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1 Introduction

Different relaxations of the classical smoothness conditions for functions are
interesting for a large number of modern applied optimization problems. In par-
ticular, in [2] there were proposed conditions of relative smoothness of the objec-
tive function, which mean the replacement of the classic Lipschitz condition by
the following weaker version

f(y) ≤ f(x) + 〈∇f(x), y − x〉 + LVd(y, x), (1)

to hold for any x, y from the domain of the objective function f and some
L > 0; Vd(y, x) represents an analogue of the distance between the points x
and y (often called the Bregman divergence). Such a distance is widely used
in various fields of science, in particular in mathematical optimization. Usually,
the Bregman divergence is defined on the base of the auxiliary 1-strongly convex
and continuously-differentiable function d : Q ⊂ R

n → R (distance generating
function) as follows

Vd(y, x) = d(y) − d(x) − 〈∇d(x), y − x〉 ∀x, y ∈ Q, (2)

where Q is a convex closed set, 〈·, ·〉 is a scalar product in R
n. In partic-

ular, for the Euclidean setting of the problem, we have d(x) = 1
2‖x‖22 and

Vd(y, x) = d(y − x) = 1
2‖y − x‖22 for arbitrary x, y ∈ Q. However, in many

applications, it often becomes necessary to use non-Euclidean norms. Moreover,
the considered condition of relative smoothness in [2,16] implies only the convex-
ity (but not strong convexity) of the distance generating function d. As shown in
[16], the concept of relative smoothness makes it possible to apply a variant of
the gradient method to some problems which were previously being solved only
by interior-point methods. In particular, we talk about the well-known problem
of construction of an optimal ellipsoid which covers a given set of points. This
problem is important in the field of statistics and data analysis.

A similar approach to the Lipschitz property and non-smooth problems was
proposed in [17] (see also [24]). This approach is based on an analogue of the
Lipschitz condition for the objective function f : Q → R with Lipschitz con-
stant Mf > 0, which involves replacing the boundedness of the norm of the
subgradient, i.e. ‖∇f(x)‖∗ ≤ Mf , with the so-called relative Lipschitz condition

‖∇f(x)‖∗ ≤ Mf

√
2Vd(y, x)

‖y − x‖ ∀x, y ∈ Q, y �= x,

where ‖·‖∗ denotes the conjugate norm, see Sect. 2 below. Moreover, the distance
generating function d must not necessarily be strongly convex. In [17] there were
proposed deterministic and stochastic Mirror Descent algorithms for optimiza-
tion problems with convex relatively Lipschitz-continuous objective functionals.
Note that some applications of relative Lipschitz-continuity to the well-known
classical support vector machine (SVM) problem and to the problem of mini-
mizing the maximum of convex quadratic functions (intersection of m ellipsoids
problem in R

n) were discussed in [17].



Analogues of Switching Subgradient Schemes 135

In this paper we propose a new concept of an inexact model for objective
functional and functional constraint. More precisely, we introduce some ana-
logues of the concepts of an inexact oracle [8] and an inexact model [32] for
objective functionals. However, unlike [8,32], we do not generalize the smooth-
ness condition. We relax the Lipschitz condition and consider a recently proposed
generalization of relative Lipschitz-continuity [17,24]. We propose some optimal
Mirror Descent methods, in different settings of Relatively Lipschitz-continuous
convex optimization problems.

The Mirror Descent method originated in the works of A. Nemirovski and
D. Yudin more than 30 years ago [21,22] and was later analyzed in [5]. It can be
considered as the non-Euclidean extension of subgradient methods. The method
was used in many applications [19,20,31]. Standard subgradient methods employ
the Euclidean distance function with a suitable step-size in the projection step.
The Mirror Descent extends the standard projected subgradient methods by
employing a nonlinear distance function with an optimal step-size in the non-
linear projection step [18]. The Mirror Descent method not only generalizes the
standard subgradient descent method, but also achieves a better convergence
rate and it is applicable to optimization problems in Banach spaces, while the
subgradient descent is not [9]. Also, in some works [4,10,22] there was proposed
an extension of the Mirror Descent method for constrained problems.

Also, in recent years, online convex optimization (OCO) has become a leading
online learning framework, due to its powerful modeling capability for a lot of
problems from diverse domains. OCO plays a key role in solving problems where
statistical information is being updated [13,14]. There are many examples of such
problems: Internet networks, consumer data sets or financial markets, machine
learning applications, such as adaptive routing in networks, dictionary learning,
classification and regression (see [33] and references therein). In recent years,
methods for solving online optimization problems have been actively developed,
in both deterministic and stochastic settings [7,12,15,25]. Among them one can
mention the Mirror Descent method for the deterministic setting of the problem
[26,30] and for the stochastic setting [1,11,34,35], which allows to solve problems
for an arbitrary distance function.

This paper is devoted to Mirror Descent methods for convex programming
problems with a relatively Lipschitz-continuous objective function and functional
constraints. It consists of an introduction and 5 main sections. In Sect. 2 we con-
sider the problem statement and define the concept of an inexact (δ, φ, V )–model
for the objective function. Also, we propose some modifications of the Mirror
Descent method for the concept of Model Generality. Section 3 is devoted to
some special cases of problems with the properties of relative Lipschitz continu-
ity, here we propose two versions of the Mirror Descent method in order to solve
the problems under consideration. In Sects. 4 and 5 we consider the stochastic
and online (OCO) setting of the optimization problem respectively. In Sect. 6 one
can find numerical experiments which demonstrate the efficiency of the proposed
methods.

The contribution of the paper can be summarized as follows:
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• Continuing the development of Yurii Nesterov’s ideas in the direction of the
relative smoothness and non-smoothness [24], we introduced the concept of
an inexact (δ, φ, V )–model of the objective function. For the proposed model
we proposed some variants of the well-known Mirror Descent method, which
provides an (ε + δ)–solution of the optimization problem, where ε is the
controlled accuracy. There was considered the applicability of the proposed
method to the case of the stochastic setting of the considered optimization
problem.

• We also considered a special case of the relative Lipschitz condition for the
objective function. The proposed Mirror Descent algorithm was specified for
the case of such functions. Furthermore, there was introduced one more mod-
ification of the algorithm with another approach to the step selection. There
was also considered the possibility of applying the proposed methods to the
case of several functional constraints.

• We considered an online optimization problem and proposed a modification
of the Mirror Descent algorithm for such a case. Moreover, there were con-
ducted some numerical experiments which demonstrate the effectiveness of
the proposed methods.

2 Inexact Model for Relative Non-smooth Functionals
and Mirror Descent Algorithm

Let (E, ‖·‖) be a normed finite-dimensional vector space and E∗ be the conjugate
space of E with the norm:

‖y‖∗ = max
x

{〈y, x〉, ‖x‖ ≤ 1},

where 〈y, x〉 is the value of the continuous linear functional y at x ∈ E.
Let Q ⊂ E be a (simple) closed convex set. Consider two subdifferentiable

functions f, g : Q → R. In this paper we consider the following optimization
problem

f(x) → min
x∈Q, g(x)≤0

. (3)

Let d : Q → R be any convex (not necessarily strongly-convex) differentiable
function, we will call it reference function. Suppose we have a constant Θ0 > 0,
such that d(x∗) ≤ Θ2

0, where x∗ is a solution of (3). Note that if there is a set,
X∗ ⊂ Q, of optimal points for the problem (3), we may assume that

min
x∗∈X∗

d(x∗) ≤ Θ2
0.

Let us introduce some generalization of the concept of relative Lipschitz
continuity [24]. Consider one more auxiliary function φ : R → R, which is strictly
increasing and satisfies φ(0) = 0. Clearly, due to the strict monotonicity of φ(·),
there exists the inverse function φ−1(·).
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Definition 1. Let δ > 0. We say that f and g admit the (δ, φ, V )–model at the
point y ∈ Q if

f(x) + ψf (y, x) ≤ f(y), −ψf (y, x) ≤ φ−1
f (Vd(y, x)) + δ (4)

g(x) + ψg(y, x) ≤ g(y), −ψg(y, x) ≤ φ−1
g (Vd(y, x)) + δ, (5)

where ψf (·, x) and ψg(·, x) are convex functions for fixed x and ψf (x, x) =
ψg(x, x) = 0 for all x ∈ Q.

Let h > 0. For problems with a (δ, φ, V )–model, the proximal mapping oper-
ator (Mirror Descent step) is defined as follows

Mirrh(x, ψ) = arg min
y∈Q

{
ψ(y, x) +

1
h

Vd(y, x)
}

.

The following lemma describes the main property of this operator.

Lemma 1 (Main Lemma). Let f be a convex function, which satisfies (4),
h > 0 and x̃ = hMirrh(x, ψf ). Then for any y ∈ Q

h(f(x) − f(y)) ≤ −hψf (y, x) ≤ φ∗
f (h) + Vd(y, x) − Vd(y, x̃) + hδ,

where φ∗
f is the conjugate function of φf .

Proof. From the definition of x̃

x̃ = hMirrh(x, ψf ) = arg min
y∈Q

{hψf (y, x) + Vd(y, x)} ,

for any y ∈ Q, we have hψf (y, x) − hψf (x̃, x) + 〈∇d(x̃) − ∇d(x), y − x̃〉 ≥ 0.
Further, h(f(x) − f(y)) ≤ −hψf (y, x) ≤

≤ −hψf (x̃, x) + 〈∇d(x̃) − ∇d(x), y − x̃〉
= −hψf (x̃, x) + Vd(y, x) − Vd(y, x̃) − Vd(x̃, x) + hδ

≤ hφ−1
f (Vd(x̃, x)) + Vd(y, x) − Vd(y, x̃) − Vd(x̃, x) + hδ

≤ φ∗
f (h) + φf (φ−1

f (Vd(x̃, x))) + Vd(y, x) − Vd(y, x̃) − Vd(x̃, x) + hδ

= φ∗
f (h) + Vd(x̃, x) + Vd(y, x) − Vd(y, x̃) − Vd(x̃, x) + hδ

= φ∗
f (h) + Vd(y, x) − Vd(y, x̃) + hδ.

For problem (3) with an inexact (δ, φ, V )–model, we consider a Mirror
Descent algorithm, listed as Algorithm 1 below. For this proposed algorithm,
we will call step k productive if g(xk) ≤ ε, and non-productive if the reverse
inequality g(xk) > ε holds. Let I and |I| denote the set of indexes of productive
steps and their number, respectively. Similarly, we use the notation J and |J |
for non-productive steps.

Let x∗ denote the exact solution of the problem (3). The next theorem pro-
vides the complexity and quality of the proposed Algorithm 1.
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Theorem 1 (Modified MDA for Model Generality). Let f and g be con-
vex functionals, which satisfy (4), (5) respectively and ε > 0, δ > 0 be fixed pos-
itive numbers. Assume that Θ0 > 0 is a known constant such that d(x∗) ≤ Θ2

0.
Then, after the stopping of Algorithm 1, the following inequalities hold:

f(x̂) − f(x∗) ≤ ε + δ and g(x̂) ≤ ε + δ.

Algorithm 1. Modified MDA for (δ, φ, V )–model.
Require: ε > 0, δ > 0, hf > 0, hg > 0, Θ0 : d(x∗) ≤ Θ2

0.
1: x0 = arg minx∈Q d(x).
2: I =: ∅ and J =: ∅
3: N ← 0
4: repeat
5: if g

(
xN

) ≤ ε + δ then

6: xN+1 = Mirrhf

(
xN , ψf

)
, “productive step”

7: N → I
8: else
9: xN+1 = Mirrhg

(
xN , ψg

)
, “non-productive step”

10: N → J
11: end if
12: N ← N + 1
13: until Θ2

0 ≤ ε
(|J |hg + |I|hf

) − |J |φ∗
g(hg) − |I|φ∗

f (hf ).

Ensure: x̂ := 1
|I|

∑

k∈I

xk.

Proof. By Lemma 1,we have for all k ∈ I and y ∈ Q

hf
(
f(xk) − f(y)

) ≤ φ∗
f (hf ) + Vd(y, xk) − Vd(y, xk+1) + hfδ. (6)

Similarly, for all k ∈ J and y ∈ Q

hg
(
g(xk) − g(y)

) ≤ φ∗
g(h

g) + Vd(y, xk) − Vd(y, xk+1) + hgδ. (7)

Summing up these inequalities over productive and non-productive steps, we
get ∑

k∈I

hf
(
f(xk) − f(x∗)

)
+

∑

k∈J

hg
(
g(xk) − g(x∗)

)

≤
∑

k∈I

φ∗
f (hf ) +

∑

k∈J

φ∗
g(h

g) +
∑

k

(
Vd(x∗, xk) − Vd(x∗, xk+1)

)
+

∑

k∈I

hfδ +
∑

k∈J

hgδ

≤
∑

k∈I

φ∗
f (hf ) +

∑

k∈J

φ∗
g(h

g) + Θ2
0 +

∑

k∈I

hfδ +
∑

k∈J

hgδ.
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Since for any k ∈ J, g(xk) − g(x∗) > ε + δ, we have
∑

k∈I

hf
(
f(xk) − f(x∗)

) ≤
∑

k∈I

φ∗
f (hf ) +

∑

k∈J

φ∗
g(h

g) + Θ2
0 − ε

∑

k∈J

hg +
∑

k∈I

hfδ

= |I| (φ∗
f (hf ) + δhf

)
+ |J |φ∗

g(h
g) − |J |hgε + Θ2

0 ≤ ε|I|hf + δ|I|hf .

So, for x̂ := 1
|I|

∑

k∈I

xk, after the stopping criterion of Algorithm 1 is satisfied,

the following inequalities hold

f(x̂) − f(x∗) ≤ ε + δ and g(x̂) ≤ ε + δ.

3 The Case of Relatively Lipschitz-Continuous
Functionals

Suppose hereinafter that the objective function f and the constraint g satisfy
the so-called relative Lipschitz condition, with constants Mf > 0 and Mg > 0,
i.e. the functions φ−1

f and φ−1
g from (4) and (5) are modified as follows:

φ−1
f (Vd(y, x)) = Mf

√
2Vd(y, x), (8)

φ−1
g (Vd(y, x)) = Mg

√
2Vd(y, x). (9)

Note that the functions f, g must still satisfy the left inequalities in (4), (5):

f(x) + ψf (y, x) ≤ f(y), −ψf (y, x) ≤ Mf

√
2Vd(y, x) + δ; (10)

g(x) + ψg(y, x) ≤ g(y), −ψg(y, x) ≤ Mg

√
2Vd(y, x) + δ, (11)

For this particular case we say that f and g admit the (δ,Mf , V )– and
(δ,Mg, V )–model at each point x ∈ Q respectively. The following remark pro-
vides an explicit form of φf , φg and their conjugate functions φ∗

f , φ∗
g.

Remark 1. Let Mf > 0 and Mg > 0. Then functions φf and φg which correspond
to (8) and (9) are defined as follows:

φf (t) =
t2

2M2
f

, φg(t) =
t2

2M2
g

.

Their conjugate functions have the following form:

φ∗
f (y) =

y2M2
f

2
, (12)

φ∗
g(y) =

y2M2
g

2
. (13)
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For the case of a relatively Lipschitz-continuous objective function and con-
straint, we consider a modification of Algorithm 1, the modified algorithm is
listed as Algorithm 2, below. The difference between Algorithms 1 and 2 is rep-
resented in the control of productivity and the stopping criterion.

For the proposed Algorithm 2, we have the following theorem, which provides
an estimate of its complexity and the quality of the solution of the problem.

Theorem 2. Let f and g be convex functions, which satisfy (10) and (11) for
Mf > 0 and Mg > 0. Let ε > 0, δ > 0 be fixed positive numbers. Assume that
Θ0 > 0 is a known constant such that d(x∗) ≤ Θ2

0. Then, after the stopping of
Algorithm 2, the following inequalities hold:

f(x̂) − f(x∗) ≤ Mfε + δ and g(x̂) ≤ Mgε + δ.

Algorithm 2 . Mirror Descent for Relatively Lipschitz-continuous functions,
version 1.
Require: ε > 0, δ > 0, Mf > 0, Mg > 0, Θ0 : d(x∗) ≤ Θ2

0

1: x0 = arg minx∈Q d(x).
2: I =: ∅
3: N ← 0
4: repeat
5: if g

(
xN

) ≤ Mgε + δ then

6: hf = ε
Mf

,

7: xN+1 = Mirrhf

(
xN , ψf

)
, “productive step”

8: N → I
9: else

10: hg = ε
Mg

,

11: xN+1 = Mirrhg

(
xN , ψg

)
, “non-productive step”

12: end if
13: N ← N + 1

14: until N ≥ 2Θ2
0

ε2
.

Ensure: x̂ := 1
|I|

∑

k∈I

xk.

Proof. By Lemma 1, we have
∑

k∈I

hf
(
f(xk) − f(x∗)

)
+

∑

k∈J

hg
(
g(xk) − g(x∗)

) ≤
∑

k∈I

φ∗
f (hf ) +

∑

k∈J

φ∗
g(h

g)

+ Θ2
0 +

∑

k∈I

hfδ +
∑

k∈J

hgδ

Since for any k ∈ J, g(xk) − g(x∗) > Mgε + δ, we have
∑

k∈I

hf
(
f(xk) − f(x∗)

) ≤
∑

k∈I

φ∗
f (hf ) +

∑

k∈J

φ∗
g(h

g) + Θ2
0 − Mgε

∑

k∈J

hg +
∑

k∈I

hfδ

= |I|(φ∗
f (hf ) + δhf ) + |J |φ∗

g(h
g) − |J |ε2 + Θ2

0.
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Taking into account the explicit form of the conjugate functions (12), (13)
one can get:

∑

k∈I

hf
(
f(xk) − f(x∗)

) ≤ |I|
(

M2
f (hf )2

2
+ δhf

)

+ |J |M
2
g (hg)2

2
− |J |ε2 + Θ2

0

= |I|
(

ε2

2
+ δhf

)
+ |J |ε

2

2
− |J |ε2 + Θ2

0

≤ Mfε|I|hf + δ|I|hf ,

supposing that the stopping criterion is satisfied.
So, for the output value of the form x̂ = 1

|I|
∑

k∈I

xk, the following inequalities

hold:
f(x̂) − f(x∗) ≤ Mfε + δ and g(x̂) ≤ Mgε + δ.

Also, for the case of a relatively Lipschitz-continuous objective function and
constraint, we consider another modification of Algorithm 1, which is listed as
the following Algorithm 3. Note that the difference between Algorithm 2 and
Algorithm 3 lies in the choice of steps hf , hg and the stopping criterion.

Algorithm 3 . Mirror Descent for Relatively Lipschitz-continuous functions,
version 2.
Require: ε > 0, δ > 0, Mf > 0, Mg > 0, Θ0 : d(x∗) ≤ Θ2

0.
1: x0 = arg minx∈Q d(x).
2: I =: ∅ and J =: ∅
3: N ← 0
4: repeat
5: if g

(
xN

) ≤ ε + δ then

6: hf = ε
M2

f
,

7: xk+1 = Mirrhf

(
xN , ψf

)
, “productive step”

8: N → I
9: else

10: hg = ε
M2

g
,

11: xN+1 = Mirrhg

(
xN , ψg

)
, “non-productive step”

12: N → J
13: end if
14: N ← N + 1

15: until
2Θ2

0
ε2

≤ |I|
M2

f
+ |J|

M2
g
.

Ensure: x̂ := 1
|I|

∑

k∈I

xk.

By analogy with the proof of Theorem 2 one can obtain the following result
concerning the quality of the convergence of the proposed Algorithm 3.
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Theorem 3. Let f and g be convex functions, which satisfy (10) and (11) for
Mf > 0 and Mg > 0. Let ε > 0, δ > 0 be fixed positive numbers. Assume that
Θ0 > 0 is a known constant such that d(x∗) ≤ Θ2

0. Then, after the stopping of
Algorithm 3, the following inequalities hold:

f(x̂) − f(x∗) ≤ ε + δ and g(x̂) ≤ ε + δ.

Moreover, the required number of iterations of Algorithm 3 does not exceed

N =
2M2Θ2

0

ε2
, where M = max{Mf ,Mg}.

Remark 2. Clearly, Algorithms 2 and 3 are optimal in terms of the lower bounds
[22]. More precisely, let us understand hereinafter the optimality of the Mirror
Descent methods as the complexity O( 1

ε2 ) (it is well-known that this estimate is
optimal for Lipschitz-continuous functionals [22]).

Remark 3 (The case of several functional constraints). Let us consider a set of
convex functions f and gp : Q → R, p ∈ [m] def= {1, 2, . . . ,m}. We will focus on
the following constrained optimization problem

min {f(x) : x ∈ Q and gp(x) ≤ 0 for all p ∈ [m]} . (14)

It is clear that instead of a set of functionals {gp(·)}m
p=1 we can consider one

functional constraint g : Q → R, such that g(x) = maxp∈[m]{gp(x)}. Therefore,
by this setting, problem (14) will be equivalent to the problem (3).

Assume that for any p ∈ [m], the functional gp satisfies the following condition

−ψgp
(y, x) ≤ Mgp

√
2Vd(y, x) + δ.

For problem (14), we propose a modification of Algorithms 2 and 3 (the mod-
ified algorithms are listed as Algorithm 6 and 7 in [29], Appendix A). The idea
of the proposed modification allows to save the running time of the algorithms
due to consideration of not all functional constraints on non-productive steps.

Remark 4 (Composite Optimization Problems [6,16,23]). Previously proposed
methods are applicable to composite optimization problems, specifically

min{f(x) + r(x) : x ∈ Q, g(x) + η(x) ≤ 0},

where r, η : Q → R are so-called simple convex functionals (i.e. the proximal
mapping operator Mirrh(x, ψ) is easily computable). For this case, for any x, y ∈
Q, we have

ψf (y, x) = 〈∇f(x), y − x〉 + r(y) − r(x),

ψg(y, x) = 〈∇g(x), y − x〉 + η(y) − η(x).
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4 Stochastic Mirror Descent Algorithm

Let us, in this section, consider the stochastic setting of the problem (3). This
means that we can still use the value of the objective function and functional con-
straints, but instead of their (sub)gradient, we use their stochastic (sub)gradient.
Namely, we consider the first-order unbiased oracle that produces ∇f(x, ξ) and
∇g(x, ζ), where ξ and ζ are random vectors and

E[∇f(x, ξ)] = ∇f(x), E[∇g(x, ζ)] = ∇g(x).

Assume that for each x, y ∈ Q

〈∇f(x, ξ), x−y〉 ≤ Mf

√
2Vd(y, x) and 〈∇g(x, ζ), x−y〉 ≤ Mg

√
2Vd(y, x), (15)

where Mf ,Mg > 0. Let us consider a proximal mapping operator for f

Mirrh (x,∇f(x, ξ)) = arg min
y∈Q

{
1
h

Vd(y, x) + 〈∇f(x, ξ), y〉
}

,

and, similarly, we consider a proximal mapping operator for g. The following
lemma describes the main property of this operator.

Lemma 2. Let f be a convex function which satisfies (4), h > 0, δ > 0, ξ be a
random vector and x̃ = Mirrh (x,∇f(x, ξ)). Then for all y ∈ Q

h(f(x) − f(y)) ≤ φ∗
f (h) + Vd(y, x) − Vd(y, x̃) + h〈∇f(x, ξ) − ∇f(x), y − x〉 + hδ,

where, as earlier, φ∗
f (h) = h2M2

f

2 .

Suppose ε > 0 is a given positive real number. We say that a (random) point
x̂ ∈ Q is an expected ε–solution to the problem (3), in the stochastic setting, if

E[f(x̂)] − f(x∗) ≤ ε and g(x̂) ≤ ε. (16)

In order to solve the stochastic setting of the considered problem (3), we
propose the following algorithm.

The following theorem gives information about the efficiency of the proposed
Algorithm 4. The proof of this theorem is given in [29], Appendix B.
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Algorithm 4. Modified Mirror Descent for the stochastic setting.
Require: ε > 0, δ > 0, hf > 0, hg > 0, Θ0 : d(x∗) ≤ Θ2

0.
1: x0 = arg minx∈Q d(x).
2: I =: ∅ and J =: ∅
3: N ← 0
4: repeat
5: if g

(
xN

) ≤ ε + δ then

6: xN+1 = Mirrhf

(
xN , ∇f(x, ξN )

)
, “productive step”

7: N → I
8: else
9: xN+1 = Mirrhg

(
xN , ∇f(x, ζN )

)
, “non-productive step”

10: N → J
11: end if
12: N ← N + 1
13: until Θ2

0 ≤ ε
(|J |hg + |I|hf

) − |J |φ∗
g(hg) − |I|φ∗

f (hf ).

Ensure: x̂ := 1
|I|

∑

k∈I

xk.

Theorem 4. Let f and g be convex functions and (15) hold. Let ε > 0, δ > 0
be fixed positive numbers. Then, after the stopping of Algorithm 4, the following
inequalities hold:

E[f(x̂)] − f(x∗) ≤ ε + δ and g(x̂) ≤ ε + δ.

Remark 5. It should be noted how the optimality of the proposed method can
be understood. With the special assumptions (10)–(11) and choice of hf , hg,
the complexity of the algorithm is O( 1

ε2 ), which is optimal in such a class of
problems.

5 Online Optimization Problem

In this section we consider the online setting of the optimization problem (3).
Namely,

1
N

N∑

i=1

fi(x) → min
x∈Q, g(x)≤0

, (17)

under the assumption that all fi : Q → R (i = 1, . . . , N) and g satisfy (10) and
(11) with constants Mi > 0, i = 1, . . . , N and Mg > 0.

In order to solve problem (17), we propose an algorithm (listed as Algorithm
5 below). This algorithm produces N productive steps and in each step, the
(sub)gradient of exactly one functional of the objectives is calculated. As a result
of this algorithm, we get a sequence {xk}k∈I (on productive steps), which can
be considered as a solution to problem (17) with accuracy κ (see (18)).

Assume that M = max{Mi,Mg}, hf = hg = h = ε
M .
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Algorithm 5. Modified Mirror Descent for the online setting.
Require: ε > 0, δ > 0, M > 0,N, Θ0 : d(x∗) ≤ Θ2

0.
1: x0 = arg minx∈Q d(x).
2: i := 1, k := 0
3: set h = ε

M2

4: repeat
5: if g

(
xk

) ≤ ε + δ then

6: xk+1 = Mirrh

(
xk, ψfi

)
, “productive step”

7: i = i + 1,
8: k = k + 1,
9: else

10: xk+1 = Mirrh

(
xk, ψg

)
, “non-productive step”

11: k = k + 1,
12: end if
13: until i = N + 1.
14: Guaranteed accuracy:

κ =
|J |
N

(
− ε

2

)
+

( ε

2
+ δ

)
+

M2Θ2
0

Nε
. (18)

For Algorithm 5, we have the following result.

Theorem 5. Suppose all fi : Q → R (i = 1, . . . , N) and g satisfy (10) and (11)
with constants Mi > 0, i = 1, . . . , N and Mg > 0, Algorithm 5 works exactly
N productive steps. Then after the stopping of this Algorithm, the following
inequality holds

1
N

N∑

i=1

fi(xk) − min
x∈Q

1
N

N∑

i=1

fi(x) ≤ κ,

moreover, when the regret is non-negative, there will be no more than O(N)
non-productive steps.

The proof of this theorem is given in [29], Appendix C. In particular, note
that the proposed method is optimal [13]: if for some C > 0, κ ∼ ε ∼ δ = C√

N
,

then |J | ∼ O(N).

6 Numerical Experiments

To show the practical performance of the proposed Algorithms 2, 3 and their
modified versions, which are listed as Algorithm 6 and Algorithm 7 in [29], in the
case of many functional constraints, a series of numerical experiments were per-
formed1, for the well-known Fermat-Torricelli-Steiner problem, but with some
non-smooth functional constraints.
1 All experiments were implemented in Python 3.4, on a computer fitted with Intel(R)

Core(TM) i7-8550U CPU @ 1.80 GHz, 1992 Mhz, 4 Core(s), 8 Logical Processor(s).
RAM of the computer is 8 GB.
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For a given set {Pk = (p1k, p2k, . . . , pnk); k ∈ [r]} of r points, in n-
dimensional Euclidean space R

n, we need to solve the considered optimization
problem (3), where the objective function f is given by

f(x) :=
1
r

r∑

k=1

√
(x1 − p1k)2 + . . . + (xn − pnk)2 =

1
r

r∑

k=1

‖x − Pk‖2 . (19)

The functional constraint has the following form

g(x) = max
i∈[m]

{gi(x) = αi1x1 + αi2x2 + . . . + αinxn}. (20)

The coefficients αi1, αi2, . . . , αin, for all i ∈ [m], in (20) and the coordinates of
the points Pk, for all k ∈ [r], are drawn from the normal (Gaussian) distribution
with the location of the mode equaling 1 and the scale parameter equaling 2.

We choose the standard Euclidean norm and the Euclidean distance function
in R

n, δ = 0, starting point x0 =
(

1√
n
, . . . , 1√

n

)
∈ R

n and Q is the unit ball in
R

n.
We run Algorithms 2, 3 and their modified versions, Algorithms 6 and 7

respectively (see [29]), for m = 200, n = 500, r = 100 and different values of
ε ∈ { 1

2i : i = 1, 2, 3, 4, 5}. The results of the work of these algorithms are
represented in Table 1 below. These results demonstrate the comparison of the
number of iterations (Iter.), the running time (in seconds) of each algorithm
and the qualities of the solution, produced by these algorithms with respect
to the objective function f and the functional constraint g, where we calculate
the values of these functions at the output xout := x̂ of the algorithms. We set
fbest := f (xout) and gout := g (xout).

Table 1. The results of Algorithms 2, 3 and their modified versions Algorithms 6 and
7 respectively, with m = 200, n = 500, r = 100 and different values of ε.

Algorithm 2 Algorithm 6

1/ε Iter Time (sec.) fbest gout Iter Time (sec.) fbest gout

2 16 5.138 22.327427 2.210041 16 4.883 22.327427 2.210041

4 64 20.911 22.303430 2.016617 64 20.380 22.303430 2.016617

8 256 84.343 22.283362 1.858965 256 79.907 22.283362 2.015076

16 1024 317.991 22.274366 1.199792 1024 317.033 22.273177 1.988190

32 4096 1253.717 22.272859 0.607871 4096 1145.033 22.269038 1.858965

Algorithm 3 Algorithm 7

2 167 9.455 22.325994 0.417002 164 7.373 22.325604 0.391461

4 710 39.797 22.305980 0.204158 667 29.954 22.305654 0.188497

8 2910 158.763 22.289320 0.103493 2583 119.055 22.289302 0.088221

16 11613 626.894 22.280893 0.051662 10155 468.649 22.280909 0.045343

32 46380 2511.261 22.277439 0.026000 40149 1723.136 22.277450 0.022639
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In general, from the conducted experiments, we can see that Algorithm 2
and its modified version (Algorithm 6) work faster than Algorithms 3 and its
modified version (Algorithm 7). But note that Algorithms 3 and 7 guarantee a
better quality of the resulting solution to the considered problem, with respect
to the objective function f and the functional constraint (20). Also, we can
see the efficiency of the modified Algorithm 7, which saves the running time
of the algorithm, due to consideration of not all functional constraints on non-
productive steps.

7 Conclusion

In the paper, there was introduced the concept of an inexact (δ, φ, V )–model of
the objective function. There were considered some modifications of the Mirror
Descent algorithm, in particular for stochastic and online optimization prob-
lems. A significant part of the work was devoted to the research of a special
case of relative Lipschitz condition for the objective function and functional
constraints. The proposed methods are applicable for a wide class of problems
because relative Lipschitz-continuity is an essential generalization of the classical
Lipschitz-continuity. However, for relatively Lipschitz-continuous problems, we
could not propose adaptive methods like [3,27,28]. Note that Algorithm 3 and
its modified version Algorithm 7 (see [29]) are partially adaptive since the result-
ing number of iterations is not fixed, due to the stopping criterion, although the
step-sizes are fixed.
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