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Abstract. In this paper, we present a new Hyperfast Second-Order
Method with convergence rate O(N−5) up to a logarithmic factor for
the convex function with Lipshitz 3rd derivative. This method based on
two ideas. The first comes from the superfast second-order scheme of
Yu. Nesterov (CORE Discussion Paper 2020/07, 2020). It allows imple-
menting the third-order scheme by solving subproblem using only the
second-order oracle. This method converges with rate O(N−4). The sec-
ond idea comes from the work of Kamzolov et al. (arXiv:2002.01004). It is
the inexact near-optimal third-order method. In this work, we improve
its convergence and merge it with the scheme of solving subproblem
using only the second-order oracle. As a result, we get convergence rate
O(N−5) up to a logarithmic factor. This convergence rate is near-optimal
and the best known up to this moment.

Keywords: Tensor method · Inexact method · Second-order method ·
Complexity

1 Introduction

In recent years, it has been actively developing higher-order or tensor methods
for convex optimization problems. The primary impulse was the work of Yu.
Nesterov [23] about the possibility of the implementation tensor method. He
proposed a smart regularization of Taylor approximation that makes subproblem
convex and hence implementable. Also Yu. Nesterov proposed accelerated tensor
methods [22,23], later A. Gasnikov et al. [4,11,12,18] proposed the near-optimal
tensor method via the Monteiro–Svaiter envelope [21] with line-search and got
a near-optimal convergence rate up to a logarithmic factor. Starting from 2018–
2019 the interest in this topic rises. There are a lot of developments in tensor
methods, like tensor methods for Hölder-continuous higher-order derivatives [15,
28], proximal methods [6], tensor methods for minimizing the gradient norm
of convex function [9,15], inexact tensor methods [14,19,24], and near-optimal
composition of tensor methods for sum of two functions [19]. There are some
results about local convergence and convergence for strongly convex functions
[7,10,11]. See [10] for more references on applications of tensor method.
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At the very beginning of 2020, Yurii Nesterov proposed a Superfast Second-
Order Method [25] that converges with the rate O(N−4) for a convex func-
tion with Lipshitz third-order derivative. This method uses only second-order
information during the iteration, but assume additional smoothness via Lipshitz
third-order derivative.1 Here we should note that for the first-order methods,
the worst-case example can’t be improved by additional smoothness because it
is a specific quadratic function that has all high-order derivatives bounded [24].2

But for the second-order methods, one can see that the worst-case example does
not have Lipshitz third-order derivative. This means that under the additional
assumption, classical lower bound O(N−2/7) can be beaten, and Nesterov pro-
poses such a method that converges with O(N−4) up to a logarithmic factor.
The main idea of this method to run the third-order method with an inexact
solution of the Taylor approximation subproblem by method from Nesterov with
inexact gradients that converges with the linear speed. By inexact gradients, it
becomes possible to replace the direct computation of the third derivative by
the inexact model that uses only the first-order information. Note that for non-
convex problems previously was proved that the additional smoothness might
speed up algorithms [1,3,14,26,29].

In this paper, we propose a Hyperfast Second-Order Method for a convex
function with Lipshitz third-order derivative with the convergence rate O(N−5)
up to a logarithmic factor. For that reason, firstly, we introduce Inexact Near-
optimal Accelerated Tensor Method, based on methods from [4,19] and prove its
convergence. Next, we apply Bregman-Distance Gradient Method from [14,25]
to solve Taylor approximation subproblem up to the desired accuracy. This leads
us to Hyperfast Second-Order Method and we prove its convergence rate. This
method have near-optimal convergence rates for a convex function with Lipshitz
third-order derivative and the best known up to this moment.

The paper is organized as follows. In Sect. 2 we formulate problem and intro-
duce some basic facts and notation. In Sect. 3 we propose Inexact Near-optimal
Accelerated Tensor Method and prove its convergence rate. In Sect. 4 we propose
Hyperfast Second-Order Method and get its convergence speed.

2 Problem Statement and Preliminaries

In what follows, we work in a finite-dimensional linear vector space E = R
n,

equipped with a Euclidian norm ‖ · ‖ = ‖ · ‖2.
We consider the following convex optimization problem:

min
x

f(x), (1)

1 Note, that for the first-order methods in non-convex case earlier (see, [5] and ref-
erences therein) it was shown that additional smoothness assumptions lead to an
additional acceleration. In convex case, as far as we know these works of Yu. Nes-
terov [24,25] are the first ones where such an idea was developed.

2 However, there are some results [30] that allow to use tensor acceleration for the
first-order schemes. This additional acceleration requires additional assumptions on
smoothness. More restrictive ones than limitations of high-order derivatives.
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where f(x) is a convex function with Lipschitz p-th derivative, it means that

‖Dpf(x) − Dpf(y)‖ ≤ Lp‖x − y‖. (2)

Then Taylor approximation of function f(x) can be written as follows:

Ωp(f, x; y) = f(x) +
p∑

k=1

1
k!

Dkf(x) [y − x]k , y ∈ R
n. (3)

By (2) and the standard integration we can get next two inequalities

|f(y) − Ωp(f, x; y)| ≤ Lp

(p + 1)!
‖y − x‖p+1, (4)

‖∇f(y) − ∇Ωp(f, x; y)‖ ≤ Lp

p!
‖y − x‖p. (5)

3 Inexact Near-Optimal Accelerated Tensor Method

Problem (1) can be solved by tensor methods [23] or its accelerated versions
[4,12,18,22]. This methods have next basic step:

THp
(x) = argmin

y

{
Ω̃p,Hp

(f, x; y)
}

,

where
Ω̃p,Hp

(f, x; y) = Ωp(f, x; y) +
Hp

p!
‖y − x‖p+1. (6)

For Hp ≥ Lp this subproblem is convex and hence implementable.
But what if we can not solve exactly this subproblem. In paper [25] it was

introduced Inexact pth-Order Basic Tensor Method (BTMIp) and Inexact pth-
Order Accelerated Tensor Method (ATMIp). They have next convergence rates
O(k−p) and O(k−(p+1)), respectively. In this section, we introduce Inexact pth-
Order Near-optimal Accelerated Tensor Method (NATMIp) with improved con-
vergence rate Õ(k− 3p+1

2 ), where Õ(·) means up to logarithmic factor. It is an
improvement of Accelerated Taylor Descent from [4] and generalization of Inex-
act Accelerated Taylor Descent from [19].

Firstly, we introduce the definition of the inexact subproblem solution. Any
point from the set

N γ
p,Hp

(x) =
{

T ∈ R
n : ‖∇Ω̃p,Hp

(f, x;T )‖ ≤ γ‖∇f(T )‖
}

(7)

is the inexact subproblem solution, where γ ∈ [0; 1] is an accuracy parameter.
N0

p,Hp
is the exact solution of the subproblem.

Next we propose Algorithm 1.
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Algorithm 1 . Inexact pth-Order Near-optimal Accelerated Tensor Method
(NATMI)
1: Input: convex function f : Rn → R such that ∇pf is Lp-Lipschitz, Hp = ξLp

where ξ is a scaling parameter, γ is a desired accuracy of the subproblem solution.

2: Set A0 = 0, x0 = y0

3: for k = 0 to k = K − 1 do
4: Compute a pair λk+1 > 0 and yk+1 ∈ R

n such that

1

2
≤ λk+1

Hp · ‖yk+1 − x̃k‖p−1

(p − 1)!
≤ p

p + 1
,

where
yk+1 ∈ N γ

p,Hp
(x̃k) (8)

and

ak+1 =
λk+1 +

√
λ2

k+1 + 4λk+1Ak

2
, Ak+1 = Ak + ak+1

x̃k =
Ak

Ak+1
yk +

ak+1

Ak+1
xk .

5: Update xk+1 := xk − ak+1∇f(yk+1)
6: return yK

To get the convergence rate of Algorithm 1 we prove additional lemmas. The
first lemma gets intermediate inequality to connect theory about inexactness
and method’s theory.

Lemma 1. If yk+1 ∈ N γ
p,Hp

(x̃k), then

‖∇Ω̃p,Hp
(f, x̃k; yk+1)‖ ≤ γ

1 − γ
· (p + 1)Hp + Lp

p!
‖yk+1 − x̃k‖p. (9)

Proof. From triangle inequality we get

‖∇f(yk+1)‖ ≤ ‖∇f(yk+1) − ∇Ωp(f, x̃k; yk+1)‖
+ ‖∇Ωp(f, x̃k; yk+1) − ∇Ω̃p,Hp (f, x̃k; yk+1)‖ + ‖∇Ω̃p,Hp (f, x̃k; yk+1)‖
(5),(6),(7)

≤ Lp

p!
‖yk+1 − x̃k‖p

+
(p + 1)Hp

p!
‖yk+1 − x̃k‖p

+ γ‖∇f(yk+1)‖.

Hence,

(1 − γ)‖∇f(yk+1)‖ ≤ (p + 1)Hp + Lp

p!
‖yk+1 − x̃k‖p.

And finally from (7) we get

‖∇Ω̃p,Hp
(f, x̃k; yk+1)‖ ≤ γ

1 − γ
· (p + 1)Hp + Lp

p!
‖yk+1 − x̃k‖p.
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Next lemma plays the crucial role in the prove of the Algorithm 1 conver-
gence. It is the generalization for inexact subpropblem of Lemma 3.1 from [4].

Lemma 2. If yk+1 ∈ N γ
p,Hp

(x̃k), Hp = ξLp such that 1 ≥ 2γ + 1
ξ(p+1) and

1
2

≤ λk+1
Hp · ‖yk+1 − x̃k‖p−1

(p − 1)!
≤ p

p + 1
, then (10)

‖yk+1 − (x̃k − λk+1∇f(yk+1))‖ ≤ σ · ‖yk+1 − x̃k‖ , (11)

σ ≥ pξ + 1 − ξ + 2γξ

(1 − γ)2pξ
, (12)

where σ ≤ 1.

Proof. Note, that by definition

∇Ω̃p,Hp
(f, x̃k; yk+1) = ∇Ωp(f, x̃k; yk+1)

+
Hp(p + 1)

p!
‖yk+1 − x̃k‖p−1(yk+1 − x̃k).

(13)

Hence,

yk+1 − x̃k =
p!

Hp(p + 1)‖yk+1 − x̃k‖p−1

·
(
∇Ω̃p,Hp

(f, x̃k; yk+1) − ∇Ωp(f, x̃k; yk+1)
)

.

(14)

Then, by triangle inequality we get

‖yk+1 − (x̃k − λk+1∇f(yk+1))‖ = ‖λk+1(∇f(yk+1) − ∇Ωp(f, x̃k; yk+1))

+ λk+1∇Ω̃p,Hp
(f, x̃k; yk+1)

+
(
yk+1 − x̃k + λk+1(∇Ωp(f, x̃k; yk+1) − ∇Ω̃p,Hp

(f, x̃k; yk+1))
)∥∥∥

(5),(14)

≤ λk+1
Lp

p!
‖yk+1 − x̃k‖p + λk+1‖∇Ω̃p,Hp

(f, x̃k; yk+1)‖

+
∣∣∣∣λk+1 − p!

Hp · (p + 1) · ‖yk+1 − x̃k‖p−1

∣∣∣∣

· ‖∇Ω̃p,Hp
(f, x̃k; yk+1) − ∇Ωp(f, x̃k; yk+1)‖

(9),(13)

≤ ‖yk+1 − x̃k‖
(

λk+1
Lp

p!
‖yk+1 − x̃k‖p−1

+ λk+1
γ

1 − γ
· (p + 1)Hp + Lp

p!
‖yk+1 − x̃k‖p−1

)

+
∣∣∣∣λk+1 − p!

Hp · (p + 1) · ‖yk+1 − x̃k‖p−1

∣∣∣∣ · (p + 1)Hp

p!
‖yk+1 − x̃k‖p
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= ‖yk+1 − x̃k‖
(

λk+1

p!

(
Lp +

γ

1 − γ
((p + 1)Hp + Lp)

)
‖yk+1 − x̃k‖p−1

)

+ ‖yk+1 − x̃k‖
∣∣∣∣
λk+1(p + 1)Hp

p!
‖yk+1 − x̃k‖p−1 − 1

∣∣∣∣

(10)

≤ ‖yk+1 − x̃k‖
(

λk+1

p!

(
Lp +

γ

1 − γ
((p + 1)Hp + Lp)

)
‖yk+1 − x̃k‖p−1

)

+ ‖yk+1 − x̃k‖
(

1 − λk+1(p + 1)Hp

p!
‖yk+1 − x̃k‖p−1

)

= ‖yk+1 − x̃k‖
(

1 +
λk+1

p!
‖yk+1 − x̃k‖p−1

·
(

Lp − (p + 1)Hp +
γ

1 − γ
((p + 1)Hp + Lp)

))
.

Hence, by (10) and simple calculations we get

σ ≥ 1 +
1

2pHp

(
Lp − (p + 1)Hp +

γ

1 − γ
((p + 1)Hp + Lp)

)

= 1 +
1

2pξ

(
1 − (p + 1)ξ +

γ

1 − γ
((p + 1)ξ + 1)

)

= 1 +
1

2pξ

(
1 − pξ − ξ +

γpξ + γξ + γ

1 − γ

)

= 1 +
1

2pξ

(
1 − pξ − ξ − γ + γpξ + γξ + γpξ + γξ + γ

1 − γ

)

= 1 +
(

1 − pξ − ξ + 2γpξ + 2γξ

(1 − γ)2pξ

)

=
pξ + 1 − ξ + 2γξ

(1 − γ)2pξ
.

Lastly, we prove that σ ≤ 1. For that we need

(1 − γ)2pξ ≥ pξ + 1 − ξ + 2γξ

(p + 1)ξ ≥ 1 + 2γξ(1 + p)
1
2

− 1
2ξ(p + 1)

≥ γ.

We have proved the main lemma for the convergence rate theorem, other parts
of the proof are the same as [4]. As a result, we get the next theorem.

Theorem 1. Let f be a convex function whose pth derivative is Lp-Lipschitz
and x∗ denote a minimizer of f . Then Algorithm 1 converges with rate

f(yk) − f(x∗) ≤ Õ

(
HpR

p+1

k
3p+1

2

)
, (15)
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where
R = ‖x0 − x∗‖ (16)

is the maximal radius of the initial set.

4 Hyperfast Second-Order Method

In recent work [25] it was mentioned that for convex optimization problem
(1) with first order oracle (returns gradient) the well-known complexity bound(
L1R

2/ε
)1/2 can not be beaten even if we assume that all Lp < ∞. This is

because of the structure of the worth case function

fp(x) = |x1|p+1 + |x2 − x1|p+1 + ... + |xn − xn−1|p+1,

where p = 1 for first order method. It’s obvious that fp(x) satisfy the condition
Lp < ∞ for all natural p. So additional smoothness assumptions don’t allow to
accelerate additionally. The same thing takes place, for example, for p = 3. In this
case, we also have Lp < ∞ for all natural p. But what is about p = 2? In this case
L3 = ∞. It means that f2(x) couldn’t be the proper worth case function for the
second-order method with additional smoothness assumptions. So there appears
the following question: Is it possible to improve the bound

(
L2R

3/ε
)2/7? At the

very beginning of 2020 Yu. Nesterov gave a positive answer. For this purpose, he
proposed to use an accelerated third-order method that requires Õ

(
(L3R

4/ε)1/4
)

iterations by using second-order oracle [23]. So all this means that if L3 < ∞,
then there are methods that can be much faster than Õ

((
L2R

3/ε
)2/7

)
.

In this section, we improve convergence speed and reach near-optimal speed
up to logarithmic factor. We consider problem (1) with p = 3, hence L3 < ∞.
In previous section, we have proved that Algorithm 1 converges. Now we fix the
parameters for this method

p = 3, γ =
1
2p

=
1
6
, ξ =

2p

p + 1
=

3
2
. (17)

By (12) we get σ = 0.6 that is rather close to initial exact σ0 = 0.5. For such
parameters we get next convergence speed of Algorithm 1 to reach accuracy ε:

Nout = Õ

((
L3R

4

ε

) 1
5
)

. (18)

Note, that at every step of Algorithm 1 we need to solve next subproblem
with accuracy γ = 1/6

argmin
y

{
〈∇f(xi), y − xi〉 +

1
2
∇2f(xi)[y − xi]2

+
1
6
D3f(xi)[y − xi]3 +

L3

4
‖y − xi‖4

}
.

(19)
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In [14] it was proved, that problem (19) can be solved by Bregman-Distance
Gradient Method (BDGM) with linear convergence speed. According to [25]
BDGM can be improved to work with inexact gradients of the functions. This
made possible to approximate D3f(x) by gradients and escape calculations of
D3f(x) at each step. As a result, in [25] it was proved, that subproblem (19)
can be solved up to accuracy γ = 1/6 with one calculation of Hessian and
O

(
log

(
‖∇f(xi)‖+‖∇2f(xi)‖

ε

))
calculation of gradient.

We use BDGM to solve subproblem from Algorithm 1 and, as a result, we
get next Hyperfast Second-Order method as merging NATMI and BDGM.

Algorithm 2. Hyperfast Second-Order Method
1: Input: convex function f : Rn → R with L3-Lipschitz 3rd-order derivative.
2: Set A0 = 0, x0 = y0

3: for k = 0 to k = K − 1 do
4: Compute a pair λk+1 > 0 and yk+1 ∈ R

n such that

1

2
≤ λk+1

3L3 · ‖yk+1 − x̃k‖2

4
≤ 3

4
,

where yk+1 ∈ N 1/6

3,3L3/2(x̃k) solved by Algorithm 3 and

ak+1 =
λk+1 +

√
λ2

k+1 + 4λk+1Ak

2
, Ak+1 = Ak + ak+1

x̃k =
Ak

Ak+1
yk +

ak+1

Ak+1
xk .

5: Update xk+1 := xk − ak+1∇f(yk+1)
6: return yK

In the Algorithm 3, βρk
(zi, z) is a Bregman distance generated by ρk(z)

βρk
(zi, z) = ρk(z) − ρk(zi) − 〈∇ρk(zi), z − zi〉 .

By gϕk,τ (z) we take an inexact gradient of the subproblem (19)

gϕk,τ (z) = ∇f(x̃k) + ∇2f(x̃k)[z − x̃k] +
1
2
gτ

x̃k
(z) + L3‖z − x̃k‖2(z − x̃k) (22)

and gτ
x̃k

(z) is a inexact approximation of D3f(x̃k)[y − x̃k]2

gτ
x̃k

(z) =
1
τ2

(∇f(x̃k + τ(z − x̃k)) + ∇f(x̃k − τ(z − x̃k)) − 2∇f(x̃k)) . (23)

In paper [25] it is proved, that we can choose

δ = O

(
ε

3
2

‖∇f(x̃k)‖ 1
2∗ + ‖∇2f(x̃k)‖ 3

2 /L
1
2
3

)
,
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Algorithm 3. Bregman-Distance Gradient Method
1: Set z0 = x̃k and τ = 3δ

8(2+
√
2)‖∇f(x̃k)‖

2: Set objective function

ϕk(z) = 〈∇f(x̃k), z − x̃k〉+ 1

2
∇2f(x̃k)[z − x̃k]

2+
1

6
D3f(x̃k)[z − x̃k]

3+
L3

4
‖z − x̃k‖4

3: Set feasible set

Sk =

{
z : ‖z − x̃k‖ ≤ 2

(
2+

√
2

L3
‖∇f(x̃k)‖

) 1
3
}

(20)

4: Set scaling function
ρk(z) =

1
2

〈∇2f(x̃k)(z − x̃k), z − x̃k

〉
+ L3

4
‖z − x̃k‖4 (21)

5: for k ≥ 0 do
6: Compute the approximate gradient gϕk,τ (zi) by (22).
7: IF ‖gϕk,τ (zi)‖ ≤ 1

6
‖∇f(zi)‖ − δ, then STOP

8: ELSE zi+1 = argmin
z∈Sk

{
〈gϕk,τ (zi), z − zi〉 + 2

(
1 + 1√

2

)
βρk (zi, z)

}
,

9: return zi

then total number of inner iterations equal to

Tk(δ) = O

(
ln

G + H

ε

)
, (24)

where G and H are the uniform upper bounds for the norms of the gradients
and Hessians computed at the points generated by the main algorithm. Finally,
we get next theorem.

Theorem 2. Let f be a convex function whose third derivative is L3-Lipschitz
and x∗ denote a minimizer of f . Then to reach accuracy ε Algorithm 2 with
Algorithm 3 for solving subproblem computes

N1 = Õ

((
L3R

4

ε

) 1
5
)

(25)

Hessians and

N2 = Õ

((
L3R

4

ε

) 1
5

log
(

G + H

ε

))
(26)

gradients, where G and H are the uniform upper bounds for the norms of the
gradients and Hessians computed at the points generated by the main algorithm.

One can generalize this result on uniformly-strongly convex functions by
using inverse restart-regularization trick from [13].

So, the main observation of this section is as follows: If L3 < ∞, then we can
use this hyperfast3 second-order algorithm instead of considered in the paper
optimal one to make our sliding faster (in convex and uniformly convex cases).
3 Here we use terminology introduced in [25].



176 D. Kamzolov

5 Conclusion

In this paper, we present Inexact Near-optimal Accelerated Tensor Method and
improve its convergence rate. This improvement make it possible to solve the
Taylor approximation subproblem by other methods. Next, we propose Hyper-
fast Second-Order Method and get its convergence speed O(N−5) up to logarith-
mic factor. This method is a combination of Inexact Third-Order Near-Optimal
Accelerated Tensor Method with Bregman-Distance Gradient Method for solv-
ing inner subproblem. As a result, we prove that our method has near-optimal
convergence rates for given problem class and the best known on that moment.

In this paper, we developed near-optimal Hyperfast Second-Order method for
sufficiently smooth convex problem in terms of convergence in function. Based on
the technique from the work [9], we can also developed near-optimal Hyperfast
Second-Order method for sufficiently smooth convex problem in terms of conver-
gence in the norm of the gradient. In particular, based on the work [16] one may
show that the complexity of this approach to the dual problem for 1-entropy
regularized optimal transport problem will be Õ

((
(
√

n)4/ε
)1/5

)
· O(n2.5) =

O(n2.9ε−1/5) a.o., where n is the linear dimension of the transport plan matrix,
that could be better than the complexity of accelerated gradient method and
accelerated Sinkhorn algorithm O(n2.5ε−1/2) a.o. [8,16]. Note, that the best theo-
retical bounds for this problem are also far from to be practical ones [2,17,20,27].

Acknowledgements. I would like to thank Alexander Gasnikov, Yurii Nesterov,
Pavel Dvurechensky and Cesar Uribe for fruitful discussions.
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