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Abstract. In this paper we experimentally check a hypothesis, that
dual problem to discrete entropy regularized optimal transport problem
possesses strong convexity on a certain compact set. We present a numer-
ical estimation technique of parameter of strong convexity and show that
such an estimate increases the performance of an accelerated alternat-
ing minimization algorithm for strongly convex functions applied to the
considered problem.
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1 Introduction

Optimal transport problem has different applications since it allows to define
a distance between probability measures including the earth mover’s distance
[51,62] and Monge-Kantorovich or Wasserstein distance [61]. These distances
play an increasing role in different machine learning tasks, such as unsupervised
learning [6,11], semi-supervised learning [56], clustering [31], text classification
[35], as well as in image retrieval, clustering and classification [13,51,53], statis-
tics [24,49], and other applications [33]. In many of these applications the original
optimal distances are substituted by entropically regularized optimal transport
problem [13] which gives rise to a so-called Sinkhorn divergence.

A close problem arises in transportation research and consists in recover-
ing a matrix of traffic demands between city districts from the information on
population and workplace capacities of each district. As it is shown in [28], a
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natural model of the district’s population dynamics leads to an entropy-linear
programming optimization problem for the traffic demand matrix estimation. In
this case, the objective function is a sum of an entropy function and a linear
function. It is important to note also that the entropy function is multiplied by
a regularization parameter γ and the model is close to reality when the regu-
larization parameter is small. The same approach is used in IP traffic matrix
estimation [63].

Recent approaches to solving discrete optimal transport problem are based on
accelerated primal-dual gradient-based algorithms [21,30] which in some regimes
demonstrate better performance than well-known Sinkhorn’s algorithm [13,55].
Both these algorithms have complexity polynomially depending on the desired
accuracy [3,21,40]. Despite, formally, the dual for the optimal transport problem
is not strongly convex, it is strongly convex on any bounded subset of any sub-
space orthogonal to a one-dimensional subspace. In this paper we suggest and
check empirically a hypothesis which helps to increase the rate of convergence
for the dual problem to optimal transport. The hypothesis is that dual func-
tion demonstrates strong convexity on the orthogonal subspace and Sinkhorn’s
and other algorithms produce points in this orthogonal subspace meaning that
actually the dual problem is strongly convex on the trajectory of the method.

Since we focus mainly on alternating minimization, the related work contains
such classical works as [10,48]. AM algorithms have a number of applications
in machine learning problems. For example, iteratively reweighted least squares
can be seen as an AM algorithm. Other applications include robust regression
[41] and sparse recovery [16]. Famous Expectation Maximization (EM) algorithm
can also be seen as an AM algorithm [4,42]. Sublinear O(1/k) convergence rate
was proved for AM algorithm in [8]. AM-algorithms converge faster in practice in
comparison to gradient methods as they are free of the choice of the step-size and
are adaptive to the local smoothness of the problem. Besides mentioned above
works on AM algorithms, we mention [9,52,58], where non-asymptotic conver-
gence rates for AM algorithms were proposed and their connection with cyclic
coordinate descent was discussed, but the analyzed algorithms are not acceler-
ated. Accelerated versions are known for random coordinate descent methods
[2,23,26,27,36,37,44,47,54]. These methods use momentum term and block-
coordinate steps, rather than full minimization in blocks. A hybrid accelerated
random block-coordinate method with exact minimization in the last block and
an accelerated alternating minimization algorithm were proposed in [17].

2 Dual Optimal Transport Problem

In this paper we consider the following discrete-discrete entropically regularized
optimal transport problem

f(X) = 〈C,X〉 + γ〈X, ln X〉 → min
X∈U(r,c)

, (1)

U(r, c) = {X ∈ R
N×N
+ : X1 = r,XT1 = c},
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where X is the transportation plan, lnX is taken elementwise, C ∈ R
N×N
+ is

a given cost matrix, 1 ∈ R
N is the vector of all ones, r, c ∈ SN (1) := {s ∈

R
N
+ : 〈s,1〉 = 1} are given discrete measures, and 〈A,B〉 denotes the Frobenius

product of matrices defined as 〈A,B〉 =
N∑

i,j=1

AijBij .

Next, we consider the dual problem for the above optimal transport problem.
First, we note that U(r, c) ⊂ Q := {X ∈ R

N×N
+ : 1T X1 = 1} and the entropy

〈X, ln X〉 is strongly convex on Q w.r.t 1-norm, meaning that the dual problem
has the objective with Lipschitz-continuous gradient [43]. To be more precise,
function f is μ-strongly convex on a set Q with respect to norm ‖ · ‖ iff

f(y) � f(x) + 〈∇f(x), y − x〉 +
μ

2
‖x − y‖2 ∀x, y ∈ Q.

Further, function f is said to have L-Lipschitz-continuous gradient iff, for all
x, y ∈ Q, ‖∇f(x) − ∇f(y)‖∗ � L‖x − y‖. Here ‖ · ‖∗ is the standard conjugate
norm for ‖ · ‖. The proof that Entropy is 1-strongly convex on the standard
simplex w.r.t. to ‖·‖1-norm can be found in [43]. The dual problem is constructed
as follows

min
X∈Q∩U(r,c)

〈C,X〉 + γ〈X, ln X〉 (2)

= min
X∈Q

max
y,z∈RN

{
〈C,X〉 + γ〈X, ln X〉 + 〈y,X1 − r〉 +

〈
z,XT1 − c

〉 }

= max
y,z∈RN

{
− 〈y, r〉 − 〈z, c〉 + min

X∈Q

N∑

i,j=1

Xij
(
Cij + γ ln Xij + yi + zj

)}
.

Note that for all i, j and some small ε

Xij
(
Cij + γ ln Xij + yi + zj

)
< 0

for Xij ∈ (0, ε) and this quantity approaches 0 as Xij approaches 0. Hence,
Xij > 0 without loss of generality. Using Lagrange multipliers for the constraint
1T X1 = 1, we obtain the problem

min
Xij>0

max
ν

{
N∑

i,j=1

[
Xij

(
Cij + γ ln Xij + yi + zj

)] − ν

[ N∑

i,j=1

Xij − 1
]}

.

The solution to this problem is

Xij =
exp

(
− 1

γ

(
yi + zj + Cij

) − 1
)

∑n
i,j=1 exp

(
− 1

γ (yi + zj + Cij) − 1
) .

With a change of variables u = −y/γ − 1
21, v = −z/γ − 1

21 we arrive at the
following expression for the dual (minimization) problem

ϕ(u, v) = γ(ln
(
1T B(u, v)1

) − 〈u, r〉 − 〈v, c〉) → min
u,v∈RN

, (3)
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where [B(u, v)]ij = exp
(
ui + vj − Cij

γ

)
. Let us also define

ϕ(y, z) = ϕ

(

−y/γ − 1
2
1,−z/γ − 1

2
1
)

, (4)

i.e. ϕ(y, z) is the dual objective before change of variables. Note that the gradient
of this function has the form of two blocks

∇ϕ(y, z) =

⎛

⎜
⎜
⎜
⎝

r − B (−y/γ − 1/2,−z/γ − 1/2)1
1T B (−y/γ − 1/2,−z/γ − 1/2)1

c − B (−y/γ − 1/2,−z/γ − 1/2)T 1
1T B (−y/γ − 1/2,−z/γ − 1/2)1

⎞

⎟
⎟
⎟
⎠

. (5)

Notably, this dual problem is a smooth minimization problem with the objec-
tive having Lipschitz continuous gradient with constant 2/γ [30]. Unfortunately,
generally speaking it is not strongly convex since given a point (u0, v0) the value
of the objective is the same on the whole line (u0 + t1, v0 − t1) parameterized
by t. Yet, this function is strongly convex in the subspace orthogonal to these
lines [15]. The goal of this paper is to use this strong convexity to accelerate the
accelerated alternating minimization method based on Nesterov extrapolation
and alternating minimization.

The variables in the dual problem (3) naturally decompose into two blocks u
and v. Moreover, minimization over any one block may be performed analytically.

Lemma 1. The iterations

uk+1 ∈ argmin
u∈RN

ϕ(u, vk), vk+1 ∈ argmin
v∈RN

ϕ(uk+1, v),

can be written explicitly as

uk+1 = uk + ln r − ln
(
B

(
uk, vk

)
1
)
,

vk+1 = vk + ln c − ln
(
B

(
uk+1, vk

)T
1
)

.

This lemma implies that an alternating minimization method applied to the
dual formulation is a natural algorithm. In fact, this is the celebrated Sinkhorn’s
algorithm [13,55] in one of its forms [3] listed as Algorithm 1. This algorithm
may also be implemented more efficiently as a matrix-scaling algorithm, see [13].
For the reader’s convenience, we prove this lemma here.

Algorithm 1. Sinkhorn’s Algorithm
Output: xk

for k � 1 do
uk+1 = uk + ln r − ln

(
B

(
uk, vk

)
1
)

vk+1 = vk

uk+2 = uk+1

vk+2 = vk+1 + ln c − ln
(
B

(
uk+1, vk+1

)T
1
)

end for
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Proof. From optimality conditions, for u to be optimal, it is sufficient to have
∇uϕ(u, v) = 0, or

r − (1T B(u, vk)1)−1B(u, vk)1 = 0. (6)

Now we check that it is, indeed, the case for u = uk+1 from the statement of
this lemma. We check that

B(uk+1, vk)1 = diag(e(u
k+1−uk))B(uk, vk)1

= diag(eln r−ln(B(uk,vk)1))B(uk, vk)1

= diag(r) diag(B(uk, vk)1)−1B(uk, vk)1 = diag(r)1 = r

and the conclusion then follows from the fact that

1T B(uk+1, vk)1 = 1T r = 1.

The optimality of vk+1 can be proved in the same way.

3 Accelerated Sinkhorn’s Algorithm

In this section, we describe accelerated alternating minimization method from
[59], which originates from [29,30,46], where the latter preprint [30] describes
accelerated alternating minimization for non-strongly functions. Our goal is to
use the algorithm which has a possibility to use strong convexity. Formally, the
dual OT problem (3) is not strongly convex on the whole space. It is strongly con-
vex on any bounded subset of the subspace orthogonal to lines (u0 + t1, v0 − t1).
For non-strongly convex problems algorithm (2) has the following sublinear con-
vergence rate f(xk) − f(x∗) � 4nLR2

k2 . The proof can be found in [30]. The
following Algorithm 2 requires the knowledge of the parameter μ of strong con-
vexity. Notice, that this algorithm run with μ = 0 coincides with its modification
for non-strongly functions from [30]. But actually, we were able to outperform
the algorithm from [30] by estimating a parameter of strong convexity, but only
in iterations.
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Algorithm 2. Accelerated Alternating Minimization 2
Input: Starting point x0.
Output: xk

1: Set A0 = 0, x0 = v0, τ0 = 1
2: for k � 0 do
3: Set

βk = argmin
β∈[0,1]

f
(
xk + β(vk − xk)

)
(7)

4: Set yk = xk + βk(vk − xk) {Extrapolation step}
5: Choose ik = argmax

i∈{1,...,n}
‖∇if(yk)‖2

2

6: Set xk+1 = argmin
x∈Sik

(yk)

f(x) {Block minimization}

7: If L is known choose ak+1 s.t.
a2
k+1

(Ak+ak+1)(τk+μak+1)
= 1

Ln

If L is unknown, find largest ak+1 from the equation

f(yk) − a2
k+1

2(Ak+ak+1)(τk+μak+1)
‖∇f(yk)‖2

2+
μτkak+1

2(Ak+ak+1)(τk+μak+1)
‖vk − yk‖2

2 = f(xk+1) (8)

8: Set Ak+1 = Ak + ak+1, τk+1 = τk + μak+1

9: Set vk+1 = argmin
x∈RN

ψk+1(x) {Update momentum term}
10: end for

Theoretical justification is given by the following theorem proved in [59].

Theorem 1 [[59] Theorem 1]. After k steps of Algorithm 2 it holds that

f(xk) − f(x∗) � nLR2 min

{
4
k2

,

(

1 −
√

μ

nL

)k−1
}

, (9)

where R is an estimate for ‖x0 − x∗‖ satisfying ‖x0 − x∗‖ � R.

Applying Algorithm 2 to the dual entropy-regularized optimal transport prob-
lem (3) with the objective (4), and using the estimate L = 2/γ and R �
√

n/2
(

‖C‖∞ − γ
2 ln min

i,j
{ri, cj}

)

[30], we obtain the following Corollary.

Corollary 1. Let the histograms r, c be slightly modified, s.t. min
i,j

{ri, cj} � ε.

For example, one can set (r̃, c̃) =
(
1 − ε

8

) (
(r, c) + ε

n(8−ε) (1,1)
)
. Let Algorithm

2 be applied to the dual entropy-regularized optimal transport problem (3) with
the objective (4). Let this dual problem have μ-strongly convex objective. Then,
after k steps of Algorithm 2 it holds that

ϕ(y, z) − ϕ(y∗, z∗) � 2n

γ

(
‖C‖∞ − γ

2
ln ε

)2

min

{
4
k2

,

(

1 −
√

μγ

4

)k−1
}

. (10)
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The specification of Algorithm 2 for the dual entropy regularized optimal trans-
port problem (3) with the objective (4) is listed below as Algorithm 3. Each
variable has two blocks that naturally correspond to the variables (y, z) in (4).

Algorithm 3. Accelerated Sinkhorn with Strong Convexity
Input: Starting point x0.
Output: xk

1: Set A0 = 0, x0 = w0, τ0 = 1
2: for k � 0 do
3: Set

βk = argmin
β∈[0,1]

ϕ
(
xk + β(wk − xk)

)
(11)

4: Set sk = xk + βk(wk − xk) {Extrapolation step}
5: Choose ik = argmax

i∈{1,2}
‖∇iϕ(sk)‖2

2, where ∇ϕ(·) is given in (5).

6: if ik = 1 then
7: xk+1

1 = sk
1 + ln r − ln

(
B

(
sk
1 , sk

2

)
1
)
, xk+1

2 = sk
2

8: else
9: xk+1

2 = sk
2 + ln c − ln

(
B

(
sk
1 , sk

2

)T
1
)

, xk+1
1 = sk

1

10: end if

11: If L is known choose ak+1 s.t.
a2
k+1

(Ak+ak+1)(τk+μak+1)
= 1

2L

If L is unknown, find largest ak+1 from the equation

ϕ(sk) − a2
k+1

2(Ak+ak+1)(τk+μak+1)
‖∇ϕ(sk)‖2

2+
μτkak+1

2(Ak+ak+1)(τk+μak+1)
‖wk − sk‖2

2 = ϕ(xk+1) (12)

12: Set Ak+1 = Ak + ak+1, τk+1 = τk + μak+1

13: Set wk+1 = wk − ak+1∇ϕ(sk) {Update momentum term}
14: end for

We point out that usually, the goal is to solve the primal OT problem. For
simplicity, we consider only dual OT problem since the solution of the primal
can be reconstructed via standard primal-dual analysis [5,12,21,22] applied to
the discussed methods.

4 Estimating a Parameter of Strong Convexity

We build an initial estimate of strong convexity parameter μ by searching the
value μ̂ from [0, L̂] which gives the minimum objective value after 10 iterations.
L̂ is an upper bound on the parameter of Lipschitz continuity of the gradient.

Dependence of the objective value after 10 iterations on μ is presented on
Fig. 1.

Then we restart the algorithm from the best point with μ = [2μ̂, μ̂, μ̂/2] every
10 iterations.

The significant implementation detail is connected with the accumulation
of the momentum term (vector w) by Algorithm 2. If we restart the algorithm
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Fig. 1. Empirical dependence of the progress after 10 iterations h(μ) = ϕ(x10
μ ) on the

strong convexity parameter μ used in Algorithm 2. The initial value of μ is chosen as
a point of minimum of this dependence.

Fig. 2. Performance of Algorithm 2 with the optimal choice of parameter μ on the dual
entropy regularized optimal transport problem (3).

naively (with w0 = x0), we will lose all accumulated information. That is why,
we restart the algorithm with w0 obtained from the last iteration of the previous
restart. In order to compare the difference we bring to comparison the case of
naive restarts.

As we can see from (Fig. 2), the value of the dual objective decreases faster
when one uses the method with positive strong convexity parameter than when
one uses the method with μ = 0.
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5 Conclusion

In this work we have investigated, how strong convexity can be used to acceler-
ate the accelerated Sinkhorn’s algorithm for the dual entropy-regularized optimal
transport problem. As we see, the accelerated alternating minimization method
in its particular version of accelerated Sinkhorn’s algorithm with strong convex-
ity can utilize an estimated value of the strong convexity parameter to converge
faster. We underline that it is not clear how one can incorporate this informa-
tion in the standard Sinkhorn’s algorithm to accelerate it. As future work we
would like to note the study of automatic strong convexity adaptation proce-
dures like in [25,50], which are now adapted for gradient methods and coordi-
nate descent methods, rather than for alternating minimization methods. Among
other extensions, it would be interesting to understand whether restricted strong
convexity improves convergence rates of the methods for approximating Wasser-
stein barycenter [1,14,19,34,38,60] and related distributed optimization meth-
ods [18]. Another direction is an application to similar optimization problems,
which arise in transportation research in connection to equilibrium in congestion
traffic models and traffic demands matrix estimation [7,20] and multimarginal
optimal transport [39]. Finally, we use regularization for the OT problem to
make the dual problem have Lipshitz gradient. It would be interesting to use
universal methods [32,45,57] for the dual OT problem.
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