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Abstract. Various concepts of solutions can be employed in the non-
cooperative game theory. The Berge equilibrium is one of such solutions.
The Berge equilibrium is an altruistic concept of equilibrium. In this
concept, the players act on the principle “One for all and all for one!” The
Berge equilibrium solves such well known paradoxes in the game theory
as the “Prisoner’s Dilemma”, “Battle of the sexes” and many others.
At the same time, the Berge equilibrium rarely exist in pure strategies.
Moreover, in finite games, the Berge equilibrium may not exist in the
class of mixed strategies. The paper proposes the concept of a weak
Berge equilibrium. Unlike the Berge equilibrium, the moral basis of this
equilibrium is the Hippocratic Oath “First do no harm”. On the other
hand, all Berge equilibria are some weak Berge equilibria. The properties
of the weak Berge equilibrium have been investigated. The existence of
the weak Berge equilibrium in mixed strategies has been established for
finite games. A numerical weak Berge equilibrium approximate search
method, based on 3LP-algorithm, is proposed. The weak Berge equilibria
for finite 3-person non-cooperative games are computed.

Keywords: Three-person game · Non-cooperative game · Berge
equilibrium · Weak Berge equilibrium

1 Introduction

A wide class of economic, social and political processes are well described by
the methods of the game theory. Often, when decisions are made, participants
in such processes can not agree among themselves that are modeled by using
non-cooperative games. Certainly, the most well-known concept of a solution in
the theory of non-cooperative games was proposed by John Nash in 1950 in [1].
For this work in 1994 he was awarded the Nobel Prize in Economics.

However, the application of the Nash equilibrium concept in the modelling
of real socio-economic and political conflicts, in some cases, leads to paradoxical
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results, such as the “prisoner’s dilemma”. One of the first who has noticed this
was Claude Berge in [2]. In this book, Berge proposed a new concept of equi-
librium, according to which, players are divided into coalitions, while players of
one coalition can work together to maximize the payoffs of players of another
coalition. Apparently, a crushing review by Martin Shubik [3] on Berge’s book
[2], led to the fact that Claude Berge switched his attention from the game the-
ory to other areas of mathematics. After decades, based on Berge’s ideas, V.I.
Zhukovsky [4,5] and K.S. Vaisman [6,7] suggested a new altruistic concept of
equilibrium which was called a Berge equilibrium (BE). In this concept, the play-
ers act on the principle of “One for all and all for one!” from Alexander Dumas’s
novel “The Three Musketeers”. Another interpretation of Berge equilibrium is
[8] the Golden Rule of morality: “Do things to others the way you want them
did with you”. The development of the Berge equilibrium concept is described
in details in the review [9]. It is worth noting that the BE solves such well known
paradoxes in the game theory as the “Prisoner’s Dilemma”, “Battle of the sexes”
and many others. Also the use of BE is possible to the economics applications
[10].

At the same time, the Berge equilibrium concept has some drawbacks. One
of these drawbacks is that Berge equilibrium rarely exists in pure strategies.
Moreover, in N - person games (N ≥ 3) with a finite set of strategies, Berge
equilibrium may not exist in the class of mixed strategies. Such example was
constructed, in particular, in [11]. The lack of BE might be caused by the fact
that it is often impossible to follow the Golden Rule of morality in relation
to all players at the same time. For example, if the goals of two players are
opposite, then the third player will not be able to apply the Golden Rule to them
simultaneously. In this case, increasing the payoff of one player, simultaneously
reduces the payoff of the other.

In this paper, we introduce the concept of the weak equilibrium according to
Berge (Weak Berge Equilibrium or WBE), no longer based on the Golden Rule of
morality, and on the Hippocratic oath “First do no harm!”. Here, we will assume
that, making a decision, each player adheres to the situation, one-sided deviation
from which can harm although to one of the other players. Further, in Sect. 2,
the concept of the weak Berge equilibrium is formalized, some of its properties
are studied and sufficient conditions for the existence of such an equilibrium
in N -person games are given. In Sect. 3, a numerical WBE approximate search
method based on [12–14] is proposed, and numerical simulation results are given
for finite games of three person.

2 The Concept of the Weak Berge Equilibrium

Let us consider a non-cooperative N -person game in normal form:

Γ = 〈N, {Xi}i∈N, {fi(x)}i∈N〉, (1)

where N = {1, 2, . . . , N} denotes the set of serial numbers of the players; the set
of xi strategies of the i-th player (i ∈ N) is denoted by Xi, where Xi ⊆ Rni .
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As a result of the players choosing their strategies, the strategy profile is x =
(x1, . . . , xN ) ∈ X = X1 × X2 × . . . × XN ⊆ Rn (n = n1 + n2 + . . . + nN ). On
the set of strategy profiles X for each player i (i ∈ N) the scalar payoff function
fi(x) : X → R was defined. The value of fi(x) was realized on the strategy
profile chosen by the players x ∈ X was called the payoff of the i-th player.

The game Γ is played as follows. Each player i (i ∈ N), without entering
into a coalition with other players, chooses his strategy xi ∈ Xi. As a result of
this choice, the strategy profile is x = (x1, . . . , xN ) ∈ X. After that, each player
i gets his payoff fi(x).

Thus, when making a decision, the player is forced to focus not only on his
payoff function, but also on the possible choice of the other participants in the
game.

Further, (yi, x−i) denotes the strategy profile (xi, . . . , xi−1, yi, xi+1, . . . , xN ),
which is obtained from strategy profile x by replacing the strategy of the i-th
player xi on yi.

The most popular concept of solution in the theory of non-cooperative games
is Nash equilibrium.

Definition 1. A strategy profile xe = (xe
1, . . . , x

e
N ) ∈ X is called a Nash equi-

librium (NE) in game (1) if for every x ∈ X the system of inequalities

fi(xe) ≥ fi(xi, x
e
−i) (i ∈ N) (2)

is true.

The Nash equilibrium strategy profile xe ∈ X is stable with the respect to
deviation of an individual player from his strategy which enters in xe. Applying
the concept of the Nash equilibrium, the player proceeds from his own selfish
motives. He only cares about his payoff, do not take into account the interests
of other players. However, this approach leads to a number of paradoxes, such
as the Tucker problem in the classic game called as Prisoner’s Dilemma.

Example 1. Let us consider the Prisoner’s Dilemma game. Two criminals are
arrested on suspicion of a crime, but the police do not have direct evidence.
Therefore, the police, have isolated them from each other, and offered them
the same deal: if one testifies against the other, but he keeps silence, the first
one is released for helping the investigation, and the second gets 10 years - the
maximum term of imprisonment. If both are silent, their deed goes through a
lighter article, and each of them are sentenced to a year in prison. If both testify
against each other, each receives a minimum period of 2 years. Every prisoner
chooses to keep quiet or testify against another. However, none of them knows
exactly what the other will do. The Nash equilibrium in this game dictates
players to testify against each other, although silence will be more beneficial for
them.

Thus, the players’ egoism (the Nash equilibrium) in the Prisoner’s Dilemma
leads them to the most unprofitable solution. This is the Tucker problem.

The opposite approach to the concept of equilibrium, based on altruism, was
called the Berge equilibrium.
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Definition 2. A strategy profile xB = (xB
1 , . . . , xB

N ) ∈ X is called a Berge equi-
librium (BE) in game (1), if for each x ∈ X the system of inequalities

fi(xB) ≥ fi(xB
i , x−i) (i ∈ N) (3)

is true.

The difference between Nash and Berge equilibria is that, in a Nash equilib-
rium, each player directs all efforts to increase its individual payoff as much as
possible. The antipode of (2) is (3), where each player strives to maximize the
payoffs of the other players, ignoring its individual interests. Such an altruistic
approach is intrinsic to kindred relations and occurs in religious communities.
The elements of such altruism show up in charity, sponsorship, and so on.

In Example 1, players receive the best result if they use the Berge equilibrium,
thus the Berge equilibrium solves the Tucker problem in the Prisoner’s Dilemma
(the prisoners choose to keep quiet).

Consider a special case of game (1) with two players, i.e., the game Γ where
N = 1, 2. Then a Berge equilibrium xB = (xB

1 , xB
2 ) is defined by the equalities

f1(xB) = max
x2∈X2

f1(xB
1 , x2), f2(xB) = max

x1∈X1
f2(x1, x

B
2 ).

The Nash equilibrium xe = (xe
1, x

e
2) in this two-player game is given by the

conditions

f1(xe) = max
x1∈X1

f1(x1, x
e
2), f2(xe) = max

x2∈X2
f2(xe

1, x2).

A direct comparison of these standalone formulas leads to the following result.

Property 1. The Berge equilibrium in game (1) with N = {1, 2} coincides with
the Nash equilibrium if both players interchange their payoff functions and then
apply the concept of the Nash equilibrium to solve the game.

In view of Property 1, all results concerning the Nash equilibrium in the two-
player game are automatically transferred to the Berge equilibrium (of course,
with an “interchange” of the payoff functions as described by Property 1).

The differences appear when N ≥ 3. So, the Berge equilibrium may not
exist in finite 3-person games. An example of this is given in [11]. The following
example is taken from [11].

Example 2. Let us consider the following 3-person game in which each of the
players has two pure strategies. Pure strategies of the first, the second, and the
third player are denoted A1, A2; B1, B2; C1, C2, respectively.

B1 B2 B1 B2

C1 :
A1

A2

(
(2, 1, 0) (1, 1, 1)
(2, 0, 1) (1, 0, 2)

)
C2 :

A1

A2

(
(1, 2, 0) (0, 2, 1)
(1, 1, 1) (0, 1, 2)

)

The left-hand matrix refers to the pure strategy C1 of the third player, while
the right-hand matrix refers to his/her pure strategy C2. Let us note that this



Weak Berge Equilibrium 235

game is a very special one. None of the players has any possibility to influence
their own payoff, no matter if they use any of their pure or mixed strategies. On
the contrary, players’ payoffs depend exclusively on the choices of the remaining
players.

One can easily check that the second and the third players’ best support to
any of the first player’s (pure or mixed) strategies is a pair of pure strategies
(B1, C1); the first and the third players’ best support to any of the second player’s
(pure or mixed) strategies is a pair of pure strategies (A1, C2); and finally, the
first and the second players’ best support to any of (pure or mixed) strategies
of the third player is a pair of pure strategies (A2, B2). This game has no Berge
equilibria, neither in pure, nor in mixed strategies.

Then, we recall the concept of Pareto optimality, and then formalize the
Weak Berge Equilibrium.

Definition 3. The alternative x∗ is a Pareto-optimal alternative in the N -cri-
teria problem

〈X, {fi(x)}i∈N〉,
if the system of N inequalities

fi(x) ≤ fi(x∗) (i ∈ N),

with at least one strict inequality, is inconsistent.

The moral basis of following definition is the Hippocratic Oath “First do no
harm!”

Definition 4. Let us call the strategy profile xw = (xw
1 , . . . , xw

n ) a weak Berge
equilibrium (WBE), if for each player i (i ∈ N) strategy xw

i is Pareto-optimal
alternative in the N − 1-criteria problem

Γi = 〈Xi, {fj(xi, x
w
−i)}j∈N\{i}〉.

Note that any BE is WBE. But the converse is not true, there are WBE that
are not BE.

Let us compare the game Γ with an auxiliary game

Γ̃ = 〈N, {Xi}i∈N, {gi(x)}i∈N〉, (4)

where the set of players N and the set of strategies Xi (i ∈ N) are the same as
in the game (1), and the payoff functions gi(x) have the form

gi(x) =
∑

j∈N\{i}
fj(x). (5)

Lemma 1. The Nash equilibrium strategy profile in the game (4) is a weak
Berge equilibrium strategy profile in the game (1).
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Proof. Let xe be a Nash equilibrium strategy profile in the game Γ̃ , i.e

gi(xe
1, ..., x

e
i−1, xi, x

e
i+1, ..., x

e
n) ≤ gi(xe) (i ∈ N). (6)

With regard to (5), the inequality (6) can be rewritten as

∑
j∈N\{i}

fj(xi, x
e
−i) ≤

∑
j∈N\{i}

fj(xe) (i ∈ N). (7)

Suppose xe is not a WBE strategy profile, then there exists some number i
for which the system of inequalities is consistent

fj(xi, x
e
−i) ≥ fj(xe) (j ∈ N \ {i}), (8)

of which at least one inequality is strict.
Adding inequalities (8), we obtain

∑
j∈N\{i}

fj(xi, x
e
−i) >

∑
j∈N\{i}

fj(xe) (i ∈ N),

that contradicts (7).

Remark 1. To construct a WBE strategy profile in the game (1), we can use the
following algorithm:

1. to compose auxiliary game Γ̃ ;
2. to construct a strategy profile xe which is the Nash equilibrium strategy
profile in the auxiliary game Γ̃ ;
3. the found strategy profile xe will be the WBE strategy profile in the original
game Γ .

As an example, let us consider the game “Snowdrift” which is proposed in
[15].

Example 3. Let us consider the 3-person Snowdrift game which is shown in
Table 1. The history of the game lies in the fact that A, B and C are the drivers
of three cars, that stuck in a snowdrift at night, each of them has a shovel. If a
solution is found for any one care, others can use it. Every driver chooses to dig
or wait (in the hope that someone else will dig, or that a snowplow will come
to the place of incident). Digging will cost 6 points, which are divided equally
between those who perform the work; provided that there is at least one dig-
ger. If the players dug out by themselves of a snowdrift, then each player gets
4 points. Thus, if all three players dig, then everyone will get 2 points. If two
players dig, they will get one point each, and the third player will earn 4 points.
If one player digs, then his payoff will be negative (−2), and the payoffs of the
remaining two players will be 4 points each. In the case that the players do not
dig, but wait until the morning when the utilities arrive and clear the snow, their
payoff will be zero.



Weak Berge Equilibrium 237

Table 1. The 3-person Snowdrift game.

C – to wait C – to dig

A \ B to wait to dig A \ B to wait to dig

to wait (0, 0, 0) (4, −2, 4) to wait (4, 4, −2) (4, 1, 1)

to dig (−2, 4, 4) (1, 1, 4) to dig (1, 4, 1) (2, 2, 2)

Here, the 3-dimensional matrices A, B, C, which determine the payoffs of
the players will be

A : A1 =
(

0 4
−2 1

)
, A2 =

(
4 4
1 2

)
;

B : B1 =
(

0 −2
4 1

)
, B2 =

(
4 1
4 2

)
;

C : C1 =
(

0 4
4 4

)
, C2 =

(−2 1
1 2

)
.

The Nash equilibrium (NE) here will (wait, wait, wait) [15] with payoffs (0, 0, 0).
We will now compile an auxiliary game, the payoff matrices in which will be:

for the first player

A∗ = B + C : A∗
1 =

(
0 2
8 5

)
, A∗

2 =
(

2 2
5 4

)
;

for the second player

B∗ = A + C : B∗
1 =

(
0 8
2 5

)
, B∗

2 =
(

2 5
2 4

)
;

for the third player

C∗ = A + B : C∗
1 =

(
0 2
2 2

)
, C∗

2 =
(

8 5
5 4

)
.

The Nash equilibrium (NE) in the auxiliary game with matrices A∗, B∗, C∗

will be (dig, dig, dig), respectively, the weak Berge equilibrium (WBE) in the
original game will also be (dig, dig, dig) with payoffs (2, 2, 2).

Obviously, in this example, the WBE is more profitable for all players than
the NE.

Remark 2. In the Snowdrift game, the Berge equilibrium (BE) [15] coincides
with the WBE.

Follow to Lemma 1 and the sufficient conditions for the existence of a NE, it
is easy possible to obtain sufficient conditions for the existence of a WBE under
the usual restrictions for the game theory.
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Theorem 1. In a non-cooperative N -person game Γ with a finite set of strate-
gies, a weak Berge equilibrium strategy profile in mixed strategies exists.

Theorem 2. If in a non-cooperative N -person game Γ , the sets of strategies
Xi are convex compacts, and the payoff functions fi(x) are continuous in the
aggregate of variables, then in the game Γ a weak Berge equilibrium strategy
profile in mixed strategies exists.

3 The WBE in a Finite 3-Person Game

Let us consider a non-cooperative 3-person game.

Γ3 = 〈{1, 2, 3}, {Xi}i=1,2,3, {fi(x)}i=1,2,3〉.
The strategy profile xw = (xw

1 , xw
2 , xw

3 ) is the WBE strategy profile, if and only
if

1) the strategy xw
1 is the Pareto-optimal alternative in the two-criterial problem

〈X1, {f2(x1, x
w
2 , xw

3 ), f3(x1, x
w
2 , xw

3 )}〉;
2) the strategy xw

2 is the Pareto-optimal alternative in the two-criterial problem

〈X2, {f1(xw
1 , x2, x

w
3 ), f3(xw

1 , x2, x
w
3 )}〉;

3) the strategy xw
3 is the Pareto-optimal alternative in the two-criterial problem

〈X3, {f1(xw
1 , xw

2 , x3), f2(xw
1 , xw

2 , x3)}〉.
Let us compose an axillary game for the game Γ3

Γ̃3 = 〈{1, 2, 3}, {Xi}i=1,2,3, {gi(x)}i=1,2,3〉,
where, according to (5)

g1(x) = f2(x) + f3(x),
g2(x) = f1(x) + f3(x),
g3(x) = f1(x) + f2(x).

(9)

The NE strategy profile in Γ̃3 will be the WBE strategy profile in the original
game Γ3.

Below, a finite non-cooperative 3-person game Γ3 is defined with three sets
X, Y , Z of strategies of the first, second, and third player respectively, where
X = {x = (x1, . . . , xm)T ∈ Rm : xT em = 1, x ≥ 0m}, Y = {y = (y1, . . . , yn)T ∈
Rn : yT en = 1, y ≥ 0n}, Z = {z = (z1, . . . , zl)T ∈ Rl : zT el = 1, z ≥ 0l},
ω = (x, y, z) ∈ Rm+n+l, together with their payoff functions as follows

fx(ω) =
m∑

i=1

n∑
j=1

l∑
k=1

aijkxiyjzk,

fy(ω) =
m∑

i=1

n∑
j=1

l∑
k=1

bijkxiyjzk,

fz(ω) =
m∑

i=1

n∑
j=1

l∑
k=1

cijkxiyjzk.
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Here, one has (aijk), (bijk), (cijk)—the players’ 3-dimensional payoff tables
(without any loss of generality one can assume that all the entries of those tables
are positive real numbers); the vector ωT = (xT , yT , zT ), ω ∈ Ω = X ×Y ×Z ⊂
⊂ Rm+n+l

+ . Next, for p = m,n, l, we define the vectors 0p = (0, . . . , 0)T ∈ Rp
+,

ep = (1, . . . , 1)T ∈ Rp, as well as Rp
+—the nonnegative orthant of the Euclidean

space Rp. The symbol T denotes the operation of transposition of a vector
(matrix).

Following the algorithm in remark 1, we construct the functions (9).

gx(ω) = fy(ω) + fz(ω) =
m∑

i=1

n∑
j=1

l∑
k=1

(bijk + cijk)xiyjzk,

gy(ω) = fx(ω) + fz(ω) =
m∑

i=1

n∑
j=1

l∑
k=1

(aijk + cijk)xiyjzk,

gz(ω) = fx(ω) + fy(ω) =
m∑

i=1

n∑
j=1

l∑
k=1

(aijk + bijk)xiyjzk.

Let us introduce the Nash function G(ω) = δx(ω) + δy(ω) + δz(ω), where

δx(ω) = max
x′∈X

g(x′, y, z) − g(ω),

δy(ω) = max
y′∈Y

g(x, y′, z) − g(ω),

δz(ω) = max
z′∈Z

g(x, y, z′) − g(ω).

The function G(ω) is an analogue of the Nash function defined for the bi-matrix
games [16]. As the above–defined payoff functions are linear with respect to each
variable x, y, z(when the other two variables are fixed), the auxiliary game Γ̃3

is convex, hence the set of Nash points Ω∗ is non-empty (but not necessarily
convex).

Since G(ω) ≥ 0 for all ω ∈ Ω, and G(ω) = 0 if, and only if ω is the NE of
the game Γ̃3, one can find the Nash equilibrium strategy profile of game Γ̃3 as
the global minimum (equalling zero) of the function G(ω) on Ω.

Now we turn to the approximately numerical method for the construction of
WBE in the game Γ3. In [12] this algorithm (3LP) approximately solving finite
non-cooperative three-person games was proposed. The testing results illustrat-
ing the efficiency of the mentioned method’s application can be found in [13,14].

The 3LP-Method for Solving the Finite 3-Persons Game

We denote ãijk = bijk + cijk, b̃ijk = aijk + cijk, c̃ijk = aijk + bijk and dijk =
ãijk + b̃ijk + c̃ijk = 2(aijk + bijk + cijk).

The iteration counter is set as t = 0. As an starting strategy, one can use any
pair of the players’ pure strategies (the total number of such pairs is mn+ml+nl);
for example, fix the pair of strategies {y(0), z(0)} with the components y

(0)
1 = 1,

y
(0)
j = 0 (j = 2, . . . , n), z

(0)
1 = 1, z

(0)
k = 0 (k = 2, . . . , l), and solve successively
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(for t = 0, 1, . . .) the triple problem Px(x(t+1), y(t), z(t)), Py(x(t+1), y(t+1), z(t)),
Pz(x(t+1), y(t+1), z(t+1)), where

Px(x, y′, z′) :

m∑
i=1

(
n∑

j=1

l∑
k=1

dijky′
jz

′
k

)
xi − β − γ → max

x,β,γ
,

m∑
i=1

(
l∑

k=1

b̃ijkz′
k

)
xi − β ≤ 0, j = 1, . . . , n,

m∑
i=1

(
n∑

j=1

c̃ijky′
j

)
xi − γ ≤ 0, k = 1, . . . , l,

xT em = 1, x ≥ 0m, β, γ ∈ R1
+.

If x∗ is an optimal solution to the problem Px(x, y′, z′), then we set x′ := x∗.
Then we solve:

Py(x′, y, z′) :

n∑
j=1

(
m∑

i=1

l∑
k=1

dijkx′
iz

′
k

)
yj − α − γ → max

y,α,γ
,

n∑
j=1

(
l∑

k=1

ãijkz′
k

)
yj − α ≤ 0, i = 1, . . . , m,

n∑
j=1

(
m∑

i=1

c̃ijkx′
i

)
yj − γ ≤ 0, k = 1, . . . , l,

yT en = 1, y ≥ 0n, α, γ ∈ R1
+.

Again, if y∗ is an optimal plan for the above problem Py(x′, y, z′), then put
y′ := y∗, and continue solving:

Pz(x′, y′, z) :

l∑
k=1

(
m∑

i=1

n∑
j=1

dijkx′
iy

′
j

)
zk − α − β → max

z,α,β
,

l∑
k=1

(
m∑

i=1

b̃ijkx′
k

)
zk − α ≤ 0, j = 1, . . . , n,

l∑
k=1

(
n∑

j=1

c̃ijky′
j

)
zk − β ≤ 0, i = 1, . . . ,m,

zT el = 1, z ≥ 0l, α, β ∈ R1
+.

Now that z∗ is an optimal solution of the problem Pz(x′, y′, z), we denote z′ :=
z∗.

The optimal objective function values Gt = G(ω(t+1)) are monotone non-in-
creasing by t. The iteration process continues until the value Gt stabilizes, that
is, for some t∗, the difference Gt∗ − Gt∗+1 becomes small enough. In addition, if
Gt∗ = 0, it means that an (exact) Nash point has been found. If the value Gt∗

is positive but small enough, an approximate solution of the game is reported.
Otherwise, a new pair of the initial strategies is selected and the process starts
again (probably, having altered the order of the solved problems Px, Py, Pz).

Test Results for the 3LP-Algorithms for Finding the WBE

We tested the algorithms for finding the WBE in the finite 3-person games by
using the personal computer with the processor Intel(R) Core(TM) i5-3427U
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(CPU @ 1.80GHz 2.300 GHz, memory 4.00 GB, 4 cores). The test codes were
written in the MatLab. A series of 10 games was solved for each triple n,m, l.

We investigated 2 cases: independent matrices and mutually dependent
matrices. In the first case (independent matrices) we used a pseudo-random
counters to generate independently the elements of the tables aijk, bijk, cijk

(1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ l).
For the game with mutually dependent matrices, we first used pseudo-ran-

dom counters to generate independently the elements of the auxiliary tables a′
ijk,

b′
ijk, c′

ijk (1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ l). At the second stage, we constructed
the mutually dependent payoff tables by the formulas

aijk = a′
ijk − λ

b′
ijk+c′

ijk

2 + 1,

bijk = b′
ijk − λ

a′
ijk+c′

ijk

2 + 1,

cijk = c′
ijk − λ

a′
ijk+b′

ijk

2 + 1

for all 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ l, where 0 < λ ≤ 1
2 is a covariance

coefficient.
We solved games up to the dimension dim = m = n = k = 100. For compar-

ison, using the 3LP-algorithm, we calculated the NE for the same games.
The Table 2 presents the results of the 3LP-algorithm solving the set of

test games (5 series with 10 instances in each) with independent matrices. The
algorithm switched to the next initial pair of strategies after having made dim
iterations.

In Table 2, the following notation is used: dim = m = n = k are the game’s
sizes (dimension); NE—the number of initial (starting) point when searching
for a Nash equilibrium; WBE—the number of start points when searching for
a weak Berge equilibrium; tNE—the total amount of time to search a Nash
equilibrium for the series of 10 games (sec); tWBE—the total amount of time
to search a weak Berge equilibrium for the series of 10 games (sec).

Table 2. The results of solving 5 series of games of ten problems with independent
matrices

dim NE WBE tNE tWBE

20 327 85 745.85 129.88

40 230 59 539.28 99.34

60 169 40 404.43 88.1

80 129 28 373.14 92.03

100 159 41 904.85 162.62

In Table 3, for mutually dependent cases, the following notation is also used:
dim = m = n = k are the game’s sizes (dimension); WBE—the number of start
points when searching for a weak Berge equilibrium; tWBE—the total amount
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of time to search the WBE for the series of 10 games (sec); itn - the total number
of steps of the 3LP algorithm. The covariance coefficient λ = 0, 4 was used in
the calculation of Table 3.

For mutually dependent cases, the results are given only for the WBE, so
when calculating the NE for these problems take an unacceptable time or they
are not solved at all.

Table 3. The results of solving 5 series of games of ten problems with mutually depen-
dent matrices

dim itn WBE tWBE

20 3173 479 1106.49

40 6532 814 2101.15

60 12826 1415 5134.66

80 10306 1017 5564.54

100 16725 1527 13049.09

It is easy to notice from the reported results (see Table 2 and Table 3), the
reciprocal dependence of the payoff matrices affect much to solve a problem by
the 3LP-algorithm. The reciprocal dependence sufficiently increases the com-
plexity of problems.

It is also clear that, the search for the WBE is much faster than the search
for the NE. This is most likely due to the pure weak Berge equilibrium strategy
profile existing more often than the pure Nash equilibrium strategy profile.

4 Conclusion

In this paper, we formalize the conception of the WBE. The WBE follows the
Hippocratic oath “First do no harm!” In contrast to the NE, the WBE always
exists for every finite N -person game. As an example, we find the WBE in the
finite 3-person games using the 3LP-algorithm. In the future, the authors plan
to transfer the proposed numerical algorithm for finding WBE to finite games
of a larger (N = 4, 5) number of persons.
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