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Abstract. The paper is devoted to the optimality conditions as deter-
mined by Pontryagin’s maximum principle for a non-cooperative differen-
tial game with continuous updating. Here it is assumed that at each time
instant players have or use information about the game structure defined
for the closed time interval with a fixed duration. The major difficulty
in such a setting is how to define players’ behavior as the time evolves.
Current time continuously evolves with an updating interval. As a solu-
tion for a non-cooperative game model, we adopt an open-loop Nash
equilibrium within a setting of continuous updating. Theoretical results
are demonstrated on an advertising game model, both initial and contin-
uous updating versions are considered. A comparison of non-cooperative
strategies and trajectories for both cases are presented.
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1 Introduction

Most conflict-driven processes in real life evolve continuously in time, and their
participants continuously receive updated information and adapt accordingly.
The principal models considered in classical differential game theory are associ-
ated with problems defined for a fixed time interval (players have all the infor-
mation for a closed time interval) [10], problems defined for an infinite time
interval with discounting (players have all information specified for an infinite
time interval) [1], problems defined for a random time interval (players have
information for a given time interval, but the duration of this interval is a ran-
dom variable) [27]. One of the first works in the theory of differential games
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was devoted to a differential pursuit game (a player’s payoff depends on when
the opponent gets captured) [23]. In all the above models and approaches it
is assumed that at the onset players process all information about the game
dynamics (equations of motion) and about players’ preferences (cost functions).
However, these approaches do not take into account the fact that many real-life
conflict-controlled processes are characterized by the fact that players at the
initial time instant do not have all the information about the game. Therefore
such classical approaches for defining optimal strategies as the Nash equilib-
rium, the Hamilton-Jacobi-Bellman equation [2], or the Pontryagin maximum
principle [24], for example, cannot be directly used to construct a large range
of real game-theoretic models. Another interesting application of dynamic and
differential games is for networks, [5].

Most real conflict-driven processes continuously evolve over time, and their
participants constantly adapt. This paper presents the approach of constructing
a Nash equilibrium for game models with continuous updating using a modern-
ized version of Pontryagin’s maximum principle. In game models with continuous
updating, it is assumed that

1. at each current time t ∈ [t0,+∞), players only have or use information on the
interval [t, t + T ], where 0 < T < ∞ is the length of the information horizon,

2. as time t ∈ [t0,+∞) goes by, information related to the game continues to
update and players can receive this updated information.

In the framework of the dynamic updating approach, the following papers
were published [17], [18], [20],[21], [22], [29]. Their authors set the foundations
for further study of a class of games with dynamic updating. It is assumed that
information about motion equations and payoff functions is updated in discrete
time instants and the interval for which players know information is defined by
the value of the information horizon. A non-cooperative setting with dynamic
updating was examined along with the concept of the Nash equilibrium with
dynamic updating. Also in the papers above cooperative cases of game models
with dynamic updating were considered and the Shapely value for this setting
was constructed. However, the class of games with continuous updating provides
new theoretical results. The class of differential games with continuous updating
was considered in the papers [11], [19], here it is supposed that the updating
process evolves continuously in time. In the paper [19], the system of Hamilton-
Jacobi-Bellman equations are derived for the Nash equilibrium in a game with
continuous updating. In the paper [11] the class of linear-quadratic differential
games with continuous updating is considered and the explicit form of the Nash
equilibrium is obtained.

The approach of continuous updating has some similarities with Model Pre-
dictive Control (MPC) theory which is worked out within the framework of
numerical optimal control [6], [14], [26], [28], and which has also been used as a
human behavior model in [25]. In the MPC approach, the current control action
is achieved by solving a finite-horizon open-loop optimal control problem at each
sampling instant. For linear systems there exists a solution in explicit form [3],
[7]. However, in general, the MPC approach demands the solution of several
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optimization problems. Another related series of papers corresponds to the class
of stabilizing control [12], [13], [16], here similar approaches were considered for
the class of linear quadratic optimal control problems. But in the current paper
and in papers about the continuous updating approach, the main goal is differ-
ent: to model players’ behavior when information about the course of the game
updates continuously in time.

In this paper the optimality conditions for the Nash equilibrium in the form of
Pontryagin’s maximum principle are derived for a class of non-cooperative game
models with continuous updating. In the previous papers on this topic, [19], [11]
the optimality conditions were formulated in the form of the Hamilton-Jacobi-
Bellman equation and for the special case of a linear quadratic model. From
the authors’ point of view, formulating Pontryagin’s maximum principle for the
continuous updating case is the final step for the Nash equilibrium’s range of
optimality conditions under continuous updating. In future the authors will focus
on convex differential games with continuous updating and on the uniqueness
of the Nash equilibrium with continuous updating. The concept of the Nash
equilibrium for the class of games with continuous updating is defined in the
paper [19], and constructed here using open-loop controls and the Pontryagin
maximum principle with continuous updating. The corresponding trajectory is
also derived. The approach here presented is tested with the advertising game
model consisting of two firms. It is interesting to note that in this particular
game model the equilibrium strategies are constant functions of time t, unlike
the equilibrium strategies in the initial game model.

The paper is organized as follows. Section 2 starts by describing the initial dif-
ferential game model. Section 3 demonstrates the game model with continuous
updating and also defines a strategy for it. In Sect. 4, the classical optimality
principle Nash equilibrium is adapted for the class of games with continuous
updating. In Sect. 5, a new type of Pontryagin’s maximum principle for a class
of games with continuous updating is presented. Section 6 presents results of the
proposed modeling approach based on continuous updating, such as a logarith-
mic advertising game model. Finally, we draw conclusions in Sect. 7.

2 Initial Game Model

Consider differential n-player game with prescribed duration Γ (x0, T − t0)
defined on the interval [t0, T ].

The state variable evolves according to the dynamics:

ẋ(t) = f(t, x, u), x(t0) = x0, (1)

where x ∈ R
l denotes the state variables of the game, u = (u1, . . . , un), ui =

ui(t, x0) ∈ Ui ⊂ compRk, t ∈ [t0, T ], is the control of player i.
The payoff of player i is then defined as

Ki(x0, T − t0;u) =

T∫

t0

gi[t, x(t), u(t, x0)]dt, i ∈ N, (2)
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where gi[t, x, u], f(t, x, u) are the integrable functions, x(t) is the solution of
Cauchy problem (1) with fixed u(t, x0) = (u1(t, x0), . . . , un(t, x0)). The strategy
profile u(t, x0) = (u1(t, x0), . . . , un(t, x0)) is called admissible if the problem
(1) has a unique and continuable solution. The existence and global asymptotic
stability of the open-loop equilibrium for a game with strictly convex adjustment
costs was dealt with by Fershtman and Muller [4].

Using the initial differential game with prescribed duration of T , we construct
the corresponding differential game with continuous updating.

3 Differential Game Model with Continuous Updating

In differential games with continuous updating players do not have information
about the motion equations and payoff functions for the whole period of the
game. Instead at each moment t players get information at the interval [t, t+T ],
where 0 < T < +∞. When choosing a strategy at moment t, this is the only
information they can use. Therefore, we consider subgames Γ (x, t, t+T ) in which
players find themselves at each moment t.

Let us start with the subgame Γ (x0, t0, t0+T ) defined on the interval [t0, t0+
T ]. The initial conditions in this subgame coincide with the starting point of the
initial game.

Furthermore, assume that the evolution of the state can be described by the
ordinary differential equation:

ẋt0(s) = f(s, xt0 , ut0), xt0(t0) = x0, (3)

where xt0 ∈ R
l denotes the state variables of the game that starts from the initial

time t0, ut0 = (ut0
1 , . . . , ut0

n ), ut0
i = ut0

i (s, x0) ∈ Ui ⊂ compRk is the vector of
actions chosen by the player i at the instant time s.

The payoff function of player i is defined in the following way:

Kt0
i (x0, t0, T ;ut0) =

t0+T∫

t0

gi[s, xt0(s), ut0(s, x0)]ds, i ∈ N, (4)

where xt0(s), ut0(s, x0) are trajectory and strategies in the game Γ (x0, t0, t0+T ),
ẋt0(s) is the derivative of s.

Now let us give a description of subgame Γ (x, t, t+T ) starting at an arbitrary
time t > t0 from the situation x.

The motion equation for the subgame Γ (x, t, t + T ) has the form:

ẋt(s) = f(s, xt, ut), xt(t) = x, (5)

where ẋt(s) is the derivative of s, xt ∈ R
l is the state variables of the subgame

that starts from time t, ut = (ut
1, . . . , u

t
n), ut

i = ut
i(s, x) ∈ Ui ⊂ compRk, s ∈

[t, t + T ], denotes the control vector of the subgame that starts from time t at
the current time s.
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The payoff function of player i for the subgame Γ (x, t, t + T ) has the form:

Kt
i (x, t, T ;ut) =

t+T∫

t

gi[s, xt(s), ut(s, x)]ds, i ∈ N, (6)

where xt(s), ut(s, x) are the trajectories and strategies in the game Γ (x, t, t+T ).

A differential game with continuous updating is developed according to the
following rule:

Current time t ∈ [t0,+∞) evolves continuously and as a result players con-
tinuously obtain new information about motion equations and payoff functions
in the game Γ (x, t, t + T ).

The strategy profile u(t, x) in a differential game with continuous updating
has the form:

u(t, x) = ut(s, x)|s=t, t ∈ [t0,+∞), (7)

where ut(s, x), s ∈ [t, t + T ] are strategies in the subgame Γ (x, t, t + T ).

The trajectory x(t) in a differential game with continuous updating is deter-
mined in accordance with

ẋ(t) = f(t, x, u),
x(t0) = x0,
x ∈ R

l,
(8)

where u = u(t, x) are strategies in the game with continuous updating (7) and
ẋ(t) is the derivative of t. We suppose that the strategy with continuous updating
obtained using (7) is admissible, or that the problem (8) has a unique and
continuable solution. The conditions of existence, uniqueness and continuability
of open-loop Nash equilibrium for differential games with continuous updating
are presented as follows, for every t ∈ [t0,+∞)

1. right-hand side of motion equations f(s, xt, ut) (5) is continuous on the set
[t, t + T ] × Xt × U t

1 × · · · × U t
n

2. right-hand side of motion equations f(s, xt, ut) satisfies the Lipschitz condi-
tions for xt with the constant kt

1 > 0 uniformly regarding to ut:

||f(s, (xt)′, ut) − f(s, (xt)′′, ut)|| ≤ kt
1||(xt)′ − (xt)′′||, ∀ s ∈ [t, t + T ],

(xt)′, (xt)′′ ∈ Xt, ut ∈ U t

3. exists such a constant kt
2 that function f(s, xt, ut) satisfies the condition:

||f(s, xt, ut)|| ≤ kt
2(1 + ||x||), ∀ s ∈ [t, t + T ], xt ∈ Xt, ut ∈ U t

4. for any s ∈ [t, t + T ] and xt ∈ Xt set

G(xt) = {f(s, xt, ut)|ut ∈ U t}
is a convex compact from Rl.
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The essential difference between the game model with continuous updating
and a classic differential game with prescribed duration Γ (x0, T − t0) is that
players in the initial game are guided by the payoffs that they will eventually
obtain on the interval [t0, T ], but in the case of a game with continuous updating,
at the time instant t they orient themselves on the expected payoffs (6), which
are calculated based on the information defined for interval [t, t + T ] or the
information that they have at the instant t.

4 Nash Equilibrium in a Game with Continuous
Updating

In the framework of continuously updated information, it is important to model
players’ behavior. To do this, we use the Nash equilibrium concept in open-loop
strategies. However, for the class of differential games with continuous updating,
modeling will take the following form:

For any fixed t ∈ [t0,+∞), uNE(t, x) = (uNE
1 (t, x), ..., uNE

n (t, x)) coincides
with the Nash equilibrium in game (5), (6) defined for the interval [t, t + T ] at
instant t.

However, direct application of classical approaches for the definition of the
Nash equilibrium in open-loop strategies is not possible, consider two intervals
[t, t+T ], [t+ ε, t+T + ε], ε << T . Then according to the problem statement:

–uNE(t) at instant t coincides with the open-loop Nash equilibrium in the
game defined for interval [t, t + T ],

–uNE(t + ε) at instant t + ε coincides with the open-loop Nash equilibrium
in the game defined for interval [t + ε, t + T + ε].

In order to construct such strategies, we consider the concept of generalized
Nash equilibrium in open-loop strategies as the principle of optimality

ũNE(t, s, x) = (ũNE
1 (t, s, x), ..., ũNE

n (t, s, x)), t ∈ [t0,+∞), s ∈ [t, t + T ], (9)

which we are going to use further for construction of strategies uNE(t, x).

Definition 1. Strategy profile ũNE(t, s, x) = (ũNE
1 (t, s, x), ..., ũNE

n (t, s, x)) is a
generalized Nash equilibrium in the game with continuous updating, if for any
fixed t ∈ [t0,+∞), strategy profile ũNE(t, s, x) is the open-loop Nash equilibrium
in game Γ (x, t, t + T ).

Using a generalized open-loop Nash equilibrium, it is possible to define a
solution concept for a game model with continuous updating.
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Definition 2. Strategy profile uNE(t, x) = (uNE
1 (t, x), ..., uNE

n (t, x)) is called an
open-loop-based Nash equilibrium with continuous updating if it is defined in the
following way:

uNE(t, x) = ũNE(t, s, x)|s=t

= (ũNE
1 (t, s, x)|s=t, ..., ũ

NE
n (t, s, x)|s=t), t ∈ [t0,+∞),

(10)

where ũNE(t, s, x) is the generalized open-loop Nash equilibrium defined in
Definition 1.

Strategy profile uNE(t, x) will be used as a solution concept in a game with
continuous updating.

5 Pontryagin’s Maximum Principle with Continuous
Updating

In order to define strategy profile uNE(t, x), it is necessary to determine the
generalized Nash equilibrium in open-loop strategies ũNE(t, s, x) of a game with
continuous updating. To do this, we will use a modernized version of Pontryagin’s
maximum principle. Let us start by defining a real-valued function Ht

i by

Ht
i (τ, x

t, ut, λt) = Tgi(Tτ + t, xt, ut) + λt
iTf(Tτ + t, xt, ut). (11)

The function Ht
i , i ∈ N is called the (current-value) Hamiltonian function and

plays a prominent role in Pontryagin’s Maximum Principle. The variable λt
i is

called the (current-value) costate variable associated with the state variable xt,
or the (current-value) adjoint variable.

The following theorem is applied:

Theorem 1. Let f(s, ·, ut) be continuously differentiable on Rl, ∀s ∈ [t, t + T ]
and gi(s, ·, ut) be continuously differentiable on Rl, ∀s ∈ [t, t + T ], i ∈ N . Then,
if ũNE(t, s, x) provides generalized open-loop Nash equilibrium in a differential
game with continuous updating, and for all t ∈ [t0,+∞) x̃t(s), with s ∈ [t, t+T ],
is the corresponding state trajectory in the game Γ (x, t, t + T ), then for all t ∈
[t0,+∞) exist n costate functions λt

i(τ, x), where τ ∈ [0, 1], i ∈ N , such that the
following relations are satisfied:

1. for all τ ∈ [0, 1]

Ht
i (τ, x̃

t, ũNE(t, τ, x), λt) = max
φi

{Ht
i (τ, x̃

t, ũNE
−i (t, τ, x), λt)}, i ∈ N, (12)

where ũNE
−i = (ũNE

1 , ..., φi, ..., ũ
NE
n ),



Games with Continuous Updating 263

2. λt
i(τ, x) is a decision of the system of adjoint equations

dλt
i(τ, x)
dτ

= −∂Ht
i (τ, x̃

t(τ), ũNE(t, τ, x), λt)
∂xt

=

= −T
∂gi(Tτ + t, x̃t, ũNE)

∂xt
− λt

i(τ, x)T
∂f(Tτ + t, x̃t, ũNE)

∂xt
, i ∈ N,(13)

where the transversality conditions are

λt
i(1, x) = 0, i ∈ N (14)

3. for all t ∈ [t0,+∞)

˙̃xt(τ) = Tf(Tτ + t, x̃t, ũNE), x̃t(0) = x, τ ∈ [0, 1]. (15)

Proof: Let fix t ≥ t0 and consider game Γ (x, t, t + T ).

Using following substitution

τ =
s − t

T
, (16)

we get the motion equation (5) in the form:

ẋt(τ) = Tf(Tτ + t, xt, ut), xt(0) = x, τ ∈ [0, 1]. (17)

And payoff function of player i ∈ N has the form

Kt
i (x, t, T ;ut) =

1∫

0

Tgi[Tτ + t, xt(τ), ut(τ, x)]dτ, i ∈ N. (18)

For the optimization problem (17)–(18) Hamiltonian has the form

Ht
i (τ, x

t, ut, λt) = Tgi(Tτ +t, xt(τ), ut(τ, x))+λt
i(τ, x)Tf(Tτ +t, xt(τ), ut(τ, x)).

(19)

If ũNE(t, τ, x) – generalized open-loop Nash equilibrium in the differential game
with continuous updating, then, according to Definition 1, for every fixed t ≥ t0,
ũNE(t, τ, x) is an open-loop Nash equilibrium in the game Γ (x, t, t+T ). Therefore
for any fixed t ≥ t0 conditions 1–3 of the theorem are satisfied as necessary
conditions for Nash equilibrium in open-loop strategies (see [1]). The Theorem
is proved.

It can been mentioned also that if for every t ≥ t0 functions Ht
i are concave

in (xt, ut) for all i ∈ N , then the conditions of the theorem are sufficient for a
Nash open-loop solution [15].
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6 Differential Game of Logarithmic Advertising Game
Model with Continuous Updating

As an illustrative example, we consider a logarithmic excess-advertising model
of a duopoly proposed by Jørgensen in [8]. There are two firms operating in a
market. It is assumed that market potential is constant over time. The only mar-
keting instrument used by the firms is advertising. Advertising has diminishing
returns since it suffers from increasing marginal costs. Nash optimal open-loop
advertising strategies are determined in [8]. Here we obtain open-loop Nash equi-
librium with continuous updating by means of Theorem 1.

6.1 Initial Game Model

Consider the model investigated in [8]. Let xi(t) denote the rate of sales of firm i
at the instant time t, (i = 1, 2) and assume that x1 +x2 = M , implying that the
market potential is fully exhausted at each instant of time. The game is played
on interval [0, T ], where T is an arbitrary but fixed positive number. Because of
the assumption x1 + x2 = M , so ẋ2 = −ẋ1. The state equation is

ẋ1 = k log
u1

u2
= k(log u1 − log u2),

ẋ2 = −ẋ1 = k(log u2 − log u1),

x1(0) = x0
1, x2(0) = x0

2,

(20)

where k is a positive constant, xi(0) is a given initial rate of sales of firm i.
The state equation (20) model describes a market where buyers are perfectly
mobile and switch instantaneously to the firm which has the largest rate of
advertising expenditure, that is, advertises in excess of the other. In the model,
market share increases linearly according to the amount of excess advertising.
Performance indices are given by

Ki =
∫ T

0

(ϕixi − ui) exp{−rit}dt, i = 1, 2, (21)

where x2 = M − x1. Assume that ri > 0, i = 1, 2. The open-loop Nash
equilibrium in its explicit form was constructed in [8]:

uinitial,NE
i =

kϕi

ri
[1 − exp{−ri(T − t)}]. (22)

For the case r1 = r2, the optimal trajectories are given by

x1(t) = (k log
ϕ1

ϕ2
)t + x1(0),

x2(t) = M − (k log
ϕ1

ϕ2
)t − x1(0).

(23)
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If r1 �= r2, then trajectory x1 is the solution of

ẋ1 = k log
ϕ1r2[1 − exp{−r1(T − t)}]
ϕ2r1[1 − exp{−r2(T − t)}]

. (24)

The solution of Eq. (24) is given by

x1(t) = x1(0) + k log
ϕ1r2
ϕ2r1

t + k

∫ t

0

log
1 − exp{−r1(T − s)}
1 − exp{−r2(T − s)}ds.

6.2 Game Model with Continuous Updating

Now consider this model as a game with continuous updating. It is assumed
that information about motion equations and payoff functions is updated con-
tinuously in time. At every instant t ∈ [0,+∞), players have information only
at interval [t, t + T ].

Therefore, for every time instant t, we can get the payoff function of player
i for the interval [t, t + T ]. The payoff functions are given as follows:

Kt
i =

∫ t+T

t

(ϕix
t
i − ut

i) exp(−ris)ds, i = 1, 2.

In order to simplify the problem that we desire to solve, we can do a transfer
τ = s−t

T
. Furthermore, restate the problem to be solved:

ẋt
1(τ) = Tk log

ut
1(τ, x)

ut
2(τ, x)

= Tk(log ut
1(τ) − log ut

2(τ)), τ ∈ [0, 1],

ẋt
2(τ) = −ẋt

1(τ),

xt
1(0) = x1, xt

2(0) = x2,

Kt
i =

∫ 1

0

T (ϕix
t
i(τ) − ut

i(τ, x)) exp{−ri(Tτ + t)}dτ, i = 1, 2.

(25)

The Hamiltonian functions are given by

Ht
1(t, τ, x, ut, λt) = (ϕ1x

t
1 − ut

1)T + λt
1(τ, x)Tk(log ut

1 − log ut
2), (26)

Ht
2(t, τ, x, ut, λt) = (ϕ2x

t
2 − ut

2)T − λt
2(τ, x)Tk(log ut

1 − log ut
2). (27)

Note that the current-value Hamiltonian is simply exp(ri(Tτ + t)) times the
conventional Hamiltonian. Necessary conditions for the maximization of Ht

i , for
ut

i ∈ (0,+∞) are given by

∂Ht
1

∂ut
1

= −T + λt
1(τ, x)Tk

1
ut
1

= 0,
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∂Ht
2

∂ut
2

= −T + λt
2(τ, x)Tk

1
ut
2

= 0.

Therefore, the optimal control ut
i is given by

ut
1(τ, x) = λt

1(τ, x)k, ut
2(τ, x) = λt

2(τ, x)k. (28)

The adjoint variables λt
i(τ) should satisfy the following equations

λ̇t
1(τ, x) = −∂Ht

1

∂xt
1

+Tr1λ
t
1(τ, x) = −ϕ1T + Tr1λ

t
1(τ, x),

λ̇t
2(τ, x) = −∂Ht

2

∂xt
2

+Tr2λ
t
2(τ, x) = −ϕ2T + Tr2λ

t
2(τ, x).

(29)

Note that these equations are uncoupled. The transversality conditions are

λt
i(1, x) = 0, i = 1, 2.

By solving the above differential equations about the adjoint variables, the
solutions are given by

λt
1(τ, x) =

ϕ1

r1
[1 − exp{Tr1(τ − 1)}],

λt
2(τ, x) =

ϕ2

r2
[1 − exp{Tr2(τ − 1)}].

(30)

Substituting (30) into (28) yields

utNE
i (τ, x) =

kϕi

ri
[1 − exp{Tri(τ − 1)]}. (31)

Note that x is the initial state in the subgame Γ (x, t, t + T ). The open-loop
strategies utNE

i (τ, x) in our example in fact do not depend on initial state x.

Let us show that the solution obtained satisfies sufficiency conditions. Since
∂2Ht

i

∂xt∂xt = 0,
∂2Ht

i

∂xt∂ut
i

= 0,
∂2Ht

i

∂ut
i∂ut

i
= −λt

i(τ)Tk 1
(ut

i)
2 ≤ 0, then, according to [9],

utNE(τ, x) is indeed a Nash equilibrium in the subgame Γ (x, t, t + T ).

Finally, we convert τ to t, s. Then the generalized open-loop Nash equilibrium
strategies have the following form:

ũNE
1 (t, s, x) =

kϕ1

r1
[1 − exp{r1(s − t − T )}],

ũNE
2 (t, s, x) =

kϕ2

r2
[1 − exp{r2(s − t − T )}].

(32)
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According to Definition 2, we construct an open-loop-based Nash equilibrium
with continuous updating :

uNE
i (t, x) = ũNE

i (t, s, x)|s=t =
kϕi

ri
[1 − exp{−riT}] i = 1, 2. (33)

Note that in the example under consideration, strategies utNE
i are independent

of the initial values of the state variables of subgame Γ (x, t, t + T ), so strategies
uNE

i (t, x) in fact do not depend on x.

Consider the difference between optimal strategies in the initial game and in
a game with continuous updating:

uinitial,NE
i − uNE

i =
kϕi

ri
exp{−riT}[1 − exp{−ri(T − t − T )}]

We can see that the amounts of players’ advertising expenditure is less in a game
with continuous updating for t < T − T .

The optimal trajectories xNE
1 (t), xNE

2 (t) in a game with continuous updating
are the solutions of

ẋ1(t) = k log(
ϕ1r2
r1ϕ2

[1 − exp{−r1T}]
[1 − exp{−r2T}]

),

ẋ2(t) = −ẋ1(t),

x1(0) = x0
1,

x2(0) = x0
2,

(34)

where ri > 0, i = 1, 2. Therefore, the state dynamics of the system are given as
follows:

xNE
1 (t) = x0

1 + k log(
ϕ1r2[1 − exp{−r1T}]
r1ϕ2[1 − exp{−r2T}]

)t,

xNE
2 (t) = M − x0

1 − k log(
ϕ2r1[1 − exp{−r2T}]
r2ϕ1[1 − exp{−r1T}]

)t.
(35)

It can be noted, that if r1 = r2, then optimal trajectories in initial model and
in the game with continuous updating are the same.

Figures 1, 2 represent a comparison of results obtained in the initial model
and in the model with continuous updating for the following parameters:
ϕ1
r1 = 0.1, ϕ2

r2
= 0.5, k = 1, T = 10, T = 0.2, r1 = 5, r2 = 3, x0

1 =
8, x0

2 = 10.

We see that the rate of sales for player 1 in the game with continuous updating
is less than in the initial model.
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Fig. 1. Comparison of Nash equilibrium strategies in the initial model and in the game
with continuous updating
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Fig. 2. Comparison of optimal trajectories in the initial model and in the game with
continuous updating

7 Conclusion

A differential game model with continuous updating is presented and described.
The definition of the Nash equilibrium concept for a class of games with contin-
uous updating is given. Optimality conditions on the form of Pontryagin’s maxi-
mum principle for the class of games with continuous updating are presented for
the first time and the technique for finding the Nash equilibrium is described.



Games with Continuous Updating 269

The theory of differential games with continuous updating is demonstrated by
means of an advertising model with a logarithmic state dynamic. Ultimately, we
present a comparison of the Nash equilibrium and the corresponding trajectory
in both the initial game model as well as in the game model with continuous
updating and conclusions are drawn.
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