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Abstract. In the paper, we generalize the approach Gasnikov et al.
2017, which allows to solve (stochastic) convex optimization problems
with an inexact gradient-free oracle, to the convex-concave saddle-point
problem. The proposed approach works, at least, like the best exist-
ing approaches. But for a special set-up (simplex type constraints and
closeness of Lipschitz constants in 1 and 2 norms) our approach reduces
n/log n times the required number of oracle calls (function calculations).
Our method uses a stochastic approximation of the gradient via finite
differences. In this case, the function must be specified not only on the
optimization set itself, but in a certain neighbourhood of it. In the sec-
ond part of the paper, we analyze the case when such an assumption
cannot be made, we propose a general approach on how to modernize
the method to solve this problem, and also we apply this approach to
particular cases ofsomeclassical sets.

Keywords: Zeroth-order optimization · Saddle-point problem ·
Stochastic optimization

1 Introduction

In the last decade in the ML community, a big interest cause different appli-
cations of Generative Adversarial Networks (GANs) [10], which reduce the ML
problem to the saddle-point problem, and the application of gradient-free meth-
ods for Reinforcement Learning problems [17]. Neural networks become rather
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popular in Reinforcement Learning [13]. Thus, there is an interest in gradient-
free methods for saddle-point problems

min
x∈X

max
y∈Y

ϕ(x, y). (1)

One of the natural approach for this class of problems is to construct a stochastic
approximation of a gradient via finite differences. In this case, it is natural to
expect that the complexity of the problem (1) in terms of the number of function
calculations is ∼ n times large in comparison with the complexity in terms of
number of gradient calculations, where n = dim X + dimY. Is it possible to
obtain better result? In this paper, we show that this factor can be reduced in
some situation to a much smaller factor log n.

We use the technique, developed in [8,9] for stochastic gradient-free non-
smooth convex optimization problems (gradient-free version of mirror descent
[2]) to propose a stochastic gradient-free version of saddle-point variant of mirror
descent [2] for non-smooth convex-concave saddle-point problems.

The concept of using such an oracle with finite differences is not new (see
[5,16]). For such an oracle, it is necessary that the function is defined in some
neighbourhood of the initial set of optimization, since when we calculate the
finite difference, we make some small step from the point, and this step can lead
us outside the set. As far as we know, in all previous works, the authors proceed
from the fact that such an assumption is fulfilled or does not mention it at all.
We raise the question of what we can do when the function is defined only on
the given set due to some properties of the problem.

1.1 Our Contributions

In this paper, we present a new method called zeroth-order Saddle-Point Algo-
rithm (zoSPA) for solving a convex-concave saddle-point problem (1). Our algo-
rithm uses a zeroth-order biased oracle with stochastic and bounded determin-
istic noise. We show that if the noise ∼ ε (accuracy of the solution), then the
number of iterations necessary to obtain ε−solution on set with diameter Ω ⊂ R

n

is O
(

M2Ω2

ε2 n
)

or O
(

M2Ω2

ε2 log n
)

(depends on the optimization set, for example,

for a simplex, the second option with log n holds), where M2 is a bound of the
second moment of the gradient together with stochastic noise (see below, (3)).

In the second part of the paper, we analyze the structure of an admissible set.
We give a general approach on how to work in the case when we are forbidden
to go beyond the initial optimization set. Briefly, it is to consider the “reduced”
set and work on it.

Next, we show how our algorithm works in practice for various saddle-point
problems and compare it with full-gradient mirror descent.

One can find the proofs together and additional numerical experiments in
the full version of this paper available on arXiv [4].
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2 Notation and Definitions

We use 〈x, y〉 def=
∑n

i=1 xiyi to define inner product of x, y ∈ R
n where xi is

the i-th component of x in the standard basis in R
n. Hence we get the def-

inition of �2-norm in R
n in the following way ‖x‖2 def=

√〈x, x〉. We define

�p-norms as ‖x‖p
def= (

∑n
i=1 |xi|p)1/p for p ∈ (1,∞) and for p = ∞ we use

‖x‖∞
def= max1≤i≤n |xi|. The dual norm ‖ · ‖q for the norm ‖ · ‖p is defined in the

following way: ‖y‖q
def= max {〈x, y〉 | ‖x‖p ≤ 1}. Operator E[·] is full mathemati-

cal expectation and operator Eξ[·] express conditional mathematical expectation.

Definition 1 (M-Lipschitz continuity). Function f(x) is M -Lipschitz con-
tinuous in X ⊆ R

n with M > 0 w.r.t. norm ‖ · ‖ when

|f(x) − f(y)| ≤ M‖x − y‖, ∀ x, y ∈ X.

Definition 2 (μ-strong convexity). Function f(x) is μ-strongly convex w.r.t.
norm ‖·‖ on X ⊆ R

n when it is continuously differentiable and there is a constant
μ > 0 such that the following inequality holds:

f(y) ≥ f(x) + 〈∇f(x), y − x〉 +
μ

2
‖y − x‖2, ∀ x, y ∈ X.

Definition 3 (Prox-function). Function d(z) : Z → R is called prox-function
if d(z) is 1-strongly convex w.r.t. ‖ · ‖-norm and differentiable on Z function.

Definition 4 (Bregman divergence). Let d(z) : Z → R is prox-function.
For any two points z, w ∈ Z we define Bregman divergence Vz(w) associated
with d(z) as follows:

Vz(w) = d(z) − d(w) − 〈∇d(w), z − w〉.
We denote the Bregman-diameter ΩZ of Z w.r.t. Vz1(z2) as

ΩZ
def= max{√2Vz1(z2) | z1, z2 ∈ Z}.

Definition 5 (Prox-operator). Let Vz(w) Bregman divergence. For all x ∈ Z
define prox-operator of ξ:

proxx(ξ) = arg min
y∈Z

(Vx(y) + 〈ξ, y〉) .

3 Main Result

3.1 Non-smooth Saddle-Point Problem

We consider the saddle-point problem (1), where ϕ(·, y) is convex function
defined on compact convex set X ⊂ R

nx , ϕ(x, ·) is concave function defined
on compact convex set Y ⊂ R

ny .
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We call an inexact stochastic zeroth-order oracle ϕ̃(x, y, ξ) at each iteration.
Our model corresponds to the case when the oracle gives an inexact noisy func-
tion value. We have stochastic unbiased noise, depending on the random variable
ξ and biased deterministic noise. One can write it the following way:

ϕ̃(x, y, ξ) = ϕ(x, y, ξ) + δ(x, y),
Eξ[ϕ̃(x, y, ξ)] = ϕ̃(x, y), Eξ[ϕ(x, y, ξ)] = ϕ(x, y), (2)

where random variable ξ is responsible for unbiased stochastic noise and δ(x, y)
– for deterministic noise.

We assume that exists such positive constant M that for all x, y ∈ X ×Y we
have

‖∇ϕ(x, y, ξ)‖2 ≤ M(ξ), E[M2(ξ)] = M2. (3)

By ∇ϕ(x, y, ξ) we mean a block vector consisting of two vectors ∇xϕ(x, y, ξ) and
∇yϕ(x, y, ξ). One can prove that ϕ(x, y, ξ) is M(ξ)-Lipschitz w.r.t. norm ‖ · ‖2
and that ‖∇ϕ(x, y)‖2 ≤ M .

Also the following assumptions are satisfied:

|ϕ̃(x, y, ξ) − ϕ(x, y, ξ)| = |δ(x, y)| ≤ Δ. (4)

For convenience, we denote Z = X × Y and then z ∈ Z means z
def= (x, y),

where x ∈ X , y ∈ Y. When we use ϕ(z), we mean ϕ(z) = ϕ(x, y), and ϕ(z, ξ) =
ϕ(x, y, ξ).

For e ∈ RSn
2 (1) (a random vector uniformly distributed on the Euclidean

unit sphere) and some constant τ let ϕ̃(z+τe, ξ) def= ϕ̃(x+τex, y+τey, ξ), where

ex is the first part of e size of dimension nx
def= dim(x), and ey is the second

part of dimension ny
def= dim(y). And n

def= nx + ny. Then define estimation of
the gradient through the difference of functions:

g(z, ξ, e) =
n (ϕ̃(z + τe, ξ) − ϕ̃(z − τe, ξ))

2τ

(
ex

−ey

)
. (5)

g(z, ξ, e) is a block vector consisting of two vectors.
Next we define an important object for further theoretical discussion – a

smoothed version of the function ϕ̃ (see [15,16]).

Definition 6. Function ϕ̂(x, y) = ϕ̂(z) defines on set X × Y satisfies:

ϕ̂(z) = Ee [ϕ(z + τe)] .

Note that we introduce a smoothed version of the function only for proof;
in the algorithm, we use only the zero-order oracle (5). Now we are ready to
present our algorithm:
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Algorithm 1. Zeroth-Order Saddle-Point Algorithm (zoSPA)
Input: Iteration limit N .
Let z1 = argmin

z∈Z
d(z).

for k = 1, 2, . . . , N do
Sample ek, ξk independently.
Initialize γk.
zk+1 = proxzk

(γkg(zk, ξk, ek)).
end for
Output: z̄N ,

where

z̄N =
1

ΓN

(
N∑

k=1

γkzk

)
, ΓN =

N∑
k=1

γk. (6)

In Algorithm 1, we use the step γk. In fact, we can take this step as a constant,
independent of the iteration number k (see Theorem 1).

Note that we work only with norms ‖ · ‖p, where p is from 1 to 2 (q is from
2 to ∞). In the rest of the paper, including the main theorems, we assume that
p is from 1 to 2.

Lemma 1 (see Lemma 2 from [3]). For g(z, ξ, e) defined in (5) the following
inequalitie holds:

E
[‖g(z, ξ, e)‖2q

] ≤ 2
(

cnM2 +
n2Δ2

τ2

)
a2

q,

where c is some positive constant (independent of n) and a2
q is determined by√

E[‖e‖4q] ≤ a2
q and the following statement is true

a2
q = min{2q − 1, 32 log n − 8}n

2
q −1, ∀n ≥ 3. (7)

Note that in the case with p = 2, q = 2 we have aq = 1, this follows not from
(7), but from the simplest estimate. And from (7) we get that with p = 1, q = ∞
– aq = O(log n/n) (see also Lemma 4 from [16]).

Lemma 2 (see Lemma 8 from [16]). Let e be from RSn
2 (1). Then function

ϕ̂(z, ξ) is convex-concave and satisfies :

sup
z∈Z

|ϕ̂(z) − ϕ(z)| ≤ τM + Δ.

Lemma 3 (see Lemma 10 from [16] and Lemma 2 from [3]). It holds that

∇̃ϕ̂(z) = Ee

[
n (ϕ(z + τe) − ϕ(z − τe))

2τ

(
ex

−ey

)]
,

‖Ee[g(z, e)] − ∇̃ϕ̂(z)‖q ≤ Δnaq

τ
,
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where

g(z, e) = Eξ [g(z, ξ, e)]

=
n (ϕ̃(z + τe) − ϕ̃(z − τe))

2τ

(
ex

−ey

)
.

Hereinafter, by ∇̃ϕ̂(z) we mean a block vector consisting of two vectors ∇xϕ̂(x, y)
and −∇yϕ̂(x, y).

Lemma 4 (see Lemma 5.3.2 from [2]). Define Δk
def
= g(zk, ξk, ek)−∇̃ϕ̂(zk).

Let D(u)
def
=

∑N
k=1 γk〈Δk, u − zk〉. Then we have

E

[
max
u∈Z

D(u)
]

≤ Ω2 +
ΔΩnaq

τ

N∑
k=1

γk + M2
all

N∑
k=1

γ2
k,

where M2
all

def
= 2

(
cnM2 + n2Δ2

τ2

)
a2

q is from Lemma 1.

Theorem 1. Let problem (1) with function ϕ(x, y) be solved using Algorithm 1
with the oracle g(zk, ξk, ek) from (5). Assume, that the function ϕ(x, y) and its
inexact modification ϕ̃(x, y) satisfy the conditions (2), (3), (4). Denote by N the
number of iterations. Let step in Algorithm 1 γk = Ω

Mall

√
N

. Then the rate of
convergence is given by the following expression

E [εsad(z̄N )] ≤ 3MallΩ√
N

+
ΔΩnaq

τ
+ 2τM,

where z̄N is defined in (6), Ω is a diameter of Z, M2
all = 2

(
cnM2 + n2Δ2

τ2

)
a2

q

and
εsad(z̄N ) = max

y′∈Y
ϕ(x̄N , y′) − min

x′∈X
ϕ(x′, ȳN ),

x̄N , ȳN are defined the same way as z̄N in (6).

Next we analyze the results.

Corollary 1. Under the assumptions of the Theorem 1 let ε be accuracy of the
solution of the problem (1) obtained using Algorithm 1. Assume that

τ = Θ
( ε

M

)
, Δ = O

(
ε2

MΩnaq

)
, (8)

then the number of iterations to find ε-solution

N = O
(

Ω2M2n2/q

ε2
C2(n, q)

)
,

where C(n, q)
def
= min{2q − 1, 32 log n − 8}.

Consider separately cases with p = 1 and p = 2.
Note that in the case with p = 2, we have that the number of iterations

increases n times compared with [2], and in the case with p = 1 – just log2 n
times (Table 1).
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Table 1. Summary of convergence estimation for non-smooth case: p = 2 and p = 1.

p, (1 � p � 2) q, (2 � q � ∞) N , Number of iterations

p = 2 q = 2 O
(

Ω2M2

ε2
n
)

p = 1 q = ∞ O
(

Ω2M2

ε2
log2(n)

)

3.2 Admissible Set Analysis

As stated above, in works (see [5,16]), where zeroth-order approximation (5)
is used instead of the “honest” gradient, it is important that the function is
specified not only on an admissible set, but in a certain neighborhood of it. This
is due to the fact that for any point x belonging to the set, the point x + τe can
be outside it.

But in some cases we cannot make such an assumption. The function and
values of x can have a real physical interpretation. For example, in the case of a
probabilistic simplex, the values of x are the distribution of resources or actions.
The sum of the probabilities cannot be negative or greater than 1. Moreover, due
to implementation or other reasons, we can deal with an oracle that is clearly
defined on an admissible set and nowhere else.

In this part of the paper, we outline an approach how to solve the problem
raised above and how the quality of the solution changes from this.

Our approach can be briefly described as follows:

– Compress our original set X by (1 − α) times and consider a “reduced”
version Xα. Note that the parameter α should not be too small, otherwise
the parameter τ must be taken very small. But it’s also impossible to take
large α, because we compress our set too much and can get a solution far from
optimal. This means that the accuracy of the solution ε bounds α: α ≤ h(ε),
in turn, α bounds τ : τ ≤ g(α).

– Generate a random direction e so that for any x ∈ Xα follows x + τe ∈ X.
– Solve the problem on “reduced” set with ε/2-accuracy. The α parameter must

be selected so that we find ε-solution of the original problem.

In practice, this can be implemented as follows: 1) do as described in the
previous paragraph, or 2) work on the original set X, but if xk + τe is outside
X, then project xk onto the set Xα. We provide a theoretical analysis only for
the method that always works on Xα.

Next, we analyze cases of different sets. General analysis scheme:

– Present a way to “reduce” the original set.
– Suggest a random direction e generation strategy.
– Estimate the minimum distance between Xα and X in �2-norm. This is the

border of τ , since ‖e‖2.
– Evaluate the α parameter so that the ε/2-solution of the “reduced” problem

does not differ by more than ε/2 from the ε-solution of the original problem.
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The first case of set is a probability simplex:

�n =

{
n∑

i=1

xi = 1, xi ≥ 0, i ∈ 1 . . . n

}
.

Consider the hyperplane

H =

{
n∑

i=1

xi = 1

}
,

in which the simplex lies. Note that if we take the directions e that lies in H,
then for any x lying on this hyperplane, x + τe will also lie on it. Therefore, we
generate the direction e randomly on the hyperplane. Note that H is a subspace
of Rn with size dimH = n − 1. One can check that the set of vectors from Rn

v =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1 = 1/
√
2(1,−1, 0, 0, . . . 0),

v2 = 1/
√
6(1, 1,−2, 0, . . . 0),

v3 = 1/
√
12(1, 1, 1,−3, . . . 0),

. . .
vk = 1/

√
k+k2(1, . . . 1,−k, . . . , 0),

. . .
vn−1 = 1/

√
n−1+(n−1)2(1, . . . , 1,−n + 1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

is an orthonormal basis of H. Then generating the vectors ẽ uniformly on the
euclidean sphere RSn−1

2 (1) and computing e by the following formula:

e = ẽ1v1 + ẽ2v2 + . . . + ẽkvk + . . . ẽn−1vn−1, (9)

we have what is required. With such a vector e, we always remain on the hyper-
plane, but we can go beyond the simplex. This happens if and only if for some
i, xi + τei < 0. To avoid this, we consider a “reduced” simplex for some positive
constant α:

�α
n =

{
n∑

i=1

xi = 1, xi ≥ α, i ∈ 1 . . . n

}
.

One can see that for any x ∈ �α
n, for any e from (9) and τ < α follows that

x + τe ∈ �n, because |ei| ≤ 1 and then xi + τei ≥ α − τ ≥ 0.
The last question to be discussed is the accuracy of the solution that we

obtain on a “reduced” set. Consider the following lemma (this lemma does not
apply to the problem (1), for it we prove later):

Lemma 5. Suppose the function f(x) is M -Lipschitz w.r.t. norm ‖ · ‖2. Con-
sider the problem of minimizing f(x) not on original set X, but on the “reduced”
set Xα. Let we find xk solution with ε/2-accuracy on f(x). Then we found
(ε/2 + rM)-solution of original problem, where

r = max
x∈X

∥∥∥∥x − argmin
x̂∈Xα

‖x − x̂‖2
∥∥∥∥
2

.
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It is not necessary to search for the closest point to each x and find r. It’s
enough to find one that is “pretty” close and find some upper bound of r. Then
it remains to find a rule, which each point x from X associated with some point
x̂ from Xα and estimate the maximum distance maxX ‖x̂−x‖2. For any simplex
point, consider the following rule:

x̂i =
(xi + 2α)
(1 + 2αn)

, i = 1, . . . n.

One can easy to see, that for α ≤ 1/2n:

n∑
i=1

x̂i = 1, x̂i ≤ α, i = 1, . . . n.

It means that x̂ ∈ Xα. The distance ‖x̂ − x‖2:

‖x̂ − x‖2 =

√√√√
n∑

i=1

(x̂i − xi)2 =
2αn

1 + 2αn

√√√√
n∑

i=1

(
1
n

− xi

)2

.

√
n∑

i=1

(
1
n − xi

)2 is a distance to the center of the simplex. It can be bounded by

the radius of the circumscribed sphere R =
√

n−1
n ≤ 1. Then

‖x̂ − x‖2 ≤ 2αn

1 + 2αn
≤ 2αn. (10)

(10) together with Lemma 5 gives that f(xk) − f(x∗) ≤ ε
2 + 2αnM . Then by

taking α = ε/4nM (or less), we find ε-solution of the original problem. And it
takes τ ≤ α = ε/4nM.

The second case is a positive orthant:

⊥n = {xi ≥ 0, i ∈ 1 . . . n} .

We propose to consider a “reduced” set of the following form:

⊥α
n = {yi ≥ α, i ∈ 1 . . . n} .

One can note that for all i the minimum of the expression yi + τei is equal to
α − τ , because ei ≥ −1 and yi ≥ α. Therefore, it is necessary that α − τ ≥ 0. It
means that for any e ∈ RSn

2 (1), for the vector y + τe the following expression
is valid:

yi + τei ≥ 0, i ∈ 1 . . . n.

The projection onto ⊥α
n is carried out as well as onto ⊥n: if xi < α then xi → α.
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Then let find r in Lemma 5 for orthant. Let for any x ∈ ⊥n define x̂ in the
following way:

x̂i =

{
α, xi < α,

xi, xi ≥ α,
i = 1, . . . n.

One can see that x̂i ∈ ⊥α
n and

‖x̂ − x‖2 =

√√√√
n∑

i=1

(x̂i − xi)2 ≤
√√√√

n∑
i=1

α2 = α
√

n.

By Lemma 5 we have that f(xk) − f(x∗) ≤ ε
2 + α

√
nM . Then by taking α =

ε/2
√

nM (or less), we find ε-solution of the original problem. And it takes τ ≤
α = ε/2

√
nM.

The above reasoning can easily be generalized to an arbitrary orthant:

⊥̃n = {bixi ≥ 0, bi = ±1, i ∈ 1 . . . n} .

The third case is a ball in p-norm for p ∈ [1; 2]:

Bn
p (a,R) = {‖x − a‖p ≤ R} ,

where a is a center of ball, R – its radii. We propose reducing a ball and solving
the problem on the “reduced” ball Bn

p (a,R(1−α)). We need the following lemma:

Lemma 6. Consider two concentric spheres in p norm, where p ∈ [1; 2], α ∈
(0; 1):

Sn
p (a,R) = {‖x − a‖p = R} , Sn

p (a,R(1 − α)) = {‖y − a‖p = R(1 − α)} .

Then the minimum distance between these spheres in the second norm

m =
αR

n1/p−1/2
.

Using the lemma, one can see that for any x ∈ Bα
n(a,R(1−α)), τ ≤ αR/n

1/p−1/2

and for any e ∈ RSn
2 (1), x + τe ∈ Bn(a,R).

Then let find r in Lemma 5 for ball. Let for any x define x̂ in the following
way:

x̂i = a + (1 − α)(xi − a), i = 1, . . . n.

One can see that x̂i is in the “reduced” ball and

‖x̂ − x‖2 =

√√√√
n∑

i=1

(x̂i − xi)2 =

√√√√
n∑

i=1

(α(xi − a))2 = α

√√√√
n∑

i=1

(xi − a)2 ≤ α
n∑

i=1

|xi − a|.

By Holder inequality:

‖x̂ − x‖2 ≤ α

n∑
i=1

|xi − a| ≤ αn
1
q

(
n∑

i=1

|xi − a|p
) 1

p

= αn
1
q R.
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By Lemma 5 we have that f(xk) − f(x∗) ≤ ε
2 + αn1/qRM . Then by taking

α = ε/2n1/qRM (or less), we find ε-solution of the original problem. And it takes
τ ≤ αR/n

1/p−1/2 = ε/2M
√

n.
The fourth case is a product of sets Z = X × Y. We define the “reduced”

set Zα as

Zα = Xα × Y α,

We need to find how the parameter α and τ depend on the parameters αx, τx

and αy, τy for the corresponding sets X and Y , i.e. we have bounds: αx ≤ hx(ε),
αy ≤ hy(ε) and τx ≤ gx(αx) ≤ gx(hx(ε)), τy ≤ gy(αy) ≤ gy(hy(ε)). Obviously,
the functions g, h are monotonically increasing for positive arguments. This
follows from the physical meaning of τ and α.

Further we are ready to present an analogue of Lemma 5, only for the saddle-
point problem.

Lemma 7. Suppose the function ϕ(x, y) inthe saddle-point problem is M -
Lipschitz. Let we find (x̃, ỹ) solution on Xα and Y α with ε/2-accuracy. Then
we found (ε/2 + (rx + ry)M)-solution of the original problem, where rx and ry

we define in the following way:

rx = max
x∈X

∥∥∥∥x − argmin
x̂∈Xα

‖x − x̂‖2
∥∥∥∥
2

,

ry = max
y∈Y

∥∥∥∥∥y − argmin
ŷ∈Y α

‖y − ŷ‖2
∥∥∥∥∥
2

.

In the previous cases we found the upper bound αx ≤ hx(ε) from the con-
dition that rxM ≤ ε/2. Now let’s take α̃x and α̃y so that rxM ≤ ε/4 and
ryM ≤ ε/4. For this we need α̃x ≤ hx(ε/2), α̃y ≤ hy(ε/2). It means that if
we take α = min(α̃x, α̃y), then (rx + ry)M ≤ ε/2 for such α. For a simplex, an
orthant and a ball the function h is linear, therefore the formula turns into a
simpler expression: α = min(αx,αy)/2.

For the new parameter α = min(α̃x, α̃y), we find τ̃x = gx(α) =
gx(min(α̃x, α̃y)) and τ̃y = gy(α) = gy(min(α̃x, α̃y)). Then for any x ∈ Xα,
ex ∈ RSdimX

2 (1), y ∈ Y α, ey ∈ RSdimY
2 (1), x + τ̃xex ∈ X and y + τ̃yey ∈ Y .

Hence, it is easy to see that for τ = min(τ̃x, τ̃y) and the vector ẽx of the first
dimX components of e ∈ RSdimX+dimY

2 (1) and for the vector ẽy of the remain-
ing dimY components, for any x ∈ Xα, y ∈ Y α it is true that x + τ ẽx ∈ X and
y + τ ẽy ∈ Y . We get τ = min(τ̃x, τ̃y). In the previous cases that we analyzed
(simplex, orthant and ball), the function g and h are linear therefore the formula
turns into a simpler expression: τ = min(αx, αy) · min(τx/αx, τy/αy)/2.

Summarize the results of this part of the paper in Table 2.
One can note that in (8) τ is independent of n. According to Table 2, we need

to take into account the dependence on n. In Table 3, we present the constraints
on τ and Δ so that Corollary 1 remains satisfied. We consider three cases when
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Table 2. Summary of the part 3.2

Set α of “reduced” set Bound of τ e

probability simplex ε
4nM

ε
4nM

see (9)

positive orthant ε
2
√

nM
ε

2
√

nM
RSn

2 (1)

ball in p-norm ε

2n1/qRM

ε
2
√

nM
RSn

2 (1)

Xα × Y α min(αx,αy)

2

min(αx,αy)·min(τx/αx,τy/αy)

2
RSn

2 (1)

both sets X and Y are simplexes, orthants and balls with the same dimension
n/2.

The second column of Table 3 means whether the functions are defined not
only on the set itself, but also in some neighbourhood of it.

Table 3. τ and Δ in Corollary 1 in different cases

Set Neigh-d? τ Δ

Probability simplex ✓ Θ
(

ε
M

) O
(

ε2

MΩnaq

)

✗ Θ
(

ε
Mn

)
and ≤ ε

4nM
O

(
ε2

MΩn2aq

)

Positive orthant ✓ Θ
(

ε
M

) O
(

ε2

MΩnaq

)

✗ Θ
(

ε
M

√
n

)
and ≤ ε√

8nM
O

(
ε2

MΩn3/2aq

)

Ball in p-norm ✓ Θ
(

ε
M

) O
(

ε2

MΩnaq

)

✗ Θ
(

ε
M

√
n

)
and ≤ ε√

8nM
O

(
ε2

MΩn3/2aq

)

4 Numerical Experiments

In a series of our experiments, we compare zeroth-order Algorithm 1 (zoSPA)
proposed in this paper with Mirror-Descent algorithm from [2] which uses a
first-order oracle.

We consider the classical saddle-point problem on a probability simplex:

min
x∈Δn

max
y∈Δk

[
yT Cx

]
, (11)

This problem has many different applications and interpretations, one of the
main ones is a matrix game (see Part 5 in [2]), i.e. the element cij of the matrix
are interpreted as a winning, provided that player X has chosen the ith strategy
and player Y has chosen the jth strategy, the task of one of the players is to
maximize the gain, and the opponent’s task – to minimize.
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We briefly describe how the step of algorithm should look for this
case. The prox-function is d(x) =

∑n
i=1 xi log xi (entropy) and Vx(y) =∑n

i=1 xi log xi/yi (KL divergence). The result of the proximal operator is u =
proxzk

(γkg(zk, ξ±
k , ek)) = zk exp(−γkg(zk, ξ±

k , ek)), by this entry we mean:
ui = [zk]i exp(−γk[g(zk, ξ±

k , ek)]i). Using the Bregman projection onto the sim-
plex in following way P (x) = x/‖x‖1, we have

[xk+1]i =
[xk]i exp(−γk[gx(zk, ξ±

k , ek)]i)
n∑

j=1

[xk]j exp(−γk[gx(zk, ξ±
k , ek)]j)

,

[yk+1]i =
[yk]i exp(γk[gy(zk, ξ±

k , ek)]i)
n∑

j=1

[xk]j exp(γk[gy(zk, ξ±
k , ek)]j)

,

where under gx, gy we mean parts of g which are responsible for x and for y.
From theoretical results one can see that in our case, the same step must be
used in Algorithm 1 and Mirror Descent from [2], because n1/q = 1 for q = ∞.

In the first part of the experiment, we take matrix 200 × 200. All elements
of the matrix are generated from the uniform distribution from 0 to 1. Next, we
select one row of the matrix and generate its elements from the uniform from
5 to 10. Finally, we take one element from this row and generate it uniformly
from 1 to 5. Then we take the same matrix, but now at each iteration we add to
elements of the matrix a normal noise with zero expectation and variance of 10,
20, 30, 40% of the value of the matrix element. The results of the experiment is
on Fig. 1.

According to the results of the experiments, one can see that for the consid-
ered problems, the methods with the same step work either as described in the
theory (slower n times or log n times) or generally the same as the full-gradient
method.

5 Possible Generalizations

In this paper we consider non-smooth cases. Our results can be generalized for
the case of strongly convex functions by using restart technique (see for example
[7]). It seems that one can do it analogously.1 Generalization of the results of
1 To say in more details this can be done analogously for deterministic set up. As for

stochastic set up we need to improve the estimates in this paper by changing the
Bregman diameters of the considered convex sets Ω by Bregman divergence between
starting point and solution. This requires more accurate calculations (like in [11])
and doesn’t include in this paper. Note that all the constants, that characterized
smoothness, stochasticity and strong convexity in all the estimates in this paper
can be determine on the intersection of considered convex sets and Bregman balls
around the solution of a radii equals to (up to a logarithmic factors) the Bregman
divergence between the starting point and the solution.
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Fig. 1. zoSPA with 0–40% noise and Mirror Descent applied to solve saddle-problem
(11).

[6,11,18] and [1,14] for the gradient-free saddle-point set-up is more challenging.
Also, based on combinations of ideas from [1,12] it’d be interesting to develop a
mixed method with a gradient oracle for x (outer minimization) and a gradient-
free oracle for y (inner maximization).
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