
Genetic Algorithms with the
Crossover-Like Mutation Operator

for the k-Means Problem

Lev Kazakovtsev1,2(B) , Guzel Shkaberina1, Ivan Rozhnov1,2 , Rui Li1 ,
and Vladimir Kazakovtsev3

1 Reshetnev Siberian State University of Science and Technology,
prosp. Krasnoyarskiy Rabochiy 31, Krasnoyarsk 660031, Russia

levk@bk.ru
2 Siberian Federal University, prosp. Svobodny 79, Krasnoyarsk 660041, Russia

3 ITMO University, Kronverksky pr. 49, St. Petersburg 197101, Russia

Abstract. Progress in the development of automatic grouping (clus-
tering) methods, based on solving the p-median and similar problems,
is mainly aimed at increasing the computational efficiency of the algo-
rithms, their applicability to larger problems, accuracy, and stability of
their results. The researchers’ efforts are focused on the development of
compromise heuristic algorithms that provide a fairly quick solution with
minimal error. The Genetic Algorithms (GAs) with greedy agglomerative
crossover procedure and other special GAs for the considered problems
demonstrate the best values of the objective function (sum of squared
distances) for many practically important problems. Usually, such algo-
rithms do not use any mutation operator, which is common for other
GAs.

We propose new GAs for the k-means problem, which use the same
procedures as both the crossover and mutation operators. We compared
a simple GA for the k-means problem with one-point crossover and its
modifications with the uniform random mutation and our new crossover-
like mutation. In addition, we compared the GAs with greedy heuristic
crossover procedures to their modifications which include the crossover-
like mutation. The comparison results show that the idea of our new
mutation operator is able to improve significantly the results of the sim-
plest GA as well as the genetic algorithms with greedy agglomerative
crossover operator.

Keywords: Clustering · k-Means · Genetic algorithm · Greedy
agglomerative procedure

1 Introduction and Problem Statement

The k-means problem [1] can be described as finding a set of k cluster centroids
X1, ...Xk in a d-dimensional space with the minimal sum of squared distances

Supported by the Ministry of Science and Higher Education of the Russian Federation
(Project FEFE-2020-0013).

c© Springer Nature Switzerland AG 2020
Y. Kochetov et al. (Eds.): MOTOR 2020, CCIS 1275, pp. 350–362, 2020.
https://doi.org/10.1007/978-3-030-58657-7_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58657-7_28&domain=pdf
http://orcid.org/0000-0002-0667-4001
http://orcid.org/0000-0003-1143-048X
http://orcid.org/0000-0003-2161-4338
https://doi.org/10.1007/978-3-030-58657-7_28


Genetic Algorithms with the Crossover-Like Mutation Operator 351

from them to the given N points (vectors) Ai (SSE, sum of squared errors):

arg min
X1,...,Xk∈IRd

F (X1, ...,Xk) =
N∑

i=1

min
j∈{1,k}

‖Xj − Ai‖2 . (1)

In the continuous p-median problem, a sum of distances (instead of squared
distances) is calculated, and the searched points are called centers or medians. If
a sum of Manhattan (L1, rectilinear) distances is used as the minimized function,
the problem is referred to as the k-means problem [2].

An algorithm of the same name (Algorithm 1) [3,4], also known known as
Lloyd algorithm, sequentially improves a known solution, looking for a local
minimum of (1). This local search algorithm (LSA) is simple, fast, and applicable
to the widest class of problems. The algorithm has a limitation: the number of
groups (clusters) k must be known. The result is highly dependent on the initial
solution chosen at random.

Algorithm 1. k-Means (Lloyd, ALA: Alternating Location-Allocation)
Require: data vectors A1...AN , k initial cluster centers (centroids) X1, ..., Xk.

repeat
Step 1: For each of centers Xi, compose clusters Ci of data vectors so that each
of the data vectors is assigned to the nearest center.
Step 2: Calculate new center Xi for each of the clusters.

until Steps 1,2 result in no modifications.

Both Steps 1 and 2 improve the objective function (1) value.
In this research, we try to improve the accuracy of the k-means problem

result (1) and its stability within a fixed, limited run time. By the accuracy
of the algorithm, we mean the achieved value of (1). We do not consider other
important issues in the fields of cluster analysis such as adequacy of the model
(1) and correspondence of the algorithm result to the actual partition [5].

The idea of Genetic Algorithms (GAs) is based on a recombination of ele-
ments of some candidate solutions set called “population”. Each candidate solu-
tion is called an “individual” encoded by a “chromosome” represented by a vector
of bits, integers or real numbers depending on the algorithm. In the modern liter-
ature, there is practically no systematization of the approaches used (see [6–8]),
for algorithms with the real-number (centroid-based) chromosome encoding.

The first GA for the discrete p-median problem was proposed by Hosage
and Goodchild [9]. Algorithm presented in [10] gave more precise results with
a very slow convergence. In [11], the authors proposed a faster algorithm with
a special “greedy” heuristic crossover operator which is also precise. All these
algorithms solve discrete problems (p-median problem on a network) and use
a simple binary chromosome encoding (1 for the network nodes selected as the
medians and 0 for those not selected).

The mutation operator is devoted to guarantee the GA population diver-
sity [12]. Usually, for the k-means and similar problems, the mutation randomly
changes one or many chromosomes, replacing some centroids [12–14] or assign-
ment of an object. For example, in [13] authors proposed the distance-based



352 L. Kazakovtsev et al.

mutation which changes an allele value (an allele is a part of a chromosome that
encodes the assignment an object to a cluster) depending on the distances of
the cluster centroids from the corresponding data point. Each allele corresponds
to a data point and its value represents the corresponding cluster number. The
mutation operator is defined such that the probability of changing an allele value
to a cluster number is higher if the corresponding centroid is closer to the data
vector. To apply the mutation operator to the allele sW (i) corresponding to cen-
troid Xi, let us denote dj = ‖Xi − Aj‖ where Aj is a data vector. Then, the
allele is replaced with a value chosen randomly from the following distribution:
pj = Pr{sW (i) = j} = (cmdmax − dj)/(

∑K
i=1(cmdmax − di)) where cm is a

constant usually ≤1 and dmax = max{dj}. In the case of a partition with one
or more than one singleton clusters, the above mutation may result in the for-
mation of empty clusters with a non-zero probability. It may be noted that the
smaller the number of clusters, the larger is the SSE measure; so empty clusters
must be avoided [13].

If the cluster centroids are searched in a continuous space, some GAs still
use the binary encoding [15–17]. In Algorithm 1, the initial solutions are usu-
ally subsets of the data vectors set. Thus, in the chromosome code, 1 means
that the corresponding data vector must be used as the initial centroid, and 0
for those not selected. In this case, some LSA (Algorithm 1 or similar) is used
at each iteration of the GA. In the GAs for the k-means and analogous prob-
lems, which use the traditional binary chromosome encoding, many mutation
techniques can be used. For example, in [18], the authors use binarization and
represent the chromosome with binary strings composed of binary-encoded fea-
tures (coordinates) of the centroids. The mutation operator arbitrarily alters one
or more components (binary substrings) of a selected chromosome. In [19,20],
authors call their algorithms “Evolutionary k-Means.” However, they actually
solve an alternative problem related to the k-Means problem aimed to increase
clustering stability. This algorithm operates with the binary consensus matrices
and uses two types of the mutation operators: cluster split (dissociative) and
cluster merge (agglomerative) mutation. In [21], the chromosomes are strings of
integers representing the cluster number for each of clustered objects, and the
authors solve the k-means problem with simultaneous determining the number
of clusters based on the silhouette [22] and David-Bouldin criteria [23] (similar
approach is used in a much simpler algorithm X-Means [24]) which are used as
the fitness functions. Thus, in [21], authors solve a problem with the mathemati-
cal statement other than (1) and use cluster recalculating in accordance with (1)
as the mutation operator. Similar encoding is used in [13] where authors propose
a mutation operator, which changes the assignment of individual data objects
to clusters.

In [14], the authors encode the solutions (chromosomes) in their GA as sets
of centroids represented by their coordinates (vectors of real numbers) in a d-
dimensional space. The same principle of centroid-based chromosome represen-
tation is used in the GAs of the Greedy Heuristic Method [25]. In [14], the
mutation procedure is as follows. Randomly generate a number from 0 to 1. If



Genetic Algorithms with the Crossover-Like Mutation Operator 353

the number is less than mutation probability μ, the chromosome will mutate.
The number b ∈ (0, 1] is randomly generated with the uniform distribution. If
the position of a centroid is v, the mutation is as follows:

v ←
{

v ± 2 × b × v, v �= 0,

v = v ± 2 × b, v = 0.
(2)

Signs “+” and “−” have the same probability here [18].
In (2), coordinates of a centroid are shifted randomly. A similar shifting

technique with an “amplification factor” was used in [26,27]. However, the local
minima distribution among the search space is not uniform [12]: new local min-
ima of (1) can be found with higher probability in some neighborhood of a given
local minimum than in a neighborhood of a randomly chosen point (here, we do
not mean an ε-neighborhood). Thus, mixing the centroids from two local minima
must usually outperform the random shift of centroid coordinates. The idea of
combining local minima is the basic idea of the GAs with the greedy agglom-
erative heuristic crossover procedures [25] and other algorithms [28] which use
no mutation operator. Such algorithms are able to demonstrate more accurate
results in comparison with many other algorithms for many practical problems.
However, one of the most important problems of the GAs is the convergence of
the entire population into some narrow area (population degeneration) around
some local minimum.

The Variable Neighborhood Search algorithms with the greedy agglomerative
heuristic procedures proposed in [29,30] demonstrate better results than simi-
lar GAs. New randomly generated solutions (local minima) are used to form a
randomized neighborhood around the best-achieved solution. This randomized
approach provides some neighborhood variety.

The idea of this research is to use GAs with greedy agglomerative and other
crossover operators in combination with the new mutation procedures which
apply the same algorithm as the crossover procedure to the mutated solution
and a randomly generated solution, and thus provide the population diversity.

2 New Crossover-Like Mutation Operator in a One-Point
Crossover Genetic Algorithm

The GA in [14] uses the roulette wheel selection without any elitism (i.e., equal
probabilities of selecting each of the individuals) and a simple one-point crossover
procedure for the chromosomes. This algorithm uses the mutation procedure
based on (2) with mutation probability 0.01. In our experiments below, we
replaced this mutation procedure with the following algorithm:



354 L. Kazakovtsev et al.

Algorithm 2. k-Crossover-like mutation procedure with a one-point crossover
Step 1: Generating a random initial solution S = {X1, ..., Xk};
Step 2: Application of Algorithm 1 to S for obtaining local optimum S;
Step 3: Applying the simple one-point crossover procedure to the mutated individual
S′ from the population and S for obtaining the new solution S′′;
Step 4: Application of Algorithm 1 to S′′ for obtaining local optimum S′′;
Step 5: If F (S′′) < F (S′) then S′ ← S′′.

This new procedure is used with probability equal to 1 after each crossover
operator. In our experiments, the population size NPOP = 20. The results of
running the original algorithm described in [14] and its version with Algorithm 2
as the mutation operator are shown in Table 1 and Fig. 1. Our experiments show
that the new mutation procedure is faster and more effective.

Table 1. Computational results for Mopsi-Joensuu data set [31] (6014 two-dimensional
data vectors), 300 clusters, time limitation 180 s.

GA generations Result with the
original mutation (2)

Result with the
mutation
(Algorithm 2)

Ordinary k-means in a
multi-start mode

10 1697.29 1667.95 1859.06

20 1682.37 1664.78

50 1679.58 1664.78

150 1664.81 1664.78

200 1664.78 1664.78

Fig. 1. Two mutation strategies in a one-point crossover GA



Genetic Algorithms with the Crossover-Like Mutation Operator 355

3 Known Clustering Algorithms of the Greedy Heuristic
Method

The greedy agglomerative heuristic procedure for location problems can be
described as an algorithm with two steps. The first step is combining two known
(“parent”) solutions (individuals) into one invalid intermediate solution with an
excessive number of centroids. At the second step, the algorithm eliminates cen-
troids in each iteration so that the removal of the centroid gives us the least
significant increase in the value of the objective function (1) [11,16]:

Algorithm 3. Basic Greedy Agglomerative Heuristic Procedure
Require: needed number of clusters k, initial solution S = {X1, ..., XK}, |S| = K, k < K.

Step 1: Improve S with Algorithm 1 or other LSA.
while K > k

for all i′ ∈ {1,K}
Step 2: Assign S′ ← S \ {X′

i}. Calculate F ′
i′ ← F (S′) where F (.) is the objective

function value, (1) for the k-means problem.
end for
Step 3: Select a subset Selim of nelim centers, Selim ⊂ S, |Selim| = nelim, with the
minimal values of corresponding variables F ′

i′ . Here, nelim = max{1, 0.2(|S| − k)}.
Step 4: Obtain new solution S ← S \ Selim; K ← K − 1, and run an LSA.

end while

Algorithms 4–5 are known heuristic procedures [11,29,32], which modify some
given solution based on the second known solution (see Algorithm 3).

Algorithm 4. Greedy Procedure #1
Require: Two solutions (sets of centroids) S′ = {X ′

1, ..., X
′
k} and S′′ =

{X ′′
1, ..., X

′′
k}.

for all i′ ∈ {1, k}
Step 1: Merge S′ and one item of the set S′′: S ← S ∪ {X ′′

i′}.
Step 2: Run Algorithm 3 with the initial solution S and save the obtained result .

end for
Return the best of the solutions obtained on Step 2.

A simpler algorithm below combines the full “parent” solutions.

Algorithm 5. Greedy Procedure #2
Combine sets S ← S′ ∪ S′′, and run Algorithm 3 with the initial solution S.

These algorithms can be used in various global search strategies as their parts.
Sets of solutions derived (“children”) from the solution S′ formed by combining
its items with the items of some solution S′′ and running Algorithm 1 are used
as the neighborhoods in which a solution is searched. Thus, the second solution
S′′ is a parameter of the neighborhood selected randomly (randomized) [32].



356 L. Kazakovtsev et al.

4 GAs with Greedy Agglomerative Heuristic Procedures
for the p-Median and k-Means Problems

The basic genetic algorithm for the k-means problem [7,26] can be described as
follows:

Algorithm 6. GA with real-number alphabet for the k-means problem [18,25]
Require: Initial population size NPOP .

Step 1: Select NPOP initial solutions S1, ..., SNPOP where |Si| = k, and
{S1, ..., SNPOP } is a randomly chosen subset of the data vectors set. Improve each
initial solution with Algorithm 1 and save corresponding obtained values of the
objective function (1) as variables fk ← F (Sk), k = 1, NPOP .
loop

Step 2: If the STOP condition is satisfied then STOP; return solution Si∗ , i∗ ∈
{1, NPOP } with minimal value of fi∗ .
Step 3: Randomly choose the two indexes k1, k2 ∈ {1, NPOP }, k1 �= k2.
Step 4: run the crossover operator : SC ← Crossover(Sk1 , Sk2).
Step 5: run the mutation operator : SC ← Mutation(SC).
Step 6: Run a selection procedure to change the population set.

end loop

We used such a tournament selection on Step 6:

Algorithm 7. Tournament selection
Randomly choose two indexes k4, k5 ∈ {1, NPOP }, k4 �= k5; if fk4 > fk5 then
Sk4 ← SC , fk4 ← F (SC) else Sk5 ← SC , fk5 ← F (SC).

Other selection methods do not significantly improve the result [11,16,21].
GAs with greedy agglomerative crossover can be described as follows [16,21]:

Algorithm 8. GA with greedy heuristic for the p-median problem and k-means
problem (modifications GA-FULL, GA-ONE, and GA-MIX)

Step 1. Assign Niter ← 0; select a set of the initial solutions {S1, ..., SNPOP
} ⊂ {Ai|i =

1, N}, |Si| = k. Improve each initial solution with Algorithm 1 and save the obtained values
of the objective function (1) as variables fk ← F (Sk), k = 1, NPOP . We used initial
populations with NPOP = 5.
loop

Step 2: If STOP condition is satisfied then STOP; return solution Si∗ , i∗ ∈ {1, NPOP }
with minimal value of fi∗ else adjust the population size : Niter ← Niter + 1; NPOP ←
max{NPOP , �√1 +Niter�}; if NPOP has changed, then initialize the new individual
SNPOP

as described in Step 1.
Step 3: Randomly choose two indexes k1, k2 ∈ {1, NPOP }.
Step 4: Run Algorithm 4 (for GA-ONE modification) or Algorithm 5 (for GA-FULL mod-
ification) with “parent” solutions Sk1 and Sk2 . For the GA-MIX modification, Algorithms
4 or 5 are chosen randomly with equal probabilities. Obtain new solution SC .
Step 5: SC ← Mutation(SC). By default, no mutation procedure is used.
Step 6: Run Algorithm 7.

end loop



Genetic Algorithms with the Crossover-Like Mutation Operator 357

This algorithm uses a dynamically growing population [16,17]. In our new
version of Step 5, the Crossover-like mutation operator is as follows.

Algorithm 9. Crossover-like mutation operator (Step 5 of Algorithm 8, its
modifications GA-FULL-MUT, GA-ONE-MUT, and GA-MIX-MUT)

Run the ALA algorithm (Algorithm 1) for a randomly chosen initial solution to get
solution S′.
Run Algorithm 4 (for GA-ONE modification) or Algorithm 5 (for GA-FULL modi-
fication) with “parent” solutions Sc and S′′. Obtain new solution S′

C .
If F (S′

C) < F (SC), then SC ← S′
C .

Our computational experiments (the next Section) show that new GAs with
Algorithm 9 as the mutation operator are able to outperform both the origi-
nal GAs with greedy agglomerative crossover operator (Algorithm 8) and the
Variable Neighborhood Search with randomized neighborhoods (k-GH-VNS1 k-
GH-VNS2, k-GH-VNS2) in some practically important problems.

5 Computational Experiments

We used data sets from the UCI (Machine Learning Repository) and the Cluster-
ing Basic Benchmark repositories [31,33] and the results of the non-destructive
tests of prefabricated production batches of electronic radio components con-
ducted in a specialized test center of JSC “TTC - NPO PM” used for the space-
craft equipment manufacturing [34]. The problem here is to divide a given mixed
lot of radio components into clusters of similar devices manufactured from the
same raw materials as a single homogeneous production batch. The test system
consisted of Intel Core 2 Duo E8400CPU, 16 GB RAM. For all data sets, 30
attempts were made to run each of the algorithms. The j-means and k-means
algorithms were launched in a multi-start mode [29,32].

Our new modifications (GA-xxx-MUT, Algorithm 8) of three GAs (Tables 2, 3)
were compared to other knownalgorithms, suchas correspondingknownGAswith-
out mutation (GA-FULL, GA-ONE, GA-MIX, see [25,30]). Variable Neighbor-
hood Search with randomized neighborhoods (k-GH-VNS1, k-GH-VNS2, k-GH-
VNS2, see [29,32]), their combinations with the j-means algorithm (j-means-GH-
VNSx, see [29]), known GAs with the greedy agglomerative crossover procedures
(GA-FULL, GA-ONE, GA-MIX modifications, see Algorithm 8), and other known
algorithms (j-means and k-means, see [29,32]) in a multi-start mode.

The best-achieved values of the objective function (1) (its minimum value,
mean value, and standard deviation) are underlined; the best values of new
algorithms are given in a bold font, the best values of the known algorithms are
given in italic. The results of the best of new algorithms (a sample of 30 results)
were compared with the best of known tested algorithms (also 30 results) to prove
the statistical significance of the advantage or disadvantage of new algorithms.
We used the Mann-Whitney U-test and the t-test (significance level 0.01 for both
tests).



358 L. Kazakovtsev et al.

Table 2. Computational experiment results for various data sets

Algorithm Objective function (1) value

Min Max Average Std.Dev

Europe data set (169309 data vectors of dimensionality 2) 30 clusters, 4 h

j-means 7.51477E + 12 7.60536E + 12 7.56092E + 12 29.764E + 9

k-means 7.54811E + 12 7.57894E + 12 7.56331E + 12 13.560E + 9

k-GH-VNS1 7.49180E + 12 7.49201E + 12 7.49185E + 12 0.073E + 9

k-GH-VNS2 7.49488E + 12 7.52282E + 12 7.50082E + 12 9.989E + 9

k-GH-VNS3 7.49180E + 12 7.51326E + 12 7.49976E + 12 9.459E + 9

j-means-GH-

VNS1

7.49180E + 12 7.49211E + 12 7.49185E + 12 0.112E + 9

j-means-GH-

VNS2

7.49187E + 12 7.51455E + 12 7.4962E + 12 8.213E + 9

GA-FULL-

MUT*

7.49293E + 12 7.49528E + 12 7.49417E + 12 0.934E + 9

GA-MIX-MUT* 7.49177E + 12 7.49211E + 12 7.49186E + 12 0.117E + 9

GA-ONE-

MUT*↑⇑
7.49177E + 12 7.49188E + 12 7.49182E + 12 0.042E + 9

Testing results of the integrated circuits 5514BC1T2-9A5 (91 data vectors of dimensionality

173), grouping into 10 homogeneous batches (clusters), 2min

j-means 7 060.45 7 085.67 7 073.55 8.5951

k-means 7 046.33 7 070.83 7 060.11 8.8727

k-GH-VNS1 7 001.12 7 009.53 7 004.48 4.3453

k-GH-VNS2 7 001.12 7 010.59 7 002.26 2.9880

k-GH-VNS3 7 001.12 7 009.53 7 003.01 3.1694

j-means-GH-

VNS1

7 001.12 7 001.12 7 001.12 0.0000

j-means-GH-

VNS2

7 001.12 7 011.94 7 003.88 4.4990

GA-FULL-

MUT*

7 001.12 7 001.27 7 001.24 0.0559

GA-MIX-

MUT*��
7 001.12 7 001.12 7 001.12 0.0000

GA-ONE-

MUT*��
7 001.12 7 001.12 7 001.12 0.0000

Ionosphere data set (351 data vectors of dimensionality 35, 10 clusters,1min, Mahalanobis

distance metric [35]

k-means 9 253.2467 9 304.2923 9 275.3296 13.5569

k-GH-VNS1 9 083.6662 9 153.0192 9 121.0728 20.6875

k-GH-VNS2 9 085.8065 9 144.3779 9 112.2959 14.6803

k-GH-VNS3 9 090.5465 9 128.4111 9 109.8492 10.2740

GA-FULL 9 117.5695 9 175.1517 9 142.8457 15.3522

GA-FULL-

MUT*

9 098.8748 9 157.0265 9 136.6556 16.1343

GA-MIX 9 095.1540 9 141.6417 9 114.1280 13.0638

GA-MIX-MUT* 9 102.8695 9 138.2243 9 113.4571 8.6361

GA-ONE 9 078.6460 9 115.9342 9 099.7687 10.1104

GA-ONE-

MUT*��
9 073.1919 9 120.1842 9 101.6286 12.8542

Note: “*”: new algorithm; “↑”, “⇑”: the advantage of the best of new algorithms over known

algorithms is statistically significant (“↑” for t-test and “⇑” for Mann–Whitney U test), “↓”, “⇓”:

the disadvantage of the best of new algorithms over known algorithms is statistically significant;

“�”, “�”: the advantage or disadvantage is statistically insignificant.



Genetic Algorithms with the Crossover-Like Mutation Operator 359

Table 3. Computational experiment results for various data sets

Algorithm Objective function (1) value

Min Max Average Std.Dev

Results of testing the integrated circuits 5514BC1T2-9A5 (91 data vectors
of dimensionality 173), grouping into 10 homogeneous batches (clusters),
2 min, Mahalanobis distance [35]

k-means 7 289.7935 7 289.8545 7 289.8296 0.0153

k-GH-VNS1 7 289.7366 7 289.8024 7 289.7648 0.0147

k-GH-VNS2 7 289.7472 7 289.8021 7 289.7792 0.0153

GA-FULL 7 289.7474 7 289.8134 7 289.7742 0.0175

GA-FULL-MUT* 7 289.7062 7 289.7754 7 289.7508 0.0181

GA-MIX 7 289.7319 7 289.7771 7 289.7501 0.0133

GA-MIX-MUT* 7 289.7227 7 289.7772 7 289.7496 0.0149

GA-ONE 7 289.7228 7 289.7796 7 289.7494 0.0159

GA-ONE-MUT*�� 7 289.7147 7 289.7752 7 289.7466 0.0165

Results of testing the integrated circuits 5514BC1T2-9A5 (1234 data
vectors of dimensionality 157), grouping into 10 homogeneous batches
(clusters), 2 min

j-means 43 841.97 43 843.51 43 842.59 0.4487

k-means 43 842.10 43 844.66 43 843.38 0.8346

k-GH-VNS1 43 841.97 43 844.18 43 842.34 0.9000

k-GH-VNS2 43 841.97 43 844.18 43 843.46 1.0817

k-GH-VNS3 43 841.97 43 842.10 43 841.99 0.0424

j-means-GH-VNS1 43 841.97 43 841.97 43 841.97 0.0000

j-means-GH-VNS2 43 841.97 43 844.18 43 842.19 0.6971

GA-FULL-MUT* 43 841.97 45 009.09 44 620.29 569.14

GA-MIX-MUT* 43 841.97 45 009.09 44 542.31 591.74

GA-ONE-MUT*↓⇓ 43 841.97 45 009.09 44 363.83 583.63

6 Conclusion

We proposed a new approach to the design of Genetic Algorithms for the k-means
problem with real-number (centroid-based) chromosome encoding, where the
same procedure is used as both crossover and the mutation operators. Our exper-
iments show that the GAs with one-point and greedy agglomerative crossover
operators built in accordance with this idea outperform the algorithms with-
out any mutation procedure and algorithms with the uniform random muta-
tion by the obtained objective function value (SSE). In further research, our
new approach can be applied to other problems such as p-median with various
distance measures, k-medoids, mix probability distribution separation, etc. The
efficiency of the GAs with greedy agglomerative crossover operators and Variable



360 L. Kazakovtsev et al.

Neighborhood Search algorithms with the randomized neighborhoods formed by
greedy agglomerative procedures give us a reasonable hope for the successful
application of our new idea for such problems.

References

1. Farahani, R., Hekmatfar, M.: Facility Location: Concepts, Models, Algorithms and
Case Studies. Contributions to Management Science. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-7908-2151-2

2. Shirkhorshidi, A.S., Aghabozorgi, S., Wah, T.Y.: A comparison study on similarity
and dissimilarity measures in clustering continuous data. PLoS ONE 10(12) (2015).
https://doi.org/10.1371/journal.pone.0144059

3. Lloyd, S.P.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2),
129–137 (1982). https://doi.org/10.1109/TIT.1982.1056489

4. MacQueen, J. B.: Some methods for classification and analysis of multivariate
observations. In: Proceedings of 5th Berkeley Symposium on Mathematical Statis-
tics and Probability, vol. 1, pp. 281–297 (1967)

5. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am.
Stat. Assoc. 66(336), 846–850 (1971). https://doi.org/10.1080/01621459.1971.
10482356

6. Hruschka, E., Campello, R., Freitas, A., de Carvalho, A.: A survey of evolutionary
algorithms for clustering. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 39,
133–155 (2009). https://doi.org/10.1109/TSMCC.2008.2007252

7. Freitas, A.A.: A review of evolutionary algorithms for data mining. In: Maimon, O.,
Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 371–400.
Springer, Boston (2009). https://doi.org/10.1007/978-0-387-09823-419

8. Zeebaree, D.Q., Haron, H., Abdulazeez, A.M. and Zeebaree, S.R.M.: Combination
of K-means clustering with genetic algorithm: a review. Int. J. Appl. Eng. Res.
12(24), 14238–14245 (2017). https://www.ripublication.com/ijaer17/ijaerv12n24
35.pdf

9. Hosage, C.M., Goodchild, M.F.: Discrete space location-allocation solutions from
genetic algorithms. Ann. Oper. Res. J. 6, 35–46 (1986). https://doi.org/10.1007/
bf02027381

10. Bozkaya, B., Zhang, J., Erkut, E.: A genetic algorithm for the p-median problem.
In: Drezner, Z., Hamacher, H. (eds.) Facility Location: Applications and Theory.
Springer, Heidelberg (2002)

11. Alp, O., Erkut, E., Drezner, Z.: An efficient genetic algorithm for the p-
median problem. Ann. Oper. Res. 122, 21–42 (2003). https://doi.org/10.1023/
A:1026130003508

12. Eremeev, A.V.: Genetic algorithm with tournament selection as a local search
method. Discrete Anal. Oper. Res. 19(2), 41–53 (2012)

13. Krishna, K., Murty, M.M.: Genetic K-Means algorithm. IEEE Trans. Syst. Man
Cybern. Part B (Cybernetics) 29(3), 433–439 (1999). https://doi.org/10.1109/
3477.764879

14. Maulik, U., Bandyopadhyay, S.: Genetic algorithm-based clustering technique.
Pattern Recogn. J. 33(9), 1455–1465 (2000). https://doi.org/10.1016/S0031-
3203(99)00137-5

15. Neema, M.N., Maniruzzaman, K.M., Ohgai, A.: New genetic algorithms based
approaches to continuous p-median problem. Netw. Spat. Econ. 11, 83–99 (2011).
https://doi.org/10.1007/s11067-008-9084-5

https://doi.org/10.1007/978-3-7908-2151-2
https://doi.org/10.1371/journal.pone.0144059
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1080/01621459.1971.10482356
https://doi.org/10.1080/01621459.1971.10482356
https://doi.org/10.1109/TSMCC.2008.2007252
https://doi.org/10.1007/978-0-387-09823-419
https://www.ripublication.com/ijaer17/ijaerv12n24_35.pdf
https://www.ripublication.com/ijaer17/ijaerv12n24_35.pdf
https://doi.org/10.1007/bf02027381
https://doi.org/10.1007/bf02027381
https://doi.org/10.1023/A:1026130003508
https://doi.org/10.1023/A:1026130003508
https://doi.org/10.1109/3477.764879
https://doi.org/10.1109/3477.764879
https://doi.org/10.1016/S0031-3203(99)00137-5
https://doi.org/10.1016/S0031-3203(99)00137-5
https://doi.org/10.1007/s11067-008-9084-5


Genetic Algorithms with the Crossover-Like Mutation Operator 361

16. Kazakovtsev, L.A., Antamoshkin, A.N.: Genetic algorithm with fast greedy heuris-
tic for clustering and location problems. Informatica 38(3), 229–240 (2014). http://
www.informatica.si/index.php/informatica/article/view/704/574

17. Kwedlo, W., Iwanowicz, P.: Using genetic algorithm for selection of initial cluster
centers for the k-means method. In: ICAISC 2010: Artificial Intelligence and Soft
Computing, pp. 165–172 (2010). https://doi.org/10.1007/978-3-642-13232-2 20

18. Kim, K., Ahn, H.: A recommender system using GA K-means clustering in an
online shopping market. Expert Syst. Appl. 34(2), 1200–1209 (2008)

19. He, Z., Yu, C.: Clustering stability-based evolutionary k-means. Soft Comput.
23(1), 305–321 (2018). https://doi.org/10.1007/s00500-018-3280-0

20. Naldi, M.C., Campello, R.J.G.B., Hruschka, E.R., Carvalho, A.C.P.L.F.: Efficiency
issues of evolutionary k-means. Appl. Soft Comput. 11(2), 1938–1952 (2011).
https://doi.org/10.1016/j.asoc.2010.06.010

21. Graña, M., López-Guede, J.M., Etxaniz, O., Herrero, Á., Quintián, H., Corchado,
E. (eds.): SOCO/CISIS/ICEUTE -2016. AISC, vol. 527. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-47364-2

22. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987). https://doi.org/10.
1016/0377-0427(87)90125-7

23. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern
Anal. Mach. Intell. 1(2), 224–227 (1979). https://doi.org/10.1109/TPAMI.1979.
4766909

24. Pelleg, D., Moore A.: X-means: extending K-means with efficient estimation of
the number of clusters. In: Proceedings of the 17th International conference on
Machine Learning, pp. 727–734 (2000)

25. Kazakovtsev, L.A., Antamoshkin, A.N.: Greedy heuristic method for location prob-
lems. Vestnik SibGAU 16(2), 317–325 (2015). https://cyberleninka.ru/article/n/
greedy-heuristic-method-for-location-problems

26. Kwedlo, W.: A clustering method combining differential evolution with the k-
means algorithm. Pattern Recogn. Lett. 32(12), 1613–1621 (2011). https://doi.
org/10.1016/j.patrec.2011.05.010

27. Chang, D.-X., Zhang, X.-D., Zheng, C.-W.: A genetic algorithm with gene rear-
rangement for k-means clustering. Pattern Recogn. 42(7), 1210–1222 (2009).
https://doi.org/10.1016/j.patcog.2008.11.006

28. Brimberg, J., Drezner, Z., Mladenovic, N., Salhi, S.: A new local search for con-
tinuous location problems. Eur. J. Oper. Res. 232(2), 256–265 (2014)

29. V I Orlov, V.I., Kazakovtsev, L.A., Rozhnov, I.P., Popov, N.A., Fedosov, V.V.:
Variable neighborhood search algorithm for k-means clustering. IOP Conf. Ser.
Mater. Sci. Eng. 450, 022035 (2018). https://doi.org/10.1088/1757-899X/450/2/
022035

30. Kazakovtsev, L., Stashkov, D., Gudyma, M., Kazakovtsev, V.: Algorithms with
greedy heuristic procedures for mixture probability distribution separation.
Yugoslav J. Oper. Res. 29(1), 51–67 (2019). https://doi.org/10.2298/YJOR1711

31. Clustering basic benchmark. http://cs.joensuu.fi/sipu/datasets
32. Orlov, V.I., Rozhnov, I.P., Kazakovtsev, L.A., Lapunova, E.V.: An approach to the

development of clustering algorithms with a combined use of the variable neighbor-
hood search and greedy heuristic method. IOP Conf. Ser. 1399 (2019). https://
doi.org/10.1088/1742-6596/1399/3/033049

33. UCI Machine Learning Repository. http://archive.ics.uci.edu/ml

http://www.informatica.si/index.php/informatica/article/view/704/574
http://www.informatica.si/index.php/informatica/article/view/704/574
https://doi.org/10.1007/978-3-642-13232-2_20
https://doi.org/10.1007/s00500-018-3280-0
https://doi.org/10.1016/j.asoc.2010.06.010
https://doi.org/10.1007/978-3-319-47364-2
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1109/TPAMI.1979.4766909
https://doi.org/10.1109/TPAMI.1979.4766909
https://cyberleninka.ru/article/n/greedy-heuristic-method-for-location-problems
https://cyberleninka.ru/article/n/greedy-heuristic-method-for-location-problems
https://doi.org/10.1016/j.patrec.2011.05.010
https://doi.org/10.1016/j.patrec.2011.05.010
https://doi.org/10.1016/j.patcog.2008.11.006
https://doi.org/10.1088/1757-899X/450/2/022035
https://doi.org/10.1088/1757-899X/450/2/022035
https://doi.org/10.2298/YJOR1711
http://cs.joensuu.fi/sipu/datasets
https://doi.org/10.1088/1742-6596/1399/3/033049
https://doi.org/10.1088/1742-6596/1399/3/033049
http://archive.ics.uci.edu/ml


362 L. Kazakovtsev et al.

34. Rozhnov, I., Orlov, V. Kazakovtsev, L.: Ensembles of clustering algorithms for
problem of detection of homogeneous production batches of semiconductor devices.
In: CEUR Workshop Proceedings OPTA-SCL 2018. Proceedings of the School-
Seminar on Optimization Problems and their Applications. CEUR-WS 2098, pp.
338–348 (2018). http://ceur-ws.org/Vol-2098/paper29.pdf

35. McLachlan, G.J.: Mahalanobis distance. Resonance 4(20), 1–26 (1999). https://
doi.org/10.1007/BF02834632

http://ceur-ws.org/Vol-2098/paper29.pdf
https://doi.org/10.1007/BF02834632
https://doi.org/10.1007/BF02834632

	Genetic Algorithms with the Crossover-Like Mutation Operator for the k-Means Problem
	1 Introduction and Problem Statement
	2 New Crossover-Like Mutation Operator in a One-Point Crossover Genetic Algorithm
	3 Known Clustering Algorithms of the Greedy Heuristic Method
	4 GAs with Greedy Agglomerative Heuristic Procedures for the p-Median and k-Means Problems
	5 Computational Experiments
	6 Conclusion
	References




