a) If u /∈ Z1 ∪ Z2, then define the cluster graphs Mu =

M(X,Y ) and Mu = M(X,Y ), where

X = {u} ∪ (
(NG(u) ∪ Z1) \ Z2

)
, Y = V \ X,

X = {u} ∪ (
(NG(u) ∪ Z2) \ Z1

)
, Y = V \ X.

(b) If u ∈ Z1 ∪ Z2, then define the cluster graph Mu = M(X,Y ), where

X = {u} ∪ ((NG(u) ∪ Z) \ Z), Y = V \ X.

Here Z = Z1, Z = Z2 in case of u ∈ Z1, and Z = Z2, Z = Z1, otherwise.
Step 1.2. (a) If u /∈ Z1 ∪ Z2, then run the local search procedure

LS(Mu,X, Y , Z1, Z2) and LS(Mu,X, Y , Z1, Z2). Denote resulting graphs by Lu

and Lu.
(b) If u ∈ Z1 ∪Z2, then run the local search procedure LS(Mu,X, Y, Z1, Z2).

Denote resulting graph by Lu.

Step 2. Among all locally-optimal solutions Lu, Lu, Lu obtained at step 1.2
choose the nearest to G cluster graph M1 = M(X,Y ).

The following lemma can be proved in the same manner as Remark 1 in [5].

Lemma 3. Let G = (V,E) be an arbitrary graph, Z1, Z2 be arbitrary disjoint
nonempty subsets of V , M∗ = M(X∗, Y ∗) ∈ M2(V ) be an optimal solution to
problem SSGC2 on the graph G, and dmin be the minimum vertex degree in the
graph D = D(G,M∗). Among all graphs Mu, Mu, Mu constructed by algorithm
A1 at step 1.1 there is the cluster graph M = M(X,Y ) such that

1. M can be obtained from M∗ by moving at most dmin vertices to another
cluster;

2. If Z1 ⊂ X∗, Z2 ⊂ Y ∗, then Z1 ⊂ X ∩ X∗, Z2 ⊂ Y ∩ Y ∗. Otherwise,
if Z2 ⊂ X∗, Z1 ⊂ Y ∗, then Z1 ⊂ Y ∩ Y ∗, Z2 ⊂ X ∩ X∗.

Now we can prove a performance guarantee of algorithm A1.

Theorem 1. For every graph G = (V,E) and for any disjoint nonempty subsets
Z1, Z2 ⊂ V the following inequality holds:

ρ(G,M1) ≤ 2ρ(G,M∗),

where M∗ ∈ M2(V ) is an optimal solution to problem SSGC2 on the graph G
and M1 ∈ M2(V ) is the solution returned by algorithm A1.
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Proof. Let M∗ = M(X∗, Y ∗) and dmin be the minimum vertex degree in the
graph D = D(G,M∗). By Lemma 3, among all graphs constructed by algorithm
A1 at step 1.1 there is the cluster graph M = M(X,Y ) satisfying the conditions
1 and 2 of Lemma 3. By condition 1, |X ∩ Y ∗| ∪ |Y ∩ X∗| ≤ dmin.

Consider the performance of procedure LS(M,X, Y, Z1, Z2) on the graph
M = M(X,Y ).

Local search procedure LS starts with X0 = X and Y0 = Y . At every
iteration k either LS moves some vertex uk ∈ V \ (Z1 ∪ Z2) to another cluster,
or no vertex is moved and LS finishes.

Consider in detail iteration t + 1 such that

– at every iteration k = 1, . . . , t procedure LS selects some vertex

uk ∈ (X ∩ Y ∗) ∪ (Y ∩ X∗);

– at iteration t + 1 either procedure LS selects some vertex

ut+1 ∈ (
(X ∩ X∗) ∪ (Y ∩ Y ∗)

) \ (Z1 ∪ Z2),

or iteration t + 1 is the last iteration of LS.
Let us introduce the following quantities:

αt+1(u)=
{
(Xt ∩ X∗)−

u −(Xt ∩ X∗)+u + (Yt ∩ Y ∗)+u −(Yt ∩ Y ∗)−
u for u ∈ Xt ∩ Y ∗

(Yt ∩ Y ∗)−
u −(Yt ∩ Y ∗)+u + (Xt ∩ X∗)+u −(Xt ∩ X∗)−

u for u ∈ Yt ∩ X∗.

Consider the cluster graph Mt = M(Xt, Yt). By Lemma 2,

ρ(G,Mt) − ρ(G,M∗) =
∑

u∈Xt∩Y ∗
αt+1(u) +

∑

u∈Yt∩X∗
αt+1(u).

Put r = |Xt ∩ Y ∗| + |Yt ∩ X∗|. Since at all iterations preceding iteration t + 1
only vertices from the set (X ∩ Y ∗) ∪ (Y ∩ X∗) were moved, then

r = |Xt ∩ Y ∗| + |Yt ∩ X∗| ≤ dmin. (1)

Hence

ρ(G,Mt) − ρ(G,M∗) ≤ r max{αt+1(u) : u ∈ (Xt ∩ Y ∗) ∪ (Yt ∩ X∗)}. (2)

Note that at iteration t + 1 for every vertex u ∈ (Xt ∩ Y ∗) ∪ (Yt ∩ X∗) the
following inequality holds:

αt+1(u) ≤ n

2
. (3)

The proof of this inequality is similar to the proof of inequality (5) in [5].
Denote by L the graph returned by procedure LS(M,X, Y, Z1, Z2). Using

(1), (2), (3), and Lemma 1 we obtain

ρ(G,L) − ρ(G,M∗) ≤ ρ(G,Mt) − ρ(G,M∗) ≤
r max{αt+1(u) : u ∈ (Xt ∩ Y ∗) ∪ (Yt ∩ X∗)} ≤ r

n

2
≤ dmin

n

2
≤ ρ(G,M∗).



An Approximation Algorithm for a Semi-supervised 29

Thus, ρ(G,L) ≤ 2ρ(G,M∗).
The graph L is constructed among all graphs Lu, Lu, Lu at step 1.2 of

algorithm A1. Performance guarantee of algorithm A1 follows.
Theorem 1 is proved.

It is easy to see that problem SGC2 is a special case of problem SSGC2 if
|Z1| = |Z2| = 1. The following theorem is the direct corollary of Theorem 1.

Theorem 2. For every graph G = (V,E) and for any subset Z = {z1, z2} ⊂ V
the following inequality holds:

ρ(G,M1) ≤ 2ρ(G,M∗),

where M∗ ∈ M2(V ) is an optimal solution to problem SGC2 on the graph G
and M1 ∈ M2(V ) is the solution returned by algorithm A1.
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