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Abstract. We study the proximity of the optimal value of the m-
dimensional knapsack problem to the optimal value of that problem with
the additional restriction that only one type of items is allowed to include
in the solution. We derive exact and asymptotic formulas for the preci-
sion of such approximation, i.e. for the infinum of the ratio of the optimal
value for the objective functions of the problem with the cardinality con-
straint and without it. In particular, we prove that the precision tends
to 0.59136.../m if n — oo and m is fixed. Also, we give the class of
the worst multi-dimensional knapsack problems for which the bound is
attained. Previously, similar results were known only for the case m = 1.
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1 Introduction

In [1,2,4,5] the proximity of the optimal value of the (one-dimensional) knapsack
problem to the optimal value of the problem with the cardinality constraints was
studied. The cardinality constraint is the additional restriction that only k type
of items is allowed to include in the solution (i.e. that only &k coordinates of the
optimal solution vector can be non-zero). Different upper and lower bounds for
the guaranteed precision, i.e. for the infinum of the ratio of the optimal value
for the objective functions of the problem with the cardinality constraints and
without them, were obtained. Also, in some cases the classes of worst problems
were constructed.

The importance of such kind of research is due to the fact that some algo-
rithms for solving the knapsack problems require to find an optimal solution to
that problem with the cardinality constraints; see, for example [4,5], where this
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approach is used for constructing greedy heuristics for the integer knapsack prob-
lem. Moreover, the results of research can be potentially useful for constructing
new fully polynomial approximation schemes.

Here, from this point of view, we consider the m-dimensional knapsack prob-
lem. The solution to that problem with the additional constraint that only 1
coordinate can be non-zero is called the approximate solution. We derive exact
and asymptotic formulas for the precision of such approximation. In particular,
we prove that the precision tends to 0.59136.../m if n — oo and m is fixed.
Also, we give a class of worst multi-dimensional knapsack problems for which
the bound is attained.

2 Definitions

Denote by Z,, Ry the sets of all non-negative integer and real numbers respec-
tively. Let

L(A,b) = {a: ez : Ax < b}, A = (a;;) € R, b= (b;) € RT".
The integer m-dimensional knapsack problem is to find z such that
cx — max s.t. x € L(A,D), (1)

where ¢ = (¢;) € R [3,6].
Denote by vU) (j = 1,2,...,n) a point in L(A,b), all of whose coordinates

() ©)

v;”’ are 0, except for of Cha which is

(@ _ : i
vio = min [bi/ag]
It is not hard to see that v\9) € L(A,b) and cv¥) = cjv§j). Denote V(A4,b) =
{o®, ..., v} A point v7), on which the maximum

max cot?)
J

attained is called an approzimate solution to the problem (1). The precision of
the approximate solution is

max cx
(A, b, ) = TeEVAb)
T max czx
zeL(Ab)
In this paper we study the value
Qi = inf  «a(A,b,c).
AeRzLX’n

beRT, cE€R'}
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Table 1. Values of §,, ¢, and a1, for small n

n 6p =8p-1(0n—1+1) en=14¢ep_1(6p—1 +1) a1y = 6n/en

1 1/1.000000000000000
2 2 3/0.666666666666667
3 6 10/0.600000000000000
4 42 71/0.591549295774648
5 1806 3054|0.591355599214145
6 3263442 5518579/0.591355492056923
7 10650056950806 18009568007498|0.591355492056890
8/113423713055421844361000442|191802924939285448393150887|0.591355492056890

3 Previous Work

The precision of the approximate solution to the 1-dimensional (m = 1) knapsack
problem was studied in [1,2,4,5]. In particular, in [2,4] it was proven that

6n:5n—1(5n—1+1)7 En = 1+5n—1(5n—1+1)7 51 =é1 =1

The sequence {6, } is the A007018 sequence in On-Line Encyclopedia of Integer
Sequences (OEIS) [7]. The sequence {e, } is currently absent in OEIS.

The sequence «y,, = d, /e, decreases monotonously and tends to the value
Q10 = 0.591355492056890 ... The values for §,, €, and «i, for small n are
presented in Table 1.

In [4,5] these results are used in constructing the approximate scheme for
the integer knapsack problem. Note that oy, is even higher than the guaranteed
precision 0.5 of the greedy algorithm [6].

The infinum for 1, is achieved on the problem (the worst case)

n

% — max
j=1"7

s.t. N

Z % <1,

= 63' + Uy
where 0 < < 1 and —— = 1. In particular,

< fin J; . p
5—1
w =1 ps= \[2 =0.61803..., pu3=0.93923..., puq4=0.99855...

The optimal solution vector to this problem is (1,1,...,1) and the optimal solu-

tion value is €,/0,, whereas the approximate solution vectors are
(1,0,0...,0), (0,92,0,...,0), (0,0,03,...,0), ..., (0,0,0,...,6,)

and the corresponding value of the objective function is 1.
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Lower and upper bounds for the guaranteed precision for k£ > 2 are obtained
in [2].
In this paper we obtain formulas for a,,, for m > 1. In particular, we prove

o
that o, — % if n — oo and m is fixed.

4 Preliminaries

Lemma 1. For any fized m the sequence {amyn} decreases monotonously.

Proof. Let A € RT™™, h,b € R, ¢ € R} and h > b. Consider a matrix A" =

(A|h)e RTX(nH) and a vector ¢/ = (¢,0) € R, Tt is not hard to see that
all points in L(A’,b) are obtained from the points in L(A,b) by writing the zero
component to the end. Hence a(A4,b,c) = a(A’,b,¢) > qumnt1. Due to the
arbitrariness of A, b, ¢, we get ampn > Qpmny1-

Lemma 2. a(A,b,c) = a(A’,b,¢c) for some A’ < A, where each column of A’

contains at least one non-zero element.

Proof. Let for some s, t we have ag; > 0 and for all i # s

)= [a]

(if there are no such s, t, then put A’ = A and A’ has the required form). From
the matrix A we construct a matrix A’ by setting a}, = 0 for all i # s and

;o .
a;; = a;j otherwise.

For all z € R} we have A’z < Ax. Hence L(A,b) C L(A’,b). Hence

max cr < max cx.
z€L(A,b) zeL’(A,b)

But

. b . by, .
min | —| = min | (j=1,2,...,n),
k: ap;>0 | Gj k: a;ej>0 akj

hence V(4,b) = V(A’,b). Now we have

max v max | ci
zeV(Ab z€V (A b
a(A,b,c) = > = a(A')b,c).
max cx max cx
2€L(Ab) w€L(A’b)

To complete the proof we note that the procedure described above can be
performed until the matrix A’ acquires the required form.

From Lemma 2 it follows that to study ., it is enough to consider only
multi-dimensional knapsack problems with constraints

a11xr1+ ... +a1[1.’£ll S bla
a0, 4121 41+ - +a2,1,21, < bo,

am,lm,l-ﬁ—lxl'i' vr T AT S bma
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that can be called a direct product of m knapsack problems. All inequalities 0 < b;
have to be deleted due to Lemma 1. Denote n; = l; —lx_1, where l[o =0, [,, =n
(i=1,2,...,m). Thus, we have proved the following.

Lemma 3. For each m, n the infimum ., s attained on the direct product of

knapsack problems.

5 The Main Result

The main result of the paper is formulated in the following theorem.
Theorem 1. For each m, n

Qg

Amn = o 5 (2)
m+r (1'] - 1)
Q1,q+1

where n =qm+r, g = |n/m|.

The theorem follows from two lemmas below.

Lemma 4. For each m, n

aq
- 1 :
o
m+r| —L -1
al,qul

Proof. Thanks to Lemma 3, it is enough to consider only direct products of m
knapsack problems. Let 7; = v;/0; be the precision of approximate solution to
the i-th knapsack problem (i = 1,2,...,m), where ; is the approximate solution
value, (3; is the optimal solution value. For their product we have

max y;
i=1,... 1 1 1
Ol(A,b, C) = 1;71 = = m’ys = = > .
$o S $o o gl
(] (] — -
i=1 i=1 i=1"s i=1TsTi i=1Ti
The inequality turns into equality if and only if 73 = v = -+ = ~,,. Since
Ts > Q1p, then
1
a4 bc) > ———
72": 1
i=1 Qln;
Thus, we obtain the problem to find nq,ns,...,n,, such that
1 m
T min s.t. an =n. (3)
3 i=1

1 X1n,

3
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The sequence

1 1 enpr 5n71+5n(5n+1)75n(5n+1)7 1

almﬁ& A1 6n+1 6n 6n+1 6n+1 6n+1

decreases monotonously as n — 0o, hence

1 1 2
+—< .
Q1 n42 Qin Q1 n+1
We conclude that the minimum for (3) is reached if ny = -+ = n, = ¢+ 1,
Npy1 = -+ = Ny, = ¢. Thus,
1 a
a(A,b,c) = — = = 1 .
m —
> LN Lomtr (qu - 1>
i=1 Qln; A1,q+1 Q1q Q1,g+1

In the following lemma we construct a class of (worst) multi-dimensional
knapsack problems on which the bound (2) is attained.

Lemma 5. For each m and n

aq
Cmn < aq 7
1
m+r| —1 -1
Q1,q+1

where n = gm +r, ¢ = |n/m].

Proof. Consider the direct product of r knapsack problems of the form

and m — r knapsack problems of the form

q q
max 5 — max s.t. 5+ <1
j=1 7 j=1 q

The precision of the approximate solutions to these problems is a1, and o g41
respectively (see Sect. 3). For the product of these problems the optimal solution
value is
fm-m oMo
0 Q1g+41 Qg

Eq+1
5q+1

and the approximate solution value is 1, hence the precision of the approximate
solution is

1
a(A,b,c) = = M

T m-—r i .
+ m+r| —— -1
Q1,q+1 Q1q Q1,q+1
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Corollary 1.

A1, [n/m] <a < al»Ln/mJ_
m - = m

Proof. The first inequality obviously follows from (2). Let us prove the second
one. If r =0 then

Qg _ 1, [n/m]

Amn =
m m

If 0 < r < 'm then

@ a @ !

Qo = 01;1 > ;1 _ 177:'-1 _ 1,577;/7”]
m—l—r(m—l) m+m<1q—1>
O1,q+1 O1,q+1
From Corollary 1 we obtain the following.

Corollary 2. If n — oo, m = o(n) then qu,, ~ %.
Corollary 3. Ifn — oo and m is fixed then oy, — 041700'

6

In

Conclusion

this paper we derived exact and asymptotic formulas for the precision of

approximate solutions to the m-dimensional knapsack problem. In particular, we
proved that the precision tends to 0.59136.../m if n — oo and m is fixed. The
proof of the attainability of the obtained bounds for the precision is constructive.

In the future, our results can be base for new fully polynomial time approx-

imation schemes.
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