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Abstract. In the paper, a method is proposed for minimizing a non-
differentiable convex function. This method belongs to a class of bundle
methods. In the developed method it is possible to periodically produce
discarding all previously constructed cutting planes that form the model
of the objective function. These discards are applied when approxima-
tion of the epigraph of the objective function is sufficiently good in the
a neighborhood of the current iteration point, and the quality of this
approximation is estimated by using the model of the objective func-
tion. It is proposed an approach for constructing mixed minimization
algorithms on the basis of the developed bundle method with involving
any relaxation methods. The opportunity to mix the developed bun-
dle method with other methods is provided as follows. In the proposed
method during discarding the cutting planes the main iteration points are
fixed with the relaxation condition. Any relaxation minimization method
can be used to build these points. Moreover, the convergence of all such
mixed algorithms will be guaranteed by the convergence of the devel-
oped bundle method. It is important to note that the procedures for
updating cutting planes introduced in the bundle method will be trans-
ferred to mixed algorithms. The convergence of the proposed method is
investigated, its properties are discussed, an estimate of the accuracy of
the solution and estimation of the complexity of finding an approximate
solution are obtained.

Keywords: Nondifferentiable optimization · Mixed algorithms ·
Bundle methods · Cutting planes · Sequence of approximations ·
Convex functions

1 Introduction

Nowadays a lot of different methods have been developed for solving nonlinear
programming problems. Each of these optimization methods has its own dis-
advantages and advantages. In this regard, for solving practical problems these
methods are used in a complex manner in order to accelerate the convergence of
the optimization process. Namely, at each step to find the next approximation
there are opportunities to choose any minimization method among other meth-
ods which allows to construct descent direction from the current point faster. The
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algorithm that is formed as a result of applying various optimization methods is
called mixed (e.g., [1,2]).

In this paper, based on the ideas of [2], an approach is proposed for con-
structing mixed algorithms on the basis of some proximal bundle method which
is characterized by the possibility to periodically discard the cutting planes.

2 Problem Setting

Let f(x) be a convex function defined in an n-dimensional Euclidian space,
∂f(x), ∂εf(x) be a subdifferential and an ε-subdifferential of the function f(x)
at x respectively.

Suppose f∗ = min{f(x) : x ∈ Rn}, X∗ = {x ∈ Rn : f(x) = f∗} �= ∅, X∗(ε) =
{x ∈ Rn : f(x) ≤ f∗ +ε}, ε > 0, K = {0, 1, . . . }, L(y) = {x ∈ Rn : f(x) ≤ f(y)},
where y ∈ Rn. Denote by �χ� the least integer no less than χ ∈ R1. It is assumed
that the set L(y) is bounded for any y ∈ Rn. Fix an arbitrary point x∗ ∈ X∗.

It is required to find a point from the set X∗(ε) with given ε > 0 for a finite
number of iterations.

3 Minimization Method

First, consider an auxiliary procedure π = π(x̄, ξ̄, θ̄, μ̄) with the following input
parameters:

x̄ ∈ Rn, ξ̄ > 0, θ̄ ∈ (0, 1), μ̄ > 0.

Step 0. Define initial parameters k = 0, xk = x̄.
Step 1. Choose a subgradient sk ∈ ∂f(xk). Assign i = 0, sk,i = sk, xk,i = xk,

f̂k,i(y) = f(xk,i) + 〈sk,i, y − xk,i〉. (1)

Step 2. Find a point

xk,i+1 = arg min{f̂k,i(y) +
μ̄

2
‖y − xk‖2 : y ∈ Rn}. (2)

Step 3. Compute a parameter

δk,i = f(xk) − f̂k,i(xk,i+1) − μ̄

2
‖xk,i+1 − xk‖2. (3)

Step 4. If the inequality
δk,i ≤ ξ̄, (4)

is fulfilled, then the process of finding sequence is stopped, and the point

x̂ = arg min{f(xk,j) : 0 ≤ j ≤ i + 1} (5)

is a result of the procedure.
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Step 5. If the condition
f(xk,i+1) ≤ f(xk) − θ̄δk,i (6)

is fulfilled, then choose a point xk+1 ∈ Rn according to the inequality

f(xk+1) ≤ f(xk,i+1), (7)

fix a number ik = i, increase the value of k by one, and go to Step 1.
Otherwise, go to the next step.

Step 6. Choose a subgradient sk,i+1 ∈ ∂f(xk,i+1), assign

f̂k,i+1(y) = max{f̂k,i(y), f(xk,i+1) + 〈sk,i+1, y − xk,i+1〉}, (8)

and go to Step 2 with incremented i.

Consider some remarks concerning the procedure π.

Remark 1. For some k ≥ 0, i ≥ 0 on the basis of (1), (8) it is not difficult to
obtain the equality

f̂k,i(y) = max
0≤j≤i

{f(xk,j) + 〈sk,j , y − xk,j〉}. (9)

The function f̂k,i(y) is a model of the convex function f(x). Since the model
f̂k,i(y) is the maximum of linear (hence convex) functions, then the function
f̂k,i(y) is convex.

One of the main problems arising in the numerical implementation of bundle
and cutting methods is the unlimited growth of the count of cutting planes which
are used to find iteration points. Currently, several approaches are proposed to
discard cutting planes for bundle methods (e. g., [3,5,6]). These approaches are
realized according to the aggregation technique of cutting planes proposed in
[3] as follows. At the initial step of any bundle method, a storage of cutting
planes (called a bundle) is formed and its size is set. Then the overflow of this
storage is checked at each step. If the storage of the cutting planes is full, then
the procedure is started for discarding the cutting planes in two stages. All
inactive cutting planes are discarded at the first stage, and if the first stage
does not allow to allocate free spaces in the plane storage, then the second stage
is performed. At the second stage any active cutting plane is removed from
the storage to free space and one aggregated cutting plane is added which is
constructed as a convex combination of active and inactive cutting planes. Note
that the application of such an aggregation technique allows approximating the
subdifferential of the objective function at the current point and construct some
e-subgradient. However, the quality of the approximation of the epigraph of the
objective function at the current iteration point is deteriorated after performing
the second stage of the procedure for discarding the cutting planes.

A different approach was developed for cutting plane methods for periodi-
cally discarding cutting planes in [7–9]. This approach is based on some criteria
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for estimating the quality of approximating sets formed by cutting planes in a
neighborhood of current iteration points. In particular, in [8] the quality of the
approximation is estimated by the proximity of the current iteration point to a
feasible set of the initial problem, and in [9] the quality is estimated by the assess-
ment of the proximity of the current iteration value to the optimal value. After
obtaining sufficiently good approximation sets the proposed approach allows to
use update procedures such that it is possible to periodically discard an arbi-
trary number of any previously constructed cutting planes. Namely, both full
and partial updating of approximating sets is permissible. In the case of using
partial updating it is possible to leave, for example, only active cutting planes
or n + 1-last cutting planes.

In this paper, the procedure π is proposed, where cutting planes are dis-
carded based on the approach developed for the cutting plane methods. Namely,
at Step 5 of the procedure π there is the possibility of periodically discarding all
cutting planes as follows. In the neighborhood of the point xk,i+1 the approxi-
mation quality of the epigraph of the function f(x) is evaluated by the model
f̂k,i(x). If inequality (6) is fulfilled for some k ≥ 0, i ≥ 0, then the approximation
quality is enough good, and there is a full update of the model of the function
f(x) by discarding cutting planes. Otherwise, the model of the convex function
f̂k,i(x) is refined and cutting planes are not discarded.

Based on the procedure π the bundle method will be constructed below.
Note that at Step 5 of the procedure π during discarding cutting planes basic
points xk, k ∈ K are determined. In the process of constructing these points
can be used any relaxation minimization methods. It is important to note that
convergence of such mixed algorithms is guaranteed by the convergence of the
proposed bundle method even if the mentioned relaxation methods included in
mixed algorithms are heuristic.

Lemma 1. Let S ⊂ Rn be a bounded closed set, τ ≥ 0. Then the set

B(τ, S) =
⋃

v∈S

{y ∈ Rn : ‖y − v‖ ≤ τ} (10)

is bounded.

Proof. Since the set S is bounded, then there exists a number τ ′ > 0 such that
for any v ∈ S the inequality

‖v‖ ≤ τ ′ (11)

is defined. Now suppose that the set B(τ, S) is not bounded. Then for any ω > 0
there exists a point y ∈ B(τ, S) such that ‖y‖ > ω. Fix any sequence of positive
numbers {ωk}, k ∈ K, such that ωk → +∞, k ∈ K. Due to unboundedness of
the set B(τ, S) there is a sequence of points {yk}, k ∈ K, such that

yk ∈ B(τ, S), ‖yk‖ > ωk, k ∈ K. (12)

Moreover, in accordance with construction of points {yk}, k ∈ K, for each k ∈ K
there exists a point vk ∈ S satisfying the condition

‖yk − vk‖ ≤ τ.
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Hence, from (11), (12) we have

ωk < ‖yk ± vk‖ ≤ ‖yk − vk‖ + ‖vk‖ ≤ τ + τ ′.

The obtained inequality ωk ≤ τ + τ ′ contradicts the assumption ωk → +∞. The
lemma is proved.

Lemma 2. Suppose for some k ≥ 0, i ≥ 0 the points xk, xk,0, xk,1, . . . , xk,i

and the model f̂k,i(y) are constructed by the procedure π. Then we obtain

εk,j = f(xk) − f(xk,j) − 〈sk,j , xk − xk,j〉 ≥ 0, 0 ≤ j ≤ i, (13)

f̂k,i(y) = f(xk) + max
0≤j≤i

{〈sk,j , y − xk〉 − εk,j}.

Proof. Since the function f(x) is convex and sk,j ∈ ∂f(xk,j), 0 ≤ j ≤ i, then
using definition of a subgradient it is not difficult to obtain (13). Further, taking
account (9) and (13) we have

f̂k,i(y) = max
0≤j≤i

{f(xk,j) + 〈sk,j , x − xk,j〉 ± εk,j}
= max

0≤j≤i
{〈sk,j , y − xk,j〉 − εk,j + f(xk) − 〈sk,j , xk − xk,j〉}

= f(xk) + max
0≤j≤i

{〈sk,j , y − xk〉 − εk,j}.

The lemma is proved.

The following theorem is proved in [3, p. 144].

Theorem 1. Suppose for some k ≥ 0, i ≥ 0 the point xk,i+1 is constructed
according to (2) by the procedure π. Then

xk,i+1 = xk − ŝk,i

μ̄
, (14)

where

ŝk,i =
i∑

j=0

α̂j
k,isk,j , (15)

and the vector α̂k,i = (α̂0
k,i, α̂

1
k,i, . . . , α̂

i
k,i) ∈ Ri+1 is a solution of the following

problem:

min
α=(α0,α1,...,αi)∈Ri+1

1
2μ̄

‖
i∑

j=0

αjsk,j‖2 +
i∑

j=0

αjεk,j , (16)

s.t. α = (α0, α1, . . . , αi) ≥ 0,

i∑

j=0

αj = 1. (17)

Moreover, the following expressions

δk,i = ε̂k,i +
1
2μ̄

‖ŝk,i‖2, (18)



Constructing Mixed Algorithms 155

ŝk,i ∈ ∂ε̂k,i
f(xk), (19)

ŝk,i ∈ ∂f̂k,i(xk,i+1) (20)

are valid, where

ε̂k,i =
i∑

j=0

α̂j
k,iεk,j . (21)

From inclusion (19) it follows

Lemma 3. Suppose the points xk, xk,0, . . . , xk,i+1 and the corresponding subgra-
dients sk, sk,0, . . . , sk,i+1 are constructed for some k ≥ 0, i ≥ 0 by the proposed
procedure π. Then for any point y ∈ Rn the inequality

f(xk) − f(y) ≤ 〈ŝk,i, xk − y〉 + ε̂k,i (22)

is fulfilled, where ŝk,i, ε̂k,i are defined according to (15), (21) respectively.

Lemma 4. Suppose that the stopping criterion (4) is fulfilled for some k ≥ 0,
i ≥ 0. Then the following estimate holds:

f(x̂) − f∗ ≤ ρ̄

√
2μ̄ξ̄ + ξ̄, (23)

where ρ̄ > 0 is the diameter of the set L(x̄).

Proof. Note that the equality f(x0) = f(x̄) is fulfilled in accordance with Step 0
of the procedure π, and from (6), (7) we have f(xk) ≤ f(x̄). Consequently,
xk ∈ L(x̄). Moreover, in view of condition (5) the inequality f(x̂) ≤ f(xk) is
defined. Hence and from inequality (22) under y = x∗ the estimate holds

f(x̂) − f∗ ≤ ‖ŝk,i‖‖xk − x∗‖ + ε̂k,i. (24)

Further, according to the stopping criterion (4) and equality (18) we obtain

‖ŝk,i‖ ≤ √
2μ̄δk,i ≤

√
2μ̄ξ̄,

ε̂k,i ≤ δk,i ≤ ξ̄.

Hence and from (24), x∗ ∈ L(x̄), xk ∈ L(x̄) it follows the estimate (23). The
lemma is proved.

To prove finiteness of the procedure π let’s show that values δk,i, ‖xk,i+1−xk‖
are bounded.

Lemma 5. Suppose that for some k ≥ 0, i ≥ 0 the points xk, xk,i+1 are con-
structed, the subgradient sk is fixed, the number δk,i is computed by the procedure
π. Then the following expressions

‖xk,i+1 − xk‖ ≤ 2‖sk‖
μ̄

, (25)
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0 ≤ δk,i ≤ 2‖sk‖2
μ̄

, (26)

f(xk)−δk,i = f̂k,i(xk,i+1)+〈ŝk,i, y−xk,i+1〉+ μ̄

2
‖y−xk‖2− μ̄

2
‖y−xk,i+1‖2 (27)

are fulfilled, where y ∈ Rn.

Proof. Note that according to (9) for all j = 0, . . . , i, we have

f̂k,i(y) ≥ f(xk,j) + 〈sk,j , y − xk,j〉, (28)

where y ∈ Rn, and from Step 1 of the procedure π it follows that xk,0 = xk,
sk,0 = sk. Hence from formula (9) with y = xk,i+1, j = 0, we obtain

f(xk) − f̂k,i(xk,i+1) ≤ 〈sk, xk − xk,i+1〉 ≤ ‖sk‖‖xk − xk,i+1‖. (29)

Moreover, from (3) it follows

μ̄

2
‖xk,i+1 − xk‖2 ≤ f(xk) − f̂k,i(xk,i+1). (30)

Hence combining inequalities (29), (30) we prove (25).
Further, according to Lemma 2 for all j = 0, . . . , i we get εk,j ≥ 0, therefore,

in view of (21) the inequality ε̂k,i ≥ 0 is determined. Hence and from (18) taking
into account μ̄ > 0 it follows that δk,i ≥ 0. Moreover, in accordance with (3),
(29) we have

δk,i ≤ f(xk) − f̂k,i(xk,i+1) ≤ ‖sk‖‖xk − xk,i+1‖.

Using the last inequality, (25) and δk,i ≥ 0 expression (26) is obtained.
Let’s turn to obtain inequality (27). For any y ∈ Rn it is determined

‖y ± xk,i+1 − xk‖2 = ‖y − xk,i+1‖2 + ‖xk,i+1 − xk‖2 + 2〈y − xk,i+1, xk,i+1 − xk〉.
Then multiplying the last equality by μ̄/2 and taking into account (14) we get

μ̄

2
‖xk,i+1 − xk‖2 =

μ̄

2
‖y − xk‖2 − μ̄

2
‖y − xk,i+1‖2 + 〈ŝk,i, y − xk,i+1〉. (31)

Moreover, from (3) it follows

f(xk) − δk,i = f̂k,i(xk,i+1) +
μ̄

2
‖xk,i+1 − xk‖2.

Now substituting μ̄/2‖xk,i+1 − xk‖2 by (31) in the last equality we obtain (27).
The lemma is proved.

Corollary 1. Suppose that conditions of Lemma 5 are defined, S ⊂ Rn is
bounded closed set satisfying the inclusion

L(x̄) ⊂ S. (32)
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Then there exists numbers η = η(S) > 0, ζ = ζ(η) > 0 such that the inequalities

‖sk‖ ≤ η, (33)

‖xk,i+1 − xk‖ ≤ 2η

μ̄
, (34)

δk,i ≤ 2η2

μ̄
, (35)

‖sk,i+1‖ ≤ ζ (36)

are fulfilled.

Proof. Since inclusion (32) is fulfilled according to conditions of the corollary
and we have xk ∈ L(x̄), sk ∈ ∂f(xk) by construction, then in view of boundness
of the set S there exists a number η = η(S) > 0 (e. g., [4, p. 121]) such that
inequality (33) is determined. Moreover, taking into account inequality (33) from
(25), (26) it follows (34), (35).

Further, since the set S is bounded and closed, then according to Lemma 1
the set B(2η/μ̄, S) is bound too. Moreover, from the inclusion xk ∈ L(x̄) ⊂ S
and inequality (34) we have xk,i+1 ∈ B(2η/μ̄, S). Therefore, taking into account
sk,i+1 ∈ ∂f(xk,i+1) there exists a number ζ = ζ(η) > 0 (e. g., [4, p. 121]) such
that inequality (36) is determined. The assertion is proved.

Lemma 6. Suppose that by the proposed procedure π for some k̄ ≥ 0, ī ≥ 2 the
points xk̄ = xk̄,0,

xk̄,1, xk̄,2, . . . , xk̄,̄i+1 (37)

are constructed, the subgradients sk̄ = sk̄,0,

sk̄,1, sk̄,2, . . . , sk̄,̄i+1 (38)

are chosen, and according to (3) the numbers

δk̄,0, δk̄,1, . . . , δk̄,̄i (39)

are computed. Then for each i = 0, . . . , ī − 2 it is determined that

δk̄,i − δk̄,i+1 ≥ μ̄(1 − θ̄)2

2(‖sk̄,i+2‖ + ‖sk̄,i+1‖)2
δ2k̄,i+1. (40)

Proof. According to Step 5 of the procedure π for each l = 0, . . . , ī − 1 it is
determined

f(xk̄,l+1) > f(xk̄) − θ̄δk̄,l, (41)

and in view of equality (14) the vectors

ŝk̄,0, ŝk̄,1, . . . , ŝk̄,̄i
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correspond to points (37). Choose an arbitrary index i such that 0 ≤ i ≤ ī − 2.
Then using definition of a subgradient of a convex function and taking into
account (20) we have

f̂k̄,i(xk̄,i+1) ≤ f̂k̄,i(xk̄,i+2) + 〈ŝk̄,i, xk̄,i+1 − xk̄,i+2〉. (42)

Moreover, according to (8) for any y ∈ Rn it is defined

f̂k̄,i(y) ≤ f̂k̄,i+1(y).

Hence under y = xk̄,i+2 and from (42) it follows that

f̂k̄,i(xk̄,i+1) ≤ f̂k̄,i+1(xk̄,i+2) + 〈ŝk̄,i, xk̄,i+1 − xk̄,i+2〉,
and taking into account for the (i + 1)-th element the last inequality has the
form

f̂k̄,i(xk̄,i+1) ≤ f(xk̄) − δk̄,i+1 − μ̄

2
‖xk̄,i+2 − xk̄‖2 + 〈ŝk̄,i, xk̄,i+1 − xk̄,i+2〉. (43)

Now using equality (27) from Lemma 5 under k = k̄, y = xk̄,i+2 it is obtained

f(xk̄) − δk̄,i +
μ̄

2
‖xk̄,i+2 − xk̄,i+1‖2 =

= f̂k̄,i(xk̄,i+1) + 〈ŝk̄,i, xk̄,i+2 − xk̄,i+1〉 +
μ̄

2
‖xk̄,i+2 − xk̄‖2.

Hence and from (43) it follows that

μ̄

2
‖xk̄,i+2 − xk̄,i+1‖2 ≤ δk̄,i − δk̄,i+1. (44)

On the other hand, from (3), (9) (for the (i + 1)-th element) we get

δk̄,i+1 ≤ f(xk̄) − f(xk̄,i+1) − 〈sk̄,i+1, xk̄,i+2 − xk̄,i+1〉,
and from inequality (41) under l = i + 1 it follows that

−θ̄δk̄,i+1 < f(xk̄,i+2) − f(xk̄).

Now summing the last two inequalities it is determined that

(1 − θ̄)δk̄,i+1 ≤ f(xk̄,i+2) − f(xk̄,i+1) − 〈sk̄,i+1, xk̄,i+2 − xk̄,i+1〉
≤ (‖sk̄,i+2‖ + ‖sk̄,i+1‖)‖xk̄,i+2 − xk̄,i+1‖.

Hence and from (44) we obtain (40). The lemma is proved.

Theorem 2. Let S ⊂ Rn be a bounded closed set satisfied condition (32). Then
complexity of the procedure π is equal to

�f(x̄) − f∗

θ̄ξ̄
��1 +

16η2ζ2

μ̄2(1 − θ̄)2ξ̄2
�, (45)

where η = η(S) > 0, ζ = ζ(η) > 0.
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Proof. First, let’s estimate the number of iterations of the procedure π by k.
Assume that in the procedure π there is a loop in relation to k. In this case, it
is constructed a sequence {xk}, k ∈ K, such that according to Steps 4, 5 of the
procedure π for each k ∈ K the following conditions hold:

Δk > ξ̄, (46)

f(xk+1) ≤ f(xk) − θ̄Δk, (47)

where Δk = δk,ik . Now summing the last inequality by k from 0 to n ≥ 0 we
have

n∑

k=0

θ̄Δk ≤
n∑

k=0

(f(xk) − f(xk+1)) ≤ f(x0) − f∗.

Hence under n → +∞ we obtain Δk → 0 which contradicts condition (46).
Consequently, there exists a number k′ ≥ 0 such that the criterion

Δk′ ≤ ξ̄

is fulfilled.
Further, let’s consider two cases to estimate the value k′.

1) Suppose that condition (4) is determined under k = k′ = 0 and i ≥ 0. Then
it is clear that the number of iterations k′ does not exceed the value of the
first multiplier of valuation (45).

2) Suppose that criterion is fulfilled under k = k′ > 0 and i ≥ 0. Then according
to Steps 4, 5 of the procedure π and in view of (46), (47) we have

k′−1∑

p=0

θ̄ξ̄ ≤
k′−1∑

p=0

(f(xp) − f(xp+1)) ≤ f(x0) − f∗.

Hence taking into account x0 = x̄ (in accordance with Step 0 of the procedure
π) it is obtained that

k′ ≤ �f(x̄) − f∗

θ̄ξ̄
�. (48)

Now let’s obtain a complexity of the procedure π in relation to i while k
is fixed. Suppose that the point xk is constructed under some k ≥ 0 by the
procedure π, and there is a loop in relation to i, i. e. for each i ∈ K conditions
(4), (6) are not fulfilled simultaneously. Then there is a sequence {δk,i}, i ∈ K,
constructed by the procedure π such that according to Lemma 6 for each i ∈ K
it is determined

μ̄(1 − θ̄)2

2(‖sk,i+2‖ + ‖sk,i+1‖)2
δ2k,i+1 ≤ δk,i − δk,i+1.

Hence taking into account (36) from Corollary 1 we get

μ̄(1 − θ̄)2

8ζ2
δ2k,i+1 ≤ δk,i − δk,i+1.
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After summing the last inequality by i from 0 to n ≥ 0 we get

n∑

i=0

μ̄(1 − θ̄)2

8ζ2
δ2k,i+1 ≤

n∑

i=0

(δk,i − δk,i+1) ≤ δk,0.

Hence from n → +∞ it follows that δk,i → 0, i ∈ K. Therefore, there exists a
number i′ ∈ K such that the inequality

δk,i′ ≤ ξ̄

is fulfilled.
To estimate i′ consider the following cases.

1) Suppose that it is defined either criterion (4) or condition (6) for some k ≥ 0,
i′ = i ≤ 1. Then i′ does not exceed the value of the second multiplier of
variable (45).

2) Assume that any condition of (4), (6) is fulfilled for some k ≥ 0, i′ = i ≥ 2.
Then according to Lemma 6, stopping criterion (4) and inequalities (36), (35)
from Corollary 1 we get

i′−2∑

j=0

μ̄(1 − θ̄)2

8ζ2
ξ̄2 ≤

i′−2∑

j=0

(δk,j − δk,j+1) ≤ δk,0 ≤ 2η2

μ̄
.

Therefore, the estimate

i′ ≤ �1 +
16η2ζ2

μ̄2(1 − θ̄)2ξ̄2
�

is obtained. Further, taking into account the last estimate and (48) the theorem
is proved. Now let’s propose a method which permits to find a point allowed to
find a point from the set X∗(ε) under the determined ε > 0 for a finite number
of iterations.

Step 0. Assign t = 0. Choose a point zt ∈ Rn. Determine parameters κ > 0,
σ ∈ (0, 1), μ > 0, θ ∈ (0, 1).

Step 1. Compute ξt = κσt.
Step 2. Find a point zt+1 = π(zt, ξt, θ, μ).
Step 3. Increase the value of t by one, and go to Step 1.

Remark 2. According to Steps 0, 4, 5 of the procedure π and Step 2 of the
proposed method for each t ∈ K we obtain

f(zt+1) ≤ f(zt). (49)

Therefore, the constructed sequence {f(zt)}, k ∈ K, is non-increasing.
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Theorem 3. Suppose the sequence {zt}, t ∈ K, is constructed by the proposed
method. Then for each t ∈ K it holds

zt ∈ L(z0), (50)

f(zt+1) − f∗ ≤ ρ
√

2μξt + ξt, (51)

where ρ > 0 is a diameter of the set L(z0).

Proof. In accordance with Theorem 2 the procedure π is finite for each t ∈ K,
and as already noted in Remark 2 for each t ∈ K inequality (49) is fulfilled.
Consequently, for each t ∈ K we obtain inclusion (50).

In view of Lemma 4, Step 4 of the procedure π and Step 2 of the proposed
method for each t ∈ K we have

f(zt+1) − f∗ ≤ �t

√
2μξt + ξt,

where �t > 0 is a diameter of the set L(zt). Since for each t ∈ K inequality (49)
is fulfilled, then L(zt) ⊂ L(z0), t ∈ K. Therefore, there is a constant ρ > 0 such
that estimate (51) is determined for each t ∈ K.

Theorem 4. Let ε > 0 and ρ > 0 be a diameter of the set L(z0). Then the
complexity of the procedure of finding ε-solution by the proposed method is equal
to

�2 logσ ε − logσ κ − 2 logσ ρ̂�� (f(z0) − f∗)ρ̂2

θε2
��1 +

16η2ζ2ρ̂4

μ2(1 − θ)2ε4
�, (52)

where ρ̂ = ρ
√

2μ +
√

ξ0, η = η(L(z0)) > 0, ζ = ζ(η) > 0.

Proof. From inequality (51) of Theorem 3 for each t ∈ K it follows that

f(zt+1) − f∗ ≤ ξ
1/2
t (ρ

√
2μ +

√
ξt).

Since according to Step 1 of the proposed method we have ξt ≤ ξ0, ξt → 0,
t ∈ K, then there exists a number t′ ∈ K such that for each t ≥ t′ the expression

f(zt+1) − f∗ ≤ ξ
1/2
t (ρ

√
2μ +

√
ξt) ≤

√
κσt(ρ

√
2μ +

√
ξ0) ≤ ε (53)

is defined.
If t′ = 0, then the number of iterations in relations to t does not exceed the

first multiplier of value (52). In this connection assume that t′ > 0. Then from
(53) under t = t′ it follows

t′ ≤ �2 logσ ε − logσ κ − 2 logσ(ρ
√

2μ +
√

ξ0)�, (54)

and for each p < t′ the inequality

1
ξp

≤ ρ̂2

ε2
. (55)

is fulfilled.
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Further, since for each t ∈ K inclusion (50) is determined and L(z0) is a
bounded closed set, then according to Theorem 2 under S = L(z0) there exists
numbers η = η(L(z0)), ζ = ζ(η) > 0 such that for each t < t′ complexity of
finding the point zt+1 on basis of the point zt by the procedure π equals

�f(zt) − f∗

θξt
��1 +

16η2ζ2

μ2(1 − θ)2ξ2t
�.

Hence and from (54), (55), f(zt+1) ≤ f(zt), t < t′ it follows that general com-
plexity of the proposed method equals

t′−1∑

j=0

�f(zj) − f∗

θξj
��1 +

16η2ζ2

μ2(1 − θ)2ξ2j
� ≤

t′−1∑

j=0

� (f(z0) − f∗)ρ̂2

θε2
��1 +

16η2ζ2ρ̂4

μ2(1 − θ)2ε4
� ≤

�2 logσ ε − logσ κ − 2 logσ(ρ
√

2μ +
√

ξ0)�� (f(z0) − f∗)ρ̂2

θε2
��1 +

16η2ζ2ρ̂4

μ2(1 − θ)2ε4
�.

The theorem is proved.

4 Conclusion

The bundle method is proposed for minimizing a convex function. To control the
count of cutting planes the developed method updates the model of the objective
function in case of obtaining good approximation quality of the epigraph in
the neighborhood of the current iteration point. Moreover, at the moment of
discarding cutting planes there are opportunities to involve any minimization
method. The convergence of the proposed method is proved. Estimation of the
complexity of finding an ε-solution is equal to O(ε−6).
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