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Preface

This volume contains the refereed and selected papers presented at 19th International
Conference on Mathematical Optimization Theory and Operations Research (MOTOR
2020)" held during July 6-10, 2020.

It was originally planned that the conference would be held near Novosibirsk Sci-
entific Center, Russia. But due to the difficult situation all around the world related to
the COVID-19 pandemic, MOTOR 2020 conference only took place online, via Zoom.

MOTOR 2020 is the second joint scientific event” unifying a number of well-known
international and Russian conferences held in Ural, Siberia, and the Far East for a long
time:

— Baikal International Triennial School Seminar on Methods of Optimization and
Their Applications (BITSS MOPT), established in 1969 by academician N.N.
Moiseev; the 17th event® in this series was held on 2017, in Buryatia.

— All-Russian Conference on Mathematical Programming and Applications (MPA),
established in 1972 by academician L.I. Eremin; the 15th conference” in this series
was held in 2015, near Ekaterinburg.

— The International Conference on Discrete Optimization and Operations Research
(DOOR) was organized 9 times since 1996; the last event’ was held in 2016 in
Vladivostok.

— The International Conference on Optimization Problems and Their Applications
(OPTA) was organized regularly in Omsk since 1997; the 7th event® in this series
was held in 2018.

As per tradition, the main conference scope included, but was not limited to,
mathematical programming, bi-level and global optimization, integer programming and
combinatorial optimization, approximation algorithms with theoretical guarantees and
approximation schemes, heuristics and meta-heuristics, game theory, optimization in
machine learning and data analysis, and valuable practical applications in operations
research and economics.

In response to the call for papers, MOTOR 2020 received 175 submissions. Out of
102 full papers considered for reviewing (73 abstracts and short communications were
excluded because of formal reasons), only 31 papers were selected by the Program

! http://math.nsc.ru/conference/motor/2020/.

2 The first conference of this series, MOTOR 2019, http://motor2019.uran.ru, was held on July, 2019,
in Ekaterinburg.

3 http://isem.irk.ru/conferences/mopt2017/en/index.html.
* http://mpa.imm.uran.ru/96/en.

5 http://www.math.nsc.ru/conference/door/2016/.

S http://optal8.oscsbras.ru/en/.
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vi Preface

Committee (PC) for publication in the first volume of proceedings (published in
Springer LNCS, Vol. 12095). Out of the remaining, the PC selected 33 revised papers
for publication in this volume. Each submission was reviewed by at least three PC
members or invited reviewers, experts in their fields, in order to supply detailed and
helpful comments.

The conference featured nine invited lectures:

— Prof. Aida Abiad (Eindhoven University of Technology, The Netherlands, and
Ghent University, Belgium), “On graph invariants and their application to the graph
isomorphism problem”

— Prof. Evripidis Bampis (Sorbonne Université, France), “Multistage optimization
problems”

— Prof. Bo Chen (University of Warwick, UK), “Capacity auctions: VCG mechanism
vs. submodularity”

— Prof. Sergei Chubanov (Bosch Research, Germany), “Convex geometry in the
context of artificial intelligence”

— Prof. Igor Konnov (Kazan Federal University, Russia) “Equilibrium formulations of
relative optimization problems”

— Prof. Alexander Kostochka (University of Illinois at Chicago, USA), “Long cycles
in graph and hypergraphs”

— Prof. Panos Pardalos (University of Florida, USA), “Inverse combinatorial opti-
mization problems”

— Prof. Soumyendu Raha (Indian Institute of Science, Bangalore, India) “Partitioning
a reaction-diffusion ecological network for dynamic stabilitys”

— Prof. Yakov Zinder (University of Technology Sydney, Australia), “Two-stage
scheduling models with limited storage”

The following four tutorials were given by outstanding scientists:

— Prof. Alexander Grigoriev (Maastricht University, The Netherlands), “Evolution of
sailor and surgical knots”

— Prof. Michael Khachay (Krasovsky Institute of Mathematics and Mechanics,
Ekaterinburg, Russia), “Metrics of a fixed doubling dimension: an efficient
approximation of combinatorial problems”

— Prof. Vladimir Mazalov (Institute of Applied Mathematical Research,
Petrozavodsk, Russia), “Game theory and social networks”

— Dr. Andrey Melnikov (Sobolev Institute of Mathematics, Russia), “Practice of using
the Gurobi optimizer”

We thank the authors for their submissions, members of the PC and external
reviewers for their efforts in providing exhaustive reviews. We thank our sponsors and
partners: Mathematical Center in Akademgorodok, Sobolev Institute of Mathematics,
Novosibirsk State University, Krasovsky Institute of Mathematics and Mechanics,
Higher School of Economics, and Melentiev Energy Systems Institute. We are grateful
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to Alfred Hofmann, Aliaksandr Birukou, Anna Kramer, and colleagues from
Springer LNCS and CCIS editorial boards for their kind and helpful support.

August 2020 Yury Kochetov
Igor Bykadorov
Tatiana Gruzdeva
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A 0.3622-Approximation Algorithm
for the Maximum k-Edge-Colored
Clustering Problem

Alexander Ageev(®™) and Alexander Kononov

Sobolev Institute of Mathematics, Novosibirsk, Russia
{ageev,alvenko}@math.nsc.ru

Abstract. In the Max k-Edge-Colored Clustering problem (abbreviated
as MAX-k-EC) we are given an undirected graph and k colors. Each
edge of the graph has a color and a nonnegative weight. The goal is
to color the vertices so as to maximize the total weight of the edges
whose colors coincide with the colors of their endpoints. The problem was
introduced by Angel et al. [3]. In this paper we give a polynomial-time
algorithm for MAX-k-EC with an approximation factor 141262654 ~ 0.3622
which significantly improves the best previously known approximation
bound 2% a2 0.3402 established by Alhamdan and Kononov [2].

144

Keywords: Clustering problem * Edge-colored graph - Linear
relaxation - Approximation algorithm - Worst-case analysis

1 Introduction

In the Max k-Edge-Colored Clustering problem we are given an undirected graph
G = (V, E) whose edges have colors ¢ : E — {1,...,k} and weights w : E — Q7.
The goal is to color vertices of G so as to maximize the total weight of edges
whose colors coincide with the colors of their endpoints. Cai and Leung [6] call
the edges whose colors coincide with the colors of their endpoints stable. In these
terms the problem is to color the vertices of G so as to maximize the total weight
of stable edges.

The problem was introduced by Angel et al. in [3]. It is easy to see that the
case when each edge of G has it own color is nothing but the Maximum Weight
Matching Problem. Cai and Leung [6] observed that the MAX-k-EC problem
can be considered as the optimization counterpart of the Vertex-Monochromatic
Subgraph problem or the Alternating Path Removal problem studied in a series
of research papers [5,8].

The MAX-k-EC problem can also be interpreted as an extension of the cen-
tralized version of the information-sharing model introduced by Kleinberg and
Ligett [9] and as a special case of the combinatorial allocation problem [7] (for
a more detailed discussion see [2,3]).

© Springer Nature Switzerland AG 2020
Y. Kochetov et al. (Eds.): MOTOR 2020, CCIS 1275, pp. 3-15, 2020.
https://doi.org/10.1007/978-3-030-58657-7_1
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1.1 Related Work

Angel et al. [3,4] showed that the MAX-k-EC problem is strongly NP-hard in
the case of edge-tricoloured bipartite graphs. Cai and Leung [6] strengthened
this result by establishing that MAX-k-EC is NP-hard in the strong sense even
on edge-tricoloured planar bipartite graphs of maximum degree four.

On the other hand, Angel et al. [3,4] showed that the MAX-k-EC problem
is polynomially solvable in the case of edge-bicoloured graphs by a reduction to
the maximum independent set problem on bipartite graphs.

Cai and Leung [6] presented two FPT algorithms for the MAX-k-EC problem
under the assumption that the number of stable edges is a fixed parameter.

Angel et al. [3,4] also derived the first constant-factor approximation algo-
rithm for the MAX-k-EC problem. It is base on randomized rounding a linear
relaxation of the problem and finds a set of stable edges with weight 6%, ~ 0.1353
of the optimum. Later Ageev and Kononov [1] showed that a refined worst-case
analysis of this algorithm gives an approximation factor of 0.25. They also pre-
sented an approximation algorithm with a factor of 2—73 ~ 0.3043 based on round-
ing the same LP relaxation. Very recently, Alhamdan and Kononov [2] further

improved this bound to 1‘% ~ 0.3402 by applying a modified rounding technique.

1.2 Our Results

We present a modified version of the algorithm by Alhamdan and Kononov [2]
for the MAX-k-EC problem. The algorithm retrieves a set of stable edges whose
weight is a factor of % ~ 0.3622 of the optimum. This is achieved through
the use a slightly more sophisticated rounding scheme. Though the main ideas
behind our approach are the same as in [3,4]. We use a similar two-phase scheme.
On the first phase the algorithm chooses a set of desired stable edges randomly
and independently for each color. On the second phase the algorithm colors

vertices taking into account the selection of the edges made on the first phase.

2 Algorithm

Angel et al. [3,4] suggest the following integer linear program (ILP) for MAX-
k-EC:

maximize Z WeZe (1)
ecE

subject to vai =1, YveV (2)
ieC
Ze < MIN{Zy(e), Tuc(e) } Ve =[v,u] € E (3)
Tyiy Ze S {071}7 VUE ‘/aiecveeE (4)

In this program, the variables x,;, v € V, i € C specify the colors assigned to the
vertices: x,; = 1 if v is colored with color ¢ and z,; = 0 otherwise. The variables
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Ze, € € E indicate the stable edges: z. = 1 if both endpoints of e are colored
with the same color as e and z. = 0 otherwise.

The first set of constraints ensures that each vertex is colored exactly by one
color, and the second ensures that an edge e is stable if its color coincides with
the colors of its endpoints.

The LP-relaxation (LP) of (1)—(4) arises after replacing the constraints x,,; €
{0,1} and z, € {0,1} by z,; > 0 and z, > 0, respectively.

The following two-phase randomized algorithm was first presented in [3] and
analyzed in [1-3]. In the first phase, it starts with solving LP and then works
in k iterations, by considering each color i, 1 < i < k, independently from the
others. For each color, the algorithm picks a threshold r at random in (0,1)
and selects all edges of this color with 2} > r. When an edge is selected, this
means that both its endpoints receive the color of this edge. Since a vertex can
be adjacent to differently colored edges, it may receive more than one colors. In
the second phase, the algorithm chooses randomly one of these colors. Denote by
Au(l,¢) the probability with which the algorithm chooses the color ¢ if [ colors
were assigned to v at the first phase of the algorithm. We present the algorithm
below.

Algorithm 1. Algorithm 2-PHASE
1: Phase I:

2: Solve LP and let z} be the values of variables z..

3: for each color ¢ € C do

4:  Let r be a random value in [0,1].

5:  Choose the c-colored edges e with z2 > r and give color ¢ to both of e’s endpoints.
6: end for
7
8
9
0
1

: Phase II:

: for each vertex v € V do

Let vertex v got [ colors.

assign randomly one of [ colors to v, each with the probability A\, (I, ¢).
: end for

Let (z*,2*) be an optimal solution of the LP. Following [2] we say that an
edge e is big if z¥ > %; otherwise an edge e is small. We say that a vertex v is
heavy if it is incident to at least one big edge; otherwise vertex v is light. Given
a vertex v € V', we say that color i is heavy for v if v is incident to an i-colored
big edge, otherwise color i is light for v. We note that each vertex has at most
two heavy colors. If the vertex v got two colors: a heavy color ¢ and a light color
j then we set Ay(2,9) = A({j},7) = 5 and \(2,7) = A({i},J) = 2 else we
set Ay (L, ¢) = % for all [ colors assigned to v at the first phase of the algorithm.
Here X\, ({i}, q) means the probability with which the algorithm assigns color ¢ to
vertex v on Phase 2 if on Phase 1 v receives two colors ¢ and i. For convenience,
we will use two notation for the probability with which the algorithm chooses
the color c if two colors were assigned to v.
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Our rounding scheme differs from that in [2] by the definition of big edge.
In [2], an edge e is big if z; > 1. This implies that each vertex can have at
most one heavy color, which significantly simplifies the analysis but results in a
weaker approximation factor. Moreover, in our analysis we need a bit stronger

probability lemma than in [2] (Lemma 9).

3 Analysis

In this subsection, we give a worst-case analysis of Algorithm 2-PHASE. Let X,
denote the event where vertex v gets color ¢ after Phase I of the algorithm.
Since the first phase of the algorithm coincides with the first phases of the
algorithms RR and RR2, presented in [3] and [1], respectively, the following
simple statements are valid.

Lemma 1. [3] For any edge e € E, the probability that e is chosen in Phase
I sz},

Lemma 2. [3] For every vertex v € V and for all i € C we have:
Pr(X,;] = max{z} :e = [v,u] € E & c(e) = i}.

Lemma 3. [3] For every vertexv € V, > .o Pr[X,] < 1.

ieC

Recall that the vertex v can get several colors after Phase I. However, in
general this number will be small. Let Y,; denote the event where vertex v is
colored with ¢ after Phase II of the algorithm.

Assume that a vertex v gets a color ¢ in Phase I of Algorithm 2-Phase.
The probability that a vertex v is colored with a color ¢ in Phase II depends
on how many colors a vertex v received in Phase I. Without loss of generality,
assume that the edges with colors 1,...,¢ and ¢ are incident to the vertex v. By
the law of total probability we have

t

r[Yog | Xog) H 1= PriXu]) + D A({i} @) PrX,] [J(1 - PriX.,)

i=1 j#i
+3 ZPT[XM-]PT[XW-] H (1= Pr{Xy])
%,] l?él,l;é]
1
+5 Z PriXu]PriXo)Pr(Xn] H (1—Pr[Xu)) (5)
1,5,k l#i,01#7,l#k

The following lemmas give a lower bound for the probability that color ¢ was
assigned to vertex v in Phase II.

Lemma 4. Assume that a heavy vertex v gets the only heavy color q in Phase
I of Algorithm 2-PHLV, then Pr(Y,q| Xy > 3= > 0.62.
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We assume that the vertex v has no heavy colors except ¢g. It follows that
Mo({i},q) = 4 forall i = 1,...,t and we can rewrite (5) as

Pr{YuqlXoo) = TT0 = PriXai) + 5 37 PriXaa TL0 - PriXa)

+ %i Z Pr(Xi]| PrX,;] H (1— Pr[X,]) (6)
i=1 j=i+1 U4,1#]

We drop all the remaining terms of the formula because they are equal to
zero in the worst case.

To simplify computations we set X; = Pr[X,;] and consider the right-hand-
size of (6) as a function f,, of variables X1, Xa, ..., X;. We have

t

fog =00 - ZXHl— %i Soxx; J] a-x.

i=1 i=1 i i=1 j=i+1 1,145

Taking into account that color ¢ is heavy and other colors are light, we have
SioXi<Zand X, <Ll i=1,....t

Putting the first two variables out of the summation and the product, we
get

foo = (1= X0)(1 = X2) TT (1= X0) + (001 = Xa) + Xa(L = X0) [[(1 - X)

t t
+I1-X)1-Xo) X X [ A-Xj)+iX1 X [[Q1-X))
=3 >3 =3

P -X) + (- XD)X) S X [T (1- X))
=3 j=>3,5#1

HO-XD0-X) 3 S XX, T (1-X)
i=3 j=it 13,154, 1]
t t
> (1 - X0)( = %2) [0 - X0 + 50X (1 - Xa) + Xa(1 - X0) [](1 - X0)
1=3 1=3
t t t
+1X1X2 H(l—X)—(l—*Xl—*Xz H )+ X1X2 H(I—Xi)~
3 =3 3 =3 1=3

(7)

Consider fy,q as a function of two variables X; and X,. Assume that X; +
2

X2 = v, where v < 3 is a constant. Let X; > X > 0. If we increase X,
and decrease Xo by d, 0 < 6 < X5, then the first term of (7) does not change
and the last term decreases and therefore the function f,, decreases as well. It
follows that the minimum of f,, is attained at X; = min{1/3,7} and X, =
max{0,y — 1/3}. By repeating this argument we get that the minimum of f,q
is attained when X; = 3, Xy = , and X; = 0, ¢ = 3,...,t. Finally, we get

Pr(Yog| Xvg) = foq > 5 20.62.
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Lemma 5. Assume that a heavy vertex v has only one heavy color and gets a
light color q in Phase I of Algorithm 2-PHLV, then Pr[Yyq|Xuq] > 39 > 0.61.

Proof. Let color 1 be the heavy color. It follows that A,({1},¢q) = % and
M({i},q) =1 foralli =1,...,t and we can rewrite (5) as

t t
2
r[Yog| Xug) > [J(1 = PriXu]) + 3 PriXon T = PriX.w))
=1 1=2

t

+ %(1 — PriXn)) > PriXxy] ] (1-PrX,)
1=2 J>2,j#i

t ot
il”; 32 prixlPrix] TT (- Prixa)
By setting A = [[;_s(1—Pr[X,]), B = Yi_3 Pr[X.,] [j5s,2(1—Pr[Xy])
%r’li PO Z;Ziﬂ PriXo]PriXo;] [ 153,2i02; (1 — Pr[Xw]) we can rewrite this
expression as
PrYyq|Xog] 2 (1= PriXvi])(1 — PrXy2])A + gPT[Xvﬂ(l — Pr[Xy2])A+
2(1 — Pr[Xo1]) PrXva] A + %(1 — Pr{Xu1])(1 — Pr[Xy2))B + %PT[XUﬂPT[XUQ]A
+ é(Pr[Xvﬂ(l — Pr(Xy2]) + (1 — Pr[X,1])Pr[X.2])B + %(1 — Pr[X,1])(1 — Pr[Xy2])C.
Discarding the last term and setting X; = Pr[X,;] we get
Pr(YoglXuogl > fuog = (1— X1)(1 — Xp)A + gX1(1 ~Xo)A+ 51— Xi)XoA
+ §(1 —X1)(1 - X2)B + 3X1X2A L lxa - x) 0 -x)x0)B.

In order to obtain a lower bound for Pr[Y,,|X,,], we first show that the
minimum of f,4 is attained when X; = % After multiplying the terms with each
other, we get

1 1 1 1 1 1 1
=(1-=X; — =X X XA+ (=—-—=X;—=Xo—-X1X,)B
Joa = ( 35 2+6 1X2) +(2 6N T g2 T g 2)
=(1 1X 1X)A+(1 1X 1X)B 1(XXB—FX(l X1)A)
= 341 T g2 5 T gl T g2 g A1ke 2 1)A).

Let us consider f,, as a function of two variables X; and X5. Assume that
X1+ X5 = ~. Since color 1 is heavy then % < X; <~vand Xs < % If we decrease
X, and increase Xs by §,0 < d < X7 — %, then the expression X1 XoB + Xo(1 —
X1)A increases. It follows that f,q reaches a minimum when X; = %

Now, substitute X; by % Thus, we obtain

foq > ( 7—7X2 [Ja- 7—7X2 Z II a-x). ©®

=3 i= J>3,jF#0
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Rewrite the right-hand side of (8) as

foo = (5 — 5 X)(0 = Xo) [T~ X0 + (5 — 2X)%: [J( - X0)

=4 =4

- (g — gxg)(l -X3)> X ] (1 - X;)
: i
2,
“ot

X3H (1-X

- SH(l R X24X3> ©

Consider f,q as a function of two variables Xy and X3. Assume that Xy +
X3 = 7, where v < % is a constant. Let Xo > X3 > 0. If we increase X5 and
decrease X3 by 6, 0 < 6 < X3, then the last term decreases and therefore the
function f,, decreases as well. It follows that the minimum of f,,, is attained at
X, = min{~, :}. By repeating this argument we get that the minimum of f,q
is attained when Xy = 3, X3 = g, and X; = 0, ¢ = 4,...,t. Finally, we get
PriYyg|Xvgl > foq > "0 ~ O 6172839507.

Lemma 6. Assume that a vertex v has two heavy color and a color q is heavy.
Then Pr(Y,q Xug] > 3.

Proof. Let color 1 be the second heavy color. It follows that A, ({1},¢) = 1 and
Mo({i}, q) =  for all i = 2,...,t and we can rewrite (5) as

t

-

Pr[Yoq| Xog] Z (1 - PriX,]) + %PT[XM] H(1 — Pr{Xy])
%(1—137” 1;1 ZPT m H (1_PT[X”J'D
=2 j>2,5#1
S5 parapin T 0

i=1 j=i+1 I#1,1#]

By setting A = H§:4(1 — Pr[X,;]) and X; = Pr[X,;] we obtain

Pr(Yyq|Xvg] 2 fog = (1 — X1)(1 — X2)(1 — X35)A + %Xl(l - X3)(1-X5)A

1 1 1
+3(1 = X)) Xo(1 = Xg)A + 2(1 = X1)(1 = Xo) XgAd + 2 X1 X5(1 - X3)A

1 1
+ 5 X0 (1= Xo) XA + (1 - X1)Xp X34

1 1 1
“ Xy — = X5 — = X2 X3)

2 2 2 1
= A= X)(1 - 5 X2 = S Xa + S XoXa) + AKX (5 - ¢ - -

3 3 3
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Finally we obtain

2 2 1 1 1
qu = A(]. - Xl)(l - §X2 — §X3) + AX1(§ - EXQ — EXS‘)

2 5
+ AXoXa(5 — 2X0). (10)

Consider f,q as a function of two variables Xy and X3. Assume that X, +
X3 = v, where v < % is a constant. Let Xo > X3 > 0. If we increase X5 and
decrease X3 by 4, 0 < § < X3, then the first two terms of (10) do not change.
Since % — %Xl >0 for X7 < % then the last term decreases and therefore the
function f,, decreases as well. It follows that the minimum of f,, is attained at
Xy = v and X3 = 0. By repeating this argument we get that the minimum of

fvq is attained when X; = 0,4 =3,...,t. It follows that

1 2 1
X, =X+ =X X, >
71 3 2+2 1X2 2>

2

2 1 1
fog 2 (1= X0 =5 0) + K5 = 5X) =1~ 3

where the last inequality follows from X; + X, < 2 and X; > 1.

Lemma 7. Assume that a vertex v has two heavy color and a color q is light.
Then Pr(Yyq|X,q) > 24

Proof. Let colors 1 and 2 be the heavy colors. It follows that A,({1},q) =

M({2},9) = 2 and A\({i},q) = § for all i = 3,...,¢ and we can rewrite (5)
as

t t

Pr{YoqlXoa) 2 TT0 = PriXad) + S Pr{Xer)(0 = PriXal) [T = PriXa)

+ %Pr[xm]u — Prix,) [](1 = PriX.)

=3
(0= PrIXa))( - PriXee) 3 PriXa] T (- Prix,)
=3 J22,57#1
+ %Z Z PT[th’L}PT[X1)j} H (1 - PT[XUZD
i=1 j=i+1 I#i,1#]

1
+3 Z Pr[X i) Pr[Xo;] PriXo) | H (1 — Pr[Xy)).
0,5,k 1#4,1#],1#k



A 0.3622-Approximation Algorithm 11

By setting A = [['_,(1 — Pr[X,]) and X; = Pr[X,,] we obtain

4
foa = ATT( = X0+ 220101 = X2) 4+ Xa(1 = X0))(1 = Xe)(1 = Xa)
=1

+ g(Xs(l = Xa) + Xa(1 - X3))(1 = X1)(1 — X2)
+ g(XlXQ(l — Xg)(l — X4) —|—X1X3(1 — X2)(1 — X4) +X1X4(1 — XQ)(I — X3)
+X2X3(1 — X1)(1 — X4) +X2X4(1 — Xl)(l — X3) +X3X4(1 — Xl)(l — XQ))

A
-+ Z(X1X2X3(l - X4) -+ X1X2X4(l - X3) -+ X1X3X4(1 - XQ) + X2X3X4(]. - Xl))

(11)
After transforming the expression, we get
FoalXs, Xa) = AQL = X0)(1 = X)l1 = 52 = X4 axa (1 - Xo)12 - 2X - 1x4)
FAX( - X2 - X - 2 X+ AXX[S - 20 T
FAXXa[ (1= X0)(1 = Xa) L X1(1 = X2) + 1 Xa(1 = X1) — £X1X0] (12)

Consider fyq as a function of two variables X3 and X4. Assume that X3+X4 =7,
where v < % is a constant and X3 > X4 > 0. If we increase X3 and decrease X4
by 4, 0 < § < X3, then the first four terms of (12) do not change. Transforming
the expression in the last term in square brackets, we obtain

1 1 1 1
g(l - X1)(1 - X2) + ZXl(l - X)) + ZXz(l -Xi) - 6X1X2

1 1 1 1
=—-—-X1Xo0-—=X; - —X 1
3 T gaide T 5l 122>07 (13)
where the last inequality follows from X; 4+ X5 < 1. It follows that the minimum
of fuq is attained at X3 = v and X4 = 0. By repeating this argument we get
that the minimum of

Foo > [T~ X0 + (310 = Xa) + (1 = X)) (1~ X5)

.

—

1=

1 1
+ X501 - X1)(1— X2) + §(X1X2(1 - X3) 4+ X1 X5(1 — Xo)

[\V]

1
+ X Xa(1 - X)) + X1 Xa Xy (14)

Taking into account that X; + Xo+ X3 < 1, X7 > %, and Xy > %, we obtain
that the minimum of f,, is attained at X; = Xy = X3 = % and f,q > % > 0.65.
Lemma 8. Assume that a light vertex v gets a color q in Phase I of Algorithm

2-PHLV, then Pr[Y,q| Xy > 25 > 0.6.
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Proof. Since the vertex v has only light colors then A,({i},q) = § for all i =
2,...,t and we can rewrite (5) as

t
1)q|qu H 1 - PT m ZPY v H 1 - PT[XUj])

J#i

+3 ZPT[XW]PT[XUJ'] I (- Prixa)

14,12

1
+7 Z PriXl PriXo PriXo] H (1— Pr(X.)) (15)
1,5,k 1#£4,14],1#k

By setting A = Hl s(1=Pr[Xy]), B = ZZ 3 Pr{Xoi] [Tj53 j2(1—Pr[Xo;)),
setting X; = Pr[X,;] and discarding some terms we get

. 1 1
Pr{Yug|Xug) 2 foq = (1= X0)(1 = X2) A4 S Xa(1 = Xo) A+ S (1 - X1) XA

1 1 1 1
+ 5 (1= X)) = Xo) B+ o XiXaA 4 o (X1(1 = Xo) + (1= X1)Xo) B+ [ X1 X2

3 4
1 1 1 1 1 1 1
= 1—— — = — - — — S .
A( 2X1 2X2+3X1X2)+B(2 6X1 6X2+ 12X1X2)

Consider f,, as a function of two variables X; and X5. Assume that X;+X, = 1.
Remind that X; < & and X; < £. Let X; > X5 > 0. If we increase X; and
decrease Xo by 6, 0 < 6 < X5, the function f,, decreases. It follows that the
minimum of f,, is attained at X; = mln{g,'y} and X5 = 0. Repeating this
argument for any pair of variables not equal to 0 or g we get that the minimum
of fyq is attained when X; = Xy = X3 = 3 Land X; = 0,7 =4,...,t. Substituting

these values in (15), we get Pr(Y,q|Xuq] > fuq = £ &~ 0. 6018518519 > 0.6.

Denote by A, (Y, ¢) the probability with which the algorithm chooses the color
c if a set Y C C colors were assigned to v at the first phase of the algorithm.

Lemma 9. Lete = (u,v) has a color ¢ and it is chosen in the first phase of Algo-
rithm 2-PHASE. If for any two subsets of colors Y and )’ such that Y C Y CC
we have Ay (Y, ¢) > My (YV', ¢) then Prle is stable] > Pr|Yye| Xue| Pr[Yoe| Xve)-

Proof. In order to prove this lemma, we consider a sequence of algorithms
denoted by Xy, X1, ..., Xk where X is algorithm 2-PHASE. The difference among
these algorithms comes from the way in which the vertices get a color in Phase
I. Let us fix a color z. We consider two different procedures for assigning col-
ors to the vertices. Procedure I assigns the colors in the same way as algorithm
2-PHASE. Procedure II colors the vertices with color x independently.

Let us look at how these two procedures work for just two vertices. Suppose
there is an edge €’ that is incident with u colored by z and another edge e”
incident with v colored by z. Assume that ¢ and e’ are the edges with the
maximal values of 2}, and 2}, among all z-colored edges incident with » and v,
respectively. Let 2}, < z%,. To simplify the notation we set p = 2, and ¢ = 2J,,.
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Lemma 2 implies that Procedure I assigns the color = to both vertices u and v
with probability p and only to the vertex v with probability ¢ — p. Procedure 1
doesn’t assign the color x to both vertices v and v with probability 1 — q. Using
Procedure II, we color the vertex u with probability p and the vertex v with
probability g, each vertex independently.

In the algorithm X, for each color z, 1 < z < k we use Procedure I to assign
colors to vertices. In the algorithm X;, 1 <14 < k, for colors x such that 1 <z <4
(resp. i+ 1 < a < k) we use Procedure II (resp. Procedure I') for assigning those
colors to vertices. Thus, in algorithm X, all colors are assigned to vertices using
Procedure II. Denote by p.(X;) the probability that both extremities of e get the
color ¢ by algorithm ;.

Let X;_1 and X; be two consecutive algorithms; i.e., the algorithm X;_;
assigns colors from [1,7 — 1] using Procedure II and colors from [i, k] using Pro-
cedure 1. While for X;, it assigns colors from [1, 4] using Procedure II, and colors
from [(i + 1), k] using Procedure I. Thus, they differ only in the way they assign
color i to vertices. If there is no i-colored edge incident to either u or v, then
Pe(Xi_1) = pe(X;). Recall that we denote by X, (resp. X,.) the event that v
gets (resp. does not get) color ¢ after Phase I of the algorithm.

Let C" = C\ {¢,i}. Denote by A the event which corresponds to the
situation where vertex v gets a set ) of colors after Phase I. Let ) C C’ and

V' C (’, then the probability of the event ASP’) A Agy/) are the same for both
algorithms Y; and X4, i.e. Pry, [Aq(,y) A AS}’ )} = Prx, [Aq(]y) A Agy )].
For ¥ € {¥;_1,%;} we have

i+1

pe(Z)= > Pro[AD) A APy (2,
yceryrce!

where

¢y, y/(X) = AV, )Xo (V' ) (Pr[Xui A Xy i)
Au(Y UL} ) Ao (Vs ) (PrXui A X))
+ (Y, )M (Y Ui}, o) (PrXu: A X))
Au(Y Ui}, AoV Ui}, o) (Pr{Xui A X i)

We claim that ¢(>>;, ;) > ¢(>_,) (from now on we omit subindices of ¢ for
shortness). Taking into account the notation introduced we have

¢(Ei—1) = (1 - Q)Au(ya C)/\U(ylvc) + (q *p)/\u(ya C)/\v(yl U {Z}a C)
+p)‘u(y U {i},C)/\v(y/ U {Z}’ C)

(X)) = (1 =p)(L = )Au(Y, )X (V' 0) + (1 = @)pAu(Y U {i}, )X (V' )
+ (1 - p)q)\u(y,c)/\v(yl U {Z}v C) +pq/\u(y u {Z}7 C))‘v(yl U {i}’c)
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Thus,

H(Zim1) — 6(Z5) = (1 = Qpru (Y, )N (', ¢) — (1 — @pAu (Y U {i}, ) Ao (V' €)
— (1= @pAu(Y, )X (Y U {i},¢) + (1 = @)pAu (Y U {i}, )Xo (V" U {i}, )
=1 =PV, )MV, 0) = 2 (Y U{i}, )X (Y, 0)
=2V, 00X (V' U{i}, ¢) + Au (Y U {i}, ) A (V' U{i}, 0)]
= (1= 9p(Au(Y,0) = 2P U{i}, ) AV, ¢) = 2 (Y U{i},c)) >0

where the last inequality follows from A, (), ¢) > A\, (Y U {i},c) and
AV e) 2 AV U {i}, o).

Theorem 1. The expected approximation ratio of Algorithm 2-PHASE s
greater than 0.3622.

Proof. Let OPT denote the sum of the weights of the stable edges in an optimal
solution. Since z* is an optimal solution of the LP, we have OPT < ) _pwez}.

Consider an edge e € E is chosen in Phase I of Algorithm 2-PHLV. This
occurs with probability z¥ by Lemma 1. Suppose an edge e = [u,v] has a color
¢, then by Lemma 9, the probability that the both endpoints of e are colored
with ¢ at least Pr[Yyc|Xpe| Pr[Yue|Xuc)- Lemmata 4-8 imply that the expected
contribution of the edge e is greater than (65/108)%w,z> > 0.3622w, 2} .

The expected weight of the stable edges in a solution obtained by Algorithm
2-PHLV is

W = w.Prle is stable] > 0.3622 Y _ w2} > 0.3622 - OPT.
eck ecE

4 Concluding Remarks

The goal of this paper was to exhaust the limits of the method first presented
in [3]. We think that further significant improvements in approximation bounds
will need some different approaches.
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Abstract. We study the proximity of the optimal value of the m-
dimensional knapsack problem to the optimal value of that problem with
the additional restriction that only one type of items is allowed to include
in the solution. We derive exact and asymptotic formulas for the preci-
sion of such approximation, i.e. for the infinum of the ratio of the optimal
value for the objective functions of the problem with the cardinality con-
straint and without it. In particular, we prove that the precision tends
to 0.59136.../m if n — oo and m is fixed. Also, we give the class of
the worst multi-dimensional knapsack problems for which the bound is
attained. Previously, similar results were known only for the case m = 1.

Keywords: Multi-dimensional knapsack problem - Approximate
solution - Cardinality constraints

1 Introduction

In [1,2,4,5] the proximity of the optimal value of the (one-dimensional) knapsack
problem to the optimal value of the problem with the cardinality constraints was
studied. The cardinality constraint is the additional restriction that only k type
of items is allowed to include in the solution (i.e. that only &k coordinates of the
optimal solution vector can be non-zero). Different upper and lower bounds for
the guaranteed precision, i.e. for the infinum of the ratio of the optimal value
for the objective functions of the problem with the cardinality constraints and
without them, were obtained. Also, in some cases the classes of worst problems
were constructed.

The importance of such kind of research is due to the fact that some algo-
rithms for solving the knapsack problems require to find an optimal solution to
that problem with the cardinality constraints; see, for example [4,5], where this

This work was performed at UNN Scientific and Educational Mathematical Center.
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approach is used for constructing greedy heuristics for the integer knapsack prob-
lem. Moreover, the results of research can be potentially useful for constructing
new fully polynomial approximation schemes.

Here, from this point of view, we consider the m-dimensional knapsack prob-
lem. The solution to that problem with the additional constraint that only 1
coordinate can be non-zero is called the approximate solution. We derive exact
and asymptotic formulas for the precision of such approximation. In particular,
we prove that the precision tends to 0.59136.../m if n — oo and m is fixed.
Also, we give a class of worst multi-dimensional knapsack problems for which
the bound is attained.

2 Definitions

Denote by Z,, Ry the sets of all non-negative integer and real numbers respec-
tively. Let

L(A,b) = {a: ez : Ax < b}, A = (a;;) € R, b= (b;) € RT".
The integer m-dimensional knapsack problem is to find z such that
cx — max s.t. x € L(A,D), (1)

where ¢ = (¢;) € R [3,6].
Denote by vU) (j = 1,2,...,n) a point in L(A,b), all of whose coordinates

() ©)

v;”’ are 0, except for of Cha which is

(@ _ : i
vio = min [bi/ag]
It is not hard to see that v\9) € L(A,b) and cv¥) = cjv§j). Denote V(A4,b) =
{o®, ..., v} A point v7), on which the maximum

max cot?)
J

attained is called an approzimate solution to the problem (1). The precision of
the approximate solution is

max cx
(A, b, ) = TeEVAb)
T max czx
zeL(Ab)
In this paper we study the value
Qi = inf  «a(A,b,c).
AeRzLX’n

beRT, cE€R'}
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Table 1. Values of §,, ¢, and a1, for small n

n 6p =8p-1(0n—1+1) en=14¢ep_1(6p—1 +1) a1y = 6n/en

1 1/1.000000000000000
2 2 3/0.666666666666667
3 6 10/0.600000000000000
4 42 71/0.591549295774648
5 1806 3054|0.591355599214145
6 3263442 5518579/0.591355492056923
7 10650056950806 18009568007498|0.591355492056890
8/113423713055421844361000442|191802924939285448393150887|0.591355492056890

3 Previous Work

The precision of the approximate solution to the 1-dimensional (m = 1) knapsack
problem was studied in [1,2,4,5]. In particular, in [2,4] it was proven that

6n:5n—1(5n—1+1)7 En = 1+5n—1(5n—1+1)7 51 =é1 =1

The sequence {6, } is the A007018 sequence in On-Line Encyclopedia of Integer
Sequences (OEIS) [7]. The sequence {e, } is currently absent in OEIS.

The sequence «y,, = d, /e, decreases monotonously and tends to the value
Q10 = 0.591355492056890 ... The values for §,, €, and «i, for small n are
presented in Table 1.

In [4,5] these results are used in constructing the approximate scheme for
the integer knapsack problem. Note that oy, is even higher than the guaranteed
precision 0.5 of the greedy algorithm [6].

The infinum for 1, is achieved on the problem (the worst case)

n

% — max
j=1"7

s.t. N

Z % <1,

= 63' + Uy
where 0 < < 1 and —— = 1. In particular,

< fin J; . p
5—1
w =1 ps= \[2 =0.61803..., pu3=0.93923..., puq4=0.99855...

The optimal solution vector to this problem is (1,1,...,1) and the optimal solu-

tion value is €,/0,, whereas the approximate solution vectors are
(1,0,0...,0), (0,92,0,...,0), (0,0,03,...,0), ..., (0,0,0,...,6,)

and the corresponding value of the objective function is 1.
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Lower and upper bounds for the guaranteed precision for k£ > 2 are obtained
in [2].
In this paper we obtain formulas for a,,, for m > 1. In particular, we prove

o
that o, — % if n — oo and m is fixed.

4 Preliminaries

Lemma 1. For any fized m the sequence {amyn} decreases monotonously.

Proof. Let A € RT™™, h,b € R, ¢ € R} and h > b. Consider a matrix A" =

(A|h)e RTX(nH) and a vector ¢/ = (¢,0) € R, Tt is not hard to see that
all points in L(A’,b) are obtained from the points in L(A,b) by writing the zero
component to the end. Hence a(A4,b,c) = a(A’,b,¢) > qumnt1. Due to the
arbitrariness of A, b, ¢, we get ampn > Qpmny1-

Lemma 2. a(A,b,c) = a(A’,b,¢c) for some A’ < A, where each column of A’

contains at least one non-zero element.

Proof. Let for some s, t we have ag; > 0 and for all i # s

)= [a]

(if there are no such s, t, then put A’ = A and A’ has the required form). From
the matrix A we construct a matrix A’ by setting a}, = 0 for all i # s and

;o .
a;; = a;j otherwise.

For all z € R} we have A’z < Ax. Hence L(A,b) C L(A’,b). Hence

max cr < max cx.
z€L(A,b) zeL’(A,b)

But

. b . by, .
min | —| = min | (j=1,2,...,n),
k: ap;>0 | Gj k: a;ej>0 akj

hence V(4,b) = V(A’,b). Now we have

max v max | ci
zeV(Ab z€V (A b
a(A,b,c) = > = a(A')b,c).
max cx max cx
2€L(Ab) w€L(A’b)

To complete the proof we note that the procedure described above can be
performed until the matrix A’ acquires the required form.

From Lemma 2 it follows that to study ., it is enough to consider only
multi-dimensional knapsack problems with constraints

a11xr1+ ... +a1[1.’£ll S bla
a0, 4121 41+ - +a2,1,21, < bo,

am,lm,l-ﬁ—lxl'i' vr T AT S bma
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that can be called a direct product of m knapsack problems. All inequalities 0 < b;
have to be deleted due to Lemma 1. Denote n; = l; —lx_1, where l[o =0, [,, =n
(i=1,2,...,m). Thus, we have proved the following.

Lemma 3. For each m, n the infimum ., s attained on the direct product of

knapsack problems.

5 The Main Result

The main result of the paper is formulated in the following theorem.
Theorem 1. For each m, n

Qg

Amn = o 5 (2)
m+r (1'] - 1)
Q1,q+1

where n =qm+r, g = |n/m|.

The theorem follows from two lemmas below.

Lemma 4. For each m, n

aq
- 1 :
o
m+r| —L -1
al,qul

Proof. Thanks to Lemma 3, it is enough to consider only direct products of m
knapsack problems. Let 7; = v;/0; be the precision of approximate solution to
the i-th knapsack problem (i = 1,2,...,m), where ; is the approximate solution
value, (3; is the optimal solution value. For their product we have

max y;
i=1,... 1 1 1
Ol(A,b, C) = 1;71 = = m’ys = = > .
$o S $o o gl
(] (] — -
i=1 i=1 i=1"s i=1TsTi i=1Ti
The inequality turns into equality if and only if 73 = v = -+ = ~,,. Since
Ts > Q1p, then
1
a4 bc) > ———
72": 1
i=1 Qln;
Thus, we obtain the problem to find nq,ns,...,n,, such that
1 m
T min s.t. an =n. (3)
3 i=1

1 X1n,

3
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The sequence

1 1 enpr 5n71+5n(5n+1)75n(5n+1)7 1

almﬁ& A1 6n+1 6n 6n+1 6n+1 6n+1

decreases monotonously as n — 0o, hence

1 1 2
+—< .
Q1 n42 Qin Q1 n+1
We conclude that the minimum for (3) is reached if ny = -+ = n, = ¢+ 1,
Npy1 = -+ = Ny, = ¢. Thus,
1 a
a(A,b,c) = — = = 1 .
m —
> LN Lomtr (qu - 1>
i=1 Qln; A1,q+1 Q1q Q1,g+1

In the following lemma we construct a class of (worst) multi-dimensional
knapsack problems on which the bound (2) is attained.

Lemma 5. For each m and n

aq
Cmn < aq 7
1
m+r| —1 -1
Q1,q+1

where n = gm +r, ¢ = |n/m].

Proof. Consider the direct product of r knapsack problems of the form

and m — r knapsack problems of the form

q q
max 5 — max s.t. 5+ <1
j=1 7 j=1 q

The precision of the approximate solutions to these problems is a1, and o g41
respectively (see Sect. 3). For the product of these problems the optimal solution
value is
fm-m oMo
0 Q1g+41 Qg

Eq+1
5q+1

and the approximate solution value is 1, hence the precision of the approximate
solution is

1
a(A,b,c) = = M

T m-—r i .
+ m+r| —— -1
Q1,q+1 Q1q Q1,q+1
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Corollary 1.

A1, [n/m] <a < al»Ln/mJ_
m - = m

Proof. The first inequality obviously follows from (2). Let us prove the second
one. If r =0 then

Qg _ 1, [n/m]

Amn =
m m

If 0 < r < 'm then

@ a @ !

Qo = 01;1 > ;1 _ 177:'-1 _ 1,577;/7”]
m—l—r(m—l) m+m<1q—1>
O1,q+1 O1,q+1
From Corollary 1 we obtain the following.

Corollary 2. If n — oo, m = o(n) then qu,, ~ %.
Corollary 3. Ifn — oo and m is fixed then oy, — 041700'

6

In

Conclusion

this paper we derived exact and asymptotic formulas for the precision of

approximate solutions to the m-dimensional knapsack problem. In particular, we
proved that the precision tends to 0.59136.../m if n — oo and m is fixed. The
proof of the attainability of the obtained bounds for the precision is constructive.

In the future, our results can be base for new fully polynomial time approx-

imation schemes.
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Abstract. Clustering problems form an important section of data anal-
ysis. In machine learning clustering problems are usually classified as
unsupervised learning. Semi-supervised clustering problems are also con-
sidered. In these problems relatively few objects are labeled (i.e., are
assigned to clusters), whereas a large number of objects are unlabeled.

We consider the most visual formalization of a version of semi-
supervised clustering. In this problem one has to partition a given set
of n objects into k clusters (k < m). A collection of k pairwise disjoint
nonempty subsets of objects is fixed. No two objects from different sub-
sets of this collection may belong to the same cluster and all objects from
any subset must belong to the same cluster. Similarity of objects is deter-
mined by an undirected graph. Vertices of this graph are in one-to-one
correspondence with objects, and edges connect similar objects. One has
to partition the vertices of the graph into pairwise disjoint groups (clus-
ters) minimizing the number of edges between clusters and the number
of missing edges inside clusters.

The problem is NP-hard for any fixed k£ > 2. For k = 2 we present
a polynomial time approximation algorithm and prove a performance
guarantee of this algorithm.

Keywords: Graph clustering - Approximation algorithm -
Performance guarantee

1 Introduction

The objective of clustering problems is to partition a given set of objects into
a family of subsets (called clusters) such that objects within a cluster are more
similar to each other than objects from different clusters. In pattern recognition
and machine learning clustering methods fall under the section of unsupervised
learning. At the same time, semi-supervised clustering problems are studied. In
these problems relatively few objects are labeled (i.e., are assigned to clusters),
whereas a large number of objects are unlabeled [1,3].
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One of the most visual formalizations of clustering is the graph clustering,
that is, grouping the vertices of a graph into clusters taking into consideration
the edge structure of the graph. In this paper, we consider three interconnected
versions of graph clustering, two of which are semi-supervised ones.

We consider only simple graphs, i.e., undirected graphs without loops and
multiple edges. A graph is called a cluster graph, if each of its connected com-
ponents is a complete graph [6].

Let V be a finite set. Denote by M(V') the set of all cluster graphs on the
vertex set V. Let My(V) be the set of all cluster graphs on V consisting of
exactly k& nonempty connected components, 2 < k < |V].

If Gy = (V,Ey) and Gy = (V, E) are graphs on the same labeled vertex set
V', then the distance p(G1,G2) between them is defined as follows

p(G1,G2) = |E1AEy| = |Ey \ Es| + |E2 \ B,

i.e., p(G1,G2) is the number of noncoinciding edges in G; and Gs.
Consider three interconnected graph clustering problems.

GC; (Graph k-Clustering). Given a graph G = (V, E) and an integer k,
2 <k <|V]|, find a graph M* € My (V) such that

G, M*) = i G. M).
p(G, M*) Melfﬁf(mp(’ )

SGCy, (Semi-supervised Graph k-Clustering). Given a graph G = (V, E),
an integer k, 2 < k < |V|, and a set Z = {z1,...2,} C V of pairwise different
vertices, find M* € My(V') such that

G, M*) = i G, M
p(G, M™) Menﬂgg(v)p(, ),

where minimum is taken over all cluster graphs M = (V, Ey) € My (V) with

zizj ¢ Ey for all 4,5 € {1,...k} (in other words, all vertices of Z belong to
different connected components of M).

SSGCy, (Set Semi-supervised Graph k-Clustering). Given a graph G =
(V,E), an integer k, 2 < k < |V, and a collection Z = {71, ... Z;} of pairwise
disjoint nonempty subsets of V, find M* € M(V) such that

G, M*) = i G, M
p(G, M™) Melﬁljfmp(’ )s

where minimum is taken over all cluster graphs M = (V, Ep) € My (V) such
that

1. z2/ ¢ Eyforall z€ Z;,2 € Z;,4,j=1,...,k, i # j;
2. zzl e By forall 2,2/ € Z;,i=1,... )k
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(in other words, all sets of the family Z are subsets of different connected com-
ponents of M).

Problem GCj, is NP-hard for every fixed £ > 2 [6]. It is not difficult to
construct Turing reduction of problem GCy to problem SGC; and as a result
to show that SGCy, is NP-hard too. Thus, problem SSGCy is also NP-hard as
generalization of SGCy.

In 2004, Bansal, Blum, and Chawla [2] presented a polynomial time 3-
approximation algorithm for a version of the graph clustering problem similar to
GC,; in which the number of clusters doesn’t exceed 2. In 2008, Coleman, Saun-
derson, and Wirth [4] presented a 2-approximation algorithm for this version
applying local search to every feasible solution obtained by the 3-approximation
algorithm from [2]. They used a switching technique that allows to reduce cluster-
ing any graph to the equivalent problem whose optimal solution is the complete
graph, i.e., the cluster graph consisting of the single cluster. In [5], we presented
a modified 2-approximation algorithm for problem GCs. In contrast to the proof
of Coleman, Saunderson, and Wirth, our proof of the performance guarantee of
this algorithm didn’t use switchings.

In this paper, we use a similar approach to construct a 2-approximation local
search algorithm for the set semi-supervised graph clustering problem SSGC,.
Applying this method to problem SGC, we get a variant of 2-approximation
algorithm for this problem.

2 Problem SSGC,

2.1 Notation and Auxiliary Propositions

Consider the special case of problem SSGC;, with £ = 2. We need to introduce
the following notation.

Given a graph G = (V, E) and a vertex v € V, we denote by Ng(v) the set
of all vertices adjacent to v in G, and let Ng(v) =V \ (Ng(v) U {v}).

Let G1 = (V, E1) and G2 = (V, E3) be graphs on the same labeled vertex set
V, n = |V|. Denote by D(G1,G3) the graph on the vertex set V with the edge
set F1AE,. Note that p(G1,G2) is equal to the number of edges in the graph
D(G1,G2).

Lemma 1. [5] Let dyin be the minimum vertex degree in the graph D(G1,Ga).
Then

p(G1,Ga) > @
Let G = (V, E) be an arbitrary graph. For any vertex v € V and aset ACV
we denote by A} the number of vertices u € A such that vu € E, and by A,
the number of vertices u € A\ {v} such that vu ¢ E.
For nonempty sets X, Y C V such that XNY = () and XUY = V we denote
by M(X,Y) the cluster graph in My (V') with connected components induced
by X,Y. The sets X and Y will be called clusters.
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The following lemma was proved in [5] for problem GCsg. Its proof for prob-
lem SSGCs is exactly the same.

Lemma 2. Let G = (V,E) be an arbitrary graph, M* = M(X*,Y™*) be an
optimal solution to problem SSGCqy on the graph G, and M = M (X,Y) be an
arbitrary feasible solution to problem SSGCgo on the graph G. Then

p(G,M) —p(G,M*) =
> ((XmX*); —(XNX)F+ YNy - (YmY*);>+

ueXNY*
3 ((Y NY* )y — (Y AY")E + (X NX)F— (XN X*);).
ueYNX*

2.2 Local Search Procedure

Let us introduce the following local search procedure.

Procedure LS(M, X,Y, Z1, Z5).

Input: cluster graph M = M(X,Y) € M2(V), Z1, Z5 are disjoint nonempty
sets, Z1 C X, Zs C Y.

Output: cluster graph L = M(X',Y') € Ms(V) such that Z; C X',
Z, CY'.

Iteration 0. Set X = X, Yy =Y.

Iteration k(k > 1).

Step 1. For each vertex u € V' \ (Z1 U Z3) calculate the following quantity
0k (u) (possible variation of the value of the objective function in case of moving
the vertex u to another cluster):

5 () = (Xk-1)y — (Xp—1)i + Y1) = (Yio1)y forue Xp_1\ 21,
ST M) = Yaeo)d + (Xpm)E = (Xm1)y for w € Yior \ Zo.

Step 2. Choose the vertex ug € V'\ (Z1 U Z3) such that

Ox(ur) = O (u).

max
uweV\(Z1UZ5)

Step 3. If 6k(uk) > O7 then set Xk = Xk—l \ {uk}, Yk = Yk—l U {’U,k} in
case of up € X1, and set Xy = X1 U {ux}, Y = Yi—1 \ {ux} in case of
u, € Y,_1; go to iteration k + 1. Else STOP. Set X' = X;,_1, Y =Y,_;,
and L = M(X',)Y").

End.

2.3 2-Approximation Algorithm for Problem SSGC,

Consider the following approximation algorithm for problem SSGCs,.
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Algorithm A;.

Input: graph G = (V, E), Z1, Z are disjoint nonempty subsets of V.

Output: graph My = M(X,Y) € Mqo(V), sets Z1, Z5 are subsets of different
clusters.

Step 1. For every vertex u € V' do the following: o
Step 1.1. (a) If u ¢ Z1 U Z3, then define the cluster graphs M, =

M(X,Y)and M, = M(X,Y), where

X ={u}U((Ne(w)UZ1)\ Z2),Y =V '\
3: \

y?
X = {u} U ((Na(u) U Z)\ Z1),Y X.

(b) If w € Z1 U Z3, then define the cluster graph M,, = M (X,Y’), where

X = {u} U((Ng(w) UZ)\Z),Y =V \ X.

Here Z =7, Z = Z in case of u € Z1, and Z = Z,, Z = Z;, otherwise.

Step 1.2. (a) If u ¢ Z; U Z3, then run the local search procedure
LS(M,,X,Y,Zy,Z5) and LS(M,, X,Y, Z1, Z3). Denote resulting graphs by L,
and L.

(b) If w € Z1 U Zy, then run the local search procedure LS(M,,, X, Y, Z1, Zs).
Denote resulting graph by L,,.

Step 2. Among all locally-optimal solutions L., L., fu obtained at step 1.2
choose the nearest to G cluster graph M; = M(X,Y).

The following lemma can be proved in the same manner as Remark 1 in [5].

Lemma 3. Let G = (V, E) be an arbitrary graph, Z1,Zs be arbitrary disjoint
nonempty subsets of V., M* = M(X*,Y*) € Ma(V) be an optimal solution to
problem SSGCs on the graph G, and dumin be the minimum vertex degree in the
graph D = D(G, M*). Among all graphs M,, M, M, constructed by algorithm
A, at step 1.1 there is the cluster graph M = M(X,Y") such that

1. M can be obtained from M* by moving at most duyin vertices to another
cluster;

2. If Zy C X*,Zy CY™, then Z1 C X N X*,Zy CY NY™. Otherwise,
if Zo CX*,Z1 CY*, then Zy CYNY* Z, C X NX*.

Now we can prove a performance guarantee of algorithm Aj.

Theorem 1. For every graph G = (V, E) and for any disjoint nonempty subsets
71,7y CV the following inequality holds:

p(G, My) < 2p(G, M™),

where M* € My(V) is an optimal solution to problem SSGCqy on the graph G
and My € My (V) is the solution returned by algorithm A;.
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Proof. Let M* = M(X*,Y*) and dpi, be the minimum vertex degree in the
graph D = D(G, M*). By Lemma 3, among all graphs constructed by algorithm
A, at step 1.1 there is the cluster graph M = M (X,Y) satisfying the conditions
1 and 2 of Lemma 3. By condition 1, | X NY*|U|Y N X*| < dnin-

Consider the performance of procedure LS(M, XY, Z1, Z5) on the graph
M = M(X,Y).

Local search procedure LS starts with Xg = X and Yy = Y. At every
iteration k either LS moves some vertex ui € V '\ (Z1 U Z3) to another cluster,
or no vertex is moved and LS finishes.

Consider in detail iteration ¢ 4+ 1 such that

— at every iteration k = 1,...,t procedure LS selects some vertex
up € (XNY* ) U (Y NnX™),
— at iteration t + 1 either procedure LS selects some vertex
1 € (XNXHUY NY*))\ (21U Z2),

or iteration ¢ + 1 is the last iteration of LS.
Let us introduce the following quantities:

s (1) = (XN XN, (XN X)) F+H (Y, NYS)F—(Y;nY*); forue X;NY*
TV N YY), (VN Y ) (XN X — (XN X)), foru € YN X*,

Consider the cluster graph M; = M (X;,Y;). By Lemma 2,

p(G, M) = p(G, M) = Y aga(w)+ D ().

ueXNY* ueEY NX*

Put r = | Xy NY*| 4+ |Y; N X*|. Since at all iterations preceding iteration t + 1
only vertices from the set (X NY™*) U (Y N X*) were moved, then

T:|Xtﬂy*|+|}/t ﬂX*|Sdmm (1)
Hence
p(G, M) — p(G, M™) < rmax{ai+1(u) :u € (X, NY")UY:NX")} (2

Note that at iteration t + 1 for every vertex u € (X; N Y™) U (Y N X™*) the
following inequality holds:

|3

: 3)

The proof of this inequality is similar to the proof of inequality (5) in [5].
Denote by L the graph returned by procedure LS(M, X,Y, Z1, Z5). Using
(1), (2), (3), and Lemma 1 we obtain

a1 (u) <

p(G, L) — p(G, M*) < p(G, M) — p(G,M") <
rmax{ozi(u) :u e (XeNY)U YN X5} < r

n
<dmin* < G7M* .
5 < dming < p( )
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Thus, p(G, L) < 2p(G, M*). -
The graph L is constructed among all graphs L., L., L, at step 1.2 of

algorithm A;. Performance guarantee of algorithm A follows.
Theorem 1 is proved.

It is easy to see that problem SGCs is a special case of problem SSGCsy if
|Z1| = |Z2| = 1. The following theorem is the direct corollary of Theorem 1.

Theorem 2. For every graph G = (V, E) and for any subset Z = {z1,22} CV
the following inequality holds:

p(G, My) < 2p(G, M™),

where M* € My(V) is an optimal solution to problem SGCa on the graph G
and My € My(V) is the solution returned by algorithm A;.
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Abstract. We consider a strongly NP-hard problem of clustering a finite
set of points in Euclidean space into two clusters. In this problem, we
find a partition of the input set minimizing the sum over both clusters
of the weighted intracluster sums of the squared distances between the
elements of the clusters and their centers. The weight factors are the
cardinalities of the corresponding clusters and the centers are defined as
follows. The center of the first cluster is unknown and determined as the
centroid, while the center of the other one is given as input (is the origin
without loss of generality). In this paper, we present a polynomial-time
exact algorithm for the one-dimensional case of the problem.

Keywords: Euclidean space + Minimum sum-of-squares - Weighted
clustering -+ NP-hard problem - One-dimensional case + Exact
algorithm - Polynomial-time

1 Introduction

The subject of this study is one strongly NP-hard cardinality-weighted 2-
clustering problem of a finite set of points in Euclidean space. Our goal is to
substantiate an exact polynomial-time algorithm for the one-dimensional case of
the problem.

The motivation of our research consists of two parts. The first part is the
strong NP-hardness of the general case of the considered problem. The important
question is whether the one-dimensional case of the strongly NP-hard problem is
polynomial-time solvable or not? One can find some examples of the algorithmic
results for the one-dimensional cases of the clustering problems in [1-3]. The
second part of our motivation is the problem importance for some applications,
for example, in Data Analysis and Data mining [4,5]. It is known that the efficient
cluster approximation algorithms are the main mathematical tools in the applied
field of testing hypotheses about the data structure.
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The rest of the paper is organized as follows. Section 2 contains the problem
formulation and known results. In the same section, we announce our new result.
We describe the structure of the optimal solution in Sect. 3. The exact algorithm
is presented in Sect.4. Also in Sect.4, we substantiate the time complexity of
our algorithm.

2 Problem Statement, Known and Obtained Results

Everywhere below R denotes the set of real numbers, || - || denotes the Euclidean
norm, and (-,-) denotes the scalar product. In this paper we consider the fol-
lowing problem.

Problem 1 (Cardinality-weighted variance-based 2-clustering with given center).
Given an N-element set ) of points in R? and a positive integer number M.
Find a partition of ) into two non-empty clusters C and Y\ C such that

rey=1ey " ly=g@)IF+1y\el Y- llyll* — min, (1)

yeC yeY\C

where F(C) = ﬁ >~ y is the centroid of C, subject to constraint |C| = M.
yelC

Due to the limited size of the paper, we omit the examples of the applied
problems. An interested reader can find them in [6].

Problem 1 has been studied since 2015 and a number of results have already
been proposed. First of all, it was proved that this problem is strongly NP-hard
[7,8]. Let us recall that some algorithmic results were obtained for the particular
case of Problem 1 when 2M = N (see, for example, [9] and the references cited
therein). One can easily check that in this case the optimal clusters are separated
by a hyperplane. It is known that the construction of optimal separating sur-
faces (i.e. optimal classifiers) is important for Pattern recognition and Machine
learning [10,11].

Further, in [12], an exact pseudopolynomial algorithm was constructed for the
case of integer components of the input points and fixed dimension of the space.
An approximation scheme that implements an FPTAS in the case of the fixed
space dimension was proposed in [13]. In [14], the modification of the FPTAS
was constructed. It improves the previous algorithm, implements an FPTAS in
the same case and remains polynomial (implements a PTAS) for instances of
dimension O(logn). An approximation algorithm that allows one to find a 2-
approximate solution to the problem in O (dN 2) time was constructed in [15].
In [16], a randomized algorithm was constructed. The conditions were found
under which the algorithm is asymptotically exact and runs in O(dN?) time. In
[6], an approximation algorithm that implements a PTAS was constructed.

In this paper, we present an exact algorithm for the one-dimensional case of
Problem 1. The time complexity of the proposed algorithm is O(N log N).
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3 The Structure of the Optimal Solution

In this section, we prove the statement which is necessary for substantiation
of our algorithm. The proof of the following well-known lemma is presented in
many publications (see, for example, [17]).

Lemma 1. For an arbitrary point x € R? and a finite set Z C R?, it is true

that
Slly==l>=> ly=5@)I*+ 2] |z - w2)| .

yeZ yeEZ
Let C C Y, |C| = M and x € RY. Let us denote:

2)=MY ly—z|®+N-M) Y |yl*.

yel yeI\C

Everywhere below d = 1. Let C* be an optimal solution of Problem 1.

Lemma 2. 1) Let M > % If xo,zpy € C*, xp, € Y and x4 < x1 < Tp then
T € C*.
2) Let M < % Ifxg, 2 € Y\C*, a2, €Y and x4 < xp, < xp then x, € Y\ C*.

Proof. 1) Suppose that there are z,,x, € C* and x € Y \ C* such that
Zq < x < xp. Let us denote Cy = (C*\ {xp}) U{zk}, Ca = (C*\ {za}) U {zi}.
Then

f(C7) = S(C7,5(C7)) = 5(C1,y(C)) +
+ My =GO = Ml = G(C)|* = (N = M) Jp|* + (N — M)l .

By Lemma 1, S(C1,5(C*)) = f(C1)+M?|g(C*)=5(C1)|]> = f(C1)+|wp—ax? .
So,

F(C7) = F(C1) + MP|[G(C™) = G(COI* + Ml = G(C)|I* +
(N = M)l ||* = Mz = G(C)P = (N = M)|z|* >
> f(C7) + M?|g(C™) = G(COI? + M|z — 5(CH)|* +
+H(N = M)l|ap]|* = Mllzy, = 5(C)* = (N = M)|ls* =
= f(C*) + [l — wil|* + (2M = N)(llwo|* = [l ]|*) + 2M (zx — 20, F(CY)) -

Then, since d = 1, we have:
(2 — 21)” + (2M — N) (2 — o) + 2M (2 — 2)5(C7) <0, (2)

(@ — 2)(2M — N + D)2y, + (2M — N — Day, — 2M5(C*)) < 0

Since x > xj, then

OMG(C*) > (2M — N + Dap + (2M — N — Dyzy, > (2M — N)(zp + zx).  (3)
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Similarly, working with C5, we have
(24 — 2k)((2M — N + D)y + (2M — N — 1)ap — 2M7G(C*)) <0 .
But z, < x, so
IMG(C*) < (2M — N + 1)aq + (2M — N — Day, < (2M — N)(za + 21) . (4)
Inequalities (3) and (4) imply
(2M — N)z, < (2M — N)z, .

If 2M — N > 0 then zp < z,. It is a contradiction.

If 2M — N = 0 then inequalities (3) and (4) imply 2M7G(C*) = 0. Substituting
it in (2), we get (zp — xx)? < 0. It is a contradiction.

2) The case M < % is treated similarly. O

Remark 1. If N = 2M then one of the following statements holds:
Da<yforalze C*,yeY\C*2)x>yforallz e C*,ye Y\ C*.

4 Exact Algorithm

We present an exact algorithm for the one-dimensional case of Problem 1 in this
section. The main idea of this algorithm can be described as follows. First of all
the algorithm sorts the input set in ascending order. If the desired cardinality
M > N/2, the algorithm forms the sequence of (N — M + 1) sets which consist
of M consecutive points. In the other case, the algorithm forms the sequence
of (M + 1) sets which are the complements to the sets of N — M consecutive
points. In the end, the algorithm chooses (as an output) one of the constructed
sets with the minimal value of the objective function.

Let us define some notations for the following algorithm and for cases of the
desired cardinality value. Reorder points in Y = {x1,...,2x} so that z;<wz;11
forie {1,...,N —1}.

1. M > % Let us denote: C; = {z, xi41, ..., xiyp—1} forie{l,... . N— M+
1}. Then we can notice that

f(Cri1) = f(Ck) +
—Q—(x;HM - xk)((ZM — N+ 1)mk+M + (2M - N — 1>$k — 2Mﬂ<ck+1))(5)
2. M < % Let us denote: B; = {z;, i1, ., Tizn—n—1 fori € {1,..., M+1},
C; = Y\ B;. Then we can notice that

f(Crhi1) = f(Ck) + @k — TpyN—m)((2M — N + L)z +
+(2M = N = Dapin—m — 2MY(Cry1)) - (6)
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The step-by-step description of the algorithm is as follows.

Algorithm A.

Input: a set ), a positive integer M.

Step 0. Sort the set ) in ascending order.

Step 1. If M > % then go to Step 2, otherwise go to Step 4.

Step 2. Compute 3(Cy). For all k € {1,...,N — M} compute G(Cy+1) by
equation §(Cri1) = §(Ck) + 37 (Trar — ).

Step 3. Compute f(Cy) by formula (1). For all k € {1,..., N — M} compute
f(Ck+1) by formula (5). Go to Step 6.

Step 4. Compute 5(C1). For all k € {1,..., M} compute (Cj1) by equation
Y(Chi1) = Y(Cr) + 37 @k — ThyN— 1)

Step 5. Compute f(Cy) by formula (1). For all k¥ € {1,..., M} compute
f(Cr41) by formula (6).

Step 6. If M > & thenk € {1,..., N—M+1}, otherwise k € {1,..., M +1}.
Choose as a solution C4 the set Cj, with the minimal value f(Cy).

Output: The set C4.

Theorem 1. Algorithm A finds the optimal solution of one-dimensional case of
Problem 1 in O(Nlog N) time.

Proof. Algorithm A finds the optimal solution by Lemma 2 and the fact that we
check each appropriate subset while running the algorithm.

Step 0 of the algorithm sorts ), so it runs in O(N log N) time. Step 1 of the
algorithm requires O(1) operations. Step 2 (or Step 4) requires O(N) operations.
Step 3 (or Step 5) requires O(N) operations. Step 6 requires O(N — M) (or
O(M)) operations. So, the total time complexity of Algorithm A is O(N log N).
O

Remark 2. If the points of the input set are pre-ordered, then one can find the
optimal solution of Problem 1 in O(N) time.

5 Conclusion

In this paper, we presented an exact polynomial-time algorithm for one-
dimensional case of the Euclidean cardinality-weighted 2-clustering problem of a
finite set of points. Our algorithm is based on the optimal solution structure that
was established. It was proved that the algorithm is almost linear (O(N log N)).

This is the first algorithmic result for the one-dimensional case of the consid-
ered problem. In other words, we have found out that strongly NP-hard Prob-
lem 1 can be solved exactly in a polynomial time when the dimension of the
space equals 1. Moreover, the proposed algorithm is very effective one.
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Abstract. This article continues the research of the authors into cooper-
ation between public and private investors in the natural resource sector.
This work aims to analyze the partnership mechanisms in terms of effi-
ciency, using the game-theoretical Stackelberg model. Such mechanisms
determine the investment policy of the state and play an important role
in addressing a whole range of issues related to the strategic manage-
ment of the natural resource sector in Russia. For bilevel mathematical
programming problems, the computational complexity will be evaluated
and effective solution algorithms based on metaheuristics and allowing
solving large-dimensional problems will be developed. This opens up the
possibility of a practical study on the real data of the properties of Stack-
elberg equilibrium, which determines the design of the mechanism for
forming investment policies. The simulation results will allow not only to
assess the impact of various factors on the effectiveness of the generated
subsoil development program but also to formulate the basic principles
that should guide the state in the management process.

Keywords: Stackelberg game - Bilevel mathematical programming
problems - Subsoil development program - Probabilistic local search
algorithm

1 Introduction

The development and evaluation of mechanisms for stimulating private invest-
ment presents an as-yet unresolved problem for the Russian government. The
established practice of making this kind of decisions in subsoil resource manage-
ment tends to operate with political arguments and most unsophisticated effec-
tiveness evaluations, which are derived from analysis of technological projects
and current raw materials prices [1-3].

This problem cannot be solved separately from the general problems of
strategic planning, the core of which lies with the goal of forming a program
of development of the mineral raw materials base (MRB) [4-6]. This program
would set a framework for decision-making on many issues, e.g., the follows.
© Springer Nature Switzerland AG 2020
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What production infrastructure do we need to facilitate spatial development
and attract investors? Can we spend additional money from the state budget to
help investors when it comes to infrastructural or environmental projects?

How can we help the investor overcome the barriers posed by the lack of
necessary infrastructure and by the high costs of environmental protection, which
are so typical of most of Siberian and Far-Eastern regions of Russia? What kind
of mechanism should we employ to stimulate private investment? If we want this
mechanism to unite the various measures of government investment policy and
lay a foundation for a program of development of regional natural resources?

These problems are at the center of attention in this work. The aim of this
article is to work out a model that could lay a foundation for a practical method-
ology to generate an MRB development program. To this end, we propose to
use the apparatus of bilevel mathematical programming [7] and thus take into
account the features of the hierarchy of interactions between the government and
the private investor in the mineral raw materials sector. This approach allows
us to find a compromise between the interests of the state budget and those of
the private investor and generate a natural resources development program that
should be effective in terms of sustainable development prospects.

The first section of the article presents the problem statement and formulates
a model. The second one focuses on analyzing the computational complexity of
the model and on building effective solution algorithms by means of random
local search. The third section presents the results of numerical experiments,
which make it possible to study the properties of the Stackelberg equilibrium
using real data and determine the principles of investment policy formation. The
fourth section discusses the results obtained and formulates recommendations for
subsoil resource management.

2 Mathematical Models

Here, we consider a model of cooperation between the government and the pri-
vate investor in the mineral raw materials sector. This model is a generalization
of two models, which were considered by the authors in [8,9].

The first one is the classical model of public-private partnership [10-12].
In this model, the investor coordinates with the government a list of infras-
tructural projects that open for him an opportunity of realizing the desired
mineral resource development projects and then implements the coordinated
infrastructural projects at his own expense. The government compensates for
his expenses when it begins to receive taxes from the private investor’s mineral
resource extraction operations.

The second model has been in practical use in Russia for a while. This model
suggests that on a frontier territory, the government can help the investor build
the infrastructure and conduct some of the necessary environmental activities
[13-15]. Thus levying some of the issues that arise from the territorial linkage of
development projects, the government encourages the arrival of the investor.

In the generalized cooperation model, the government uses an “all-in-one”
investment policy by taking on the responsibility for a part of the infrastructural
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and environmental projects. The investor also builds the infrastructure, and the
corresponding expenses are compensated by the government with a time lag.
The aim of the government is to develop the territory and obtain the maximum
possible share of the natural resource rent in the form of tax payments.

The investor seeks to maximize his net present value, i.e., an overall effec-
tiveness estimate of his participation in the MRB development program, which
commensurates his expenses and revenues, respectively, incurred and obtained
at different times during the forecasting period. The key role here belongs to the
mechanism of compensating the investor’s expenses related to the infrastructural
projects.

In the first case, the investor claims compensation of his expenses regardless
of the overall outcomes of the MRB development program (model A). Thus, the
government builds a schedule of payments within its budget constraints in order
to compensate for the infrastructural expenses of the investor with a discount
factor. The second scheme of the mutual settlements builds upon coordinated
estimation of the investor’s integral effect from his participation in the joint
(i.e., implemented together with the government) MRB development program.
The estimation takes into account the investor’s infrastructural expenses and
the government’s compensation payments, which guarantee that the investor’s
resulting net present value is positive (model B).

Thus, the input data of the investment policy model are as follows:

— a set of industrial projects implemented by the private investor to open min-
eral deposits;

— a set of infrastructural projects, which can be implemented both by the pri-
vate investor and by the government;

— a list of environmental projects necessary to compensate for environmental
losses due to the implementation of the industrial projects; a part of the
environmental projects can be implemented by the government.

The output of the model is the key investment policy parameters, which
define the compensation schedule and the investor incentivation (i.e., expense
sharing) mechanism. Formally, these data fully defines the MRB development
program and the lists of infrastructural and environmental projects implemented
by the government and the private investor, respectively.

A formal description of the model can be presented as follows. We use the
following notation:

T is a planning horizon; Ty is a compensation lag; I is a set of investment
projects; J is a set of infrastructure development projects; K is a set of environ-
mental projects;

Investment project ¢ in year t:

CFP} is the cashflow (the difference between the incomes and expenses of
all kinds, taking into account a transaction costs, constructive borrowed from

3]);

EPP} is the environmental damage from the implementation of the project;

DBP! is the government revenue from the implementation of the project.
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Infrastructure development project j in year ¢:

ZI;j is the costs of implementation of the project;

EPIt is the environmental damage from the implementation of the project;
VDIJ’? is the government revenue from local economic development as a result
of the implementation of the project.

Environmental project k in year t: ZE! is the costs of implementation of the
project.

The matrices u and v define the relationship between the projects, where f1;;
is a coherence indicator for the infrastructure and investment projects, i € I,
Jj € J, and v;; is a coherence indicator for the environmental and investment
projects, i € I, k € K:

1, if the implementation of investment project ¢
Hij = requires the implementation of infrastructure development project j,
0 otherwise;

1, if the implementation of investment project ¢
Vi = requires the implementation of environmental project k,
0 otherwise.

The discounts of the government and the investor:

DG is the discount of the government; DI is the discount of the investor;
The budget constraints:

b¢ is the government budget in year t; b9 is the investor budget in year t.
We use the following integer variables:

{ 1, if the government is prepared to launch infrastructure development project j

T = (the government has included it into the budget expenses),
0 otherwise;
S 1, if the government launches infrastructure development project j,
771 0 otherwise;

1, if the government is prepared to launch environmental project k&
Ui = (the government has included it into the budget expenses),
0 otherwise;

1, if the government launches environmental project k
Yp = as agreed with the investor,
0 otherwise;

- 1, if the investor launches infrastructure development project 7,
7771 0 otherwise;

~_J 1,if the investor launches investment project i,
1 0 otherwise;
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w — 1, if the investor launches environmental project k,
7 ) 0 otherwise.

W, W; is the schedule of compensation payments for infrastructure develop-
ment in year t, which was proposed by the government and used by the investor.
The government problem PS can be formulated as follows:

Z(Z(DBP; ~ EPP})z+ Y (VDI! — EPT})(z; + v))

teT i€l jeJ
- zlte; - 2By - Wt)/(l + DG —  max (1)

jed ke K 2o, Wi,

subject to:
3 (ZZJ;@- + 3 ZElg + V_Vt)g 3 WiweT; 2)
1<t<w jeJ keK 1<t<w

W, >0:teT; (3)
W, =0:0 <t < Tp; (4)
(x,y, W, z,u,v) € F*(z,5,W). (5)

The set F* is a set of optimal solutions of the following low-level parametric
investor problem PZ(z, g, W):

Z(ZCFPitZi - Z ZE!uy, —ZZI;TUj —&—Wt)/(l—kDI)t —  max (6)

teT icl keEK jeJ Wzt
subject to:
Z(Wt -3 Zf;vj)/(l +DI)t > 0; (7)
teT jeJ
3 (Z ZEjui+ Y ZIlv; — Y CFP} 2 — Wt>§ Y WiweT; (8)
1<t<w keK jeJ i€l 1<t<w
xj+v; > pijzit€l,jed; 9)
xj+v;<1l;j€J; (10)
Yk +uk > v zisi € Ik € K; (11)
yr +uk < 11k € K; (12)
> vikzi > yp+ursk € K; (13)
el
Z(Z(DBP; — EPP!z; — Wt)/(l +DG)! > 0; (14)

teT el
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T < Tj5 €5
Ye < Ui k € K;
W, < Wyt € T
T, Yk, V5, zi,up € {0,1ie [Lke K, je J

There are mixed integer linear programming problems at each level. In the
formulated model, the investor maximizes his NPV and the government sets
its aim on obtaining the highest possible budget revenues, taking into account
the costs of infrastructure and environmental protection and a cost estimate for
environmental losses from the MRB program. The government starts the infras-
tructure compensation payments to the investor after a lapse of Ty years (e.g.,
since the time of receipt of the first tax payments from the investor) (3), (4).
The schedule of the compensation payments should ensure: (i) for the govern-
ment, a balance between the budget revenues and the compensation payments to
the investor (14), and (ii) for the investor, a compensation of his infrastructure
expenses with a discount factor (7).

Constraints (9)—(13) formalize the relationships between the industrial,
infrastructural, and environmental projects. Each infrastructural and environ-
mental project can only be launched by one of the partners and must be necessary
for the realization of some industrial project. An infrastructural or environmen-
tal project can likewise be assigned to the government only under the condition
that the government has put the respective project onto its list (15), (16). The
model output provides the key investment policy parameters: z, y, W, v, u, z,
which define the investor incentivization (expense sharing) mechanism and the
long-term effective MRB development program.

Problem (1)—(18) describes model A and the cooperation mechanism whereby
the investor has low trust in the government, i.e., does not expect the latter
to fairly compensate for his infrastructural expenses. Constraint (7) formalizes
the first mechanism of compensation payments, which arises from unconditional
reclamation of the incurred infrastructural expenses, regardless of the overall
outcome of the MRB development program. If the partners have high trust
in each other, the second scheme of mutual settlements can take place (model
B), which builds upon coordinated estimation of the investor’s integral effect
in the joint (with the government) MRB development program. This scheme is
formalized in problem (1)—(6), (8)—(18).

3 Computational Complexity and Solution Algorithm

We recall the definition of the first level of the polynomial hierarchy of complexity
classes of decision problems. The first level consists of classes P, NP and co-
N P. The class P contains problems solvable in polynomial time on deterministic
Turing machines. The class NP is defined as the class of problems solvable in
polynomial time on nondeterministic Turing machines. The third basic class
co-N P consists of decision problems whose complements belong to N P. These
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classes are also denoted as AP XF and ITF¥, respectively. The second level of
the polynomial hierarchy is defined by deterministic and nondeterministic Turing
machines with oracle [16]. It is said that the decision problem belongs to class AL
if there exists a deterministic Turing machine with an oracle that recognizes its
in polynomial time, using as oracle some language from class N P. Similarly, the
decision problem belongs to class X1 if there exists a nondeterministic Turing
machine with an oracle that recognizes its in polynomial time, using as oracle
some language from class N P.

The paper showed that the public-private partnership problem with static
budget distribution (without carry-over to next year and to the investor) is
YP_hard. Based on the ideas of the proof of this fact, we obtain the following
statement.

Theorem 1. The problem (1)-(6), (8)-(18) is X¥-hard.

Proof. Consider the Subset-Sum-Interval problem [18]. There are positive inte-
gers q;,i € {1,...,k}, R, and r, where r does not exceed k. It is required to
determine whether there exists an S such that R < S < R+ 2" and for any
I € {1,...,k} it holds } ., q; # S. It is known that the Subset-Sum-Interval
problem is X4’-hard [18].

We construct the next input of the government problem. Let there be k +
2" + 2 production projects and R + 2" — 1 ecological projects. Suppose that no
infrastructure projects are required to implement production projects. Planning
Horizon T = Ty = 3. For the first k production projects CFP}! = 0, CFP? =
—gq;, and CFP? = 2¢;. Suppose that C’FP,f_s_1 =-1/2, CFP,f’_i_1 =1, DBP,‘E’_‘_1 =
A, CFP} , = DBP} , = 2A, where A = (R+2" +1)?, and CFP}! = —1,
CFPf =R+4+2"+1,k+3<i<k+2"+2. All other parameters of production
projects will be set equal to zero. All production projects, with the exception
of the (k + 2)th, do not require the implementation of ecological projects. The
production project (k 4+ 2) requires the implementation of all ecological projects.
ZE]l =7 E]2 =1, for any ecological project j. All other parameters of ecological
projects are equal to zero. The government’s budget in any year is equal R+2"—1.
The investor’s budget in the first year is equal 2", in the second years it is
R+ 2" — 1, in the third year it is equal to zero.

Obviously, in the optimal solution, a production project (k + 2) is being
implemented. For this, due to the limited budgetary opportunities of the investor
in the first year, the government must implement S ecological projects, where
R < 5§ < R+2". The investor has to implement the remaining projects and then
he will spend the remainder of the budget in the first year on the production
projects {k + 3,...,k + 2" + 2}. After that, the investor in the second year has
exactly S left from the budget, which he can spend on the first k£ + 1 production
projects. Obviously, if there is I C {1,...,k} such that > , ;¢ = S, then the
investor will not implement the project (k + 1). Note that the (k + 1)th project
is very beneficial to the government. This means that the government will select
S (R <S8 < R+ 2") in such a way that for any I C {1,...,k} it will be carried
out » ., q; # S, if possible. The theorem is proved.
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Corollary 1. The problem (1)-(18) is XL -hard.

Also in [17], an algorithm for solving the public-private partnership problem
with static budget distribution is proposed. We modify this algorithm to solve our
problem. The first two steps are similar to the original algorithm. Key differences
are in the third step. We describe the algorithm scheme.

Step 1: Compute the upper bound UB by solving the government’s problem
with constraints of the investor’s problem.

Step 2: Let iter be the number of iteration of the algorithm on step 2. Find
a feasible solution using the following procedure:

Step 2.1: Solve the investor’s problem with constraints of the government’s
problem and additional constraint on the value of the objective function of
the government: value > UB/iter.

Step 2.2: In the previous step, we obtain the values of the government’s vari-
ables. Solve the investor’s problem to get the real objective function value. If
the real objective function value is very different from optimal value of the
investor’s problem with constraints of the government’s problem and addi-
tional constraint then iter:= iter - 1 and repeat the step 2.1.

Step 3: We apply steps 3.1 and 3.2 a given number of times to the solution
obtained in the previous step:

Step 3.1: For a fixed value of W, a specified number of times randomly change
the value of the government’s Boolean variables. Take the best.

Step 3.2: For a fixed values of the government’s Boolean variables, a specified
number of times randomly change the value of W. Take the best.

Note that all auxiliary problems and the investor’s problem are solved by
CPLEX software. To solve the examples described in the next chapter, the fol-
lowing values of the algorithm parameters were a posteriori selected. In the step
2, iter is 30. The step 3 is limited to 2 hours. At steps 3.1 and 3.2, 100 repetitions
are performed.

4 Numerical Experiment

The database of model (1)—(18) builds upon special forecasting models, which
describe in detail the processes of realization of all the three types of projects
[17]. The actual data describe a fragment of the Zabaykalsky Krai MRB, which
consists of 50 deposits of polymetallic ores. The experiment considers the imple-
mentation of 50 environmental and 10 infrastructural projects (railroad, pow-
erlines, autoroads), combined in such a way that the realization of the entire
infrastructural and environmental program would enable the launching of all
the MRB development (i.e., industrial) projects.

The numerical experiment technique builds upon analysis of the changes in
the properties of solutions of (1)—(18) under varying parameters of the model.
These properties include: the values of the objective functions of the govern-
ment and the investor; the number of implemented infrastructural and indus-
trial projects; the expense sharing proportions; the share of rent received by
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the government in the form of taxes; etc. This list allows for a meaningful eco-
nomic interpretation of the implications of a chosen investment policy and helps
identify the expected tendencies of change in effectiveness evaluations based on
sustainable development criteria.

The following figures present the results of the calculations that studied the
reaction of solutions of models A and B to changes in the key model parameters,
i.e., the discounts of the investor and the government.
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Fig. 1. The government objective function and the partner discounts
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Fig. 2. The investor objective function and the partner discounts

Figure 1 shows the dependence of the government’s objective function on the
discounts of the MRB development stakeholders. Both surfaces reach their high-
est values at small discounts, consistent with the fact that under the conditions
of a good investment climate, the government finds effective both investment
policies, generated by models A and B, respectively. If the conditions worsen
(i.e., the discounts increase), the effectiveness of the interaction between the
government and the investor drops, predictably, to almost zero in both models.
Thus, the problem of policy choice comes to the fore: What policy will provide
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the best results in the range of high discounts for the majority of resource-rich
regions in Russia?

The optimal strategy for a small-discount investor is to claim unconditional
compensation of all his infrastructure expenses (model A, Fig.2). In contrast
to Investor in model B, whose functional depends on his discount only, Investor
in model A reduces the volume of his infrastructure building operations if the
government begins to raise its discount.

Which model is preferable from the viewpoint of the functional (i.e., the
decision effectiveness indicator) for the government and the investor? And under
what conditions?

government investor
120 8 s 758

;T .

Il 13 S ggvzmment i b ~ government
-120 ’"VestOrdisolozmt % difgoimt =75 - IHVeStOrdjsclet % discount

Fig. 3. Difference between the values of the objective functions in models B and A

The answers to these questions are contained in Fig. 3, which presents the
difference between the functionals in models B and A. The light-colored part of
the surfaces corresponds to the case where model B is preferable in terms of the
functional, within these parameter ranges. A meaningful interpretation of Fig. 3
enables the government to choose a strategy that would underpin its investment
policy under given conditions.

Thus, in resource-rich regions with a good investment climate, which induces
a small investor discount, the government should consider using model B. Under
worse investment conditions (high inflation, volatile exchange rates, growing
transaction costs, etc.), which force the investor to take decisions with higher
discounts, the government should use model B and a high subsoil owner discount.

A small-discount investor should consider the option with unconditional
reclamation of his infrastructure expenses. At high investor discounts, model
B becomes preferable if the government chooses its investment policy accord-
ingly. This policy builds upon choosing a discount that defines the volume of
government investment into the infrastructure and ensures “hitting” the light
zone of the surface in Fig. 3.

Which model is preferable from the point of view of the government costs?

Figure 4 shows a relationship between the government costs on compensation
payments to the investor in the different models. Here, model B proves to be
more effective for the government.
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Fig. 6. Investor expenses on the infrastructure projects

Figures5 and 6 show the dependence between the volumes of the govern-
ment and investor infrastructure investments on their discounts. Model B gives a
greater volume of infrastructure building operations to a small-discount investor.
Under adverse conditions, infrastructure is built in both models mostly by the
government, and the volume of these operations narrows down with the growing
investor discount. As a result, model B is also more preferable in terms of the
share of government investment in the infrastructure projects (Fig. 7).
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The total government costs, including the expenses on investments and com-
pensations, are shown in Fig. 8. Figure 9 fixes the parameter ranges within which
model B is more preferable than A in total costs, which are negative and are
marked with dark color in the figure. This figure means that the government
costs in model B can be made lower than in A by choosing an appropriate
investment policy. At low investor discounts, this happens automatically; under
worse investment conditions, the government must choose a high discount, which
corresponds to the dark part of the surface.
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As for the government’s share in infrastructure investments, model B is also
preferable for the government (Fig. 9, right panel).

How do the results of this article, [8] and [9] compare?

Substantially, the models differ in the key mechanism for building infrastruc-
ture. In [8], infrastructure projects are implemented by the government. In [9],
an investor builds infrastructure, its costs are compensated with some lag. The
infrastructure is built by both partners in this article.

A comparative analysis of the calculation results allows us to draw the fol-
lowing conclusions. The model [8] provides the highest values of the objective
function of stakeholders, however, it requires the highest government spending.
The classical model of public-private partnership [9] minimizes budgetary costs
but does not provide a sufficient level of profitability today. Models A, B occupy
an intermediate position, realizing a compromise of budget savings and efficiency.
The choice in favor of a particular model depends on the prevailing conditions
of a particular region.

5 Results and Discussion

The bilevel mathematical programming models described above can serve as a
foundation for a practical methodology to form a complex of investment policy
measures in a resource-rich region. The algorithms proposed in this work may
help solve problems of high dimension and formulate real strategic plans for
building industrial infrastructure, which encourage the arrival of the private
investor.

The numerical experiments conducted on the actual data reveal the practical
significance of the proposed tools. Based on the results of the experiments, we
can draw the following main conclusions to underpin the process of management
in the mineral raw materials sector.

1. In regions with a favorable investment climate and mature institutions, which
together ensure a small discount of the potential investor, both models main-
tain an acceptable effectiveness level for the government. Under the same
conditions, the investor should consider a strategy of unconditional reclama-
tion of his infrastructure expenses.

2. If the conditions worsen (the investor discount increases), the government
must use model B and a high subsoil owner discount. This discount defines
the government investment policy and should be chosen in such a way that
model B becomes preferable for the investor as well.

3. Given a budget deficit, the government should consider model B. This model
would enable it not only reduce the volume of compensation payments but
also cut the total costs incurred by it, which include, apart from the payments
to the investor, the government’s own expenses on infrastructure.

Thus, the main goal of the government on a frontier territory rich in natural
resources when it comes to investment policy formation is to create the conditions
for model B to realize. The key condition is a high level of mutual trust between
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the government and the investor, which enables them to use a mutual settlement
scheme based on coordinated estimation of the investor’s integral effect in the
partnership-based MRB development program. If the parties achieve such a level
of trust, then the proposed mathematical tools will allow the formation of a long-
term effective investment policy.
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Abstract. We consider an unexplored discrete optimization problem of
summing the elements of two numerical sequences. One of them belongs
to the given set (alphabet) of sequences, while another one is given. We
have to minimize the sum of M terms (M is unknown), each of them
being the difference between the unweighted auto-convolution of the first
sequence stretched to some length and the weighted convolution of this
stretched sequence with the subsequence of the second one. We show that
this problem is equivalent to the problem of recognizing a quasiperiodic
sequence as a sequence induced by some sequence U from the given
alphabet.

We have constructed the algorithm which finds the exact solution to
this problem in polynomial time. The numerical simulation demonstrates
that this algorithm can be used to solve modeled applied problems of
noise-proof processing of quasiperiodic signals.

Keywords: Discrete optimization problem - Minimization - Weighted
convolutions’ difference - Recognition - Quasiperiodic -
Polynomial-time solvability

1 Introduction

We study an unexplored discrete optimization problem of summing the elements
of two numerical sequences. The research goal is to prove the polynomial-time
solvability of the problem and construct an algorithm guaranteeing the solution
optimality. The research is motivated by the absence of efficient (polynomial-
time) algorithms solving this problem with theoretical guarantees of quality
(accuracy and complexity).

The problem under consideration is relevant for natural objects noise-
resistant monitoring in the case of quasiperiodic repeatability of their typical
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state in the presence of non-linear temporal fluctuations. That is, the distance
between two consecutive repetitions lies in the given interval, and a typical state
allows some variations from one repetition to another. Namely, it is relevant for
applied problems when we need to identify (recognize) either the object itself or
the state of the object among the set of admissible ones in addition to detecting
these typical repetitions.

This type of state repeatability is typical, first of all, for bio-medical problems
(for example, problems of analysis and recognition of ECG signals). For illustra-
tion, we give an example of modeled ECG-like quasi-periodic signal processing.

2 Problem Formulation and Related Problems

The discrete optimization problem under consideration is

Problem 1. Given: a numerical sequence Y = (y1,...,yn), & collection W =
(O, . v® | v® = @®, W) e R, k= 1,... K}, positive inte-
gers Thax and . Find: a numerical sequence U = (u1,...,uuwy) € W; a
collection M = {ni,... ny,...} of indices of the sequence Y, a collection

P ={p1,...,Pm,...} of positive integers; a collection J = {JM ... ™ 1
of contraction mappings, where J™ : {1,... p,} — {1,...,q(U)}; and the
size M of these collections; which minimize the objective function

M  pm

FUM,P,J)= Z Z{ug(m)(i) - Qynr,,mLifluJ(m)(i)}’ (1)

m=1i=1
under the constraints
q(U) Spm SgSTmaxéNy m = ].,...,M,

Pm—1 Snm_nmfl STma)u m:27~'~uM7 (2)
pv <N —npy +1,

on the elements of the collections M, P, and under the constraints

JmM(1) =1, J™(py)=qU),

0< JG) — JmG -1y <1, i=2,... pp, " M B

on the constraction mappings.

Problem 1 is a problem of optimal (in the sense of the minimum of (1))
summation of elements of two numerical sequences. One of these two sequences—
Y —is given; another one—U—belongs to the given set of sequences. If we rewrite
(1) as follows

M Pm Pm
F(Ua M77Da j) = Z {Z u%(m)(i) -2 Zynm-‘ri—luj(m)(i)}
m=1 i=1 =1

we can see that Problem 1 is a minimization problem for the sum of weighted
convolutions differences. Indeed, for every m = 1,..., M, the first expression in
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the curly brackets is the unweighted autoconvolution of the sequence obtained
as some nonlinear extension of the sequence U (by repetitions of its elements),
while the second sequence is the weighted convolution of this extended sequence
and some subsequence from Y of the same length p,,.

The source of Problem 1 is a problem of simultaneous choice of U € W and
approximation of Y by X € X(U) according to the criterion of minimizing the
sum of squared distances between the elements of Y and X, i.e., the problem

[V — X|*> — min . (4)
U,x(U)

Here X(U), U € W, is the set of all permissible approximating sequences
engendered by U. Every element X = (z1,...,zx) € X(U) is uniquely defined
by the collections M, P, and J satisfying (2), (3) according to the rule

n = Zu‘](m)(nfnm+1)a n:17"'aNa (5)

m=1

where u o)) =0, m=1,...,M,if i <0ori>pp;ie X = XU M,P,J).
It means that the problem (4) is equivalent to the problem

Iy = X|* =Y - X(UM,P,I)|* — puin - (6)

The expression on the right-hand side of (5) is the sum of M extended sequences
U; the following formula is valid for duplication multiplicities of its elements

B =|{i1am@ =t ie 1, b,

t=1,...,q0U),

at that p,, = k{m) 4.+ k‘ggj)), m=1,..., M. Thus, the sequence X includes
M extended repetitions of U. The index value n = n,,, n,, € M, defines the
initial number of the m-th repetition; the value p = p,,, pm € P, is its length;
the mapping J = J™), J™) ¢ 7. determines the multiplicities of duplications
for elements from U.

It is easy to see that the total quantity of possible solutions to Problem 1
coincides with the size of the set X = (J;; oy X(U) and except the trivial case

when g1 = ... = gk = Timax, we have the lower bound
X = 3 1x ()| > K2l TmEE,
Uew

where ¢max = maxyew ¢(U) and K is the alphabet size. It means that if gmax
is bounded by some constant (which is common in applications), the size of
X grows exponentially with increasing V. Despite this exponential growth, the
algorithm below provides an optimal solution in polynomial time.

Finally, by transforming ||Y — X||? with (5), we have

N M  pm

> (zn Z Yo+ D> Ao (i) = 2nptio1tsom i)

n=1 m=1 i=1
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The first term on the right-hand side of this equation is constant and doesn’t
depend on variables of Problem 1; the second term coincides with the objective
function (1) of Problem 1. Therefore, the problem (6), as well as the problem
(4), is equivalent to optimization Problem 1.

Problem 1 is a generalization of previously studied recognition problems. A
particular case of Problem 1, where ¢1 = ...qx = ¢, pm = ¢, J™ (1) =i, m=
1,..., M, has been examined in [1]. Its modification, where M is a part of input
data, has been considered in [2]. In the problems studied in [1] and [2] we also
have to recognize a quasiperiodic sequence, but all repetitions in it are identical.
In these papers, the algorithms that allow obtaining optimal solutions in time
O(KTmaxN) and O(KMTnaxN), respectively, have been presented. Another
known particular case, where K = 1, has been studied in [3]. In this case, the
dictionary contains only one sequence, so it can be treated as an approximation
problem solely. The exact O(T2,, N)-time algorithm solving this problem has
been presented in [3].

The algorithm for solving Problem 1 seems to be a suitable tool to solve
applied problems of recognition and analysis of signals that have a quasiperiodic
structure in the form of fluctuating signal sample repetitions. Such problems
are relevant for various applications dealing with processing quasiperiodic pulse
signals received from natural sources: biomedical, geophysical, etc.

3 Problem Solution and Numerical Simulation

The main mathematical result of this paper is the following.

Theorem 1. There exists an algorithm that finds an exact solution to Problem
1 in time O(KT3, N).

max

The proof of this theorem is constructive. Specifically, we construct an algo-
rithm and show that this algorithm provides an exact solution to Problem 1. The
algorithm is based on solving a family of the following auxiliary problems.

Problem 2 [3]. Given: numeric sequences Y = (y1,...,yn), U =
(u1,...,uqy), and positive integers Tiax, ¢. Find: a collection M =
{n1,... Ny, ...} of indices of the sequence Y, a collection P = {p1,...,pm,...} of
positive integers, a collection J = {J(l), N ACON .} of contraction mappings,
where J™ : {1,... pn} — {1,...,q(U)}; and the size M of these collections;
which minimize the objective function

G(M7P’j) :F(.‘U)v

under the constraints (2), on the elements of the collections M and P, and under
the constraints (3) on the contraction mappings. Here the notation F(e|U)
means that we consider F' as a function of three arguments, while U is fixed.

The algorithm that finds an exact solution to auxiliary Problem 2 in time
O(T32,.N) has been presented in [3].

max
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Remark 1. If Tyax is a part of input data and K (the size of the alphabet)
is a fixed parameter, then the running time of the algorithm is O(N*%), since
Tmax < N; thus, the algorithm solving Problem 1 is polynomial-time.

We present an example of processing a modeled sequence (time series) that
can be interpreted as quasi-periodic sequence of fluctuating ECG-like sequences
(Fig.1) pulses in the additive noise presence. In fact, from the mathematical
point of view, it doesn’t matter which sequences are included in the alphabet.
The main reason for choosing exactly ECG-like signal is our desire to illustrate
potential applicability of the algorithm for biomedical applications.
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Fig. 1. Example of processing an ECG-like pulse train

In Fig. 1, the alphabet depicted in the top row includes three examples of
ECG-pulses. The typical shapes of these pulses, as well as their characteristic
sections and significant points, were identified by experts in medicine, for exam-
ple, see [4,5]. In Fig. 1, these sections are marked by coloring. Below the alphabet,
on the left, you can see one of the sequences from the alphabet—sequence U.
There is a program-generated sequence to the right of it. This sequence is a
quasiperiodic one engendered by fluctuating repetitions of U. The sequence Y is
depicted in the third row from the top. It is the element-wise sum of the mod-
eled sequence and the sequence of independent identically distributed Gaussian
random variables with zero mathematical expectation. It should be mentioned
that only Y and W belong to the input data of the algorithm. The sequence U
from the alphabet and the modeled sequence X (in the second row of the figure)
are given for illustration only. This data are not available.

The bottom row of the figure represents the result of algorithm operation,
namely, the sequences Uy (on the left) and X4 (on the right). Here Uy, is the
recognition result; the components of the sequence X 4 are recovered using (5)
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and four collections obtained as the algorithm output. The example is computed
for K =3, q(U) =203, U € W, Tiax = 370, £ = 370, N = 1800, the maximum
amplitude pulse value is 128, and the noise level o = 35.

The numerical simulation example shows that the algorithm presented allows
processing data in the form of quasiperiodic sequences of fluctuating pulses with
quite acceptable quality. Firstly, the unobservable sequence U and the sequence
U4 obtained by the algorithm coincide (recognition is carried out correctly).
Secondly, a visual comparison of two graphs (of the unobserved sequence X and
the recovered sequence X 4) shows only insignificant deviations of one graph
from another and almost exact coincidence of the marked sections.

4 Conclusion

We have proved that one of the unexplored discrete optimization problems is
polynomially solvable. We have constructed the algorithm that guarantees the
optimality of the solution to the problem and have obtained the polynomial
complexity estimate.

The numerical simulation has demonstrated that the proposed algorithm can
serve as a suitable tool to solve the problems of noise-resistant recognition and
analysis of quasiperiodic pulse sequences.

The modification of Problem 1, where the number of convolutions to be
summed up is a part of the problem input, remains to be studied. Of con-
siderable mathematical interest is also the discrete optimization problem when
the sequence alphabet is not given, that is, we have to recognize a sequence U
engendering the input sequence Y as an element of an infinite set of numerical
sequences having a fixed finite length. Investigating these problems presents the
nearest perspective.
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Abstract. This article is dedicated to finding stable solutions to change
input data on the example of pricing problems. In other words, we inves-
tigate stability analysis problems based on pricing problems.

Initial pricing problems can be described as the following Stackelberg
game. There are a company and its potential clients. First, the company
sets prices at own facilities for a homogeneous product. After that, each
client chooses the facility in which the minimum of his costs is achieved.
The cost consists of purchase and transportation prices. At the same
time, clients can make a purchase only if their budget allows it. The goal
is to establish prices at which the maximum profit of the company is
achieved. In the generalized problem of competitive pricing, two com-
panies compete with each other for the client demand. They set prices
sequentially. Clients are also the last to decide.

For the pricing of one company, we discuss the computational com-
plexity and algorithm solution of the stability analysis problem for three
different pricing strategies. We also look at the competitive pricing prob-
lem with uniform pricing when the same price is set at all facilities. In
conclusion, we discuss the relationship between the computational com-
plexity of stability analysis problems and initial problems.

Keywords: Stability analysis -+ Pricing - Bilevel and three-level
problems - Computational complexity

1 Introduction

When solving application problems, it is often necessary to choose a solution that
is acceptable not only for the current source data but also remains acceptable
when changing this data within a sufficiently wide range. In recent years, a
new direction of research in this area has arisen, which is based on the idea of
transforming the formulation [1,2]. For a given set of input data of the problem
to the maximum, instead of maximizing income, in the new formulation, we
will maximize the region of the input data of the problem close to the selected
example, for which there is a solution that leads to income not less than the
specified threshold.
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This article proposes the new implementation of this idea for the bilevel pric-
ing problems based on the idea of the stability radius (proposed in the works of
V.K. Leontiev and E. N. Gordeev [6,9-11]). The type of stability they examined
eventually led to four more new types of stability. These five types of stability
are formulated in terms of the behavior of the set of optimal solutions to the
problem and are independent of specific solutions. Therefore, they are types of
stability of optimization problems. The optimization problem may be:

1) strongly stable [8,10];

2) strongly quasi-stable [5,8];

3) stable [4,8];

4) quasi-stable [4,8];

5) invariable [5,8].

In addition to the stability of optimization problems, the stability of a given
optimal solution was studied in [4,8]. There are an optimization problem P (with
the criterion of maximization), some instance X. We denote by F*(X) (F(X))
the set of optimal solutions (the set of feasible solutions) of the problem P for
input X. Let A(p) = {6 : ||9]] < p} ( A=(p) = {6 : ||d]| = p}) be the set of
variances of the instance X, where p > 0. The optimal solution Y* € F*(X) is
called stable if the set I'"(X,Y*) = {p > 0:Vd € A(p) [Y* € F*(X +9)]} is
not empty. The value sup I'” (X, Y*) is called the stability radius of the optimal
solution Y* € F*(X).

The concept of stability, which is studied in the paper, is obtained by relaxing
the condition that solution Y* € F*(X) remains optimal when the instance X
is varied, and replacing it with the condition that the solution remains feasible
when the instance X is varied and the value of the objective function on it is
not less the specified threshold V. Denote objective function of P as fp(X,Y),
where Y is an arbitrary feasible solution. The feasible solution ¥ € F(X) is
called stable with respect to threshold V if the set ' (X, Y, V) ={p>0:Vd €
Alp)[Y € F(X +6)&fp(X +6,Y) > V]} is not empty. The value p(X,Y,V) =
sup I'"(X,Y, V) is called the stability radius with respect to threshold V of the
feasible solution Y € F(X).

Definition 1. The stability analysis problem for input X and threshold V is
generally formulated as follows:

p(X,Y,V) — max,
that is, we need to find the feasible solution Y that is stable with respect to
threshold V' and has a mazimum stability radius p(X,Y, V).

In the definition of the set I'F(X,Y, V'), we replace the set of variations A(p)
with the set A=(p).

Definition 2. The simplified stability analysis problem for input X and thresh-
old V' is generally formulated as follows:

p(X,Y, V) — max,
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that is, we need to find the feasible solution Y that is stable with respect to the
set A=(p) of variances and threshold V' and has a mazimum stability radius

p(X,Y, V).

For one-level problems, this definition is sufficient. For bilevel problems, the
bottleneck is the concept of a feasible solution. The variables of the bilevel
problem are divided into two groups (Y,,Y;), where Y,, is the upper-level vari-
ables, but Y; are the lower-level variables. Let us denote by F;*(Y,) the set
of optimal solutions of the lower-level problem and by F(X) |,= {Y, : 3V €
Fr(Y,)&(Y,,Y;) € F(X)} the projection of the feasible domain F'(X) of the two-
level problem P onto the variables of the upper level. The vector Y, € F(X) |,
is called stable with respect to threshold V if the set

I'P(X,Y,,V)={p>0:VY6 € A(p)IV(0) € Fy(Ya)

[(Yu,Y1(0)) € F(X +6)&fp(X +6,Y) = V]}

is not empty. The value p(X,Y,,V) = sup '’ (X,Y,,,V) is called the stability
radius with respect to threshold V' of the vector Y, € F(X) |,. These and
subsequent definitions can be used in both optimistic and pessimistic cases.

Definition 3. The stability analysis of the bilevel problem P for input X and
threshold V' is generally formulated as follows:

X, Y.,V max
o )= Y, €F(X)]u

that is, we need to find the vector Y, € F(X) |, that is stable with respect to
threshold V' and has a mazimum stability radius p(X,Y,, V).

In the definition of the set I'F (X,Y,V), we replace the set of variations
A(p) with the set A=(p) and replace the universal quantifier before § with the
existential quantifier and get the following definition

Definition 4. The simplified stability analysis of the bilevel problem P for input
X and threshold V is generally formulated as follows:

XY,V
p(X, Yy, )Hyugﬂ%fmu’

that is, we need to find the vector Y, € F(X) |, that is stable with respect to
the set A=(p) of variances and threshold V' and has a mazimum stability radius

p(X, Y, V).

Consider the following Stackelberg game. There are a company and its poten-
tial clients. First the company prices at own facilities for a homogeneous product.
After that, each client chooses the facility in which the minimum of its costs is
achieved. The cost consists of purchase and transportation prices. At the same
time, clients can make a purchase only if their budget allows it. The goal is to
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establish prices at which the maximum profit of the company is achieved. This
problem is considered in [13,14].

Hereinafter, by variances of instance, we mean the change in the client’s bud-
get. This is acceptable since transportation costs or other language distances are
often computable with great accuracy. We also note that for pricing problems,
the choice of pricing strategy is important. We discuss the computational com-
plexity and algorithm solution of the stability analysis problem for three different
pricing strategies. We restrict ourselves to considering the following three strate-
gies: uniform pricing, mill pricing, and discriminatory pricing [7]. Under uniform
pricing, the company sets a product’s price. The mill pricing implies the assign-
ment of its price at each facility. Customer rights are even further violated in
discriminatory pricing when each facility has own price for each customer.

One of the main motivations of this article is the question of changing the
complexity status when the initial problem is formulated as a stability analy-
sis problem. If the original problem is polynomially solvable, will the stability
analysis problem also be polynomially solvable?

In the next section, we consider the computational complexity of bilevel
pricing problems. The third section contains results on exact algorithms for
competitive pricing.

2 Bilevel Models of Pricing

First of all, we formulate the problems of pricing. Then we proceed to reformulate
it in terms of the stability analysis problem under Definitions 1(3) and 2(4). Next,
we will see that for the pricing problems under consideration in the absence of
competition, algorithms for solving the stability analysis problem under both
definitions are identical. In other words, such problems are equivalent.

We introduce the following notation:

I ={1,...,m} is the set of facilities;

J ={1,...,n} is the set of clients;

c;j € Z" is the non-negative transportation cost of a product from the facility ¢
to the client j;

bj € Z* is the non-negative budget of the client j.

To identify the company’s product price and the allocation of clients to facilities,
we use the following variables:

p is the non-negative product price;

1, if the client j is served from the facility 4,
Tij = s

0 otherwise;

Then the uniform pricing problem can be written as a bilevel model of quadratic

mixed-integer programming:
T;; — max
22 r = e
el jed
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where z is an optimal solution of the lower-level (client’s) problem:

Z Z(b] — Cij — p)xij — max

icy el z;;€{0,1}i€l,jeJ

sz‘j <LijeJ;
il
If we add an integer constraint on the price, we get the uniform integer pricing
problem. To obtain a model for the problem of mill (discriminatory) pricing, it
is enough to change the variable p to the variable p; (p;;) where p; is the product
price in the facility ¢ (the product price in the facility i for the client j).
As the norm of the variance of instance, we consider the norm || - ||,ni, that

is the minimum budget deviation. In other words, we use the following metric:
r(b,0) = min;e s {[b; — bj|}.

2.1 Equivalence of Definitions 1 and 2 for the Bilevel Pricing

We formulate the stability analysis problem for the uniform, mill, and discrimi-
natory pricing problem:

p — max
p,p>0

provided that for all values of the variable p from
the segment [0, p| exists x such as:

Z prij >V;

i€l jeJ

where z is an optimal solution of the lower-level (clients) problem:

Z Z(b] —p—Ci — p)xij — max

icy el z;;€{0,1} i€l jeJ

Z zi; <15 €

il
We call this problem the problem of finding a stable price (stability analysis
problem) with uniform pricing and the norm ||+ ||in. Here ||||min = p. Similarly,
we can write the problem of finding a stable price with mill or discriminatory
pricing and integer constraint.

We fix the price p. Let’s consider how the set of serviced clients will change
with decreasing p. Since transportation costs remain unchanged and client bud-
gets are growing, clients will be served at the same facilities that were previously
served. At the same time, the set of serviced clients can only increase due to the
growth of budgets. This means that the company’s income will not decrease.
Thus we can rewrite the problem of finding a stable price with uniform pricing
and the norm || - ||;min as follows:

p — max
p:p20,x
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DO pwi > V;

iel jeJ

where z is an optimal solution of the lower-level (client’s) problem:

Z Z(bj —p—cCij —D)Tij — max

jeJiel :Eije{o,l};iel,jGJ

Zl‘ij <lLjed

il
But it is the simplified stability analysis problem. Analogically, it is for the
mill or discriminatory pricing and integer constraint. Thus, for bilevel pricing,
Definitions 1 and 2 are equivalent. Therefore, in the future, we will not subdivide
problems according to two different definitions of stability analysis.

2.2 Algorithms Solution for the Minimum Budget Deviation

To solve the stability analysis problem for the uniform pricing, we first offer
an algorithm for solving the problem of uniform pricing. As a consequence of
the theorem on necessary optimality conditions [14], the optimal price is b; —
min;ey ¢;; for some j € J. Then by looking at all clients, we can find the best
solution in time mn + nlogn. For the discriminatory pricing, the optimal price
pi; is equal to b; — ¢;;. Then the discriminatory pricing problem is solvable in
time mn. The mill pricing problem is NP-hard [13]. But if we fix the Boolean
variables x;;, then we get the linear programming problem. Thus, the mill pricing
problem is solvable for (m + 1)™ of calls to the algorithm for solving the linear
programming problem.

The optimal value of p does not exceed the largest budget. Then, for solving
the problem of finding a stable price with uniform, mill, or discriminatory integer
pricing, we apply the following algorithm:

Algorithm 1

Iterate through the binary search algorithm all values of p from the integer seg-
ment [0, max;cicr{b; — cij}| and solve the pricing problem with uniform, mill
or discriminatory pricing where b; := b; — p. The goal is to find the marimum
value of p, provided that the optimal income of the company is not less V.

Obviously, if we remove the requirement of integer prices, then Algorithm 1
will become useless.

We propose a more efficient algorithm for solving the problem of finding a
stable price with uniform pricing:



Stability Analysis for Pricing 63

Algorithm 2

Define E as b; —min;er ¢;; and b;(p) as bijf p. As a consequence of the theorem
on the necessary optimality conditions [14], the optimal price is bj — min;cy ¢;;
for some j € J. Define kj as |{k € J : by, > b;}|. The optimal objective function
value [ is equal bj(p)k; for some client j. But f > V. Then we have:

bi(p)kj = (bj — p)k; >V
i

p>bj—

4

— b: — mi i,,L_
p = max{b; —minc kj}

v
k;

For the integer price, we have:

, 1%
p = max{b; —minc;; — fkfjﬂ-

The complexity of Algorithm 1 applied to uniform pricing is logB(mn +
nlogn) where B = maxjcj;er{b; — ¢i;}. The complexity of Algorithm2 is
mn + nlogn that is equal to the complexity of the solution algorithm of the
uniform pricing problem and less than the complexity of Algorithm1 at logB
times.

For mill pricing, we offer the following enumeration algorithm:

Algorithm 3

We apply the idea of solving the mill pricing problem. Fix the Boolean variables
xi;. Then we have the following problem [13,14]:

p — max

p:p20
> v 2 Vs
icl jeJ
Z(bj —p—cij —pi)ri; > 0,5 € J;
il
Z(Cij +pi)rij < ckj+pr. kel jeld
il

Note that this problem is a linear programming problem. Then, by sequentially
sorting all the Boolean variables and solving the linear programming problem, we
will find the optimal value of p. For the integer pricing, we have to take |p|.
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It turns out that the solution algorithm of the mill pricing problem and Algo-
rithm 3 have similar complexity.
In conclusion, we present a solution algorithm for discriminatory pricing:

Algorithm 4

Obviously, the optimal price p;j is equal max{0,b;(p)}. Then the optimal objec-
tive function value f is ZjeJ max{0,b;(p)}. This leads to the following inequal-
ity:

f= ZmaX{O,bj(p)} >V
jed

Assume that the mazimum is reached on the right side on some set of clients
J. To calculate the optimal J we offer the following procedure. Sort clients by
increasing this value bj(p). Then we can easily calculate at what value of p the

first client leaves the set j, the second client, and so on. So for each set J we
have: )

Zjej(bj —min;ey) =V
/]

|8

p = maxmin{p(J),
J

where p(j) is the mazimum possible value of p for the selected set J. As for the
mill pricing for the integer pricing, we have to take |p].

The complexity of Algorithm 4 is m(n + 1) + nlogn.

2.3 Results of the Chapter

The main result of this section is algorithms for solving the stability analysis
problems of uniform, mill, and discriminatory pricing. The complexity of these
algorithms shows that the complexity of stability analysis problems is compa-
rable to the original pricing problems. In particular, polynomial solvability is
preserved. Looking ahead, for competitive pricing, we cannot get such a result.

Another equally important result is the equivalence of Definitions1 and 2
for the bilevel pricing. As will be shown in the next chapter for the three-level
problems of competitive pricing, it is not true.

3 Three-Level Models of Competitive Pricing

Suppose now that two companies compete with each other for the client demand.
The first company is the leader. She sets prices first. After that, the second
company (the follower) reacts to this with own prices. We restrict ourselves to
considering only the uniform pricing strategy. Also note that only if the prices
are integer, the problem has an optimal solution.

We introduce the following notations:
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I, ={1,...,mp} is the set of facilities of the leader company;
Ir ={1,...,mp} is the set of facilities of the follower company.

Then the leader problem is described as follows:
53 o —
i€l jeJ o
peN;
where (g¢,z) is an optimal solution of the second-level (follower’s) problem:
5 S gy —
a,q
i€lp jeJ
q€N;
where x is an optimal solution of the lower-level (client’s) problem:

D> lwigby =iy =)+ D Y [rij(b; — cij — ¢)] — max

i€l jeJ iclp jeJ

Z zi; <1, jeJ;

1€l UlR

Tij € {0,1},i€ILUIF,j e J

Follower
[ |
0 7
0
[ [ ] [ ]
10 0 10
[ |
Leader

Fig. 1. An example of the three-level pricing problem.

It is known that this problem is polynomially solvable [12]. We already under-
stood that the uniform pricing problem and its stability analysis analog are
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polynomially solvable too. Can the follower become a serious problem when
developing an algorithm for solving the stability analysis problem of competi-
tive pricing? It turns out so. Let’s try to understand it. The stability analysis
problem under Definition 1 can be described as follows:

p — max
p.PEN

provided that for all values of the variable p from the segment [0, p]
exists ¢,z such as:

2D pry 2V
i€l jeJ
where (¢,z) is an optimal solution of the second-level (follower’s) problem:
S Yar - may
i€lp jeJ naeN
where z is an optimal solution of the lower-level (client’s) problem:

Z Z[xij(bj —p—cij—p)]+ Z Z[l’ij(bj —p—cij—q]— max

i€l jeJ i€lp jeJ
Z Tij < 1, j S J;
i€l Ulp
Tij € {O,l},i elpUlp,jeld.
To complete the picture, we also introduce the stability analysis problem

under Definition 2:

p — max
p.PEN

DD pry 2 V;
icly jeJ
where (¢,z) is an optimal solution of the second-level (follower’s) problem:
5 ey —
i€lp jeJ naeN
where x is an optimal solution of the lower-level (client’s) problem:

DD lwiby —p—cij =)+ D D lwij(b — p— cij — q)] — max

i€l jed iclp jeJ
Z z; <1, jeJ;
i€l Ulp
Tij € {0,1},@ elpUlp,jed

We show that these two problems are not equivalent. To do this, consider
the following example:
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Ezxample 1: There are one leader’s facility, one follower’s facility, and three
clients. All clients have the same budget equal to 11. Transportation costs to
the leader facility are distributed as follows: from the first client, the cost is
10; from the second client, the cost is 0; from the third client, it is equal 10.
Transportation costs to the follower facility are equal to 0, 0, and 7 respectively
(Fig. 1). V is equal to 5. Let p is 1. Then there is only one feasible solution to
the stability analysis problem in which p = 5. Is this solution feasible for p =07?
It is not so because the follower, in this case, will change his decision to serve
only the first client and will serve all clients.

Hence for competitive pricing problems, Definitions 1 and 2 are not equivalent.
It also follows from the example that we cannot guarantee that if the budget
changes, the follower does not decide to change his price and thereby intercept
some clients from the leader. Therefore, we cannot use the idea of constructing a
solution algorithm (for example, Algorithm 2) that has been successfully applied
for bilevel problems.

What can we offer to solve these problems? For Definition 2, we can use the
idea of Algorithm 1. That is, to maximize p, we can use the binary search:

Algorithm 5

Iterate through the binary search algorithm all values of p from the integer seg-
ment [0, max;e e, {b; —ci;}] and solve the three-level competitive pricing prob-
lem [12] where bj := b; —p. The goal is to find the mazimum value of p, provided
that the optimal income of the leader is not less V.

It is clear that for Definition 2 such the algorithm is correct. It is also clear
that for Definition 1 it cannot be used. In the case of the stability problem under
Definition 1, we need to have a feasible solution that would give the required
income for all budget changes from 0 to p. We cannot guarantee this for sure
due to the unpredictability of the behavior of the follower. This leads us to the
idea of enumerating not only the value of p and enumerating all the feasible
solutions that provide the required income. We get the following algorithm:

Algorithm 6

View from left to right all values of p from the segment [0,max;cicr, {b; —
cij}] while it is possible to present the desired feasible solution for all budget
changes from 0 to p. In the first step, we look through all the leader’s prices and
remember those at which, after solving the follower’s problem, the leader achieves
the required income. In the future, we will only look at the selected prices and
discard those for which the condition for achieving the required income greater
than or equal to V is not fulfilled.

Algorithm 5 is pseudopolynomial and Algorithm 6 is exponential. Although the
original problem is polynomially solvable. This leads us to the following conclu-
sion.
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4 Conclusion

In this work, we examined several problems of stability analysis corresponding
to previously studied pricing problems. For the simplest pricing problems, it was
found that the computational complexity of stability analysis problems does not
differ much from the computational complexity of the initial problems. At the
same time, for the problems of stability analysis corresponding to the problems
of competitive pricing, the complexity of the developed algorithms significantly
exceeds the complexity of algorithms for solving the initial problems. Therefore,
the following question arises: Can the problem of stability analysis for some
metrics fall into a higher complexity class, i.e. to be higher in the polynomial
hierarchy than the original problem? For example, if the original problem is
polynomially solvable, can the stability analysis problem turn out to be NP-
hard?
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Abstract. We consider the following subset choice problems: given a
family of Euclidean vectors, find a subset having the largest a) norm of
the sum of its elements; b) square of the norm of the sum of its elements
divided by the cardinality of the subset. The NP-hardness of these prob-
lems was proved in two papers about ten years ago by reduction of 3-SAT
problem. However, that proofs were very tedious and hard to read. In
the current paper much easier and natural proofs are presented.
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1 Introduction

This paper deals with well-known vector subset choice problems that are induced
by data analysis and pattern recognition problems. A typical problem in data
analysis requires finding in a set of data a subset of the most similar elements
where the similarity is defined according to some criterion. The cardinality of
the sought subset could be known or unknown in advance. One of the possible
criteria is minimum of the sum of squared deviations. This criterion arises, in par-
ticular, in a noise-proof data analysis where the aim is to detect informationally
significant fragments in noisy datasets, to estimate them, and to classify them
afterwards [8,12]. The problem of finding a subset of vectors with the longest
sum has applications in the pattern recognition (finding a correct direction to a
certain object) [25].

Although these problems are known to be NP-hard both in the case of known
(given as a part of input) cardinality of a sought subset [3,8] and in the case of
unknown one [14,15,22], the latter proofs are much more complicated and hard
to read (see the discussion in the next section). In this paper we suggest much
more easy and natural NP-hardness proofs for the case of unknown size of the
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sought set. We believe that the new proofs can be helpful for analyzing related
problems with the unknown cardinalities of the sought subset.

The paper is organized as follows. In the next section the mathematical
formulation of the problems are given and the motivation of the research and
some related results are discussed. In Sect. 3 the main results of the paper are
presented. Section 4 concludes the paper.

2 Problem Formulation, Motivation and Related Results

The problem of noise-proof data analysis in noisy data sets [8,12,15] is as follows.
Each record of the data is a vector representing a set of measured characteristics
of an object transmitted via a noisy channel. The object can be either in an
active or in a passive state. In the passive state all characteristics are 0, while in
the active state all measured characteristics are stabile and at least one of them
must be non-zero. The noise has a d-dimensional normal distribution with zero
mean and an arbitrary dispersion. The goal is to determine the moments when
the object was in the active state and to evaluate the measured characteristics.

As it was shown in [8,12,15], this problem can be reduced to the following
optimization problem.

Problem 1. Given a set of vectors Y = {y1,...,yn} in d-dimensional Euclidean
space, find a non-empty subset C C ) maximizing

Sl

h(C) : C|

Everywhere in the paper the norm is Euclidean, unless otherwise stated.
A version of Problem 1 with an additional restriction on the cardinality of the
sought set C is referred to as

Problem 2. Given a set of vectors Y = {y1,...,yn} in d-dimensional Euclidean
space and a positive integer M, find a subset C C Y of cardinality M maximizing
h(C).

The following two subset choice problems are very close in formulation to
these ones.

Problem 3. Given a set of vectors Y = {y1, ..., yn} in d-dimensional Euclidean
space, find a non-empty subset C C ¥ maximizing || > . z||.
Problem 4. Given a set of vectors Y = {y1,...,yn} in d-dimensional Euclidean

space and a positive integer M, find a subset C C ) of cardinality M minimizing
> sec |l —T||* where 7 = (3°, . ) /|C] is the centroid of the set C.

Note that the variant of Problem 3 with a given cardinality of the subset C is
equivalent to Problem 2, while the variant of Problem 4 without the restriction
on the cardinality of C is trivial (every subset of cadrinality 1 is an optimal
solution).
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Problem 3 has a following interpretation [25]. Each vector is a measurement
result of a direction to some interesting object. Each measurement result has
an additive error having a normal distribution, and there are some redundant
vectors in the set (related to other objects or reflections). The goal is to delete
the redundant vectors and find the correct direction. This can be done by finding
a subset of vectors having the longest sum.

If the dimension of the space d is fixed then all Problems 1-4 are polynomially
solvable. Namely, Problems 1 and 2 can be solved [9] in time O(dN?4+2); Problem
3 is a particular case of Shaped Partition problem [11], which yields an O(N?)
algorithm for it; a better algorithm of complexity O(dN9~!log N) is presented
in [25]. Problem 4 can be solved [1] in time O(dN?*1). The universal algorithm
solving Problems 1-4 in time O(dN?*!) using Voronoi diagrams can be found in
[24]. Note that this algorithm indeed can solve any vector subset choice problem
satisfying one of the following two locality properties:

— For every input there is a point 2* such that the optimal solution consists of
the set of M closest to x* points of ).

— For every input there is a vector y* such that the optimal solution consists of
the set of M vectors of ) having minimum scalar products with y*.

If the dimension of the space d is a part of input then all four problems
mentioned above are NP-hard in a strong sense. Moreover, for Problems 2 and 3
an inapproximability bound (16/17)'/? was proved in [26] for an arbitrary norm
I, where p € [1,00).

There are a lot of approximation results for these problems. Let us mention
randomized algorithms finding (1 + ¢)-approximate solution for Problems 2 and
3 of complexity O(d*?N loglog N/(2¢ — £2)(¢=1/2) in [10] and of complexity
O(d°MN(1 + 2/¢)?) with probability 1 — 1/e in [26]. For Problem 4 a (1 + ¢)-
approximation algorithm of complexity O(N?(M/e)?) was suggested in [19] and
a PTAS of complexity O(dN'*2/¢(9/¢)3/¢) was constructed in [23]. For Problem
1 a (14¢)-approximation algorithm of complexity O(Nd(d+log N)(y/(d — 1)/e+
1)4=1) can be found in [15].

The NP-hardness of Problem 2 (i. e. in case of known—given as a part of
input—cardinality of a sought subset) was proved in [3,8]. The proof uses a
natural reduction from the classical NP-hard Clique problem. In this reduction,
each vector corresponds to a vertex of a graph and a subset C is optimal if and
only if the corresponding subset of vertices induces a clique in the graph. This
proof is so natural that the similar idea was used later, in particular, for proving
NP-hardness of Problem 4 in [16], of Maximum Diversity problem in [5] and of
1-Mean and 1-Median 2-Clustering Problem in [18].

The NP-hardness of Problem 1 was proved in [14,15]. It uses quite com-
plicated reduction of 3-SAT problem, where several vectors correspond to each
clause and to each variable, and some irrational numbers (square roots) are used
in their coordinates (and thus, additional arguments justifying the possibility
of rational approximation become necessary). The NP-hardness of Problem 3
was proved in [22] also by reduction of 3-SAT; although there are no irrational
numbers, the reduction still remains complicated and the proof is hard to follow.
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These reductions are highly inconvenient and hard to generalize. So, many other
vector choice or clustering problems with unknown cardinality of the sought set
stay open (see, for example, [18]). In this paper we present an easy and natu-
ral NP-hardness proof for Problems 1 and 3 with almost the same reduction of
Exact Cover by 3-Sets problem.

Let us mention some other problems that are related to Problems 1-4. Make
use of the following well-known folklore identities (the proofs can be found, for
instance, in [15,17]):

1> wec zl? _
> lylli* - %‘C =S ly-7P+ > Iyl

yeY yec yeY\C

Z cC E cC Hy - 2”2

= = + > vl (1)
2|C|

yeY\C

Since the sum of the squared norms of all vectors from ) does not depend on C,

Problems 1 and 2 are equivalent to minimization of the function

Slly=31*+ > Il

yeC yeY\C

that can be treated as a minimum sum of squares 2-clustering where the center
of one cluster is known. This problem is very close to a classical MSSC (min-
imum sum of squares clustering) problem also known as k-means [2,6,20,21],
but not equivalent to it. Note that in such equivalent formulations these prob-
lems admit polynomial 2-approximation algorithms of complexity O(dN?) both
for known [4] and unknown [13] cardinality of the sought set (cluster with an
unknown center). As far as we know, no polynomial approximation algorithm
with a guaranteed exactness bound is known for Problem 1.

3 Main Results

In this section we present the new NP-hardness proofs for Problems 1 and 3.

3.1 NP-hardness of Problem 1

Let us rewrite Problem 1 in the equivalent (due to (1)) form of the decision
problem.

Problem 5. Given a set of vectors Y = {y1,...,yn} in d-dimensional Euclidean
space and a number K > 0, is there a non-empty subset C C ) such that

1
f(€) = 3c] DD le—ylP+ > =P < K?
zeCyeC zeY\C

We need the following well-known NP-hard [7] version of the Exact Cover by
3-Sets problem where each element lies in at most 3 subsets.
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Problem 6 (X3C3). Given a family F = {ey, ..., e, } of 3-element subsets of the
set V= {vy,...,v,} where n = 3¢ such that every v € V meets in at most
3 subsets from F, find out whether there exist a subfamily Ey = {e;,,...,e;,}
covering the set V, i. e. such that V = U?Zlei]..

The main result of this subsection is the following theorem.
Theorem 1. Problem 1 is NP-hard in a strong sense.

Proof. Consider an arbitrary instance of X3C3 problem and reduce it to an
instance of Problem 5 in the following way. Put N = m,d = 3n+ 1 and K =
18a?(m — 1) +m — g where a is a positive integer such that a? > m(m — q)/6.
Each vector y; € Y corresponds to a set e; € E. For every ¢ € {1,...,n} refer
to the coordinates 37, 3i — 1, 3¢ — 2 of a vector y € Y as i-th coordinate triple.
Denote by y;(j) the j-th coordinate of y;. If v; & e; then the i-th triple of the
vector y; contains zeroes: y;(3i — 2) = y;(3i — 1) = y;(37) = 0. Otherwise, let
k=1|{l <j| v €e}| be the number of subsets from E with lesser indices than
j containing the element v;. Since each v; lies in at most 3 subsets from E, we
have k € {0,1,2}. Put

(31— 2) = 20, y3(3i — 1) = 4;(30) = —a, T} =0,
y;j(3i — 1) =2a, y;(3i —2) =y;(3i) = —a, if k=1;
y;(3i) = 2a, y;(3i —2) =y;(3i — 1) = —a, if k= 2.

Also, put y;(3n+1)=1for all j € {1,...,m}.

FOI" example, lf E = {(’Ul, V2, ’U3)7 (1}1, V3, ’U4), (1}1, Vs, ’1}6), (1}2, V3, ’05), (’U4, Vs, 116)}
then the family ) contains the following five vectors of dimension 19:

1 = (2a,—a,—a | 2a,—a,—a | 2a,—a,—a | 0,0,0 | 0,0,0 | 0,0,0 | 1);

y2 = (—a,2a,—a | 0,0,0 | —a,2a,—a | 2a,—a,—a|0,0,0|0,0,0]|1);
y3 = (—a,—a,2a | 0,0,0 | 0,0,0 ] 0,0,0 | 2a,—a, —a | 2a,—a,—a | 1);
ys =(0,0,0| —a,2a,—a| —a,—a,2a]0,0,0| —a,2a,—a|0,0,0|1);
ys = (0,0,0]0,0,0]0,0,0| —a,2a,—a| —a,—a,2a| —a,2a,—a|l).

For the convenience, different coordinate triples are separated by the vertical
lines.
Note that ||y;]|> = 18a2 + 1 for all i and also

36a?, if e; Nej = 0
s — w2 = 42a?, if |e; Nej| = 1;
Y Uil = 4842, if |e; Ney| = 2;

54a?, if |e;Nej| =3

for every i # j.
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Assume first that an exact cover Ey exists. Put C = {y; | ¢; € Ep}. Then

B q(q — 1)36a®

2e T (m—9)(8’ +1)=18*(m 1) +m-g=K,

f(€)
as required.

Assume now that there is a subset C of size ¢ > 0 such that f(C) < K. Note
that each coordinate triple can be non-zero in at most 3 vectors from C. For each
k € {0,1,2,3} denote by aj the number of coordinate triples that are non-zero
in exactly k vectors from C and estimate the contributions of such triples into
the first addend of f(C). Note that ag + a1 + az + ag = n = 3q. Clearly, the
contribution of ag zero triples is 0. If a triple is non-zero in one vector from C
then it contributes

(t —1)(4a® + a® + a?)
t )
and the total contribution of such triples is

6a2a1§t -1 -

If a triple is non-zero in two vectors from C then it contributes

2(t — 2)(4a? + a® + a?) + (9a® + 9a?)
t I

so, the total contribution of such triples is

6a2a2(tQt -1 @)

Finally, the total contribution of triples that are non-zero in three vectors from
Cis
(3(t — 3)6a® + 3 - 18a%)as
t
Since |ej| = 3 for all j, we have a; + 2as + 3ag = 3t. Using (2)-(4), estimate
the objctive function

= 18a%as. (4)

6 2
F(€) = Z=((t = Dar + (2t = Daz + 3taz) + (m — )(180° + 1)
) 2
- 6%<3t2 — a1 —az) + (m —)(18a® + 1) = 18ma® +m — t — 6%(@1 +az)
2

6
:K+18a2—%(a1—|—a2)+q—t.

If t < g then f(C) > K since a; + a2 < 3t.
Assume now that t > g and as+ag > 1. Then a3 +as = 3t—as —2a3 < 3t—1
and since t < m we obtain

62
f(C)=K+18a2—%(a1+a2)+q—t
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6a(3t — 1) 6a>

> K + 184 — +qg—-t>K+—+qg-m>K
m

by the choice of a.
Therefore, t > g and as = ag = 0. But then ay = 3t and ag + a1 = 3¢, i. e.
ap = 0 and t = q. Hence, the set Ey = {e; | y; € C} induces an exact cover. 0O

3.2 NP-hardness of Problem 3

Since the norm is always non-negative, maximizing it is the same as maximizing
its square, which is much more convenient. So, the decision version of Problem
3 is equivalent to the following

Problem 7. Given a set of vectors Y = {y1,...,yn} in d-dimensional Euclidean
space and a number K is there a non-empty subset C C Y such that

g€) =11y =l* > K?

zeC

In order to prove its NP-hardness we first need to show that X3C3 problem
remains NP-complete for 3-uniform family of subsets (i. e. if each v; € V lies in
exactly 3 subsets from E). We refer to this variant of X3C3 problem as X3CE3
problem.

Proposition 1. The X3CE3 problem is NP-complete.

Proof. Consider an arbitrary instance of X3C3 problem. We may assume that
each v; lies in at least 2 subsets (if some v; lies in a unique subset then this
subset must always be in Ey and the instance can be simplified). Denote by
«a and § the number of elements lying in 3 and 2 subsets from E respectively.
Since 3a + 20 = 3m, there must be § = 37. Enumerate the elements of V' so
that v, ..., vs3, would lie in two subsets from E. Construct an instance of X3CE3
problem by adding to V' a set of new elements U = {u; | i = 1,...,37} and by
adding to I the subsets {vs;_2, u3;—2,usi—1}, {v3i—1, u3i—2, u3i }, {v3s, Uzi—1, u3: },
and {ug;_2,usi—1,ug;} for all ¢ = 1,...,v. Clearly, no exact cover (a subfamily
Ey) in the constructed instance can contain a subset that intersects both with
U and V. Therefore, the constructed instance of X3CE3 problem has an exact
cover if and only if the initial instance of X3C3 problem has one. a

Theorem 2. Problem 3 is NP-hard in a strong sense.

Proof. Consider an arbitrary instance of X3CE3 problem. Note that m =n =
3q. Reduce it to an instance of Problem 7 as follows. Put N =n,d = 3n+1 and
K = 6an + 4¢® where a is a positive integer such that a? > (n? — 4¢%)/6, and
construct the set of vectors ) in exactly the same way as in proof of Theorem 1.

In an evident way, each C C Y corresponds to a subfamily E(C) C E. Put
u(C) = > ecy- Since g(C) = lu(C)||?, the contribution of the i-th coordinate
triple into the objective function g(C) is 6a® if 1 or 2 vectors corresponding to
subsets containing v; lies in E(C), and the contribution is 0 otherwise.
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If there is an exact cover Ey in X3CE3 problem then let C contain all n —q =
2q vectors corresponding to the elements from E \ Ey. Since each element of V
lies in exactly 2 subsets from E \ Ey, we have g(C) = 6a’n + 4¢> = K.

Suppose now that there exists a subset C C Y of cardinality ¢ > 0 such that
g(C) > K. As in the proof of Theorem 1, for each k € {0,1,2,3} denote by ay
the number of coordinate triples that are non-zero in exactly k£ vectors from C.
We have ag + a1 + as + a3 = n = 3q and a1 + 2as + 3az = 3t. It follows form the
arguments above that g(C) = 6a%(a; + az) + 2.

If t < 2¢ then g(C) < K since a; + a2 < n.

If t > 2¢g then 0 < 3t — 6¢ = ag — a1 — 2a¢ < ag and thus ag > 1 implying
a1 + az < n — 1. Therefore,

g(C) <6a*(n —1)+n*=K —6a> +n® —4¢> < K

by the choice of a.

Hence, t = 2q and aq + as = n, which implies ag = a1 = ag = 0 and as = 3q.
This means that each element v; € V lies exactly in 2 subsets from E(C). But
then the subfamily Ey = F'\ E(C) induces an exact cover in X3CE3 problem.O

4 Conclusions

In this paper we have presented two new NP-hardness proofs for the subset choice
problems with unknown cardinalities of the sought subsets. Namely, the prob-
lems of finding a subset with the longest sum and a subset with the maximum
squared norm of the sum normalized by the size of the subset were considered.
These problems find their applications in the areas of data analysis and pattern
recognition. Namely, the first problem can be used for finding a correct direc-
tion to a certain object, and the second one arises in problem of detection an
informationally significant fragment in a noisy data.

The suggested new NP-hardness proofs use an easy and natural reduction
from Ecact Cover by 3-Sets problem. We believe that new natural reductions
could be helpful for proving NP-hardness of related problems with unknown
cardinalities of the sought subsets.

Anknowledgement. The author is grateful to the unknown referees for their valuable
comments.
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Abstract. We consider the well-known cutting stock problem (CSP).
The gap of a CSP instance is the difference between its optimal function
value and optimal value of its continuous relaxation. For most instances
of CSP the gap is less than 1 and the maximal known gap 6/5 = 1.2 was
found by Rietz and Dempe [11]. Their method is based on constructing
instances with large gaps from so-called sensitive instances with some
additional constraints, which are hard to fulfill. We adapt our method
presented in [15] to search for sensitive instances with required proper-
ties and construct a CSP instance with gap 77/64 = 1.203125. We also
present several instances with large gaps much smaller than previously
known.

Keywords: Cutting Stock Problem - Integer Round Up Property -
Integrality gap - Sensitive instances

1 Introduction

In the classical formulation, the cutting stock problem (CSP) is stated as follows:
there are infinite pieces of stock material of fixed length L. We have to produce
m € N groups of pieces of different lengths ly,--- ,l,, and demanded quantities
b1, , by, by cutting initial pieces of stock material in such a way that the
number of used initial pieces is minimized.

The cutting stock problem is one of the earliest problems that have been
studied through methods of operational research [6]. This problem has many real-
world applications, especially in industries where high-value material is being
cut [3] (steel industry, paper industry). No exact algorithm is known that solves
practical problem instances optimally, so there are lots of heuristic approaches.
The number of publications about this problem increases each year, so we refer
the reader to bibliography [18] and the most recent survey [2].

Throughout this paper we abbreviate an instance of CSP as E := (L,[,b).
The total number of pieces is n = Z?; b;. W.l.o.g., we assume that all numbers
in the input data are positive integers and L > [y > --- > 1, > 0.

The classical approach for solving CSP is based on the formulation by
Gilmore and Gomory [5]. Any subset of pieces (called a pattern) is formalized as
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a vector a = (ay, -+ ,am,) € 77 where a; € Z, denotes the number of pieces i
in the pattern a. A pattern a of E is feasible if 'l < L. So, we can define the
set of all feasible patterns P/(L,1) = {a € Z7 | a"l < L}. For a given set of
patterns P = {a',--- ,a"}, let A(P) be the (n x r)-matrix whose columns are
given by the patterns a’. Then the CSP can be formulated as follows:

ks
2(E) = sz — min subject to A(PY(L,1))z = b,z € Z",.
i=1
The common approximate solution approach involves considering the contin-
uous relazation of CSP

zo(E) = Zx? — min subject to A(PY(L,1))z% = b,2° € R
i=1

Here z(E) and z¢(F) are called the optimal function values for the instance
E. The difference A(E) = z(E) —z¢(F) is called the gap of instance E. Practical
experience and numerous computations have shown that for most instances the
gap is very small. An instance E has the integer round up property (IRUP)
if A(E) < 1. Otherwise, E is called a non-IRUP instance. This notation was
introduced by Baum and Trotter [1].

Subsequently, the largest known gap was increased. In 1986 Marcotte con-
structed the first known non-IRUP instance with the gap of exactly 1 [9)].
Fieldhouse found an instance with gap 31/30 &~ 1.033333 in 1990 [4]. In 1991
Schiethauer and Terno slightly improved this result to 137/132 ~ 1.037879 [16].
Rietz, Scheithauer and Terno subsequently constructed non-IRUP instances with
gaps 10/9 ~ 1.111111 and 7/6 = 1.166666 in 1998 and 2000 respectively [12,13]
(both papers were published in 2002). Finally, Rietz constructed an instance
with gap 6/5 = 1.2 and published it in his PhD thesis in 2003 [10] and a slightly
smaller instance with the same gap together with Dempe in 2008 [11].

The MIRUP (modified IRUP) conjecture [17] states that A(E) < 2 for
all CSP instances F, but it is still open. More investigations about non-IRUP
instances can be found in [7,8,14].

The main idea of our paper is to connect our algorithm for enumeration of
instances published in [15] together with ideas of Rietz and Dempe [11] in aim
to construct CSP instances with the gap larger than currently known.

The paper has the following structure. In Sect. 2, we describe the construction
of Rietz and Dempe, in Sect. 3, we describe our enumeration algorithm. In Sect. 4,
we present the computational results and, finally, we draw a conclusion in Sect. 5.

2 Preliminaries

The construction principles of Rietz and Dempe are based on the instance

Eo(p,q) = (33+3p+q,(21+p+q,19+p+¢,15+p+¢10+p,9+p, 7T+p,6+p,4+p) ", bo),
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where p and ¢ are positive integers, by = (1,1,1,1,1,2,1,1) 7, and the following
theorem:

Theorem 1 (Rietz and Dempe). Consider an instance E = (L,1,b) of CSP
with the following properties: Iy > lo > ... > lyp—1 > 2l and l,, < L/4.
Moreover, assume that this instance is sensitive, i.e. its optimal function value

increases if by, is increased by 1. Then, there are integers p and q such that
instance E' = E ® Ey(p,q) has gap A(E') =1+ A(E).

Here @ means a composition of instances. Let Fy = (L1,l1,b1) and Es =
(La,12,b2) denote two instances of CSP having n; and ng pieces respectively
and with Ly = Lo. The composed instance E := FE; & F, of CSP consists of
the task of cutting all the ny + no pieces of lengths from the both vectors [y
and /5 and with demands according to both vectors b; and by. In case when L
and Lo are different, they can be multiplied by one common multiplier (together
with piece lengths) to adjust the stock material lengths of both instances. For
example, the instances (2,(1)7,(1)") and (5,(2)7,(2) ") can be composed into
the new instance (2, (1)", (1)) @ (5,(2)7,(2)") = (10,(5,4)7,(1,2) ).

Note that b,, = 0 is possible in Theorem 1, this means that the maximal
possible trimloss in a cutting pattern used in an optimal solution is smaller than
half of the length of the shortest piece.

Searching for sensitive instances with properties described in Theorem 1 is
a very difficult task. An example of a suitable instance mentioned by Rietz and
Dempe in their paper is the following:

Esr = (132,(44,33,12)7,(2,3,5)7).

Indeed, this instance is sensitive, because its optimal function value
z(Egr) = 2 increases to 3 when we insert an additional piece of length 12.
Also, Iy > ls > 2l3 and I3 < L/4. A(Es7/) = 17/132, so by Theorem 1 there are
integers p and ¢ such that A(Ey(p,q) ® Esr) = 149/132 &~ 1.128787. Namely,
the instance E; = Eqy(p,q) ® Es: for p = 74 and g = 669 is the following:

Ey = (924, (764,762, 758, 308, 231, 84,83,81,80,78) ", (1,1,1,2,3,6,1,2,1,1) 7).

3 Enumeration Algorithm

Consider an instance F = (L,I,b). If L and ! are fixed, then the matrix of pat-
terns A(Pf(L,1)) is fixed too. We will consider vector b as a vector of variables.
Setting | = (L — Ly, L — Iy, — 1,..., 2L + 2,20, + 1,1,,), where 1,,, < L/4, we
ensure that the most of required properties of Theorem 1 are satisfied, and now
we have to ensure that F is sensitive.

We will enumerate all sensitive instances with a fixed objective function value.
Namely, let Si(L,1) be the set of all patterns b such that z((L,1,b)) = k and b
corresponds to a sensitive instance (L, 1, b).

Consider the set of ineztensible feasible patterns P{ (E) = {a € Z7|a'l <
L A a"l+1; > L}. Obviously, So(L,1) = {0}, and Sy(L,1) = P{(L,1). Now
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we will build the set S;41(L,1) from S;(L,[) by adding vectors from P (E) and
considering only those patterns which lead to sensitive instances.

To transform the set S;(L,1) into the set S;11(L,1) we need a data structure
called a “map”, which contains a set of pairs <key, value> (all keys are pairwise
distinct) and allows us to make the following operations: insert a pair, find a
value by a key (or determine that there is no pair with this key), modify a value
by a key and return the list of all pairs. The algorithm is the following:

1 create an empty map A

2 for all s € S;(L,1)

3 forallae P/(L,I)

4 z—(s1+ar,. ..., Sm-1+ am-1)

5 Y Sm +am

6 if A has no key x, then

7 insert into A the pair (z,y)

8 else Alx] < max(A[z],y)

9 Si+1(L?l) - {(xlv s 7xm—17y) | (x,y) € A}

To find a sensitive instance with maximum gap with fixed L, [ and k we
generate Si(L,l) and then simply calculate A(F) over all E = (L,l,s), s €
Sk(L,1).

4 Results

We implemented our algorithm as a C++ program using CPLEX 12.7. The
program was run on an Intel Core i7-5820K 4.2 GHz machine with 6 cores and
32Gb RAM.

Results for the runs where | = (L — Iy, L — 1, — 1,...,20,, + 1,1,,) are
presented in Table 1 and Table 2. Maximum gaps greater than 0.1 are marked
in bold, and the maximal gap in every column is underlined.

Several sensitive instances with large gaps found during the search are pre-
sented in Table 3. Here E;, Fs and Fs3 correspond to some maximum gaps
presented in Table 1 and Table 2. For instance F,; we continued the search up to
L = 250 setting | = (|L/2],|L/2] —1,...,2l, + 1,1,). The gap 0.1875 is the
maximal over all considered instances with k& < 4.

The instance Fs is built from F,; and a non-IRUP instance

Br(t) = (3t,(t+4,t+3,t,t —2,t —6)",(1,1,2,1,1) ")

for some integer t. Fg is a combination of F; and some pieces from two copies
of Er(t) with different values of ¢.

Using Theorem 1, we constructed a series of non-IRUP instances Ef, ..., E§
from the sensitive instances F1, ..., Eg. They are presented in Table 4. In Table 5
we compare our instances with the previously known ones considering the num-
ber of piece types m.
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Table 1. Maximum gaps for sensitive instances with fixed L, [,, and k < 4

L\l |2 3 4 5 6 7
8 0.000000
9 0.000000

10 0.100000
11 0.000000
12 0.083333|0.000000
13 0.000000 | 0.000000
14 0.071429|0.000000
15 0.083333|0.100000
16 0.062500 | 0.100000 |0.000000
17 0.058824 1 0.083333 |0.000000
18 0.100000 | 0.083333 | 0.000000
19 0.075000 | 0.083333 |0.000000
20 0.068182/0.071429 |0.100000 |0.000000
21 0.066667 |0.119048 | 0.100000 |0.000000
22 0.078947|0.100000 |0.100000 |0.000000
23 0.066667|0.093750 |0.083333 |0.000000
24 0.083333|0.129630 0.083333 |0.000000 |0.000000
25 0.060606 | 0.100000 |0.083333 |0.100000 |0.000000
26 0.078125|0.083333 | 0.083333 |0.100000 |0.000000
27 0.069444/0.111111 0.119048 | 0.100000 |0.000000
28 0.071429|0.100000 |0.119048|0.100000 |0.000000 |0.000000
29 0.064815|0.087500 |0.113636|0.083333 |0.000000 |0.000000
30 0.076389|0.1250000.145833 |0.083333 |0.100000 |0.000000

31 0.097222 |0.129630|0.083333 |0.100000 |0.000000
32 0.100000 |0.127907|0.083333 |0.100000 |0.000000
33 0.102564|0.106061 | 0.119048 | 0.100000 |0.000000
34 0.096154 |0.129630|0.119048 | 0.100000 |0.000000
35 0.092857 10.111111|0.125000 0.083333 |0.100000
36 0.106061 | 0.133333|0.138889|0.083333 |0.100000
37 0.105263|0.145833|0.083333 |0.100000
38 0.125000/0.131579|0.083333 |0.100000
39 0.128788/0.153333|0.119048 | 0.100000
40 0.130435/0.138889|0.119048 | 0.100000
41 0.105263/0.136364|0.125000 | 0.083333
42 0.125000|0.136364|0.142857 | 0.083333
43 0.133333|0.138889|0.083333
44 0.136364 | 0.156250|0.083333
45 0.130952|0.161458|0.119048
46 0.133333|0.149123|0.119048
47 0.136364|0.144068 | 0.125000
48 0.136364 | 0.156863 | 0.142857
49 0.136364 | 0.142857
50 0.1481480.140000

51 0.141026 |0.166667
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Table 2. Maximum gaps for sensitive instances with fixed L, [, and k < 4

L l,=7 L |ln,=8 L | ln=9 L

lm =10

4510.119048 | 51

0.119048 | 57| 0.119048 | 63 | 0.119048

46 10.119048 | 52 | 0.119048 | 58 | 0.119048 | 64 | 0.119048
4710.125000 | 53 | 0.125000 | 59 | 0.125000 | 65 | 0.125000
4810.142857 | 54 | 0.142857 | 60 | 0.142857 | 66 | 0.142857

4910.142857 | 55| 0.142857 | 61

0.142857 | 67 | 0.142857

50 0.140000 56 | 0.142857 | 62| 0.142857 | 68 | 0.142857
51/0.166667 57 |0.149123 63| 0.150794 | 69 | 0.150794
5210.150000 58 | 0.171875 64| 0.149123 |70 | 0.150794

53/0.160000 59 | 0.167969 65| 0.175000 | 71

0.149123

5410.154762 |60 | 0.166667 | 66  0.166667 |72 0.177083

55/0.151515 | 61

0.153333 | 67 0.171875 | 73 | 0.171875

56 0.145833 62| 0.161765 68 | 0.160000 | 74 | 0.175000
5710.166667 | 63 | 0.166667 | 69  0.172043 | 75 0.166667
580.156863 64| 0.161765 70| 0.166667 | 76 | 0.171875

Table 3. Sensitive instances with required properties and large gaps

E; z(E;)

A(E;)

E; = (30,(14,13,10,4) ', (1,1,2,2) 1) 2
Ey = (51, (23,22,19,17,16,7) ' ,(2,1,1,1,1,3) 1)

E3 = (72, (32, 31,28,25,24,22,10) ", (2,1,1,1,2,2,3) )

E4 = (183, (81,79, 65,64, 61,59,55,25) 1, (1,1,2,1,2,1,1,4) )
Es = (1281, (567, 553, 455, 448, 430, 427, 425, 413, 385, 175) |,
(1,1,2,1,2,1,1,2,1,4) )

Eg = (1281, (567, 553, 455, 448, 431, 430, 427, 425, 421, 413, 385, 175) | ,|6
(1,1,2,1,2,1,2,1,1,2,1,4) )

o s B W

7/48 0.145833
1/6 0.166667
17/96 0.177083
3/16 0.187500
19/96 0.197917

13/64 0.203125

Table 4. Non-IRUP instances with large gaps

E; = Eo(p,q) ® E;

=(E;)

A(E])

E} = (300, (228, 226, 222, 140, 130, 100, 40, 39, 37, 36,34) |, 6
(1,1,1,1,1,2,3,1,2,1,1) )

55/48 1.145833

Eé = (510, (378,376, 372, 230, 220, 190, 170, 160, 70, 69, 67, 66, 64)T, 7
(1,1,1,2,1,1,1,1,4,1,2,1,1) )

7/6 1.166667

E} = (720, (528,526, 522, 320, 310, 280, 250, 240, 220, 100, 8
99,97,96,94) ", (1,1,1,2,1,1,1,2,2,4,1,2,1,1) )

113/96 1.177083

E} = (1830, (1338, 1336, 1332, 810, 790, 650, 640, 610, 590, 550, 250, |8
249,247,246,244) T, (1,1,1,1,1,2,1,2,1,1,5,1,2,1,1) 1)

19/16 1.187500

EL = (12810, (9318, 9316, 9312, 5670, 5530, 4550, 4480, 4300, 9
4270, 4250, 4130, 3850, 1750, 1749, 1747, 1746, 1744) |,
(1,1,1,1,1,2,1,2,1,1,2,1,5,1,2,1,1) )

115/96 1.197917

E} = (12810, (9318, 9316, 9312, 5670, 5530, 4550, 4480, 4310, 4300, |10
4270, 4250, 4210, 4130, 3850, 1750, 1749, 1747, 1746, 1744) | ,
(1,1,1,1,1,2,1,2,1,2,1,1,2,1,5,1,2,1,1) 1)

77/64 1.203125
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Table 5. The number of piece types in old and new non-IRUP instances

m | Old New

3 |137/132 1.0378787

4

5 |16/15  1.0666667

6 |38/35 1.0857143

7 /11/10  1.1000000

8 110/9 1.1111111

9

10| 149/132 1.1287879

11 55/48 1.1458333
12

13 7/6 1.1666667
14|51/44  1.1590909  113/96 1.1770833
15 19/16  1.1875000
16 7/6 1.1666667

17 115/96 1.1979167
18 13/11 1.1818182

19 77/64 1.2031250
2816/5 1.2000000

5 Conclusion

We have combined the construction of Rietz and Dempe and our enumeration
algorithm for searching for sensitive instances. We have found a lot of sensi-
tive instances with large gaps. This allowed us to construct a lot of non-IRUP
instances with gap, say, greater than 1.17. We also constructed a non-IRUP
instance with gap 1.203125 which is greater than the previously known world
record 1.2. Also the non-IRUP instances with large gaps that we found are
smaller than the previously known ones.

Producing instances with large gaps using our search method requires a lot
of computational resources, so we do not expect that it will handle the MIRUP
conjecture directly. But the instances we found may provide the hints about
improved constructions. In the future research we are going to improve our tech-
nique of combining instances (using which we produced E5 and Ejs) and construct
new instances with much larger gaps.

Acknowledgements. The authors would like to thank the anonymous referees for
their valuable remarks.
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Abstract. We consider the following concept. A set C' in multidimen-
sional real space is said to be a (1+¢)-collection for a set X if C' contains
a (14¢)-approximation of every point of space with respect to the Eucli-
dean distances to all the elements of X. A (1+-¢)-collection allows to find
approximate solutions of any geometric center-based problem where it is
required to choose points in space (centers) minimizing a continuity-type
function which depends on the distances from the input points to the
centers. In fact, it gives a universal reduction of such problems to their
discrete versions where all the centers must belong to a prescribed set of
points. As was shown recently, for every fixed € > 0 and any finite set in
high-dimensional space, there exists a (14 ¢)-collection which consists of
a polynomial number of points and can be constructed by a polynomial-
time algorithm. We slightly improve this algorithm and supplement it
with a lower bound for the cardinality of (1 + €)-collections in the worst
case. Also, we show the non-existence of polynomial (1 + £)-collections
for some sets of points in the case of {~ distances.

Keywords: Geometric clustering - Continuous Facility Location -
Approximate centers + Fuclidean space - High dimensions

1 Introduction

We prove some geometric properties of finite sets of points in high-dimensional
real space which may be useful for developing approximation algorithms for data
analysis and optimization problems.

Our interest is the following concept. A set C' in space R? is said to be a
(1+¢)-collection for a set X C RY if, for every point p € R?, the set C' contains
a point p’ such that the Euclidean distance from p’ to each element of X is at
most 1+ ¢ times of that from p. One may ask: what is the minimum cardinality
of a (1 + ¢)-collection for a given set of n points in any-dimensional space in the
worst case? In this paper, we show that, for any fixed € € (0, 1], this cardinality
is at most Q(n[%l"g%]) and is at least Q(nLﬁ“J).

The concept of a (1 4 €)-collection is closely related to the question of the
discretization of geometric center-based problems. In these problems, we are
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given an n-element set of points in R? and the goal is to choose a given number
of new points (centers) in space to minimize some objective function which de-
pends on the distances between the input points and the chosen centers. One
of widespread ways for finding approximate solutions of such problems is gene-
rating a set of candidate centers which contains approximations of the optimal
points with respect to the given objective function [5,6,8,10,12,13,15,16,19].
A (1 + g)-collection is a set of points which contains approximations of all the
points of space with respect to the distances to the input points. Thereby, it
contains approximate centers at once for all the objective functions continuously
depending on the distances between the input points and the centers. In fact, a
(1+¢)-collection gives a reduction of the original instance of a geometric center-
based problem to its discrete version in which all the centers are restricted to be
selected from a prescribed finite set of points.

The only thing we require for the objective function is the natural
“continuity-type” property: small relative changes of the distances between the
input points and the centers must give a bounded relative change of the objective
function value. It may be formalized as follows:

Definition. Let ||.|| denote the Euclidean norm and f be a non-negative function
defined for each finite set X C R% and every tuple ci,...,c;, € R, Then f is
called a continuity-type function if there exists a mapping p : [1,00) — [1,00)
such that, for each ¢ > 0 and any tuples c;,c; € RY satisfying the inequalities
le—=c|l <Q+e)|z—cl,ze X, i=1,...,k, we have

(X5, 0) <p(l+4e) f(X;er,.on,ck).

For example, the objective functions of the Euclidean k-Median [4,5,7], Eucli-
dean k-Center [2,5,14], Continuous Facility Location [15], and Smallest m-Enc-
losing Ball [1,17-19] problems are continuity-type with (1 4+ ¢) = 1 4 . Those
of the k-Means [6,12,13] and m-Variance [3,9,16] problems are continuity-type
with p(1 +¢) = (1 + ¢)2. Note that continuity-type functions are not required
to be continuous but, if we want to find approximate solutions close to optimal,
the preferred case is that when p(l+¢) — 1 as e — 0.

On the practical side, using such a universal instrument as (1 + ¢)-collections
may be actual in the cases when the known fast methods of generating candidate
centers for geometric center-based problems are not applicable or do not give
desired approximation guarantees:

e The objective function has a more complicated dependence on the distances
between the input points and the centers than the sum or the maximum
of these distances or of their squares. In general, it may be an arbitrary
continuity-type function of the point-to-center distance matrix.

e The centers we find are required to cover not all the input points but a
given number of them, which is typical for the clustering and facility location
problems with outliers or penalties. It breaks the standard techniques based
on random sampling, e.g., if the total number of input points we need to cover
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allows to be arbitrarily small and, therefore, any constant number of random
samples may “miss” good clusters.

e The input points are served by the desired centers in a more complicated
manner than in usual clustering models, e.g., if the service areas of the centers
are allowed to overlap by a given number of input points, each input point is
required to be served by a given number of centers, each center has its own
capacity, service radius, and unit distance costs which depend both on the
center and the demand points it serves, etc.

e The problem has one or multiple objectives, possibly not specified explicitly,
and an oracle is given which, for any two tuples of centers, answers which one
is better. In this case, if the objectives are known to be continuity-type, then
enumerating all the tuples of elements of a (1 + ¢)-collection for the input set
provides a (1 4 €)-approximate solution of the problem.

Besides the considerations mentioned above, the concept of a (1+¢)-collection
seems to be theoretically interesting. It is formulated independently of any opti-
mization problems and can be easily extended to any metrics. The cardinality
of (1 + ¢)-collections describes how the given metrics is convenient for the dis-
cretization of space in terms of the distances to given n points.

Related Work. The concept of an a-collection was introduced in [20], where it
was suggested an algorithm which, given an n-element set X in any-dimensional
real space and any & € (0,1], constructs an N(n,¢e)-element (1 + ¢)-collection
for the set X with N(n,¢) = O((g)% log 5) (here and everywhere, “log” means
the logarithm to the base 2). As a corollary, it was described a reduction of the
general geometric center-based problem to its discrete version with the same
continuity-type objective function:

Geometric Center-Based Problem. Given an n-element set X in space R?
and an integer k > 1. Find a tuple ci,...,cx € R? to minimize the value of

f(X;e1,. .0 ck).

Discrete Center-Based Problem. Given an n-clement set X C R?, an f-ele-
ment set Y C R%, and an integer k£ > 1. Find a tuple c1,...,c; € Y to minimize
the value of f(X;c1,...,ck).

Fact 1. [20] Suppose that 8 > 1 and there exists an algorithm which computes a
B-approzimate solution of the Discrete Center-Based problem with a continuwity-
type function f in time T'(n, ¢, k,d). Then there exists an algorithm which, given
e € (0,1], computes a Bu(1 + &)-approximate solution of the Geometric Center-
Based problem with the function f in time O(N(n,s) d) + T(n, N(n,e), k,d).

In particular, it follows the constant-factor approximability of the Geometric
k-Median problem, in which we need to choose k centers in high-dimensional
Euclidean space to minimize the total distance from the input points to nea-
rest centers. Another known application of (1 4 €)-collections is approximation
algorithms for the following k-clustering problems:



Some Estimates on the Discretization of Geometric Center-Based Problems 91

Problem 1. Given points z1,...,z, in space R?, integers k,m > 1, unit dis-
tance costs f;; > 0, and powers a;; € [0,a], i =1,...,k, j=1,...,n, where o is
some parameter. Find disjoint subsets S1,...,Skr C {1,...,n} with the property
|S1 U... US| =m and select a tuple ci,...,cr € R? to minimize the value of
k
>3 fullay =il
i=1jeS;

Problem 2. The same as in Problem 1 except that, instead of the condition
|S1 U...USk| = m, each subset S; is required to have its own given cardinality
mi,izl,...,k.

Fact 2. [20] If the values of k and « are fixed, Problems 1 and 2 admit po-
lynomial-time approximation schemes PTAS computing (1 4+ €)*-approximate
solutions of these problems in time O(N (n,e)*nkd) and O(N(n,e)*(n® +nkd))
respectively.

Our Contributions. We slightly improve the upper bound for the minimum
cardinality of (1 + €)-collections for a set of n points and obtain the first lower
bound for this cardinality in the worst case, i.e., the value

C(n,e) = lr)r(llax min { |C|| C is a (1 + ¢)-collection for X}

is estimated. We prove that, in high-dimensional Euclidean space, this value is
at most @((glog%)[%loggw) and is at least nlm=telmz) for each ¢ € (0,1],
thereby, it lies between n@(z 108 2) and n® () if ¢ is fixed.

Both bounds are obtained constructively. To justify the upper bound, we
describe an algorithm which computes a (1 4 ¢)-collection of the required cardi-
nality for any given n-element set in time proportional to the cardinality of the
output. The suggested algorithm is a modification of that from [20] and is based
on the “affine hull” technique developed in [16]. The main idea of the algorithm
is that we approximate an arbitrary point of space by grids in the affine hulls of
small subsets of the input points. The differences of the modified algorithm from
that from [20] are an improved construction of the approximating grids and an
optimized set of values for the parameters of the algorithm.

To get the lower bound, we present an n-element set of points such that every
(1+e¢)-collection for this set contains at least the declared number of points. Note
that both upper and lower bounds are tight at least for ¢ = 1.

In contrast to the obtained estimates for Euclidean (1 + €)-collections, we
show that the value of C(n,¢) is not polynomial in high-dimensional /., space.
To state it, we construct a set of n points such that every (1 4 ¢)-collection for
this set in the £, metrics contains at least 2L"/2 elements if e € (0, 1).

2 An Upper Bound

In this section, we prove that, for each fixed € and every set of n points in any-

dimensional Euclidean space, there exists and can be constructed in polynomial
. . . . 1 2

time a (1 + ¢)-collection which consists of O(n!=1°8 =1) elements.
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Definition. Given points p,p’ € R%, a set X C R?, and a real number a > 1, we
say that p’ is an a-approximation of p with respect to X if ||z — p'|| < afjlz —p||
forallz e X.

Definition. Given sets X,C C R? and a real number o > 1, we say that C is
an a-collection for X if C' contains a-approximations of all the points of space
with respect to X.

Example. Every finite set X C R is a 2-collection for itself. Indeed, let p be any
point in R? and p’ be a point of X nearest to p. Then, by the triangle inequality
and the choice of p’, we have ||z — p'|| < ||z — p|| + [[p — /|| < 2|z — p|| for all
x € X. So p’ is a 2-approximation of p with respect to X.

Theorem 1. For any n-element set X C R? and each ¢ € (
(1+¢)-collection for X which consists of N(n,e) = O((Z log 2
and can be constructed in time O(N(n,e)d).

0,1], there exists a
Y[ log %]) elements

Proof. As mentioned above, every finite set of points is a 2-collection for itself.
Therefore, the theorem holds if € = 1. Further, we will assume that ¢ < 1.

First, describe some geometric constructions underlying both the algorithm
from [20] and its modification we suggest in this paper for computing a required
(1 + ¢)-collection. Suppose that § € (0,¢) and O is an arbitrary point in RY.
Define the following sequences (x¢);>1 and (y;):>1 depending on O and 0:

set 1 = y1 to be a point of X nearest to O;

for t > 2, consider the ball B, consisting of the points = € R? such that
lo = g1 > (14 8) |z — O]

if the set X N B; is empty, finish the sequences (x;) and (y;); otherwise, define
x; as any point from X N B; and let y; be the orthogonal projection of the point
O into the affine hull of the set {z1,...,z:}.

Denote by T the length of the constructed sequences (z;) and (yi).

Lemma 1. [20] If 2 < ¢ < T, then the vector y; — yi—1 is orthogonal to the
affine hull of the set {x1,...,24-1}.

Lemma 2. [20] If2 <t < T, then the vectors xo — x1,...,x; — 1 are linearly

independent, y; # yi—1, and the vectors e;_1 = % can be computed by
Yt — Yt—1

the Gram-Schmidt process for orthonormalising the set xo — x1,..., T — x1.

1 \i-1
Lemma 3. [20] If2<t¢<T andri = ||y: — O||, then ry < (m) 1.
log 1
log(1 + 6)
Then the point y; is a (1 4 §)-approzimation of the point O with respect to X .

Proposition 1. [20] Let t = min{T, T(6)}, where T(0) = [

|72 — 21|

55 then dist10 < r1 < disty.

Lemma 4. [20] If T > 2 and dist; =
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Lemma 5. [20] If2 <t <T, then |y — yi1| < lys—1 — Of < lyr - O||-

Proposition 2. If 1 <t < T, then the point y; belongs to the hyperrectangle
t—1

Box(r1), where Boxy(r) = {y1 + ;aiei 0<o; < (14’#}
Proof. This statement directly follows from Lemmas 1-3 and 5. (]

Idea of the Algorithm. Propositions 1, 2 and Lemmas 2, 4 give an idea how
to approximate any unknown point O € R?. We can enumerate all the tuples
Z1,...,2¢ € X for all t < T(§) and, for each of these tuples, construct the
vectors ei,...,e;—1 defined in Lemma 2. Next, to approximate the point O,
we approximate the point y;. For this aim, we construct a set R; containing
approximations of the unknown value of r; by using the bounds established in
Lemma 4. Then, based on Proposition 2, we consider grids in the hyperrectangles
Box(r), r € Ry. Note that no information about the point O is used, so the
constructed set will contain approximations of all the points of space.

The described idea can be implemented in the following form:

Algorithm A.

Select real parameters § € (0,¢), h € (0,0), and an integer parameter I > 1.
Step 1. Include to the output set all the elements of X.

Step 2. Enumerate all the tuples z1,...,2; € X, 2 < ¢ < T(d), such that the

vectors xo —x1,...,x; —x1 are linearly independent and, for each of these tuples,
perform Steps 3-5.

Step 3. Execute the Gram-Schmidt process for orthonormalising the set of vec-

tors x9 — x1,...,x¢ — x1 and obtain the orthonormal vectors eq,...,e;_1.

|2 — a1
1496

Step 5. For each value r € Ry, include to the output set the nodes of the grid

Step 4. Construct the set Ry of the numbers 5i/1, 1=0,...,1.

0= g

To justify this algorithm and to estimate the size of its output, we need the
following statements.

t—1
Grid(zy, ...,z h) = {1’1 + Z e;rh(0.5 + o)
i=1

Lemma 6. If 2 < t < T(4), then the union of the (t — 1)-dimensional hyper-
cubes centered at the nodes of Grid(zy,...,x;r, h) with side rh contains the
hiperrectangle Box(r) and is contained in the hiperrectangle Boxy(r + rh/§).

Proof. Given @ = 1,...,t — 1, denote by b; and g; the maximum values of the
i-th coordinate of the elements of Box(r) and Grid(x1, ...,z T, h) respectively
in the coordinate system centered at the point x; with basis e1,...,e;_1:

, 1
b; = W and g; = 0.5rh +rh LWJ
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Note that g; — 0.5rh > b; — rh, so g; + 0.5rh > b;. It follows the first statement.
Next, note that (1 + 6)""" < (1+6)72 < 1/§ by the choice of ¢ and the
definition of T'(4). On the other hand, we have g; — 0.5rh < b;. So
r+rh(l+§)t r+rh/é
(1+6)1 (14 4)-1’

which follows the second statement. Lemma 6 is proved. (Il

gi +0.5rh < b; +rh =

Proposition 3. The output set of Algorithm A is a (1 + § + 64 )-collection for
hy/T(0) — 1
251/1

Proof. Suppose that O is an arbitrary point in space R? and consider the
sequences (z¢)i>1 and (y:):>1 defined for this point. By Proposition 1, there
exists a number ¢ < T'(§) such that the point y; is a (1 + d)-approximation of
the point O with respect to X. If t = 1, then the required approximation is the
point y1, so it is included to the output set at Step 1. Suppose that ¢ > 2.

In this case, by Lemma 2, the vectors o —x1, ..., x;—x; are linearly indepen-
dent, so the tuple xq, ..., z; is listed at Step 2. Lemma 4 implies that there exists
anumber r € Ry such that r > r; > r§'/! where r; = ||z1 —O||. Let z be a node
of Grid(zy,...,x; 7, h) nearest to y;. By Proposition 2, the point y; belongs to
the hyperrectangle Box.(r1) C Boxz(r). On the other hand, by Lemma 6, the
hyperrectangle Bo:ct(r) is covered by the union of the hypercubes centered at
the nodes of Grid(xl, ..., x4 1, h) with side rh. So the distance between z and

h\/

Yt is at most ————. Then, by the triangle inequality, we have

rhyv/t — 1
2

the set X, where 6, =

e =2l < llz = yell + [lye — 2l < L+ 0)[|l= — Ol +

for any = € X. But r < r /61 < ||z — O||/6*/! by the choice of x1. Therefore,

hvt —1
281/1

Proposition 4. The output set of Algom'thm A consists of O(nT(5)€(6, h, I))

points, where £(0,h,I) = (1/h + 1/5) 114 6)~TE=DT)=2)/2] " The run-
ning time of the algorithm is O( (5 h,I)d )

we have ||z — z|| < (1 +0+ )H:c — OJ|. Proposition 3 is proved. O

Proof. The number of all the tuples @1, ...,7; € X, where t < T(6), is O(nT®).
The set Ry consists of I 4+ 1 elements. Next, to estimate the cardinality of the
set Grid(zy,...,x;7, h), we can assume that ¢ = T(d) since this set grows
with increasing ¢. Then, according to Lemma 6 and the fact that the volume of
the hyperrectangle Boxy(r 4 rh/8) is (r +rh/8)t "1 (1 + §)~=DE=2)/2 each set
Grid(xy,. ..,z 7, h) contains at most

(1/h+1/8) 11+ 8) " DC=2/2 — y(5 b, I)/I
nodes. Thus, the total number of such nodes is O (n”(®¢(8, h, I)).
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Estimate the running time of Algorithm A. For each tuple zy,...,2; € X,
the vectors e1, ..., e;—1 can be constructed in time O(t2d). The vector operations
in space R? take time O(d). On the other hand, by the definition of T'(5), we
have (1 + 8)*=2 < 1/4, so £(6,h, 1) > (1/8)#1/2 = Q(¢?) if § < 1. Therefore,
the algorithm runs in time

O (™ (T(6)% + (6.1, 1) d)) = O(n De(o, . 1) ).

Proposition 4 is proved. (I

To prove Theorem 1, it remains to choose appropriate values of the parame-
0.26¢ 51/1

ters 6,h,I. Let 6 = 0.87¢, I = T(8) — 1, and h = — " Then d, < 0.13¢

VT() -1
and, by Proposition 3, Algorithm A outputs a (1 + €)-collection for the set X.
Based on Proposition 4, estimate the cardinality of the constructed set and
the running time of the algorithm. We have

log 5572
T() = ¢+ 1, where ¢ = | o s |

and

V¢ 1 y¢ (-
1+40.87¢)~¢(61/2¢,
0.262 (0.872)1/C 0.875) (1+0.87¢) ¢
The values of T'(§) and €(9, h, I') can be estimated as follows. Consider the func-

tions

08,k I) = (

¢+1
ale) = == and b(e) =
[21og 2]
By using asymptotic properties of these functions for small € and computer
calculations of the values of a(.) and b(.) on a grid with sufficiently small step,
we obtain that a(e) <1 and b(e) < 37 for all € € (0,1). It follows that

(8,h,I)

(Llog2)lctoe 2l

T(5) < [Llog 2] and €(6,h,T) < 37 (L1og 2) e loe el

Thus, by Proposition 4, the number of points in the output of Algorithm A is
N(n,e) = @((glog%)f%bgﬁ) and the algorithm runs in time O(N(n,e)d).
Theorem 1 is proved. O

Remark 1. The proposed algorithm for constructing (1 + £)-collections is a mo-
dification of that from [20]. The differences of the new algorithm are a more
optimal form of the grids we use to approximate the points y; at Step 5 and
a better way to fill the chosen form with the grid nodes. Another factor which
reduces the cardinality of the output (1 + €)-collections is using a more optimal
set of values for the parameters of the algorithm.

Remark 2. The obtained upper bound for the cardinality of (1 + £)-collections
is less than that suggested in [20] both in the expression under the O-notation
and in the hidden constant in this notation: ~37 vs. ~4400.
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3 A Lower Bound

In this section, we prove that, for any fixed &, the minimum cardinality of a
(1+¢)-collection for a given set of n points in high-dimensional Euclidean space
is Q(nLﬁ“J) in the worst case.

Theorem 2. For each € > 0 and every positive integer n > é, there exists an
n-element set X C R™ such that any (1 + €)-collection for this set consists of at
least nliezt1eltez) elements.

Proof. Define X as the set of the n-dimensional unit vectors e;, i = 1,...,n,
where ¢;(i) = 1 and ¢;(j) = 0 for j # i. Note that every (1 + ¢)- collectlon for a
finite set of points contains this set itself. At the same time, we have Llﬁsj =0
if € > 1/16. Therefore, the theorem holds in this case. Further, we will assume
that ¢ < 1/16.

Make some notations. Given a positive integer k, denote by Sy the family of
k-element multisets consisting of elements of X, i.e.,

Se={(z1,...,z) [ €X,...,z, € X }.

Given a multiset S = (z1,...,2x), denote by ¢(S) its mean: ¢(S =z sz

Given a point z € X and a multiset S = (z1,..., 1), denote by m(x, S) the
multplicity of z in S, i.e., the number of indices ¢ for Wthh x; = z. Finally, we say

that multisets S1, Sy € S differ by t elements if Z |m(z,S1) — m(x, Sa)| = t.
zeX

Fact 3 ( see [11,16]). For every multiset S = (z1,...,xx), the following

holds: ZH:&—C ||2 QkZZH%_%H

i=1 j=1

Fact 4 (e.g., see [11,13]). For every multiset S = (21,...,2x) and any point
k

y € R", the following holds: )y _ |lzi — y|* = Z lzi = e(S)II* + K lly — e(S)|*.

i=1
Lemma 7. Suppose thatk > 2,5 € S,y € R", and § = ||ly—c(S)||. Then there
exists a point x in the multiset S with the property ||x —y|| > a(0, k)||x — c(S)||,
k
-1
Proof. By using Fact 3, it can be proved that the sum of the squared distances

from the elements of S to the point ¢(.5) is at most k — 1. Therefore, by Fact 4,
the sum of the squared distances from these elements to the point y is at least

where a8, k) = /1 + 52

k
1+ (SQﬁ times of that to ¢(S). It follows that the set S contains an element

k
x such that ||z — y||? is at least 1 + 52ﬁ times of ||z — ¢(9)|?. Lemma 7 is

proved. ([
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Lemma 8. Given integers k andt, where 0 <t < k < n, there exists a subfamily

Frpt © Sk such that any different multisets S1,S2 € Fi ¢ differ by at least 2t + 2
k—t
elements and Fy, ¢+ consists of at least P20k = 711+ T multisets.

Proof. First, make some combinatorial observations. Denote by M,, , the number
of k-element multisets whose elements belong to an n-element set. It is well-
n—1+k

k
S € Si. It is easy to see that there exist at most My ¢ ways to remove ¢ (possibly
repeating) elements from S. At the same time, given a multiset S’, there exist
exactly M,,; ways to add ¢ (possibly repeating) elements of X to S’. So the set
N(S) of multisets in Sy which differ from S by at most 2¢ elements consists of
at most My, ¢ M, + elements.

Based on this fact, define the following simple algorithm for constructing a
required subfamily Fj, ;. Initially, put S = S; then, while S is non-empty, add
to Fi an arbitrary multiset S € S and remove from S all the elements of N¢(5).
Since the family Sy consists of M,  multisets, we have

known (e.g., see [21]) that M, ; = ) Choose an arbitrary multiset

Fol > My (n—1+k)!(th?
P MMy (k=140 (n—1+0)k

Taking into account that 2% (¢!)> > (2t)!, the obtained expression is at least

(n—1+F)! (2t)! N nk—t
(n—1+0)! 26(k—1+ )k — 2%(k— 14 t)F -tk

Lemma 8 is proved. O

1
)-collection for the set X

Lemma 9. For every k = 1,....n, each (1 + 2

nlk/2]+1
contains at least ————= elements.

(8k)k/2
Proof. For k = 1, the statement follows from the fact that any (14 €)-collection
for a finite set of points contains this set itself. Let k > 2.

Lemma 7 implies that, for every multiset S € S; and any § > 0, all the
a(6, k)-approximations of the point ¢(S) with respect to the set X belong to
the d-neighborhood of ¢(.5). So every a(d, k)-collection for the set X contains at
least one element in each of these §-neighborhoods.

V2t +2

On the other hand, it is easy to see that [|c(S1) — ¢(S2)]| > — for
every t < k and any different multisets 51, S from the family Fj, ; defined in

Vit+1

Lemma 8. Therefore, if § < W7 then the d-neighborhoods of the points ¢(.5)

for the multisets S € Fj, + are disjoint. By the above observations and Lemma 8,
it follows that every a(é,k)-collection for the set X contains at least Bn*—*

elements, where g = Pk — 1+ OF 1k



98 V. Shenmaier

t+1 t+1)2
Put t = [k/2] — 1 and 6 = \/(k—l)( 2—;3 + ( 12]4:5) ) Then we have

NS \/ t+1  (t+1)2 t41 1
5 d a(d,k) = /1 A > 14— It
< g and aldk) o T e T T TR

1
follows that every (1 + 8—k>—collection for the set X is an «(4, k)-collection, so

it contains at least AnlF/21+1 clements.
Estimate the value of 3. Since 2t < k—1, k— 1+t < 3k/2 — 3/2, and
1

i
—1-t < k/2, we have 3 > - N
Rolots k2, wehave § 2 o o s oy, — k2 (3k — 32 o

1
it can be proved that (3k — 3)*/2k/2 < (4k)*/2 for all k > 1, s0 3 > e
Lemma 9 is proved. O

1
To finish the proof of the theorem, select k = 2 {FJ In this case, we have
€

1 1 1
e < 8 and 2 < k < n since ¢ < 16 and n > % So every (1 + €)-collection

1
for the set X is also a (1 + —)—collection and, by Lemma 9, contains at least

8k
Lk/2]+1 \ 1 Fral . .
Tz&kw = pliw=tl] (w> ° > nlisetlelmez) elements. Theorem 2 is
16e
proved. : ([l

4 The Case of £, Distances

In contrast to the obtained estimations of the worst-case cardinality of mini-
mum (1 + €)-collections in Euclidean space, we show that this cardinality is not
polynomial when the distances between points are defined by the £, norm:

foloe = max [0

First, formulate the concept of an a-collection in an arbitrary metric space.
Let M be any set and dist be any metrics on this set.

Definition. Given points p,p’ € M, a set X C M, and a real number a > 1,
we say that p’ is an a-approrimation of p with respect to X in the metrics dist
if dist(z,p') < adist(z,p) for allz € X.

Definition. Given sets X,C C M, and a real number o > 1, we say that C' is an
a-collection for X in the metric space (M, dist) if C' contains a-approximations
of all the points of M with respect to X in the metrics dist.

By using the observations in Example from Sect. 2, it is easy to prove that
every finite set is a 2-collection for itself in any metric space. The following
theorem shows that, in the case of /., distances, some sets of points do not
admit polynomial-cardinality a-collections if o < 2:



Some Estimates on the Discretization of Geometric Center-Based Problems 99

Theorem 3. For each ¢ € (0,1) and every integer n > 4, there erists an n-
element set X C RU*/2) such that any (1 + €)-collection for this set in space
(RLU/210.0) consists of at least 212 elements.

Proof. Without loss of generality, we can assume that n is even: if n is odd we
will construct the desired set of cardinality n — 1 and add the zero vector.

Let d = n/2 and define X as the set of the d-dimensional unit vectors +e;,
t = 1,...,d, where ¢;(i) = 1 and ¢;(j) = 0 for j # i. Next, given a vector
v € {1,-1}4, define the set S, = {v(1)e1,...,v(d)eq}.

It is easy to see that, for every v € {1, —1}¢, the point v/2 has the property
|z —v/2||coc = 1/2 for all & € S,. Moreover, the following statement holds:

Lemma 10. For each € € (0,1) and every v € {—1,1}¢, any (1 + )-collection
for the set X in space (R?, o) contains a point x, € R? such that each coordi-
nate T,(i), i = 1,...,d, lies strictly between 0 and v(i).

Proof. Indeed, any (1+¢)-collection for the set X contains a point z,, € R? which
is a (1 4 €)-approximation of the point v/2 with respect to X. Since 1 + ¢ < 2,
it follows that ||v(i)e; — 2ylleo < 2||v(i)e; — v/2||oc = 1 for each ¢ = 1,...,d.
Therefore, for each 4, the coordinate (i) lies strictly between 0 and 2v(¢). On
the other hand, since d > 2, the set S, contains at least one point y for which
y(i) = 0. This yields that |z,(i)| < |y — 2yl < 2[ly — v/2[oc = 1. So the
coordinate x,(7) lies strictly between 0 and v(7). Lemma 10 is proved. O

It remains to note that, for every different vectors v,u € {1,—1}%, there
exists at least one coordinate ¢ € {1,...,d} such that v(i) = —u(i). It follows
that the points z,,, z, defined in Lemma 10 for the vectors v and u differ. Then,
by Lemma 10, any (1 + ¢)-collection for the set X in space (R?, £,,) contains at
least 2¢ elements. Theorem 3 is proved. ([l

5 Conclusion

We study the concept of a (1 4 €)-collection, which is closely related to the
question of the polynomial discretization of geometric center-based problems.
Our main result is an upper and a lower bounds for the minimum cardinality of
(14¢)-collections for a given set of n points in high-dimensional Euclidean space
in the worst case. We prove that this cardinality is at most @(nré log %]) and is at
least Q(nLﬁ“J) for any fixed ¢ € (0, 1]. In contrast, it turned out that, in the
case of £, distances, there exist sets of points which do not admit polynomial-
cardinality (1 4 €)-collections. An interesting open question is the situation in
high-dimensional £; space. Another question is an asymptotically exact bound
for the worst-case cardinality of minimum Euclidean (1 + €)-collections: is it

1 2 1
closer to n®(z 198 %) or to n®(2)?
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Abstract. In the paper, we generalize the approach Gasnikov et al.
2017, which allows to solve (stochastic) convex optimization problems
with an inexact gradient-free oracle, to the convex-concave saddle-point
problem. The proposed approach works, at least, like the best exist-
ing approaches. But for a special set-up (simplex type constraints and
closeness of Lipschitz constants in 1 and 2 norms) our approach reduces
n/logn times the required number of oracle calls (function calculations).
Our method uses a stochastic approximation of the gradient via finite
differences. In this case, the function must be specified not only on the
optimization set itself, but in a certain neighbourhood of it. In the sec-
ond part of the paper, we analyze the case when such an assumption
cannot be made, we propose a general approach on how to modernize
the method to solve this problem, and also we apply this approach to
particular cases ofsomeclassical sets.

Keywords: Zeroth-order optimization - Saddle-point problem -
Stochastic optimization

1 Introduction

In the last decade in the ML community, a big interest cause different appli-
cations of Generative Adversarial Networks (GANSs) [10], which reduce the ML
problem to the saddle-point problem, and the application of gradient-free meth-
ods for Reinforcement Learning problems [17]. Neural networks become rather
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popular in Reinforcement Learning [13]. Thus, there is an interest in gradient-
free methods for saddle-point problems

min max e(@,y). (1)
One of the natural approach for this class of problems is to construct a stochastic
approximation of a gradient via finite differences. In this case, it is natural to
expect that the complexity of the problem (1) in terms of the number of function
calculations is ~ n times large in comparison with the complexity in terms of
number of gradient calculations, where n = dim X + dim ). Is it possible to
obtain better result? In this paper, we show that this factor can be reduced in
some situation to a much smaller factor logn.

We use the technique, developed in [8,9] for stochastic gradient-free non-
smooth convex optimization problems (gradient-free version of mirror descent
[2]) to propose a stochastic gradient-free version of saddle-point variant of mirror
descent [2] for non-smooth convex-concave saddle-point problems.

The concept of using such an oracle with finite differences is not new (see
[5,16]). For such an oracle, it is necessary that the function is defined in some
neighbourhood of the initial set of optimization, since when we calculate the
finite difference, we make some small step from the point, and this step can lead
us outside the set. As far as we know, in all previous works, the authors proceed
from the fact that such an assumption is fulfilled or does not mention it at all.
We raise the question of what we can do when the function is defined only on
the given set due to some properties of the problem.

1.1 Owur Contributions

In this paper, we present a new method called zeroth-order Saddle-Point Algo-
rithm (zoSPA) for solving a convex-concave saddle-point problem (1). Our algo-
rithm uses a zeroth-order biased oracle with stochastic and bounded determin-
istic noise. We show that if the noise ~ e (accuracy of the solution), then the
number of iterations necessary to obtain e—solution on set with diameter {2 C R"”

is O <M2292 n) or O (MZQZ log n) (depends on the optimization set, for example,

€ g2

for a simplex, the second option with logn holds), where M? is a bound of the
second moment of the gradient together with stochastic noise (see below, (3)).

In the second part of the paper, we analyze the structure of an admissible set.
We give a general approach on how to work in the case when we are forbidden
to go beyond the initial optimization set. Briefly, it is to consider the “reduced”
set and work on it.

Next, we show how our algorithm works in practice for various saddle-point
problems and compare it with full-gradient mirror descent.

One can find the proofs together and additional numerical experiments in
the full version of this paper available on arXiv [4].
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2 Notation and Definitions

We use (z,y) et i, @y; to define inner product of z,y € R™ where z; is

the i-th component of x in the standard basis in R™. Hence we get the def-

inition of fy-norm in R™ in the following way |z||2 f Vi{x,x). We define
¢y-norms as ||z, e >r, |$i|p)1/p for p € (1,00) and for p = oo we use
1| oo Lef maxi<;<pn |Z;|. The dual norm || - ||, for the norm || - ||, is defined in the

following way: ||y||4 f max {(z,y) | |||, < 1}. Operator E[-] is full mathemati-

cal expectation and operator E¢[-] express conditional mathematical expectation.

Definition 1 (M-Lipschitz continuity). Function f(x) is M-Lipschitz con-
tinuous in X CR™ with M > 0 w.r.t. norm || - || when

If(z) = fly)| < M|z—vyl|, VazyelX.

Definition 2 (u-strong convexity). Function f(x) is p-strongly convexr w.r.t.
norm ||-|| on X C R™ when it is continuously differentiable and there is a constant
> 0 such that the following inequality holds:

) 2 J@) + (Vf@),y o)+ Gly -l VayeX.

Definition 3 (Prox-function). Function d(z) : Z — R is called proz-function
if d(z) is 1-strongly convex w.r.t. || - ||-norm and differentiable on Z function.

Definition 4 (Bregman divergence). Let d(z) : Z — R is proz-function.
For any two points z,w € Z we define Bregman divergence V,(w) associated
with d(z) as follows:

V.(w) =d(z) — d(w) — (Vd(w), z — w).

We denote the Bregman-diameter 2z of Z w.r.t. V., (22) as
ol max{\/2V,, (z2) | 21,22 € Z}.

Definition 5 (Prox-operator). Let V,(w) Bregman divergence. For allz € Z
define prox-operator of &:

prox, (§) = arg ggg (Va(y) + (&)

3 Main Result

3.1 Non-smooth Saddle-Point Problem

We consider the saddle-point problem (1), where ¢(-,y) is convex function
defined on compact convex set X C R" o(x,-) is concave function defined
on compact convex set Y C R™v.
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We call an inexact stochastic zeroth-order oracle ¢(z,y, £) at each iteration.
Our model corresponds to the case when the oracle gives an inexact noisy func-
tion value. We have stochastic unbiased noise, depending on the random variable
& and biased deterministic noise. One can write it the following way:

@(x,y,8) = p(x,y,8) +0(z,y),
Ef [85(9%:%5)] = @(as,y), Ef [90(3?,3/,5)] = @(xay)v (2)

where random variable ¢ is responsible for unbiased stochastic noise and (z, y)
— for deterministic noise.

We assume that exists such positive constant M that for all x,y € X x Y we
have

V(e y,6)lla < M(E), E[M*(€)] = M>. 3)

By Vp(z,y, &) we mean a block vector consisting of two vectors V. (z,y, ) and
Vye(x,y,€). One can prove that o(z,y,§) is M (§)-Lipschitz w.r.t. norm || - ||2
and that ||Ve(z,y)]2 < M.

Also the following assumptions are satisfied:

For convenience, we denote Z = X x ) and then z € Z means z def (z,y),
where z € X, y € Y. When we use ¢(z), we mean ¢(z) = p(z,y), and ¢(z,§) =

e(z,y,8).
For e € RS5(1) (a random vector uniformly distributed on the Euclidean

unit sphere) and some constant 7 let ¢(z+7e, ) Lf P(x+T1ey, y+7ey,E), where
e, is the first part of e size of dimension n, et dim(z), and e, is the second

part of dimension n, def dim(y). And n e + ny. Then define estimation of
the gradient through the difference of functions:

et reg —dmre) (o),

2T _ey

9(z,¢,e) = ()

9(z,&, e) is a block vector consisting of two vectors.
Next we define an important object for further theoretical discussion — a
smoothed version of the function ¢ (see [15,16]).

Definition 6. Function ¢(z,y) = @(z) defines on set X x ) satisfies:

¢(2) = Ee [p(z + Te)] .

Note that we introduce a smoothed version of the function only for proof;
in the algorithm, we use only the zero-order oracle (5). Now we are ready to
present our algorithm:
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Algorithm 1. Zeroth-Order Saddle-Point Algorithm (zoSPA)

Input: Iteration limit V.
Let z1 = argmind(z).
z€EZ
for k=1,2,...,N do
Sample ey, &, independently.
Initialize ~y.
Zk+1 = pI'OXZk (’Ykg(zlﬁ §k7 ek))
end for
Output: zZy,

where
1 N N

In Algorithm 1, we use the step 7. In fact, we can take this step as a constant,
independent of the iteration number k (see Theorem 1).

Note that we work only with norms || - ||,, where p is from 1 to 2 (¢ is from
2 to 00). In the rest of the paper, including the main theorems, we assume that
p is from 1 to 2.

Lemma 1 (see Lemma 2 from [3]). For g(z,&,e) defined in (5) the following
inequalitie holds:

2 A2
E [llg(z,€e)[2] <2 <ch2 LA )az

T2 qQ’

where ¢ is some positive constant (independent of n) and ag is determined by

E[llell}] < a2 and the following statement is true

az = min{2¢ — 1,32logn — 8}n%71, Vn > 3. (7)

Note that in the case with p = 2, ¢ = 2 we have a4 = 1, this follows not from
(7), but from the simplest estimate. And from (7) we get that withp =1, ¢ = o0
— aq = O(logn/y) (see also Lemma 4 from [16]).

Lemma 2 (see Lemma 8 from [16]). Let e be from RS5(1). Then function
P(z,€) is convex-concave and satisfies :

sup |@(z) — ¢(z)| < TM + A.
z€EZ

Lemma 3 (see Lemma 10 from [16] and Lemma 2 from [3]). It holds that

g, [7(p(z+7e) — oz — 7e)) ( € )}

2T _ey

IEelg(z. )] - To(2)ly < 200

T




110 A. Beznosikov et al.

where

g(z,e) = EE [9(275’9)]
1ot re)—gtemre) (o ),

27 _ey

Hereinafter, by @cﬁ(z) we mean a block vector consisting of two vectors V o (z,y)
and =V o(z,y).

Lemma 4 (see Lemma 5.3.2 from [2]). Define A, d:efg(zk,gk,ek) —V@(z).
Let D(u) 2 Eszl Yi{Ak,u — z). Then we have

Ana, ol
]E{rgleagD(u)] < 0%+ - qkz_l%'FMfu;%%,

d ,
where M2, =) (ch2 + g) ag s from Lemma 1.

Theorem 1. Let problem (1) with function p(z,y) be solved using Algorithm 1
with the oracle g(zy, &k, ex) from (5). Assume, that the function p(x,y) and its
inexact modification @(x,y) satisfy the conditions (2), (3), (4). Denote by N the

number of iterations. Let step in Algorithm 1 ~, = v Q\/ﬁ. Then the rate of
all
convergence is given by the following expression
3My 2 Afna
E [esaa(Zn)] < Tl 4 127 M,

VN T
where zy is defined in (6), 2 is a diameter of Z, M2, = 2 (ch2 + "QAQ) a?

T2 q

and
_ = / : [y
€sad(ZN) = max o(Zy,y ) — min (2, ,
sad(ZN) y,eysﬁ( N, y) — min p(a’, gy)
ZN, Yn are defined the same way as Zy in (6).
Next we analyze the results.

Corollary 1. Under the assumptions of the Theorem 1 let € be accuracy of the
solution of the problem (1) obtained using Algorithm 1. Assume that

3 3

TZQCM) A:O(Mé;), (8)

then the number of iterations to find e-solution
M2
gzcz(n,Q)> )

N—O<

where C(n,q) def min{2q — 1,32logn — 8}.

Consider separately cases with p =1 and p = 2.

Note that in the case with p = 2, we have that the number of iterations
increases n times compared with [2], and in the case with p = 1 — just log®n
times (Table 1).
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Table 1. Summary of convergence estimation for non-smooth case: p = 2 and p = 1.

p, (1<p<2)|q (2<¢< )| N, Number of iterations
p=2 q=2 o Qiyzn
p=1 q= o0 (’)(”26712”2 10g2(n))

3.2 Admissible Set Analysis

As stated above, in works (see [5,16]), where zeroth-order approximation (5)
is used instead of the “honest” gradient, it is important that the function is
specified not only on an admissible set, but in a certain neighborhood of it. This
is due to the fact that for any point x belonging to the set, the point x + 7e can
be outside it.

But in some cases we cannot make such an assumption. The function and
values of x can have a real physical interpretation. For example, in the case of a
probabilistic simplex, the values of x are the distribution of resources or actions.
The sum of the probabilities cannot be negative or greater than 1. Moreover, due
to implementation or other reasons, we can deal with an oracle that is clearly
defined on an admissible set and nowhere else.

In this part of the paper, we outline an approach how to solve the problem
raised above and how the quality of the solution changes from this.

Our approach can be briefly described as follows:

— Compress our original set X by (1 — «) times and consider a “reduced”
version X®. Note that the parameter o should not be too small, otherwise
the parameter 7 must be taken very small. But it’s also impossible to take
large o, because we compress our set too much and can get a solution far from
optimal. This means that the accuracy of the solution € bounds a: a < h(e),
in turn, @ bounds 7: 7 < g(«).

— Generate a random direction e so that for any z € X follows = + 7e € X.

— Solve the problem on “reduced” set with ¢/2-accuracy. The @ parameter must
be selected so that we find e-solution of the original problem.

In practice, this can be implemented as follows: 1) do as described in the
previous paragraph, or 2) work on the original set X, but if z; + Te is outside
X, then project xj onto the set X<. We provide a theoretical analysis only for
the method that always works on X©.

Next, we analyze cases of different sets. General analysis scheme:

— Present a way to “reduce” the original set.

Suggest a random direction e generation strategy.

— Estimate the minimum distance between X* and X in fs-norm. This is the
border of 7, since ||e||2.

Evaluate the a parameter so that the ¢/2-solution of the “reduced” problem
does not differ by more than ¢/2 from the e-solution of the original problem.
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The first case of set is a probability simplex:

An:{zxizl, z; >0, iel...n}.
=1

Consider the hyperplane

H:{éxizl},

in which the simplex lies. Note that if we take the directions e that lies in H,
then for any z lying on this hyperplane, x 4+ 7e will also lie on it. Therefore, we
generate the direction e randomly on the hyperplane. Note that H is a subspace
of R™ with size dimH = n — 1. One can check that the set of vectors from R"™

vi = 1/v2(1,-1,0,0,...0),
va = 1/v6(1,1,-2,0,...0),
vy = 1/y13(1,1,1,-3,...0),
vV =

vy = YvirRz(1,... 1, =k, ...,0),

Vo1 =1 i nE(1,. .., 1, —n 4 1)

is an orthonormal basis of H. Then generating the vectors € uniformly on the
euclidean sphere RS5 (1) and computing e by the following formula:

e:élvl +é2V2 +...+ékvk+...én_1vn_1, (9)

we have what is required. With such a vector e, we always remain on the hyper-
plane, but we can go beyond the simplex. This happens if and only if for some
i, x; +7e; < 0. To avoid this, we consider a “reduced” simplex for some positive
constant a:

One can see that for any x € A%, for any e from (9) and 7 < « follows that
x4+ 7e € A, because |e;| < 1 and then z; + 7¢; > a— 7 > 0.

The last question to be discussed is the accuracy of the solution that we
obtain on a “reduced” set. Consider the following lemma (this lemma does not
apply to the problem (1), for it we prove later):

Lemma 5. Suppose the function f(x) is M-Lipschitz w.r.t. norm || - ||2. Con-
sider the problem of minimizing f(x) not on original set X, but on the “reduced”
set X,. Let we find xy solution with ¢/2-accuracy on f(x). Then we found
(¢/2 + rM)-solution of original problem, where

2

r = max ||z — argmin ||z — Z||2
zeX 5

TeEX™
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It is not necessary to search for the closest point to each x and find r. It’s
enough to find one that is “pretty” close and find some upper bound of r. Then
it remains to find a rule, which each point x from X associated with some point
Z from X, and estimate the maximum distance maxx ||Z — z||2. For any simplex
point, consider the following rule:

Go= EF2)
(14 2an)

One can easy to see, that for a < 1/2n:

(% — mi)z is a distance to the center of the simplex. It can be bounded by

>

i=1

the radius of the circumscribed sphere R = "T_l < 1. Then

2an

& — < —— < 20n. 10
& = ol < T < 2an (10)

(10) together with Lemma 5 gives that f(x) — f(2*) < § + 2anM. Then by
taking o = ¢/anM (or less), we find e-solution of the original problem. And it
takes 7 < a = /anM.

The second case is a positive orthant:

L,={z;>0, i€l...n}.
We propose to consider a “reduced” set of the following form:
1o ={y;>a, i€l...n}.

One can note that for all ¢ the minimum of the expression y; + 7e; is equal to
« — T, because e; > —1 and y; > a. Therefore, it is necessary that o — 7 > 0. It
means that for any e € RS5(1), for the vector y + 7e the following expression
is valid:

yi+71€; >0, 1€1...n.

The projection onto L, is carried out as well as onto L,,: if x; < « then z; — «a.
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Then let find r in Lemma 5 for orthant. Let for any x € 1,, define & in the
following way:

. a, z;<aq, .
T; = t=1,...n.
Ly 3%‘2047

One can see that #; € L and

n n

12—l = (| Y (F:—2:)> < (| D a?=ayn.

=1 i=1

By Lemma 5 we have that f(zy) — f(2*) < § + ay/nM. Then by taking o =
¢/2./mm (or less), we find e-solution of the original problem. And it takes 7 <

a = ¢/2\/nM.
The above reasoning can easily be generalized to an arbitrary orthant:

ln:{bixiz(), b; = 1, iEl...n}.
The third case is a ball in p-norm for p € [1;2]:
Bj(a,R) = {l|lz —al, < R},

where a is a center of ball, R — its radii. We propose reducing a ball and solving
the problem on the “reduced” ball B} (a, R(1—a)). We need the following lemma:

Lemma 6. Consider two concentric spheres in p norm, where p € [1;2], o €
(0;1):

Spla, R) ={llz —al, =R}, Sp(a,R(1—a))={lly—all, =R(1 - a)}.
Then the minimum distance between these spheres in the second norm

aR

m=————.
ni/r—1/2

Using the lemma, one can see that for any =z € B (a, R(1—a)), 7 < aR/p/r=12
and for any e € RS5(1), z + 7e € B, (a, R).
Then let find r in Lemma 5 for ball. Let for any = define & in the following
way:
#i=a+ (1 —a)(z; —a), i=1,...n.

One can see that z; is in the “reduced” ball and

lé - el = J DTS J > (e —a))? = “J S @i—ap <a |ui—al.

k3

By Holder inequality:

n n
|z — x|z < az |z; —al < ani <Z |z; — a|p> = aniR.
i=1

i=1

=
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By Lemma 5 we have that f(z)) — f(2*) < § + an!/2RM. Then by taking
a = ¢/2n'/9rM (or less), we find e-solution of the original problem. And it takes
T < OcR/nl/:D—l/2 = 6/21\/[\/5.

The fourth case is a product of sets Z = X x ). We define the “reduced”
set Z% as

7%= X% x Y,

We need to find how the parameter o and 7 depend on the parameters a, 7,
and oy, T, for the corresponding sets X and Y, i.e. we have bounds: o, < hg(e),
ay < hy(e) and 73 < go(0w) < ga(ha(€)), Ty < gylay) < gy(hy(e)). Obviously,
the functions g, h are monotonically increasing for positive arguments. This
follows from the physical meaning of 7 and a.

Further we are ready to present an analogue of Lemma 5, only for the saddle-
point problem.

Lemma 7. Suppose the function p(x,y) inthe saddle-point problem is M-
Lipschitz. Let we find (Z,9) solution on X and Y* with ¢/2-accuracy. Then
we found (¢/2 + (14 + ) M)-solution of the original problem, where r, and ry
we define in the following way:

r, = max ||z — argmin ||z — Z||2|| ,
zeX FeX 9
ry, = max ||y — argmin ||y — 7|2
s = Ju = exginly = gl

In the previous cases we found the upper bound «, < h,(¢) from the con-
dition that r,M < ¢/2. Now let’s take &, and &, so that r,M < ¢/14 and
ryM < ¢/a. For this we need &, < hg(e/2), &, < hy(e/2). It means that if
we take @ = min(ay, &), then (ry +ry)M < ¢/2 for such . For a simplex, an
orthant and a ball the function h is linear, therefore the formula turns into a
simpler expression: o = min(agz,ay)/a.

For the new parameter o = min(G,,d&,), we find 7, = gu(a) =
gz (min(@y, &y)) and 7, = gy(a) = gy(min(éy, &y )). Then for any z € X,
e, € RSy™X(1),y € Y, e, € RSS™ (1), z + 7re, € X and y + 7ye, € Y.
Hence, it is easy to see that for 7 = min(7,,7,) and the vector &, of the first
dimX components of e € RSG™ ¥ T4™Y (1) and for the vector &, of the remain-
ing dimY components, for any x € X, y € Y it is true that x + 7€, € X and
y+ 7€, € Y. We get 7 = min(7,;,7,). In the previous cases that we analyzed
(simplex, orthant and ball), the function g and h are linear therefore the formula
turns into a simpler expression: 7 = min(ag, ay) - min(m=/a,, 7v/a, ) /2.

Summarize the results of this part of the paper in Table 2.

One can note that in (8) 7 is independent of n. According to Table 2, we need
to take into account the dependence on n. In Table 3, we present the constraints
on 7 and A so that Corollary 1 remains satisfied. We consider three cases when
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Table 2. Summary of the part 3.2
Set a of “reduced” set | Bound of 7 e
probability simplex | 5 T see (9)
positive orthant ST VAT RS5(1)
ball in p-norm TS YENIY: AT RS3(1)
X % Y min(ag,ay) min(ag,ay) min(tz/ag,7y/ay) RSS(].)
2 2

both sets X and Y are simplexes, orthants and balls with the same dimension
n/2.

The second column of Table 3 means whether the functions are defined not
only on the set itself, but also in some neighbourhood of it.

Table 3. 7 and A in Corollary 1 in different cases

Set Neigh-d? | 7 A
Probability simplex | v/ C] (ﬁ) o (M_(Eljtaq)
€ £ <?
X @(Mn) a‘ndSW O(M_Qn2aq)
Positive orthant 4 6 (ﬁ) o (Mfsszq)
e £ €2
X 8(M\/ﬁ) and < V8nM O(Mﬂn3/2aq
Ball in p-norm v (] (ﬁ) o (M.(S;na
e € 52(1
X @(Mﬁ) andg V8nM O(M.Qng/2aq)

4 Numerical Experiments

In a series of our experiments, we compare zeroth-order Algorithm 1 (zoSPA)
proposed in this paper with Mirror-Descent algorithm from [2] which uses a
first-order oracle.

We consider the classical saddle-point problem on a probability simplex:

min max

T
T€A, yEAy [y CQ?] ’

(11)

This problem has many different applications and interpretations, one of the
main ones is a matrix game (see Part 5 in [2]), i.e. the element ¢;; of the matrix
are interpreted as a winning, provided that player X has chosen the ith strategy
and player Y has chosen the jth strategy, the task of one of the players is to
maximize the gain, and the opponent’s task — to minimize.
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We briefly describe how the step of algorithm should look for this
case. The prox-function is d(z) = Y . x;logz; (entropy) and V,(y) =
St w;log=i/y; (KL divergence). The result of the proximal operator is u =

+ _ + : .
prox, (veg(zk, & exr)) = zrexp(—g(zr, &) ex)), by this entry we mean:
u; = [zi)i exp(—Yk [g(zk,f,f,ek)]i). Using the Bregman projection onto the sim-
plex in following way P(x) = #/||z|., we have

[z1)i exp(—Vk[9e (2, &5 )]i)

[$k+1]i =

)

[z1]; exp(—lga 2k & €x)]5)

NE

Jj=1

k)i exp(Vilgy (2, & ex)]i)

[Yk+1]i =

Y

3" fruly exp (g, (2. 65 e0)])

where under g., g, we mean parts of g which are responsible for x and for y.
From theoretical results one can see that in our case, the same step must be
used in Algorithm 1 and Mirror Descent from [2], because n'/9 = 1 for ¢ = oo.

In the first part of the experiment, we take matrix 200 x 200. All elements
of the matrix are generated from the uniform distribution from 0 to 1. Next, we
select one row of the matrix and generate its elements from the uniform from
5 to 10. Finally, we take one element from this row and generate it uniformly
from 1 to 5. Then we take the same matrix, but now at each iteration we add to
elements of the matrix a normal noise with zero expectation and variance of 10,
20, 30, 40% of the value of the matrix element. The results of the experiment is
on Fig. 1.

According to the results of the experiments, one can see that for the consid-
ered problems, the methods with the same step work either as described in the
theory (slower n times or logn times) or generally the same as the full-gradient
method.

5 Possible Generalizations

In this paper we consider non-smooth cases. Our results can be generalized for
the case of strongly convex functions by using restart technique (see for example
[7]). It seems that one can do it analogously.! Generalization of the results of

! To say in more details this can be done analogously for deterministic set up. As for
stochastic set up we need to improve the estimates in this paper by changing the
Bregman diameters of the considered convex sets {2 by Bregman divergence between
starting point and solution. This requires more accurate calculations (like in [11])
and doesn’t include in this paper. Note that all the constants, that characterized
smoothness, stochasticity and strong convexity in all the estimates in this paper
can be determine on the intersection of considered convex sets and Bregman balls
around the solution of a radii equals to (up to a logarithmic factors) the Bregman
divergence between the starting point and the solution.
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Classical saddle-point problem 200 x 200
1072
= 107
>
x 10°© -
g 10-8 —€— Mirror Descent
| . 0] —® zOSPA
~10-10
* —&— 7z0SPA noise 10%
210712 :
><‘ —— 2z0SPA noise 20%
-14 .
10 —A— zOSPA noise 30%
107 —4— z0SPA noise 40%
0 125000 250000 375000 500000

lteration number, N

Fig. 1. zoSPA with 0-40% noise and Mirror Descent applied to solve saddle-problem

(11).

[6,11,18] and [1,14] for the gradient-free saddle-point set-up is more challenging.
Also, based on combinations of ideas from [1,12] it’d be interesting to develop a
mixed method with a gradient oracle for z (outer minimization) and a gradient-
free oracle for y (inner maximization).
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Abstract. The paper is devoted to the multiple covering problem by
circles of two types. The number of circles of each class is given as well
as a ratio radii. The circle covering problem is usually studied in the
case when the distance between points is Euclidean. We assume that the
distance is determined using some particular metric arising in logistics,
which, generally speaking, is not Euclidean. The numerical algorithm is
suggested and implemented. It based on an optical-geometric approach,
which is developed by the authors in recent years and previously used
only for circles of an equal radius. The results of a computational exper-
iment are presented and discussed.

Keywords: Circle covering problem - Multiple covering -
Non-Euclidean metric - Incongruent circles - Optical-geometric
approach - Logistics

1 Introduction

The covering problems are widely used in various technical and economic fields
of human activity. Examples of such tasks are locating ATMs, hospitals, arti-
ficial Earth satellites, schools, medical ambulance stations, cell towers [3,6,11],
wireless sensors [1,2,8].

In general form, this problem is formulated as follows: how to locate geometric
objects in a bounded area so that the covered area is completely inside in the
union of these objects. Equal circles are often used as covering elements. In most
cases, we are talking about the one-fold circle covering problem (CCP), which
is considered in a large number of papers (for example, [20,30,32]).

There are other statements of the covering problem, such as the single cov-
ering with circles of different radii and the multiple covering by equal circles. In
this case, as a rule, the radii ratio obeys the additional restrictions.
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The problem of a single covering by unequal circles was first investigated
by F. Toth and J. Molnar [31]. They proposed a hypothesis about the lower
bound for the covering density. Then, this hypothesis was proven by G. Toth
[29]. Florian and Heppes [14] established a sufficient condition for such a covering
to be solid in the sense of [31]. Dorninger presented an analytical description for
the general case (covering by unequal circles) in such a way that the conjecture
can easily be numerically verified and upper and lower limits for the asserted
bound can be gained [12].

The multiple covering problem is as interesting and important as the classical
CCP. Global navigation systems GPS (USA), Glonass (Russia), Baidu (China)
and Galileo (EU) use a multiple covering (at least 3-fold) of the served areas to
ensure positioning accuracy. For the multiple covering of a circle by congruent
circles on a plane, the first exact results for k = 2, 3, 4 were obtained by Blundon
[4]. Some analytical results are obtained in the special cases when the covered
area is a regular polygon [17,26,33]. These results are very important to ver-
ify the correctness of approximate results found by numerical methods. Among
approximate methods, we can mention the greedy [10], heuristic [9,18,20], and
combinatorial [15] algorithms.

Note that the most of known results are obtained for the case when a covered
set is a subset of the Euclidean space. In the case of a non-Euclidean metric, this
problem is relatively poorly studied. Moreover, the problem of multiple covering
with unequal circles, apparently, has not been considered yet.

In this paper, we deal with multiple covering by circles of two types with a
specific non-Euclidean metric. This metric allows using the time as a measure
of the distance [21,22]. We expand a technique based on the combination of
optical-geometric approach [21] and Voronoi diagram [16,19,28].

The results of a computational experiment are presented and discussed.

2 Problem Statement and Modeling

Let us consider some bounded field (service area) where it is required to locate a
certain number of service facilities in such a way that their service zones, having
a given shape, completely cover it. Such statements appear in problems of cell
towers or security points placement [3,13], designing energy-efficient monitoring
of distributed objects by wireless sensor networks [2,27], etc. The most straight-
forward problem statement of this type assumes that the service areas have the
form of circles whose radii are the same, and it is enough to cover each point of
the serviced space at least once. As a result, we have the classical circle covering
problem (see, introduction). However, various complications and generalizations
are possible in connection with applications.

Firstly, the need to take into account terrain features (for example, relief)
leads to the fact that service areas cease to be circles. One way to solve this
problem is to introduce a specific metric, which, in fact, replaces the physical
distance between points by the minimum time it takes to pass the path between
them [7,24].
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Secondly, often, it is required that two or more objects service each point of
the area. This situation is more typical for security tasks when it is necessary
to ensure the correct operation of the system in case of failure of some of the
servicing devices due to an accident or sabotage. However, such requirements
may also apply to logistic systems (systems with duplication or redundancy).

Thirdly, service areas may be different. A similar requirement arises if we use
service objects of various types.

Each of the additional requirements separately was previously considered
(see, for example, [2,3]). Moreover, we have already studied models in which two
of the three conditions were taken into account simultaneously [22,25]. However,
three conditions are simultaneously considered for the first time. For definiteness,
we will further talk about logistic systems (and serving logistic centers) and
proceed to model designing.

We make a simplifying assumption. Suppose we are given a bounded domain,
in which consumers are continuously distributed and there are only two types
of logistic centers. Let n and m be a number of logistic centers of the first
and second type, respectively, 71 and 7o be their maximum delivery time and
T = am,a > 0. Here, the maximum delivery time is the time for which the
goods are delivered to the most distant consumer at the border of the service
area of the logistic center means the “radius” of this zone. It is required to
locate the centers so that each consumer must be serviced by at least k of them
(k < n+m), and the parameters 71, 72 would be minimal.

Note that in logistics, such a statement is quite natural, since the character-
istics of the service centers directly affecting the delivery time of goods (such as
the area of storage facilities, handling equipment, the capacity of parking lots
and garages, etc.) are determined at the design stage.

If we know only the total number of logistic centers n+m and the multiplicity
k, then the best placement is one with the shortest average delivery time 7 =
Ti(n+am)/(n+m).

Next, we turn to the mathematical formulation of the described problem.

3 Mathematical Formulation

Assume we are given a metric space X, a bounded domain M C X with a
continuous boundary 9M, n circles C;(O;, R1) and m circles C;(O;, Ry); here
O;(x;,y;) is a circle center, Ry and Ry are radii. Let f(x,y) > 0 be a continuous
function, which shows the instantaneous speed of movement at every point of
X. The minimum moving time between two points a,b € X is determined as

follows:
dar

)= i, | Fogy ®

where G(a, b) is the set of continuous curves, which belong to X and connect two
points a and b. It is easy to verify that for the distance determined by formula
(1), all metric axioms are satisfied. In logistic problems, in particular, p(a,b)
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determines the minimum time for the delivery of goods between points. Still, it
may also have another meaning, for example, determining the geodetic distance.
Therefore, to avoid direct association with transportation, we will further use
the traditional symbol R to designate the circle radius in metric (1).

It is required to locate the circles to minimize the radii and to cover M at
least k times. The last means that every point of M must belong at least k
different circles.

In other words, we have the following optimization problem:

R1 — min, (2)

Ry = aRy,a € RY, (3)

max wp(s,0;) < R;. 4

max op(s,0,) < B (4)

1, 1=1,...,.n
l/a, i=n+1,...n+m
of k centers, that locate closer to s than other n + m — k centers:

Ji(s) = {qj,j =1,...k:p(Og;,p) <wp(Or,p) Vi ={1,...,n+m} \ {q, ...,qj}} )

Here w = , and Ji(s) is the set of indexes (numbers)

The objective function (2) minimizes the radius of the covering. Constraint
(3) fixes the radii ratio, and (4) guarantees that each point of M belongs to at
least k circles.

Note, if @ = 1, we have the multiple covering of a bounded domain by equal
circles with non-Euclidean metric [25].

4 Solution Method

In this section, we propose a numerical method for solving problem (2)—(4),
based on traditional principles for our studies. We combine the analogy between
the propagation of the light wave and finding the minimum of integral functional
(1) and Voronoi diagram technic. This approach is described in more details in
[21,23).

The concept of k—th order Voronoi diagrams was introduced by F.L.Toth
[28] and earlier was used in studies [16,17,25]. To apply it, at first, we should
determine a k—fold Voronoi-Dirichlet region for the case of two types of circles.

For a set of n + m points O;, the generalized k—fold Voronoi region MF
centered at O; is defined as follows:

M} = {p € M : p(p,0;) < max )\p(p,Oj)} yi=1,...,n+mk<n+m, (5
J€Jk(p)

1L,45=1,...,n; &, j=n+1,..,n+m,
where A=< 1/a, i=1,..,n,j=n+1,...,n+m,
a,t=n+1,..,n+m,j=1,...,n.
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Fig. 1. Double Voronoi-Dirichlet regions

Figure 1 shows double Voronoi-Dirichlet regions (grey color) for the case of
four circles (we point out their centers only) where the radii of circles 1 and 2
are equal, but they are three times larger than the radii of circles 3 and 4.

At first, we propose the OCMC (One Covering Minimum Circle) algorithm,
which allows finding a circle C(O*, R*) centered in O*, covering region M and
having an approximately minimal radius R*.

The principle of this algorithm is that the randomly generated center of the
circle moves in the direction of decreasing the maximum distance from it to the
boundary of the covered region. This process finishes when the coordinates of
the center stop changing (Fig. 2).

Here and further we cover set M by a uniform rectangular grid with the step
h and deal with set M" approximating M. For brevity, we omit the index h.

Algorithm OCMC

Step 1. Put R* = +oo, Iter = 1.
Step 2. Randomly generate initial coordinates of a point O(z,y) € M.
Step 3. Define the set of nearest points for the point O:

A0 ={0(x + x,y +0) : x,0 ={=h,0,h}}.
Step 4. Find a point Opeq:

Opew = argmin max p(p, s).
pEAO seOM

Step 5. If p(Opew, OM) < p(O,0M), then put O := Oyeqy and go to Step 3.



On Multiple Coverings by Circles of Two Types 125

Fig. 2. The principle of OCMC algorithm

Step 6. If p(O,0M) < R*, then put O* := O, R* := p(O*,0M).

Step 7. The counter Iter of an initial solution generations is incremented. If
it becomes equal a certain prescribed value, then the algorithm is terminated.
Otherwise, go to Step 2.

The general algorithm includes the basic steps: constructing the generalized
k-fold Voronoi diagram for the initial set of centers; moving O; to the point O,
that is the center of the covering circle, which has the minimal radius for each
part of the diagram; revising radius ratio and returning to the first step with the
new centers. Now we describe the general algorithm in details.

General algorithm

Step 1. Randomly generate initial coordinates of the circles centers O; € M,
t=1,....,n+m.

Step 2. From O;,i = 1,...,n + m, we initiate the light waves using the algo-
rithm from [21]. The speed of a light wave emitted from points O;,i =1,...,n
is a times less than from O;,i = n+1,...,n + m. This allows us to find the
time T;(z,y),7 = 1,...,n which is required to reach s(x,y) by each wave. For
every s(z,y) € M we obtain vector T'(z,y) = T;(x,y).

Step 3. For each s(x,y) we choose k minimal components of vector T'(z,y).
Thus, we obtain Ji(s) which is the index set of Voronoi domains contained

s(z,y).

Step 4. Find k—fold Voronoi domain Mi’“,i =1,...,n + m and their boundaries
oMF.

Step 5. For each Mf,i = 1,...,n+m we find a minimal covering circle

C;(OF, RY) by OCMC algorithm.
Step 6. To ensure full covering of M by circles, we choose the maximum radius

R = max R; and Ry, = max R;.
i=1,...,n i=n+1,....n+m

Step 7. Check the inequality Ry > «R;. If it is satisfied, then put R; = Ra/«,
otherwise, put Re = aR;.

Step 8. If the value of the founded radius is less than the previous one, we
save the current radius and the current set of circles. The counter of an initial
solution generations is incremented. If it becomes equal a certain prescribed
value, then the algorithm is terminated. Otherwise, go to Step 1.
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A drawback of the algorithm is that it does not guarantee a solution that globally
minimizes the circles radii. This feature is inherited from the constructing of
Voronoi diagram. We use multiple generating of initial positions (Step 1) to
increase the probability of finding a global solution.

5 Computational Experiment

The algorithms are implemented in C# using the Visual Studio 2015. The numer-
ical experiment was carried out using the PC of the following configuration: Intel
(R) Core i5-3570K (3.4 GHz, 8 GB RAM) and Windows 10 operating system.

Note that in the tables n is a number of big circles, m is a number of small
circles, k is multiplicity of the covering, bem is the best radius of the big circles,
ARﬁ’m = %R is the average radius of the covering.

In the figures, the origin is located in the upper left corner, the bold black
closed curves are large circles, the thin ones are small circles, the grey dots are
the centers of circles, the dashed line lines are the boundary of container M. The
number of random generations Iter = 100, the grid step A = 0.001.

Ezample 1. This example illustrates how the proposed in the previous section
algorithm works in the case of the Euclidean metric f(x,y) = 1. The covered set
is a square with a side equals to 3, a = 0.5, kK = 2,3,4. Table 1 shows the best
solutions for 15 circles.

Table 1. The best coverings of a square by 15 circles with Euclidean metric

n | m|R., |AR., RS, |AR), R., |AR,,,
14 |1 |0.27739  0.26814  0.341320.32994  0.50000 | 0.48333
13 12 |0.27877 0.26018  0.35184 | 0.32838  0.50000 | 0.46667
12 |3 0.28985  0.26086 0.35358 | 0.31823 0.50018 |0.45016
11 /4 |0.30170  0.26147 0.37174 | 0.32217 | 0.50028 | 0.43357
10 |5 0.30699  0.25583  0.38873 | 0.32394  0.50584 | 0.42154
6 | 0.31457 0.25166  0.40089  0.32071 0.51499 0.41199
7 0.32299 | 0.24763 | 0.41846 | 0.32082 | 0.52389 | 0.40165
8 10.33483 0.24554 | 0.42964 | 0.31507 | 0.53729 | 0.39401
9 | 0.35668 0.24968  0.46228 0.32359 0.55318 0.38723

0.37642 | 0.25094 | 0.50071 | 0.33381 | 0.55607 | 0.37071
0.39016 | 0.24710 | 0.51579 | 0.32667 | 0.58426 | 0.37003
0.41236 | 0.24742 | 0.54103 | 0.32462 | 0.63004 | 0.37802
0.44312 ] 0.25110 | 0.56356 | 0.31935 | 0.70711 | 0.40069
0.47796 | 0.25491 | 0.61036 | 0.32553 | 0.70711 | 0.37712
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Table 1 shows that the radii of circles, as one would expect, grow with an
increase in the number of small circles and a simultaneous decrease in the number
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Fig. 3. The best 2-fold (left) and 3-fold (right) coverings with 15 circles

of large ones. Other, more specific laws could not be identified. It is noteworthy
that for a 4-fold covering, the radii R3 ;3 and R |, are equal.

Average radii behave even less regularly. The best 2, 3-fold coverings consist
of 7 large circles and 8 small ones (see Fig. 3), and 4-fold covering contains 4
large circles and 11 small ones. In addition, we note that the average radius of
2-fold covering with circles of two types is always less than the best radius of
2-fold covering with equal ones R}; = 0.27012 (see [25]).

The operating time is 3/20” + 4'34".

Ezample 2. Let f(x,y) = 0.5+ 2z. It means that instantaneous speed of move-
ment increases linearly along the coordinate x. The covered set M is following

M = {(z,y) : (x — 2.5)* + (y — 2.5)* < 4}.

The best solutions for the cases of 2,3,4-fold coverings with 13 circles of two
types are shown in Table 2. Here the radii ratio is 1/3.

Note that in this case the wave fronts also have the form of a circle, as in
the Euclidean metric, but the source of the wave (the center of the circle) is
displaced (see more in [5]). The apparent size of the covering circles depends on
the location of their centers: the closer it to the axis Oy, the smaller it looks
(Fig. 4). We emphasize that in the given metric the radii are equal.

Table 2 shows that the radii of circles, as in the previous example, grow
with an increase in the number of small circles. The average radii decrease
monotonously with an increase in the number of small circles. The best 2,3-
fold coverings consist of 1 large circle and 12 small ones, and 4-fold covering
contains 2 large circles and 11 small ones.
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Table 2. The best coverings of a circle by 13 circles with the “linear” metric

2
Rn,m

3
3

AR,

3
Rn,m

AR? .

4
Rn,m

AR},

0.27457

0.26049

0.35948

0.34105

0.43305

0.41084

0.28117

0.25233

0.37712

0.33844

0.45014

0.40397

0.29531

0.24988

0.39511

0.33433

0.46838

0.39632

0.30825

0.24502

0.41499

0.32987

0.47750

0.37955

0.32948

0.24499

0.43755

0.32536

0.48785

0.36276

0.35322

0.24454

0.45458

0.31471

0.49786

0.34467

0.37173

0.23829

0.48095

0.30830

0.50551

0.32404

0.39442

0.23261

0.48902

0.28839

0.51528

0.30388

O |00 ||| Ut x| W N+

0.43990

0.23687

0.49312

0.26553

0.52712

0.28383

—_
o

0.46108

0.22463

0.54984

0.26787

0.58098

0.28304

11 |0.49159

0.21428

0.61712

0.26900

0.63789

0.27805

12 1 0.55774

0.21451

0.69580

0.26762

0.72432

0.27859

Fig. 4. The best 2-fold (left) and 3-fold (right) coverings of a circle by 13 circles with

the “linear” metric

Figure 4 (right) illustrates the interesting 3-fold covering. It splits into 1-fold
covering by 1 large circle and 2-fold covering by 12 small ones.

The operating time of the proposed algorithm is 3'11" <+ 4/08".

Ezample 3. Let the covered set M is a polygon with the vertices: (0.5, 1.5);
(0.5, 3.5); (1.5, 4.5); (3.5, 4.5); (4.5, 3.5); (4.5, 1.5); (3.5, 0.5); (1.5, 0.5). The
instantaneous speed of movement f(x,y) is defined as follows:

f(177y) =

3

+ 1.

(z—2°+(y—25)7°+1




On Multiple Coverings by Circles of Two Types 129

Fig. 5. Level lines of function f(z,y)

Figure5 shows level lines of f(z,y). From the lowest to the highest point,
the wave speed increases.

Table 3 shows the best coverings of M by 19 circles of two types for a = 1/4.
One can see that the radii of the circles, as in the two previous examples, grow
with an increasing number of small circles. Moreover, the increase in all cases
occurs with acceleration.

The best 2-fold coverings consist of 7 large and 12 small circles, 3-fold cover-
ings includes of 10 large and 9 small circles, and 4-fold covering contains 2 large
circles and 17 small ones. Figure 6 shows that the wave fronts differ significantly
from the circles, and the covering elements have an oviform shape.

The operating is 4’40” = 6'05".

Fig. 6. The best 2-fold (left) and 3-fold (right) coverings of a polygon by 19 circles
with the non-Euclidean metric
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Table 3. The best multiple coverings in the example 3

n | m Ri,, AR? .. R .. AR}, | R AR},
18 |1 |0.51256 |0.49232 | 0.63925 |0.61401 |0.78887 | 0.75773
17 |2 |0.53152 |0.48956 | 0.65804 |0.60609 |0.81266 |0.74851
16 |3 |0.55448 |0.48882 | 0.69060 | 0.60882 |0.85300 | 0.75199
15 |4 |0.56005 |0.47162 |0.71822 |0.60482 |0.86624 |0.72947
14 |5 |0.58186 |0.46702 | 0.74946 |0.60154 |0.91106 | 0.73125
13 |6 |0.60108 |0.45872 | 0.77528 | 0.59166 |0.96564 | 0.73693
12 |7 |0.62704 |0.45378 | 0.80655 | 0.58369 |0.96823 | 0.70069
11 |8 |0.64791 |0.44331 | 0.82150 | 0.56208 |1.04158 | 0.71266
10 |9 |0.68587 |0.44221 | 0.85210 | 0.54938 |1.07594 | 0.69370

—_
o

0.71505 |0.43280 | 0.94860 | 0.57416 |1.11342 |0.67391
0.76475 |0.43269 | 0.98175 | 0.55546 |1.14014 |0.64508
0.80687 |0.42467 |1.05814 |0.55692 |1.19896 |0.63103
0.87353 | 0.42527 |1.18404 |0.57644 |1.27998 |0.62315
0.96564 | 0.43200 |1.25147 |0.55987 |1.38141 |0.61800
1.05610 |0.43078 |1.36896 |0.55839 |1.45417 | 0.59315
1.16501 | 0.42921 | 1.50528 |0.55458 | 1.62250 |0.59776
1.29896 | 0.42729 | 1.67998 |0.55262 | 1.74612 |0.57438
1.47143 | 0.42594 | 1.90411 | 0.55119 | 2.02766 | 0.58695
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6 Conclusion

The paper considers one of the topical problems for logistic and security systems:
optimal placement of various service facilities (sensors, CCTV cameras, logistic
centers) with the reservation (duplication). We formulate the subject problem in
the form of the problem of constructing an optimal k-fold covering of a bounded
set by circles of two types.

At the same time, we use a specific non-Euclidean metric to take into account
the local characteristics of the service area (for example, relief). The metric is
determined by minimizing the integral functional of a function that defines the
speed of movement. In other words, it replaces the physical distance between
points by the minimum time it takes to pass the path between them.

To solve the optimization problem, we suggest an original computational
algorithm based on the combination of the optical-geometric approach and a
new method for constructing generalized multiple Voronoi diagrams.

We have already presented algorithms based on these principles [25]; however,
in this case, the procedure for constructing multiple Voronoi diagram is much
more complicated. The reason is the presence of various types of elements in
the covering, which, in turn, often leads to the non-convexity and the multiply-
connection of Voronoi regions.
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The algorithm is implemented, and a computational experiment is carried
out. It shows that the developed tools effectively solve the problem with the
number of objects up to 20. Besides, it turned out that in the best (from the
application domain point of view) covering, as a rule, objects of both types are
present. This fact is an additional confirmation of the relevance of the study.

Further studies may be associated, firstly, with an increase in the number
of types of covering elements; secondly, with an increase in the adequacy of the
model, in particular, the use of two-level optimization problems as a mathemat-
ical formalization.
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1 Introduction

Different relaxations of the classical smoothness conditions for functions are
interesting for a large number of modern applied optimization problems. In par-
ticular, in [2] there were proposed conditions of relative smoothness of the objec-
tive function, which mean the replacement of the classic Lipschitz condition by
the following weaker version

fy) < f@) +{Vf(x),y —x) + LVa(y, o), (1)

to hold for any z,y from the domain of the objective function f and some
L > 0; Vy(y,z) represents an analogue of the distance between the points x
and y (often called the Bregman divergence). Such a distance is widely used
in various fields of science, in particular in mathematical optimization. Usually,
the Bregman divergence is defined on the base of the auxiliary 1-strongly convex
and continuously-differentiable function d : @ C R™ — R (distance generating
function) as follows

Vd(y,$) = d(y) - d(‘T) - <Vd($)ay - $> Vm,y € Qa (2)
where @ is a convex closed set, (-,-) is a scalar product in R™. In partic-
ular, for the Euclidean setting of the problem, we have d(z) = 3|lz[|3 and

Va(y,z) = d(y — x) = 3|y — /|3 for arbitrary z,y € Q. However, in many
applications, it often becomes necessary to use non-Euclidean norms. Moreover,
the considered condition of relative smoothness in [2,16] implies only the convex-
ity (but not strong convexity) of the distance generating function d. As shown in
[16], the concept of relative smoothness makes it possible to apply a variant of
the gradient method to some problems which were previously being solved only
by interior-point methods. In particular, we talk about the well-known problem
of construction of an optimal ellipsoid which covers a given set of points. This
problem is important in the field of statistics and data analysis.

A similar approach to the Lipschitz property and non-smooth problems was
proposed in [17] (see also [24]). This approach is based on an analogue of the
Lipschitz condition for the objective function f : @ — R with Lipschitz con-
stant My > 0, which involves replacing the boundedness of the norm of the
subgradient, i.e. |V f(x)||« < My, with the so-called relative Lipschitz condition

IV @), < Mov2Valv,2)

Vz,y € Q, y#x,
|y — ||

where ||- ||« denotes the conjugate norm, see Sect. 2 below. Moreover, the distance
generating function d must not necessarily be strongly convex. In [17] there were
proposed deterministic and stochastic Mirror Descent algorithms for optimiza-
tion problems with convex relatively Lipschitz-continuous objective functionals.
Note that some applications of relative Lipschitz-continuity to the well-known
classical support vector machine (SVM) problem and to the problem of mini-
mizing the maximum of convex quadratic functions (intersection of m ellipsoids
problem in R™) were discussed in [17].
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In this paper we propose a new concept of an inexact model for objective
functional and functional constraint. More precisely, we introduce some ana-
logues of the concepts of an inexact oracle [8] and an inexact model [32] for
objective functionals. However, unlike [8,32], we do not generalize the smooth-
ness condition. We relax the Lipschitz condition and consider a recently proposed
generalization of relative Lipschitz-continuity [17,24]. We propose some optimal
Mirror Descent methods, in different settings of Relatively Lipschitz-continuous
convex optimization problems.

The Mirror Descent method originated in the works of A. Nemirovski and
D. Yudin more than 30 years ago [21,22] and was later analyzed in [5]. It can be
considered as the non-Euclidean extension of subgradient methods. The method
was used in many applications [19,20,31]. Standard subgradient methods employ
the Euclidean distance function with a suitable step-size in the projection step.
The Mirror Descent extends the standard projected subgradient methods by
employing a nonlinear distance function with an optimal step-size in the non-
linear projection step [18]. The Mirror Descent method not only generalizes the
standard subgradient descent method, but also achieves a better convergence
rate and it is applicable to optimization problems in Banach spaces, while the
subgradient descent is not [9]. Also, in some works [4,10,22] there was proposed
an extension of the Mirror Descent method for constrained problems.

Also, in recent years, online convex optimization (OCO) has become a leading
online learning framework, due to its powerful modeling capability for a lot of
problems from diverse domains. OCO plays a key role in solving problems where
statistical information is being updated [13,14]. There are many examples of such
problems: Internet networks, consumer data sets or financial markets, machine
learning applications, such as adaptive routing in networks, dictionary learning,
classification and regression (see [33] and references therein). In recent years,
methods for solving online optimization problems have been actively developed,
in both deterministic and stochastic settings [7,12,15,25]. Among them one can
mention the Mirror Descent method for the deterministic setting of the problem
[26,30] and for the stochastic setting [1,11,34,35], which allows to solve problems
for an arbitrary distance function.

This paper is devoted to Mirror Descent methods for convex programming
problems with a relatively Lipschitz-continuous objective function and functional
constraints. It consists of an introduction and 5 main sections. In Sect. 2 we con-
sider the problem statement and define the concept of an inexact (4, ¢, V')—model
for the objective function. Also, we propose some modifications of the Mirror
Descent method for the concept of Model Generality. Section 3 is devoted to
some special cases of problems with the properties of relative Lipschitz continu-
ity, here we propose two versions of the Mirror Descent method in order to solve
the problems under consideration. In Sects.4 and 5 we consider the stochastic
and online (OCO) setting of the optimization problem respectively. In Sect. 6 one
can find numerical experiments which demonstrate the efficiency of the proposed
methods.

The contribution of the paper can be summarized as follows:
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e Continuing the development of Yurii Nesterov’s ideas in the direction of the
relative smoothness and non-smoothness [24], we introduced the concept of
an inexact (0, ¢, V)—model of the objective function. For the proposed model
we proposed some variants of the well-known Mirror Descent method, which
provides an (¢ + d)—solution of the optimization problem, where £ is the
controlled accuracy. There was considered the applicability of the proposed
method to the case of the stochastic setting of the considered optimization
problem.

e We also considered a special case of the relative Lipschitz condition for the
objective function. The proposed Mirror Descent algorithm was specified for
the case of such functions. Furthermore, there was introduced one more mod-
ification of the algorithm with another approach to the step selection. There
was also considered the possibility of applying the proposed methods to the
case of several functional constraints.

e We considered an online optimization problem and proposed a modification
of the Mirror Descent algorithm for such a case. Moreover, there were con-
ducted some numerical experiments which demonstrate the effectiveness of
the proposed methods.

2 Inexact Model for Relative Non-smooth Functionals
and Mirror Descent Algorithm

Let (E,||-||) be a normed finite-dimensional vector space and E* be the conjugate
space of E with the norm:

lyll+ = max{(y, z), [l«] <1},

where (y, x) is the value of the continuous linear functional y at x € E.

Let Q C E be a (simple) closed convex set. Consider two subdifferentiable
functions f,g : @ — R. In this paper we consider the following optimization
problem

) — min . 3
i) 2€Q, g(x)<0 3)

Let d: Q — R be any convex (not necessarily strongly-convex) differentiable
function, we will call it reference function. Suppose we have a constant Oy > 0,
such that d(z*) < ©2, where x* is a solution of (3). Note that if there is a set,
X, C @, of optimal points for the problem (3), we may assume that

in d(z*) < ©2.
Jin d(z”) < 65

Let us introduce some generalization of the concept of relative Lipschitz
continuity [24]. Consider one more auxiliary function ¢ : R — R, which is strictly
increasing and satisfies ¢(0) = 0. Clearly, due to the strict monotonicity of ¢(-),
there exists the inverse function ¢=1(-).
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Definition 1. Let § > 0. We say that f and g admit the (6, ¢,V )-model at the
point y € Q if

f@) + 5y, 2) < fly), —vp(y,2) < o7 (Valy, ) +6 (4)

9(@) +vg(y,x) < g(y), —vg(y,x) < ¢, (Valy,x)) + 6, (5)
where Y¢(-,x) and Yy(-,x) are convex functions for fired x and Ys(x,x) =

g(z,2) =0 for all z € Q.

Let h > 0. For problems with a (d, ¢, V')-model, the proximal mapping oper-
ator (Mirror Descent step) is defined as follows

1
Mirrp(z,1) = arg min {1/1(y,x) + Vd(y,x)} .
YEQ h
The following lemma describes the main property of this operator.

Lemma 1 (Main Lemma). Let f be a convex function, which satisfies (4),
h >0 and & = hMirry(z,vy). Then for anyy € Q

h(f(x) = f(y) < —hy(y,z) < ¢3(h) + Valy, z) — Valy, ) + hd,

where ¢} is the conjugate function of ¢y.

Proof. From the definition of &
T = hMirry(z,y) = argmin {hipy (y, ) + Va(y, 2)}
Y

for any y € Q, we have hy)¢(y, z) — hipf (2, z) + (Vd(Z) — Vd(z),y — &) > 0.
Further, h(f(z) — f(y)) < —hty(y,x) <

< —hps(F, z) + (Vd(F) — Vd(z),y — )
= —hpp(Z,2) + Va(y,z) — Va(y, &) — Va(Z, z) + hé

< hey (Va(®, @) + Valy, ©) — Valy, &) — Va(#,x) + hd

< ¢3(h) + d5(97 " (Va(@, ) + Valy, «) — Valy, @) — Va(&, ) + ho
= ¢3(h) + Va(@, @) + Valy, ) — Va(y, T) — Va(@, x) + ho

= ¢3(h) + Va(y, z) — Valy, &) + hd.

For problem (3) with an inexact (J,¢,V)-model, we consider a Mirror
Descent algorithm, listed as Algorithm 1 below. For this proposed algorithm,
we will call step k productive if g(z*) < e, and non-productive if the reverse
inequality g(z¥) > ¢ holds. Let I and |I| denote the set of indexes of productive
steps and their number, respectively. Similarly, we use the notation J and |J|
for non-productive steps.

Let z* denote the exact solution of the problem (3). The next theorem pro-
vides the complexity and quality of the proposed Algorithm 1.
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Theorem 1 (Modified MDA for Model Generality). Let f and g be con-
vex functionals, which satisfy (4), (5) respectively and € > 0,6 > 0 be fized pos-
itive numbers. Assume that ©y > 0 is a known constant such that d(z*) < O3.
Then, after the stopping of Algorithm 1, the following inequalities hold:

f@) = flx*)<e+d and g)<e+od.

Algorithm 1. Modified MDA for (4, ¢, V)-model.

Require: ¢ > 0,0 > 0,hf > 0,h9 > 0,0, : d(z*) < O3.
1: 2° = arg min, o d().
2: I=:0and J=:0

33 N0

4: repeat

5 ifg(;z’N)§6+6then

6: N = Mirr, (wN,wf) ,  “productive step”

7 N — 1T

8 else

9: eV = Mirrps (acN, wg) ,  “non-productive step”
10: N —J

11:  end if

12: N—N+1

13: until 62 <

(|J|hg +IhT) =1 J1¢g(he) — 1|7 (7).
Ensure: 7 := % E
kel

Proof. By Lemma 1,we have for all k € [ and y € Q
W (@) = f(y) < &5 (B) + Valy,2") = Va(y, a"*") + . (6)

Similarly, for all k € J and y € @

o (g(*) = g(y)) < ¢5(h?) + Valy, z*) = Valy, «*1) + h96. (7)
Summing up these inequalities over productive and non-productive steps, we
get
OB (F) = @) + D0 (9(a*) - g(a))
kel keJ
<Y o)+ 6 (h?) +Z Va(a*, a®) = Vo™, 2" ) + Y o+ h9s
kel keJ kel keJ

< ST + 3 e(hd) + 63+ S hf5+ 3 hoe,

kel keJ kel keJ
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Since for any k € J, g(z¥) — g(z*) > ¢ + 6, we have

SR (fR) — f@) <S030 ) + 3 d3(h0) + 03— 3 h9 + 3 his

kel kel keJ keJ kel
= |I| (¢5(h]) + 6hT) + |95 (h?) — | J|h%e + OF < e|I|h! + §|I|h7.
So, for z := =1 I‘ 3~ 2%, after the stopping criterion of Algorithm 1 is satisfied,

kel
the following inequalities hold

f@) = f(a*)<e+d and ¢g(T) <e+d.

3 The Case of Relatively Lipschitz-Continuous
Functionals

Suppose hereinafter that the objective function f and the constraint g satisfy
the so-called relative Lipschitz condition, with constants My > 0 and M, > 0,
i.e. the functions ¢;1 and ¢, ! from (4) and (5) are modified as follows:

N ' (Va(y, @) = Mp/2Vy(y, @ (8)

¢y ' (Valy,x)) = My\/2Va(y, ). (9)
Note that the functions f, g must still satisfy the left inequalities in (4), (5):

f@) +v5(y,2) < fly), —vp(y,r) < Mp/2Va(y, ) + 6; (10)
9(®) +Yg(y,2) <g(y), —Yy(y, ) < My\/2Va(y, ) + 9, (11)

For this particular case we say that f and g admit the (d, My, V)- and
(0, My, V)-model at each point z € @ respectively. The following remark pro-
vides an explicit form of ¢, ¢4 and their conjugate functions ¢%, ¢g.

Remark 1. Let My > 0 and M, > 0. Then functions ¢ and ¢, which correspond
to (8) and (9) are defined as follows:
t2 t2
2M3’ ¢9(1) = 537
g

or(t) =

Their conjugate functions have the following form:
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For the case of a relatively Lipschitz-continuous objective function and con-
straint, we consider a modification of Algorithm 1, the modified algorithm is
listed as Algorithm 2, below. The difference between Algorithms 1 and 2 is rep-
resented in the control of productivity and the stopping criterion.

For the proposed Algorithm 2, we have the following theorem, which provides
an estimate of its complexity and the quality of the solution of the problem.

Theorem 2. Let f and g be convex functions, which satisfy (10) and (11) for
My >0 and My > 0. Let € > 0,0 > 0 be fized positive numbers. Assume that
Oy > 0 is a known constant such that d(z*) < ©3%. Then, after the stopping of
Algorithm 2, the following inequalities hold:

F@) - f@*) < Mpe+6 and g(F) < Mye + 0.

Algorithm 2. Mirror Descent for Relatively Lipschitz-continuous functions,
version 1.
Require: ¢ > 0,0 >0, M; > 0,My > 0,6, : d(z*) < 63
sl = argmin, g d(z).
I=:90
N —0
repeat
if g (z™) < Mye + 6 then

f—
o=

2Nt = Mirr,y (mN, wf) ,  “productive step”
N —1

else

10: h? = =

M,

11: Nt = Mirrpg (xN, 1/19) ,  “non-productive step”
12:  end if

13: N+ N+1

©

14: until N > 290
Ensure: ¥ ’:ﬁ Z z",
kel

Proof. By Lemma 1, we have

SO (Fk) = f@) + )R (gaF) — g(a®) <Y g+ ¢y (h?)

kel keJ kel keJ

+O3+> i+ his

kel keJ
Since for any k € J, g(z*) — g(x*) > Mye + , we have

SR (f*) — @) < ST + Y d(h0) + OF — Mye Y 1+ S s

kel kel keJ keJ kel
= |1|(¢7(hT) + 1) + |16 (h9) — |T|e* + 5.
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Taking into account the explicit form of the conjugate functions (12), (13)
one can get:

M2(h7)2 2(h9)2
SA () - £ < (fg) + w‘) e s 3

kel

f e 2 2

= |1 +5h +\J|E—|J|8 + 65

< Mfg|1|hf + 0|Ih,
supposing that the stopping criterion is satisﬁed
So, for the output value of the form z = il II 3" 2%, the following inequalities
kel

hold:

f(@)— f(z*) < Mge+6 and g¢(Z) < Mye + 0.

Also, for the case of a relatively Lipschitz-continuous objective function and
constraint, we consider another modification of Algorithm 1, which is listed as
the following Algorithm 3. Note that the difference between Algorithm 2 and
Algorithm 3 lies in the choice of steps hf, h9 and the stopping criterion.

Algorithm 3. Mirror Descent for Relatively Lipschitz-continuous functions,
version 2.
Require: ¢ > 0,6 >0, M; >0, M, > 0,600 : d(z*) < 6F.
c 2% =arg mlnzeQ d(x).
I=:0and J=:0
N «—0
repeat
if g (z™) <e+6 then

hf:%
M3’

ot = Mirr,s (2V,¢5), “productive step”
N —1

else
h? =

—

ﬁg?

11: N = Mirrpg (:rN, ng) , ‘“non-productive step”
12: N —J

13:  end if

14: N — N+1

200 [1] [J]
< =54+ .
= M? 12

Ensure: T ::m 3 2P
kel

By analogy with the proof of Theorem 2 one can obtain the following result
concerning the quality of the convergence of the proposed Algorithm 3.
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Theorem 3. Let f and g be convex functions, which satisfy (10) and (11) for
My >0 and My > 0. Let € > 0,5 > 0 be fized positive numbers. Assume that
Oo > 0 is a known constant such that d(x*) < ©3. Then, after the stopping of
Algorithm 3, the following inequalities hold:

f@ - fx*)<e+4+d and ¢g(Z) <e+).
Moreover, the required number of iterations of Algorithm 3 does not exceed

2M?63
82

N = , where M = max{My, M,}.

Remark 2. Clearly, Algorithms 2 and 3 are optimal in terms of the lower bounds

[22]. More precisely, let us understand hereinafter the optimality of the Mirror
1

Descent methods as the complexity O() (it is well-known that this estimate is

optimal for Lipschitz-continuous functionals [22]).

Remark 3 (The case of several functional constraints). Let us consider a set of

convex functions f and g, : Q — R, p € [m] def {1,2,...,m}. We will focus on
the following constrained optimization problem

min{f(z): z €@ and g,(x) <0 forall pe [m]}. (14)

It is clear that instead of a set of functionals {g,(-)};L; we can consider one
functional constraint g : Q@ — R, such that g(x) = max,e[m{gp(z)}. Therefore,
by this setting, problem (14) will be equivalent to the problem (3).

Assume that for any p € [m], the functional g, satisfies the following condition

_wgp(yvx) < Mgp V 2Vd(y,$) + 4.

For problem (14), we propose a modification of Algorithms 2 and 3 (the mod-
ified algorithms are listed as Algorithm 6 and 7 in [29], Appendix A). The idea
of the proposed modification allows to save the running time of the algorithms
due to consideration of not all functional constraints on non-productive steps.

Remark 4 (Composite Optimization Problems [6,16,23]). Previously proposed
methods are applicable to composite optimization problems, specifically

min{f(z)+r(z): =z€Q, glz)+n(z) <0},

where 7,1 : Q — R are so-called simple convex functionals (i.e. the proximal
mapping operator Mirry(x, 1) is easily computable). For this case, for any x,y €
@, we have
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4 Stochastic Mirror Descent Algorithm

Let us, in this section, consider the stochastic setting of the problem (3). This
means that we can still use the value of the objective function and functional con-
straints, but instead of their (sub)gradient, we use their stochastic (sub)gradient.
Namely, we consider the first-order unbiased oracle that produces V f(x, &) and
Vg(z,(), where £ and ¢ are random vectors and

E[Vf(z, )] =Vf(zx), E[Vg(z,Q)]=Vg(z).
Assume that for each z,y € @
<Vf(1‘,£),l‘—y> < Mf V 2Vd(y,$) and <v9(x7C)7x_y> < Mg 2Vd(y,$), (15)

where My, My > 0. Let us consider a proximal mapping operator for f

. .1
Mirm, (o912, 6) = argmip { £Vi(0,2) + (9. 9.0) |
and, similarly, we consider a proximal mapping operator for g. The following

lemma describes the main property of this operator.

Lemma 2. Let [ be a conver function which satisfies (4), h > 0,6 > 0, £ be a
random vector and & = Mirry, (x,Vf(x,€)). Then for all y € Q

h(f (@) = f(y)) < &3(h) + Valy, x) = Valy, &) + K{V f(2,£) = Vf(x),y — x) + hd,

) h2]\/[2
where, as earlier, ¢3(h) = —5-L.

Suppose € > 0 is a given positive real number. We say that a (random) point
Z € @ is an expected e—solution to the problem (3), in the stochastic setting, if

E[f(7)] - f(2*) <& and g(7) <e. (16)

In order to solve the stochastic setting of the considered problem (3), we
propose the following algorithm.

The following theorem gives information about the efficiency of the proposed
Algorithm 4. The proof of this theorem is given in [29], Appendix B.
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Algorithm 4. Modified Mirror Descent for the stochastic setting.

Require: ¢ > 0,6 > 0,hf > 0,h9 > 0,0, : d(z*) < O3F.
2% = argmin_, d(z).

I=:()and J=:0

N «—0

1:
2:
3:
4: repeat
5
6
7
8

ifg(xN) < e+ 6 then

eV = Mirr,; (acN, Vf(x, fN)) ,  “productive step”
N —1
else
9: 2NV = Mirrpe ($N, Vf(z, CN)) ,  ‘“non-productive step”
10: N —J
11:  end if

12: N«—N+1
13: until 6F < & (|J|h? + |I|hF) — |J|¢} (h9) — |T|¢} ().
Ensure: T ::ﬁ 2k

kel

Theorem 4. Let f and g be convex functions and (15) hold. Let ¢ > 0,6 > 0
be fized positive numbers. Then, after the stopping of Algorithm 4, the following
inmequalities hold:

E[f(Z)] — f(z*) <e+6 and g(3) <e+3.

Remark 5. Tt should be noted how the optimality of the proposed method can
be understood. With the special assumptions (10)—(11) and choice of h',h9,
the complexity of the algorithm is O(E%), which is optimal in such a class of

problems.

5 Online Optimization Problem

In this section we consider the online setting of the optimization problem (3).
Namely,

1 XN

N ; file) = 2€Q, g()<0’ (17)
under the assumption that all f; : Q@ = R (i =1,...,N) and g satisfy (10) and
(11) with constants M; > 0,i=1,...,N and M, > 0.

In order to solve problem (17), we propose an algorithm (listed as Algorithm

5 below). This algorithm produces N productive steps and in each step, the
(sub)gradient of exactly one functional of the objectives is calculated. As a result
of this algorithm, we get a sequence {z¥}xc; (on productive steps), which can

be considered as a solution to problem (17) with accuracy x (see (18)).
Assume that M = max{Mi,Mg},hf =h =h=£.
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Algorithm 5. Modified Mirror Descent for the online setting.
Require: € > 0,6 > 0,M > 0,N, 0 : d(z*) < 63.

L: 2 = argmin, ., d(z).

2:i:=1k:=0

3: set h = 7

4: repeat

5 if g (xk) <&+ 0 then

6: o = Mirry, (2%,4p5,),  “productive step”
T t=1+1,

8: k=k+1,

9: else
10: = = Mirr, (:Ek, z/Jg) ,  “non-productive step”
11: k=k+1,
12:  end if

13: until i = N 4+ 1.
14: Guaranteed accuracy:

D) o) 2 <18>

For Algorithm 5, we have the following result.

Theorem 5. Suppose all f; : Q =R (i=1,...,N) and g satisfy (10) and (11)
with constants M; > 0,4 = 1,...,N and My, > 0, Algorithm 5 works exactly
N productive steps. Then after the stopping of this Algorithm, the following
inequality holds

1 Y 1 Y
- E (2R — min — E . <
N i=1 fl(x ) Igéqu N =1 fl(x) ="

moreover, when the regret is non-negative, there will be no more than O(N)
non-productive steps.

The proof of this theorem is given in [29], Appendix C. In particular, note

that the proposed method is optimal [13]: if for some C' > 0, Kk ~ e ~ § = -&

\/ﬁ?
then |J| ~ O(N).

6 Numerical Experiments

To show the practical performance of the proposed Algorithms 2, 3 and their
modified versions, which are listed as Algorithm 6 and Algorithm 7 in [29], in the
case of many functional constraints, a series of numerical experiments were per-
formed!, for the well-known Fermat- Torricelli-Steiner problem, but with some
non-smooth functional constraints.

1 All experiments were implemented in Python 3.4, on a computer fitted with Intel(R)
Core(TM) i7-8550U CPU @ 1.80 GHz, 1992 Mhz, 4 Core(s), 8 Logical Processor(s).
RAM of the computer is 8 GB.
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For a given set {P, = (pik,D2k,---,DPnk); k € [r]} of r points, in n-
dimensional Euclidean space R™, we need to solve the considered optimization
problem (3), where the objective function f is given by

F@) = SV Pt G = Y e Pl (19)
k=1 k=1

The functional constraint has the following form

g(x) = rg[ax]{gz(x) = ;1% + QT2 + ..+ QT ) (20)
The coeflicients 1, @49, ..., @, for all i € [m], in (20) and the coordinates of

the points Py, for all k € [r], are drawn from the normal (Gaussian) distribution
with the location of the mode equaling 1 and the scale parameter equaling 2.

We choose the standard Euclidean norm and the Euclidean distance function
in R”, § = 0, starting point z° = (ﬁ, ceey ﬁ) € R™ and @ is the unit ball in
R™.

We run Algorithms 2, 3 and their modified versions, Algorithms 6 and 7
respectively (see [29]), for m = 200,n = 500, = 100 and different values of
€ € {QL : i = 1,2,3,4,5}. The results of the work of these algorithms are
represented in Table 1 below. These results demonstrate the comparison of the
number of iterations (Iter.), the running time (in seconds) of each algorithm
and the qualities of the solution, produced by these algorithms with respect
to the objective function f and the functional constraint g, where we calculate
the values of these functions at the output z°% := 7 of the algorithms. We set
fbest = f (l.out) and gout =g (l,out).

Table 1. The results of Algorithms 2, 3 and their modified versions Algorithms 6 and
7 respectively, with m = 200, n = 500, = 100 and different values of .

Algorithm 2 Algorithm 6
1/e | Iter Time (sec.) | fPest gt Iter Time (sec.) | fPest g°ut
2 16 5.138 22.327427 | 2.210041 | 16 4.883 22.327427 | 2.210041
64 20.911 22.303430 | 2.016617 | 64 20.380 22.303430 | 2.016617
8 256 84.343 22.283362 | 1.858965 | 256 79.907 22.283362 | 2.015076
16 | 1024 | 317.991 22.274366 | 1.199792 | 1024 | 317.033 22.273177 | 1.988190

32 | 4096 | 1253.717 22.272859 | 0.607871 | 4096 | 1145.033 22.269038 | 1.858965

Algorithm 3 Algorithm 7
2 167 9.455 22.325994 | 0.417002 | 164 7.373 22.325604 | 0.391461
710 39.797 22.305980 | 0.204158 | 667 29.954 22.305654 | 0.188497
8 2910 | 158.763 22.289320 | 0.103493 | 2583 | 119.055 22.289302 | 0.088221
16 | 11613 | 626.894 22.280893 | 0.051662 | 10155 | 468.649 22.280909 | 0.045343

32 | 46380 | 2511.261 22.277439 | 0.026000 | 40149 | 1723.136 22.277450 | 0.022639
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In general, from the conducted experiments, we can see that Algorithm 2
and its modified version (Algorithm 6) work faster than Algorithms 3 and its
modified version (Algorithm 7). But note that Algorithms 3 and 7 guarantee a
better quality of the resulting solution to the considered problem, with respect
to the objective function f and the functional constraint (20). Also, we can
see the efficiency of the modified Algorithm 7, which saves the running time
of the algorithm, due to consideration of not all functional constraints on non-
productive steps.

7 Conclusion

In the paper, there was introduced the concept of an inexact (6, ¢, V))-model of
the objective function. There were considered some modifications of the Mirror
Descent algorithm, in particular for stochastic and online optimization prob-
lems. A significant part of the work was devoted to the research of a special
case of relative Lipschitz condition for the objective function and functional
constraints. The proposed methods are applicable for a wide class of problems
because relative Lipschitz-continuity is an essential generalization of the classical
Lipschitz-continuity. However, for relatively Lipschitz-continuous problems, we
could not propose adaptive methods like [3,27,28]. Note that Algorithm 3 and
its modified version Algorithm 7 (see [29]) are partially adaptive since the result-
ing number of iterations is not fixed, due to the stopping criterion, although the
step-sizes are fixed.
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Nowadays a lot of different methods have been developed for solving nonlinear
programming problems. Each of these optimization methods has its own dis-
advantages and advantages. In this regard, for solving practical problems these
methods are used in a complex manner in order to accelerate the convergence of
the optimization process. Namely, at each step to find the next approximation
there are opportunities to choose any minimization method among other meth-
ods which allows to construct descent direction from the current point faster. The
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algorithm that is formed as a result of applying various optimization methods is
called mixed (e.g., [1,2]).

In this paper, based on the ideas of [2], an approach is proposed for con-
structing mixed algorithms on the basis of some proximal bundle method which
is characterized by the possibility to periodically discard the cutting planes.

2 Problem Setting

Let f(z) be a convex function defined in an n-dimensional Euclidian space,
Of(z), O.f(xz) be a subdifferential and an e-subdifferential of the function f(x)
at x respectively.

Suppose f* =min{f(z) :z e R*"}, X* ={z € R": f(z) = f*} #0, X*(¢) =
{0 €RM: f(2) < fr+ehe> 0, K ={0,1,...}, L(y) = {w € B": f(2) < f)},
where y € R™. Denote by [x] the least integer no less than x € R!. It is assumed
that the set L(y) is bounded for any y € R". Fix an arbitrary point z* € X*.

It is required to find a point from the set X*(¢) with given € > 0 for a finite
number of iterations.

3 Minimization Method

First, consider an auxiliary procedure © = 7(%, ¢, 0, i) with the following input
parameters: - ~
ZeR?, £>0, 6€(0,1), p>0.

Step 0. Define initial parameters k = 0, x = Z.
Step 1. Choose a subgradient si, € Of(x). Assign i =0, Sg; = Sk, Th,i = Tk,

Fra(y) = (@) + (5100 Y — Tra).- (1)
Step 2. Find a point
o1 = arg min{ fi(y) + Slly — oal? -y € R}, e)
Step 3. Compute a parameter
i = Flan) = Fralonisn) = Sllowis — ol (3)

Step 4. If the inequality -
5k,i S 57 (4)

is fulfilled, then the process of finding sequence is stopped, and the point
& =arg min{f(zrg;):0<j<i+1} (5)

is a result of the procedure.
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Step 5. If the condition

F@rien) < flak) — 00y (6)
is fulfilled, then choose a point xx1; € R™ according to the inequality
f(xrs1) < f(wriv), (7)

fix a number i, = i, increase the value of k by one, and go to Step 1.
Otherwise, go to the next step.
Step 6. Choose a subgradient sy ;41 € Of(Tk,i+1), assign

Frs1(y) = max{ fii(v), f(@hi01) + (k41,9 — Thir1) ), (8)
and go to Step 2 with incremented 3.
Consider some remarks concerning the procedure 7.

Remark 1. For some k > 0, i > 0 on the basis of (1), (8) it is not difficult to
obtain the equality

frily) = Olélj_lgi{f(xk,j) + (Skjs Y — T j) ) 9)

The function fyi(y) is a model of the convex function f(z). Since the model
fr,i(y) is the maximum of linear (hence convex) functions, then the function
fr.i(y) is convex.

One of the main problems arising in the numerical implementation of bundle
and cutting methods is the unlimited growth of the count of cutting planes which
are used to find iteration points. Currently, several approaches are proposed to
discard cutting planes for bundle methods (e. g., [3,5,6]). These approaches are
realized according to the aggregation technique of cutting planes proposed in
[3] as follows. At the initial step of any bundle method, a storage of cutting
planes (called a bundle) is formed and its size is set. Then the overflow of this
storage is checked at each step. If the storage of the cutting planes is full, then
the procedure is started for discarding the cutting planes in two stages. All
inactive cutting planes are discarded at the first stage, and if the first stage
does not allow to allocate free spaces in the plane storage, then the second stage
is performed. At the second stage any active cutting plane is removed from
the storage to free space and one aggregated cutting plane is added which is
constructed as a convex combination of active and inactive cutting planes. Note
that the application of such an aggregation technique allows approximating the
subdifferential of the objective function at the current point and construct some
e-subgradient. However, the quality of the approximation of the epigraph of the
objective function at the current iteration point is deteriorated after performing
the second stage of the procedure for discarding the cutting planes.

A different approach was developed for cutting plane methods for periodi-
cally discarding cutting planes in [7-9]. This approach is based on some criteria
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for estimating the quality of approximating sets formed by cutting planes in a
neighborhood of current iteration points. In particular, in [8] the quality of the
approximation is estimated by the proximity of the current iteration point to a
feasible set of the initial problem, and in [9] the quality is estimated by the assess-
ment of the proximity of the current iteration value to the optimal value. After
obtaining sufficiently good approximation sets the proposed approach allows to
use update procedures such that it is possible to periodically discard an arbi-
trary number of any previously constructed cutting planes. Namely, both full
and partial updating of approximating sets is permissible. In the case of using
partial updating it is possible to leave, for example, only active cutting planes
or n + 1-last cutting planes.

In this paper, the procedure 7 is proposed, where cutting planes are dis-
carded based on the approach developed for the cutting plane methods. Namely,
at Step 5 of the procedure 7 there is the possibility of periodically discarding all
cutting planes as follows. In the neighborhood of the point xj ;11 the approxi-
mation quality of the epigraph of the function f(x) is evaluated by the model
f;“(x) If inequality (6) is fulfilled for some k > 0, ¢ > 0, then the approximation
quality is enough good, and there is a full update of the model of the function
f(z) by discarding cutting planes. Otherwise, the model of the convex function
f;“(x) is refined and cutting planes are not discarded.

Based on the procedure 7 the bundle method will be constructed below.
Note that at Step 5 of the procedure 7w during discarding cutting planes basic
points xx, k € K are determined. In the process of constructing these points
can be used any relaxation minimization methods. It is important to note that
convergence of such mixed algorithms is guaranteed by the convergence of the
proposed bundle method even if the mentioned relaxation methods included in
mixed algorithms are heuristic.

Lemma 1. Let S C R® be a bounded closed set, 7 > 0. Then the set
B(r,S) = [J{yeR": |y —v| <7} (10)
ves
18 bounded.
Proof. Since the set S is bounded, then there exists a number 7/ > 0 such that

for any v € S the inequality
lo]| < 7/ (11)

is defined. Now suppose that the set B(r,.5) is not bounded. Then for any w > 0
there exists a point y € B(7, S) such that ||y|| > w. Fix any sequence of positive
numbers {wy}, k € K, such that wyp — +00, k € K. Due to unboundedness of
the set B(7,S) there is a sequence of points {yx}, k € K, such that

Yk 63(775)7 Hyk}” > Wk, ke K. (12)

Moreover, in accordance with construction of points {yx }, k € K, for each k € K
there exists a point v, € S satisfying the condition

[y = vill <.
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Hence, from (11), (12) we have
wi < |lye £ vell < llyn — vill + loxll < 7+ 7.

The obtained inequality wy < 7+ 7’ contradicts the assumption wy — +00. The
lemma is proved.

Lemma 2. Suppose for some k > 0, ¢ > 0 the points Tx, Tro, Th,1, ---5 Th,i
and the model fr ;(y) are constructed by the procedure w. Then we obtain
ek = f(@r) = fleng) = (skjroe —any) 20, 0<j <4, (13)

fk,i(y) = f(ox) + ofg;’%{@k,j, Y — Tk) — €k}

Proof. Since the function f(z) is convex and sg; € 0f(xg,;), 0 < j < 4, then
using definition of a subgradient it is not difficult to obtain (13). Further, taking
account (9) and (13) we have

fk,i(y) = 1max {f(xk,J) + <3k,ja T — xk,j> + Gk,j}
0<;<4

= max {{sk.j,y = ) — kg + L (@r) = (skgo Tk — Th5)}

= f(z) + ggg%{(sk,jay — Tp) — €k}

The lemma is proved.

The following theorem is proved in [3, p. 144].

Theorem 1. Suppose for some k > 0, ¢ > 0 the point xj ;1 s constructed
according to (2) by the procedure w. Then

Sk.i

7/
Thyitl = Th — —, (14)
' i
where '
7
8ki= ) 0% kg (15)
=0
and the vector i = (&4 ;, G} ;, ..., 4} ;) € R is a solution of the following
problem:

aheRri+1 2;1“ Zajs’w + ZO‘ ko> (16)

a=(av, al

i
st. a=(aal,...;a") >0, Zajzl. (17)
Moreover, the following expressions

1
1) i = é 7 S i 27 18
i = s+ o] (18)
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ék,i S 8€k,if(xk)a (19)
8k € Ofni(Th,isn) (20)
are valid, where

i
€ri= D 0 €k (21)
=0

From inclusion (19) it follows

Lemma 3. Suppose the points xy, 0, - .., Tk i+1 and the corresponding subgra-
dients Sk, 5k,0,---,5ki+1 are constructed for some k > 0, i > 0 by the proposed
procedure w. Then for any point y € R™ the inequality

f@e) = f(y) < (BkirTe — y) + Eri (22)
is fulfilled, where §i,;, €, are defined according to (15), (21) respectively.

Lemma 4. Suppose that the stopping criterion (4) is fulfilled for some k > 0,
t > 0. Then the following estimate holds:

f(@) = f* < p\/2m€ + &, (23)
where p > 0 is the diameter of the set L(T).

Proof. Note that the equality f(z¢) = f(Z) is fulfilled in accordance with Step 0
of the procedure w, and from (6), (7) we have f(xy) < f(Z). Consequently,
2, € L(Z). Moreover, in view of condition (5) the inequality f(2) < f(xg) is
defined. Hence and from inequality (22) under y = 2* the estimate holds

F@) = < ldkllllor — 27 + .- (24)

Further, according to the stopping criterion (4) and equality (18) we obtain

18kl < /200k: < 1/ 20E,

éri < Opi <E.

Hence and from (24), * € L(Z), zx € L(Z) it follows the estimate (23). The
lemma, is proved.

To prove finiteness of the procedure 7 let’s show that values 0y, ;, ||Tk,i+1—Zk ||
are bounded.

Lemma 5. Suppose that for some k > 0, 1 > 0 the points xy, T ;41 are con-
structed, the subgradient sy, is fized, the number 0y ; is computed by the procedure
7. Then the following expressions

2| |

|Zk,iv1 — 2| < (25)
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2 2
0 <6p; < |S;”> (26)

; 5 i I
J(xr) =0k = fri(wriv1) + (Sris¥—Thyiv1) + 5 ly— e — §Hy_$k,i+1 1> (27)
are fulfilled, where y € R".
Proof. Note that according to (9) for all j =0,...,4, we have
Fri(y) > F(@rg) + (k.50 Y — Tr ), (28)

where y € R", and from Step 1 of the procedure 7 it follows that zj o = zy,
Sk,0 = Sk Hence from formula (9) with y =z ;41, j = 0, we obtain

F@r) = Fri(@nirn) < (e ax — wriva) < [sullllon — zripall. (29)
Moreover, from (3) it follows
B 2 ;
§ka,i+1 —xkl|” < flzk) = fri(Trit1)- (30)

Hence combining inequalities (29), (30) we prove (25).

Further, according to Lemma 2 for all j = 0,...,7 we get €, ; > 0, therefore,
in view of (21) the inequality é; > 0 is determined. Hence and from (18) taking
into account i > 0 it follows that dx; > 0. Moreover, in accordance with (3),
(29) we have

ki < flxn) = fri(rin) < llsellllzr — vrisa-

Using the last inequality, (25) and dj; > 0 expression (26) is obtained.
Let’s turn to obtain inequality (27). For any y € R™ it is determined

ly £ znivn = 2xl® = ly = 2o | + l2r,in — 2ll? + 20y — 2ri1, Tri1 — 28).
Then multiplying the last equality by /2 and taking into account (14) we get
lleiss =l = Sy =2l = Sly = 2t I + iy = 2rsa). - (31)

Moreover, from (3) it follows
— f Iz 2
Fl@r) = Oki = fei(@rirs) + 5 lenirn — el

Now substituting fi/2||z i+1 — z||* by (31) in the last equality we obtain (27).
The lemma is proved.

Corollary 1. Suppose that conditions of Lemma 5 are defined, S C R" is
bounded closed set satisfying the inclusion

L(z) C S. (32)
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Then there exists numbers n =n(S) > 0, ¢ = ((n) > 0 such that the inequalities

skl <, (33)
2
lzk,iv1 — zk]| < En, (34)
2 2
Si < % (35)
sk it1ll < ¢ (36)

are fulfilled.

Proof. Since inclusion (32) is fulfilled according to conditions of the corollary
and we have x, € L(Z), s € 0f(x) by construction, then in view of boundness
of the set S there exists a number n = n(S) > 0 (e. g., [4, p. 121]) such that
inequality (33) is determined. Moreover, taking into account inequality (33) from
(25), (26) it follows (34), (35).

Further, since the set S is bounded and closed, then according to Lemma 1
the set B(2n/f, S) is bound too. Moreover, from the inclusion z, € L(Z) C S
and inequality (34) we have xy ;41 € B(2n/f, S). Therefore, taking into account
Skit1 € Of (zk,i41) there exists a number ¢ = {(n) > 0 (e. g., [4, p. 121]) such
that inequality (36) is determined. The assertion is proved.

Lemma 6. Suppose that by the proposed procedure w for some k >0, 7 > 2 the
PoInts T = T, o5

Tr1:Lk,2s > Lhi+1 (37)
are constructed, the subgradients s = sy o,

SE1sSk2 - SEit1 (38)

are chosen, and according to (3) the numbers

6/5,0? 61;,17 Tt 61}5 (39)
are computed. Then for each i =0,...,i — 2 it is determined that
i(1—0)?
Oki = Okit1 = 2] Al ) ; (40)

|SE7;'£+2H + ||SE7Z+1||)2 kyai+1°

Proof. According to Step 5 of the procedure 7 for each I = 0,...,7 — 1 it is
determined

f(ri1) > flag) — 065, (41)

and in view of equality (14) the vectors

SE,O7 Sl@lv ey 315,2
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correspond to points (37). Choose an arbitrary index i such that 0 <7 <i — 2.
Then using definition of a subgradient of a convex function and taking into
account (20) we have

Tri(®@g 1) < fri(@kie) + (38,05 Thit1 — Thig2)- (42)
Moreover, according to (8) for any y € R™ it is defined
Tri(W) < frivi(y)-
Hence under y = zj ;,» and from (42) it follows that
Jri(@E 1) < friv1 (Trige) + (505 Thiv1 — Thiv2)

and taking into account for the (i + 1)-th element the last inequality has the
form

Fea(@iin) < F@R) = S = Sllonieo = 2l + (0w 00 — 7). (43)
Now using equality (27) from Lemma 5 under k = k, y = TR ;4o 1t is obtained
F@8) = b+ S0 g0 = 22 =
= fk,i(xE,i+l) + <§%,i7$15,i+2 - xfc,i+l> + %‘|x§:,i+2 - J’IE||2~

Hence and from (43) it follows that

i
5||331’c,i+2 — 2papll® <05 — 0rina- (44)
On the other hand, from (3), (9) (for the (¢ + 1)-th element) we get

O iv1 S f(op) = f(@g 1) — SRt Thiv2 — Thiv1)

and from inequality (41) under I =i+ 1 it follows that
*‘%E,iﬂ < f(flé,z‘+2) — f(zg).
Now summing the last two inequalities it is determined that
(1- §)5E,i+1 < f(xE,i+2) - f(zk,i+1) - <5E,¢+1axl’c,i+2 - xfc,i+l>
< (Isg il 85 iv1DTg 42 — T igall-
Hence and from (44) we obtain (40). The lemma is proved.

Theorem 2. Let S C R™ be a bounded closed set satisfied condition (32). Then
complezity of the procedure 7 is equal to

f@) - f
[Twl +

where n =n(S) >0, ¢ =((n) > 0.

1677262

P-ope .
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Proof. First, let’s estimate the number of iterations of the procedure 7 by k.
Assume that in the procedure 7 there is a loop in relation to k. In this case, it
is constructed a sequence {zy}, k € K, such that according to Steps 4, 5 of the
procedure 7 for each k € K the followmg conditions hold:

Ay > &, (46)

f(@rg1) < f(ze) — 04y, (47)
where Ay, = 64, . Now summing the last inequality by k from 0 to n > 0 we
have

ZGAk<Z flrrs1)) < flzo) — f.

Hence under n — +oo we obtain Ay — 0 which contradicts condition (46).
Consequently, there exists a number k&’ > 0 such that the criterion

Ay <€

is fulfilled.
Further, let’s consider two cases to estimate the value k.

1) Suppose that condition (4) is determined under k = k' = 0 and ¢ > 0. Then
it is clear that the number of iterations k' does not exceed the value of the
first multiplier of valuation (45).

2) Suppose that criterion is fulfilled under k = k¥’ > 0 and ¢ > 0. Then according
to Steps 4, 5 of the procedure m and in view of (46), (47) we have

k'—1 -
Z 9¢ < Z f(wpi1)) < fl@o) — [
p=0 p=0

Hence taking into account zo = T (in accordance with Step 0 of the procedure
m) it is obtained that
f@) -1~

— (48)

Now let’s obtain a complexity of the procedure 7 in relation to ¢ while k
is fixed. Suppose that the point zj is constructed under some k > 0 by the
procedure 7, and there is a loop in relation to i, i. e. for each i € K conditions
(4), (6) are not fulfilled simultaneously. Then there is a sequence {dx;}, i € K,
constructed by the procedure 7 such that according to Lemma 6 for each : € K
it is determined

K < [——“——

(1l —6)

852 . < i — O,
2([[skisall + sk )2 Rt = Tt 7 Okt

Hence taking into account (36) from Corollary 1 we get

a(1—6)32
/“8@)6’%’”1 < Ok — Okyig1-
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After summing the last inequality by 4 from 0 to n > 0 we get

n

Zﬂ §kl+ Székz 6k7,+1 <6k0'

=0 =0

Hence from n — +oo it follows that d,; — 0, i € K. Therefore, there exists a
number i’ € K such that the inequality

ki <&

is fulfilled.
To estimate ¢’ consider the following cases.

1) Suppose that it is defined either criterion (4) or condition (6) for some k > 0,
i/ = 1 < 1. Then 7’ does not exceed the value of the second multiplier of
variable (45).

2) Assume that any condition of (4), (6) is fulfilled for some k > 0, &' =4 > 2.
Then according to Lemma 6, stopping criterion (4) and inequalities (36), (35)

from Corollary 1 we get

V=2 _ = i —2

1—6)? 2
> M(842)§2 < D (Okj = Ok j41) < 6ko < — ik
j=0 j=0 N

Therefore, the estimate

22
L
P (1 - B8

is obtained. Further, taking into account the last estimate and (48) the theorem
is proved. Now let’s propose a method which permits to find a point allowed to
find a point from the set X*(¢) under the determined € > 0 for a finite number
of iterations.

|

Step 0. Assign t = 0. Choose a point z; € R". Determine parameters x > 0,
€ (0,1), u> 0,0 € (0,1).

Step 1. Compute & = kot.

Step 2. Find a point 2,11 = m(2¢, &, 0, ).

Step 3. Increase the value of ¢ by one, and go to Step 1.

Remark 2. According to Steps 0, 4, 5 of the procedure m and Step 2 of the
proposed method for each t € K we obtain

f(zei1) < f(=). (49)

Therefore, the constructed sequence {f(z)}, k € K, is non-increasing,.
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Theorem 3. Suppose the sequence {z}, t € K, is constructed by the proposed
method. Then for each t € K it holds

zt € L(zp), (50)

f(zeg1) = 5 < pv/2u& + &, (51)

where p > 0 is a diameter of the set L(z).

Proof. In accordance with Theorem 2 the procedure 7 is finite for each t € K,
and as already noted in Remark 2 for each ¢ € K inequality (49) is fulfilled.
Consequently, for each ¢t € K we obtain inclusion (50).

In view of Lemma 4, Step 4 of the procedure m and Step 2 of the proposed
method for each t € K we have

flzee1) — 5 < 0/ 208 + &4,

where g; > 0 is a diameter of the set L(z;). Since for each t € K inequality (49)
is fulfilled, then L(z;) C L(zp), t € K. Therefore, there is a constant p > 0 such
that estimate (51) is determined for each t € K.

Theorem 4. Let € > 0 and p > 0 be a diameter of the set L(zy). Then the
complexity of the procedure of finding e-solution by the proposed method is equal
to

16772C2ﬁ4
12(1 - 0)2et
where p = py/21+ /€, 1 =1(L(20)) > 0, ¢ = ((n) > 0.
Proof. From inequality (51) of Theorem 3 for each ¢t € K it follows that

Flzern) = F* < &7 (0720 + VE).

Since according to Step 1 of the proposed method we have & < &y, & — 0,
t € K, then there exists a number ¢ € K such that for each ¢ > ¢’ the expression

Flarn) = 1 <& (0/20+ V&) < Vil (py/2u+ /&) < (53)

is defined.

If ¢ = 0, then the number of iterations in relations to ¢ does not exceed the
first multiplier of value (52). In this connection assume that ¢’ > 0. Then from
(53) under ¢ = t' it follows

t' < [2log, € —log, k — 2log, (p\/21 + /&)1, (54)
and for each p < ¢’ the inequality

(f(20) — f*)P?

02 1+

[2 loga € — loga K—2 logn /ﬂ |— -‘7 (52)

;p <2 (55)

is fulfilled.
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Further, since for each ¢ € K inclusion (50) is determined and L(zp) is a
bounded closed set, then according to Theorem 2 under S = L(zg) there exists
numbers n = n(L(z)), ¢ = ¢(n) > 0 such that for each ¢ < ¢’ complexity of
finding the point 2,11 on basis of the point z; by the procedure 7 equals

flz) = f* 1612¢2
L rrrerell

Hence and from (54), (55), f(zi41) < f(z), t < t’ it follows that general com-
plexity of the proposed method equals

t'—1

flz) = f* 16n2¢? f — )p? 160225
2! (29)&- M+ =i gy | < ;0[( Col 2108 371 el B

o\ A2 6n2¢2
210, &~ log,  — 2log, (o2 + V&) [Ty SAEes

The theorem is proved.

4 Conclusion

The bundle method is proposed for minimizing a convex function. To control the
count of cutting planes the developed method updates the model of the objective
function in case of obtaining good approximation quality of the epigraph in
the neighborhood of the current iteration point. Moreover, at the moment of
discarding cutting planes there are opportunities to involve any minimization
method. The convergence of the proposed method is proved. Estimation of the
complexity of finding an e-solution is equal to O(~9).
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Abstract. In this paper, we present a new Hyperfast Second-Order
Method with convergence rate O(N~°) up to a logarithmic factor for
the convex function with Lipshitz 3rd derivative. This method based on
two ideas. The first comes from the superfast second-order scheme of
Yu. Nesterov (CORE Discussion Paper 2020/07, 2020). It allows imple-
menting the third-order scheme by solving subproblem using only the
second-order oracle. This method converges with rate O(N~*). The sec-
ond idea comes from the work of Kamzolov et al. (arXiv:2002.01004). It is
the inexact near-optimal third-order method. In this work, we improve
its convergence and merge it with the scheme of solving subproblem
using only the second-order oracle. As a result, we get convergence rate
O(N 75) up to a logarithmic factor. This convergence rate is near-optimal
and the best known up to this moment.

Keywords: Tensor method - Inexact method - Second-order method -
Complexity

1 Introduction

In recent years, it has been actively developing higher-order or tensor methods
for convex optimization problems. The primary impulse was the work of Yu.
Nesterov [23] about the possibility of the implementation tensor method. He
proposed a smart regularization of Taylor approximation that makes subproblem
convex and hence implementable. Also Yu. Nesterov proposed accelerated tensor
methods [22,23], later A. Gasnikov et al. [4,11,12,18] proposed the near-optimal
tensor method via the Monteiro-Svaiter envelope [21] with line-search and got
a near-optimal convergence rate up to a logarithmic factor. Starting from 2018-
2019 the interest in this topic rises. There are a lot of developments in tensor
methods, like tensor methods for Holder-continuous higher-order derivatives [15,
28], proximal methods [6], tensor methods for minimizing the gradient norm
of convex function [9,15], inexact tensor methods [14,19,24], and near-optimal
composition of tensor methods for sum of two functions [19]. There are some
results about local convergence and convergence for strongly convex functions
[7,10,11]. See [10] for more references on applications of tensor method.
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At the very beginning of 2020, Yurii Nesterov proposed a Superfast Second-
Order Method [25] that converges with the rate O(N~%) for a convex func-
tion with Lipshitz third-order derivative. This method uses only second-order
information during the iteration, but assume additional smoothness via Lipshitz
third-order derivative.! Here we should note that for the first-order methods,
the worst-case example can’t be improved by additional smoothness because it
is a specific quadratic function that has all high-order derivatives bounded [24].2
But for the second-order methods, one can see that the worst-case example does
not have Lipshitz third-order derivative. This means that under the additional
assumption, classical lower bound O(N~2/7) can be beaten, and Nesterov pro-
poses such a method that converges with O(N~*) up to a logarithmic factor.
The main idea of this method to run the third-order method with an inexact
solution of the Taylor approximation subproblem by method from Nesterov with
inexact gradients that converges with the linear speed. By inexact gradients, it
becomes possible to replace the direct computation of the third derivative by
the inexact model that uses only the first-order information. Note that for non-
convex problems previously was proved that the additional smoothness might
speed up algorithms [1,3,14,26,29].

In this paper, we propose a Hyperfast Second-Order Method for a convex
function with Lipshitz third-order derivative with the convergence rate O(N ~®)
up to a logarithmic factor. For that reason, firstly, we introduce Inexact Near-
optimal Accelerated Tensor Method, based on methods from [4,19] and prove its
convergence. Next, we apply Bregman-Distance Gradient Method from [14,25]
to solve Taylor approximation subproblem up to the desired accuracy. This leads
us to Hyperfast Second-Order Method and we prove its convergence rate. This
method have near-optimal convergence rates for a convex function with Lipshitz
third-order derivative and the best known up to this moment.

The paper is organized as follows. In Sect. 2 we formulate problem and intro-
duce some basic facts and notation. In Sect. 3 we propose Inexact Near-optimal
Accelerated Tensor Method and prove its convergence rate. In Sect. 4 we propose
Hyperfast Second-Order Method and get its convergence speed.

2 Problem Statement and Preliminaries

In what follows, we work in a finite-dimensional linear vector space £ = R"”,
equipped with a Euclidian norm || - || = - ||o.
We consider the following convex optimization problem:

min f (), (1)

! Note, that for the first-order methods in non-convex case earlier (see, [5] and ref-
erences therein) it was shown that additional smoothness assumptions lead to an
additional acceleration. In convex case, as far as we know these works of Yu. Nes-
terov [24,25] are the first ones where such an idea was developed.

2 However, there are some results [30] that allow to use tensor acceleration for the
first-order schemes. This additional acceleration requires additional assumptions on
smoothness. More restrictive ones than limitations of high-order derivatives.
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where f(z) is a convex function with Lipschitz p-th derivative, it means that

D7 f(z) = DPf(y)ll < Lypllz — yll. (2)
Then Taylor approximation of function f(z) can be written as follows:
P4 A
Q(frmiy) = f(2)+ > =D fx) [y —2]", y e R™ (3)

k!
k=1

By (2) and the standard integration we can get next two inequalities

16) = 2 i) < gl =l @
IV5) = V2 Fr0)] < 22y~ 5)

3 Inexact Near-Optimal Accelerated Tensor Method

Problem (1) can be solved by tensor methods [23] or its accelerated versions
[4,12,18,22]. This methods have next basic step:

Ty, (z) = argmin {fzppr(f, x; y)} ,
y

where I
Qp m,(f,239) = Qp(f,w;y)erf,pHy*prﬂ (6)

For H, > L, this subproblem is convex and hence implementable.

But what if we can not solve exactly this subproblem. In paper [25] it was
introduced Inexact pth-Order Basic Tensor Method (BTMI,,) and Inexact pth-
Order Accelerated Tensor Method (ATMI,,). They have next convergence rates
O(k=P) and O(k~(®*+1), respectively. In this section, we introduce Inexact pth-
Order Near-optimal Accelerated Tensor Method (NATMI,) with improved con-

3

vergence rate O(k~ &l 1), where O(-) means up to logarithmic factor. It is an
improvement of Accelerated Taylor Descent from [4] and generalization of Inex-
act Accelerated Taylor Descent from [19].

Firstly, we introduce the definition of the inexact subproblem solution. Any
point from the set

Ny, (@) = {T €R™ ¢ [V, (f, 03 T)| < AIVAD) | (7)

is the inexact subproblem solution, where v € [0;1] is an accuracy parameter.
Nz()), m, is the exact solution of the subproblem.
Next we propose Algorithm 1.



170 D. Kamzolov

Algorithm 1. Inexact pth-Order Near-optimal Accelerated Tensor Method

(NATMI)

1: Input: convex function f : R™ — R such that V?f is L,-Lipschitz, H, = £L,
where £ is a scaling parameter, - is a desired accuracy of the subproblem solution.

2: Set Ag = 0,20 = Yo
3: for k=0tok=K -1 do
4:  Compute a pair A\g+1 > 0 and yr+1 € R™ such that

. — 7 |IPt
1 < /\k+1HP llyr+1 — Tk || < p 7
2 (p—1)! p+1
where
Yk+1 € N;Hp (Zw) (8)
and
Mot + 4/ ARy F4Akr1 A
k41 = 5 s Akl = Ak + aga
& = Ak + %xk.

Akt Yr Akt

5. Update zx4+1 := 2k — ap+1 V[ (yr+1)
6: return ygx

To get the convergence rate of Algorithm 1 we prove additional lemmas. The
first lemma gets intermediate inequality to connect theory about inexactness
and method’s theory.

Lemma 1. Ify, 1 € N;Hp(éﬁk), then

) 7 p+1)H,+ L 5
||V~Qp,Hp (.fv Tk Z/k+1)|| < 1 j 5 : ( )p!p p ||y,€+1 _ wka. (9)

Proof. From triangle inequality we get

IVfyr+)Il S NV F(Yr+1) = V2 (f, Trs yrt1) |l
IV (f, k5 yka1) = V2 11y, (F, B vk DI+ IV 2, 11, (F, B yrr 1) |l

(5),(6),(7) L ) P+ 1)H
< pf?lhﬁcﬂ -z |I” + (p#

lyrsr — Z6ll” + ANV F(yrr)]l-
Hence,

(p+1)H, + L N
=NV f(yrs1)ll < #Ilykﬂ — TP

And finally from (7) we get

~ 5 ¥ (p+1)H,+ L -
IV 82,1, (f B3 gl < - o ke = 3l
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Next lemma plays the crucial role in the prove of the Algorithm 1 conver-
gence. It is the generalization for inexact subpropblem of Lemma 3.1 from [4]

Lemma 2. If yj1 € N;Hp(j;k)7 H, =¢L, such that 1 > 2y + 7{(1)14-1) and

1 Hy - |Jyrp1 — Tg|P? p
— <A P , then 10
g =k (p—1)! “p+l (10)
lye+1 — @k = Mea V)l < o gk — Tl (11)
1-— 2
2p§+ £+ 757 (12)
(1 —7)2p¢

where o < 1.

Proof. Note, that by definition

Va1, (fr 85 Yrs1) = V2 (f, Tii Yr1)

Hy(p+1 o i (13)
+ %”ywﬂ — &P (Yhrr — Tn)-
Hence,
- p!
Ye+1 — Tk = PR
Hy(p+ 1)|yk+1 — Zx [P~ (14)

. (VQp,Hp (f, T yks1) — VO (f, fk;ykﬂ)) .
Then, by triangle inequality we get

a1 — @k — M1 Vi Wrr) | = Mo (VF (Wrr1) = V2(f, Tk Y1)
+ M1 V2 H, (s Trs Yha1)

+ (yk+1 — @+ Mot (V2 (Fs B3 Y1) — V2p 1, (f, g yk+1))) H
(5),(14)

L - ~ -
< Mot — kst — Tell? + M1 IV 2,11, (F s Brs yiosn) ||
p'
p!
+ | Akt1 — p
H, (p D) - [lyken — 3P

NV 211, (f 03 Yns1) — V2 (f, s yig) |

(9),(13) ) L o
S (Akﬂpmm P

+1)H, + L
A Y (p ) Hp

1—9 p!

p!
+ [ Akg1 — -
U H, (p 1) ke — alP?

P llyksr — kap_l)

p+1)H, -
( p') Pllykr1 — Zx [P
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- A ¥ = pe
s =l (252 (L4 T (0 D+ L)) o — 2l

Aer1(p+1) - ip—
T e

(10) o v e
< s = el (252 (L T2 @+ DHy + 1) s = )
- Mex1(p+ 1)H, B B
e =l (1= 22y - )
N Ak
=l =l (14 2 s = i
gl
(B o0+ 0, 1) ).
Hence, by (10) and simple calculations we get
>1+L Ly~ (p+1)Hy + ——((p+ 1)H, + L)
o=z 2pH, p — \D LN~ p p p
1
=1+g e (1—(p+1)£+1”7((p+1)€+1>>
1 + €+
=14 — (1_p£_£+7p§7§"/>
2p€ 1=~
1 (1p££’y+w£+’y€+w£+’y§+v>

2p€ L—n
:1+<1—p§—§+2w§+27£>

(1 —7)2p¢
_pEF1 -6+ 29¢
(1 —7)2p¢

Lastly, we prove that ¢ < 1. For that we need

(1—7)2p€ > p€+1—E+29¢
(p+1)§>1429¢(1 +p)

LS N
2 2%prn =

We have proved the main lemma for the convergence rate theorem, other parts
of the proof are the same as [4]. As a result, we get the next theorem.

Theorem 1. Let f be a convex function whose p'" derivative is Ly,-Lipschitz
and x, denote a minimizer of f. Then Algorithm 1 converges with rate

)~ 1) < 0 (B (19
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where
R = |lzo — 2" (16)

s the maximal radius of the initial set.

4 Hyperfast Second-Order Method

In recent work [25] it was mentioned that for convex optimization problem
(1) with first order oracle (returns gradient) the well-known complexity bound

(L1R2/5)1/2 can not be beaten even if we assume that all L, < oo. This is
because of the structure of the worth case function

fplz) = \x1|p+1 + |z2 — :E1|p+1 + .ot |z, — xn_1|p+1,

where p = 1 for first order method. It’s obvious that f,(z) satisfy the condition
L, < oo for all natural p. So additional smoothness assumptions don’t allow to
accelerate additionally. The same thing takes place, for example, for p = 3. In this
case, we also have L, < oo for all natural p. But what is about p = 27 In this case
L3 = oo. It means that fo(x) couldn’t be the proper worth case function for the
second-order method with additional smoothness assumptions. So there appears
the following question: Is it possible to improve the bound (L2R3/5) 2/7? At the
very beginning of 2020 Yu. Nesterov gave a positive answer. For this purpose, he
proposed to use an accelerated third-order method that requires O ((L3R4 /e)Y/ 4)
iterations by using second-order oracle [23]. So all this means that if L3 < oo,
then there are methods that can be much faster than O ((L2R3/5) )

In this section, we improve convergence speed and reach near-optimal speed
up to logarithmic factor. We consider problem (1) with p = 3, hence L3 < occ.
In previous section, we have proved that Algorithm 1 converges. Now we fix the
parameters for this method

2p 3
&= p+1 2 (17)
By (12) we get o = 0.6 that is rather close to initial exact og = 0.5. For such
parameters we get next convergence speed of Algorithm 1 to reach accuracy e:

Nout = O ((L3f4)é> : (18)

Note, that at every step of Algorithm 1 we need to solve next subproblem
with accuracy v = 1/6

argmin {<Vf<xi>, v+ S )y o
Yy

1 L
+ 5Dl — i+ 2y -l
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In [14] it was proved, that problem (19) can be solved by Bregman-Distance
Gradient Method (BDGM) with linear convergence speed. According to [25]
BDGM can be improved to work with inexact gradients of the functions. This
made possible to approximate D?f(z) by gradients and escape calculations of
D3f(x) at each step. As a result, in [25] it was proved, that subproblem (19)
can be solved up to accuracy v = 1/6 with one calculation of Hessian and

0 (log (va(“)uthf(“)” )) calculation of gradient.

We use BDGM to solve subproblem from Algorithm 1 and, as a result, we
get next Hyperfast Second-Order method as merging NATMI and BDGM.

Algorithm 2. Hyperfast Second-Order Method

1: Input: convex function f :R"™ — R with Ls-Lipschitz 3rd-order derivative.
2: Set Ay = 0,20 = Yo

3: for k=0tok=K—-1 do

4:  Compute a pair Ag+1 > 0 and yr+1 € R" such that

3Ls - |lykt1 — @k
4

3
< Akt SZ’

L
2
where yr41 € ./\/'31{;23/2 (Zr) solved by Algorithm 3 and

Aot 4 /AL + ANk Ay

5 , A1 = Ak + k41

ak4+1 =

7 Ag y Ak+1
k= k
Apt1 Agt1

Tk .

5. Update zx4+1 := 2k — ap+1V f(Yr+1)
6: return yg

In the Algorithm 3, 3, (2;,2) is a Bregman distance generated by py(2)

B (zi,2) = pi(2) — pr(zi) — (Vpr(zi), 2 — 2i) -
By gy, (%) we take an inexact gradient of the subproblem (19)

onr(2) = VF(@r) + V2 f(Tn)lz — Tu] + %gék(Z) + Lyllz — 2x* (2 — 2x) (22)

and gZ (z) is a inexact approximation of D? f(Zy)[y — Zx]?

G5.(2) = 5 (VG + 7z = 50) + V(o — (2 — 7)) — 2Vf (@) (23)

In paper [25] it is proved, that we can choose

5 = O ( 1 = 3 1> )
IVF@)lE + 1V2F (@) /L3
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Algorithm 3. Bregman-Distance Gradient Method
35

8(2+V2)|IV f (&)l

2: Set objective function

1: Set z0 = Zx and 7 =

o1(2) = (VS @), = = B+ 3 V2@l — a0 + 5 DS @) el + 22 o~

3: Set feasible set

1
se={z: - aull <2 (3R219s@01)° | (20)
4: Set scaling function
pi(2) = 3 (V2 f(@k)(2 — Tn), 2 — &u) + 2z — Z* (21)
5: for k>0 do
6:  Compute the approximate gradient g,, -(zi) by (22).
T: IF |gor(20)] < LV F(z)] - 5, then STOP
8: ELSE z;41 = arzger;lkln {(gwk;(zi), z—zi)+ 2 (1 + %) By (2, 2)} ,
9: return z;

then total number of inner iterations equal to

G+H>

- (24)

Ti(8) = O <ln

where G and H are the uniform upper bounds for the norms of the gradients
and Hessians computed at the points generated by the main algorithm. Finally,
we get next theorem.

Theorem 2. Let f be a convex function whose third derivative is Lg-Lipschitz
and x, denote a minimizer of f. Then to reach accuracy € Algorithm 2 with
Algorithm 8 for solving subproblem computes

) (25)

weof(22)
Ng:O<<L3f4>élog<G—£H)> (26)

gradients, where G and H are the uniform upper bounds for the morms of the
gradients and Hessians computed at the points generated by the main algorithm.

ST

Hessians and

One can generalize this result on uniformly-strongly convex functions by
using inverse restart-regularization trick from [13].

So, the main observation of this section is as follows: If L3 < oo, then we can
use this hyperfast® second-order algorithm instead of considered in the paper
optimal one to make our sliding faster (in convex and uniformly convex cases).

3 Here we use terminology introduced in [25].
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5 Conclusion

In this paper, we present Inexact Near-optimal Accelerated Tensor Method and
improve its convergence rate. This improvement make it possible to solve the
Taylor approximation subproblem by other methods. Next, we propose Hyper-
fast Second-Order Method and get its convergence speed O(N ~°) up to logarith-
mic factor. This method is a combination of Inexact Third-Order Near-Optimal
Accelerated Tensor Method with Bregman-Distance Gradient Method for solv-
ing inner subproblem. As a result, we prove that our method has near-optimal
convergence rates for given problem class and the best known on that moment.

In this paper, we developed near-optimal Hyperfast Second-Order method for
sufficiently smooth convex problem in terms of convergence in function. Based on
the technique from the work [9], we can also developed near-optimal Hyperfast
Second-Order method for sufficiently smooth convex problem in terms of conver-
gence in the norm of the gradient. In particular, based on the work [16] one may
show that the complexity of this approach to the dual problem for 1-entropy

regularized optimal transport problem will be O (((\/5)4/5)1/5) - 0(n%*?) =

O(n?*°¢=1/%) a.o., where n is the linear dimension of the transport plan matrix,
that could be better than the complexity of accelerated gradient method and
accelerated Sinkhorn algorithm O(n?°~1/2) a.o. [8,16]. Note, that the best theo-
retical bounds for this problem are also far from to be practical ones [2,17,20,27].

Acknowledgements. I would like to thank Alexander Gasnikov, Yurii Nesterov,
Pavel Dvurechensky and Cesar Uribe for fruitful discussions.
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Abstract. This work addresses the optimistic statement of a bilevel
optimization problem with a general d.c. optimization problem at the
upper level and a convex optimization problem at the lower level. First,
we use the reduction of the bilevel problem to a nonconvex mathemat-
ical optimization problem using the well-known Karush-Kuhn-Tucker
approach. Then we employ the novel Global Search Theory and Exact
Penalty Theory to solve the resulting nonconvex optimization problem.
Following this theory, the special method of local search in this prob-
lem is constructed. This method takes into account the structure of the
problem in question.

Keywords: Bilevel optimization + Optimistic solution -
KKT-approach - Reduction theorem - Difference of two convex
functions - D.c. optimization + Global Search Theory - Exact Penalty
Theory - Local search

1 Introduction

It is well-known that bilevel optimization is now at the front edge of modern
mathematical optimization [1,2]. Bilevel optimization problems (BOPs) repre-
sent extreme problems, which — side by side with ordinary constraints such
as equalities and inequalities — include a constraint described as an optimiza-
tion subproblem [1]. BOPs are important theoretically and very prospective in
applications. In particular, according to J.-S. Pang [3], a distinguished expert
in optimization, the development of methods for solving various problems with
hierarchical structure is one of the three challenges faced by optimization theory
and methods in the 21st century. Moreover, problems with hierarchical structure
arise in investigations of complex control systems, and bilevel optimization is the
most popular modeling tool in such systems (see e.g. [2]).

A bilevel optimization problem is not well-posed if the inner (or lower level)
problem does not have a unique optimal solution. This situation can be addressed
by using the optimistic or pessimistic formulation of the problem. The optimistic
approach, when the actions of the lower level might coordinate with the interests
of the upper level, is used in most of the investigations since the assumptions that
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guarantee the existence of an optimal solution are weaker and reformulations of
the problem result in ordinary single-level optimization problems [1].

This paper is focused on one of the classes of bilevel problems with a general
d.c. optimization problem (with functions that can be represented as a difference
of two convex functions) at the upper level and a general convex optimization
problem at the lower level. The task is to find an optimistic solution. Such a class
was chosen because it is the most general one which might be solvable by the
well-known Karush-Kuhn-Tucker (KKT) approach when the lower level problem
has to be replaced by the KKT-conditions (or the equivalent duality conditions)
[4-6]. This approach (or the KKT-transformation) leads to a nonconvex single-
level mathematical optimization problem with complementarity constraints
which is intrinsically irregular. For example, the Mangasarian-Fromovitz con-
straint qualification is violated at every feasible point (see, e.g., [7]). Moreover,
the resulting problem is equivalent to the original one only if global optimal
solutions are considered [1,8].

Hence, the principal question here is how we will solve the obtained noncon-
vex optimization problem.

New Global Optimality Conditions (GOCs) proved in [9,10] by
A.S. Strekalovsky for d.c. optimization problem with inequality and equality
constraints open a way to develop efficient global search methods for the most
general nonconvex optimization problems. Previously, the Global Search The-
ory (GST) for the canonical nonconvex optimization classes (such as convex
maximization, d.c. minimization, and problems with one d.c. constraint) [11,12]
allowed to solve some topical problems of Optimization and Operations Research
[13-16] including problems with the bilevel structure [17-21].

In particular, our group, under the guidance of A.S. Strekalovsky, has good
experience in solving linear bilevel problems with up to 500 variables at each
level [17,20], quadratic-linear bilevel problems of dimension up to (150 x 150)
[20], and quadratic bilevel problems of dimension up to (100 x 100) [21]. Here
we intend to generalize our approach for more complicated bilevel problems.

At the same time, as we can see in the available publications, only a few
results published so far deal with numerical solutions of high-dimension bilevel
problems (for example, up to 100 variables at each level for linear bilevel prob-
lems [22]). In most of the cases, authors consider just illustrative examples with
the dimension up to 10 (see, e.g. [23,24]) and only the works [25-27] present
some results on solving nonlinear bilevel problems of dimension up to 30 at each
level (see also the surveys [28,29]).

In contrast to the commonly accepted global optimization methods such as
branch-and-bound based techniques, approximation, and diagonal methods, etc.
[30-32], the GST developed by A.S. Strekalovsky [9-12] employs a reduction of
the nonconvex problem to a family of simpler problems (usually convex) that
can be solved by classic convex optimization methods [4-6].

In accordance with the GST, this paper aims at the construction of basic
elements of the methods for finding optimistic solutions to the problems under
study. Section 2 deals with the reduction of the original bilevel problem to the
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single-level one, and the obtaining of a d.c. decomposition for all functions from
the latter formulation. In Sect.3 exact penalization and the GOCs in terms of
reduced nonconvex problem are presented and discussed. Section 4 is devoted to
the description of the Special Local Search Method. Section 5 presents concluding
remarks.

2 Problem Statement and Reduction

Consider the following sufficiently general bilevel optimization problem in its
optimistic statement. In the optimistic case, according to the theory [1], the
minimization at the upper level should be performed with respect to the variables
of both levels:

F(x, y) := go(x,y) — ho(z,y) | min,
y € Yi(z) := Argmyin{G(wyy) ly € Y(z)},

where Y (z) := {y € R" | ¢;(z,y) <0, j=1,..,q}, the functions go(-), ho(-),
and ¢;(-), j = 1,...q, are convex with respect to the aggregate of  and y on
IR™*" the functions g;(-), hi(+), i = 1, ...p, are convex on IR™, and the function
y — G(z,y) is convex with respect to y on IR"™ Vz € X.
Let us make the following assumptions concerning the problem (BP).
Assume that the set Y.(x) is a nonempty compact for every fixed z € X.
Furthermore, suppose that

(H1) (2)

function F(z,y) is bounded below on the nonempty set }
Z = {(z,y) € R™™" | g(x) = h(x) < 0p, @(,y) <04},

where 0; = (0,...,0)T € IR%; g(-), h(-), and ¢(-) are appropriate vector-valued
functions. Moreover,

Vo € X function G(z,y) is bounded below on the nonempty
(H2) set Y(z), so that, infinf{G(z,y) |y € Y(z), z € X} > —o0. (3)
@y

In addition, assume that the objective function of the problem (BP) satisfies
the Lipschitz property [5,6] with respect to both variables. Besides, functions
ho(x,y) and h;(z), i = 1, ..., p, are differentiable with respect to all their variables
and these gradients are continuous.

Further, it can be readily seen that the lower level problem of the problem
(BP) is convex when z € X is fixed:

(.FP(%)) G(x,y) ! Hlyin, (Pj($,y) <0, j=1,...,q (4)

So that, e.g. when Slater’s constraint qualification is fulfilled for the lower
level problem at any parameter value x € X:

(8€Q) () : (2, 9(x)) <0, j=1,..q, (5)
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then the KKT optimality conditions are necessary and sufficient in the problem
(FP(z)). Additionally, we have to assume that the functions G(z,-), ¢;(z,-),
j = 1,...q, are differentiable with respect to y Vx € X and these gradients are
continuous with respect to both z and y [4-6]. Under these assumptions, the
existence of a solution to problem (BP) can be guaranteed [1].

In addition, under these assumptions, the bilevel problem (BP) can be
replaced with the following single-level mathematical optimization problem:

F(z,y) | min, ze€ X,
C, Y,V

P) :
Vyﬁ(:v,y,v) = Onv ga(:r,y) < qu v 2> qu <’U,(p($,y)> = 07

(6)

where L(z,y,v) = G(z,y) + (v, o(z,y)) is the normal Lagrange function of
problem (FP(z)).

In [8] the equivalence of the problems (BP) and (P) from the viewpoint of
searching global solutions is proved. The most important theorem for justifica-
tion of the approach for finding optimistic solutions to the problem (BP) using
solving the problem (P) is the following one.

Theorem 1. [8] Let the triple (z*,y*,v*) be a global solution to the single-level
problem (P)-(6). If the Slater’s constraint qualification (SCQ)—(5) is satisfied
Vo € X for the lower level problem (FP(x))-(4), then the pair (x*,y*) is a
global solution to the bilevel problem (BP)—(1).

Further, let us study a possibility of finding a global solution to the prob-
lem (P) with the help of the new GOCs [9,10] and the GST developed by
A.S. Strekalovsky [11,12].

First of all, a solution to the problem (P) exists under the assumptions above.
Now let us analyze properties of this problem.

The constraints ¢(z,y) < 0 and v > 0 define a convex set S and do not
produce additional difficulties to the problem. For simplicity, everywhere further
we will use the term “convex constraints” when the constraints describe a convex
feasible set in the problem in question, as well as the term “nonconvex constraint”
defined similarly.

The constraints V,L(x,y,v) = 0,, might be convex or nonconvex depending
on properties of the functions G(-) and ¢(-).

Let function G(z,y) be quadratic, for example,

Glasy) = 50, Co) + (dr) + (. Qu),

where d € IR", C is a symmetric and positive semidefinite (n x n)-matrix, and
Q is a rectangular (m X n)-matrix. Note that, in that case, the quadratic terms

1
of the form §<Z‘,D$> + (¢, z), where D is symmetric and positive semidefinite

too, are not included in the lower level objective function, because for a fixed
upper-level variable x these terms are constants and do not affect the structure
of the set Y. (z) [4,6].
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Besides, let function ¢(z,y) be affine, so that, ¢(x,y) = Ax + By — b, where
be R, Ae R, B e R Then V,L(z,y,v) = Cy +d+27Q +v'B
and affine constraints V,L(z,y,v) = 0, define a convex set which can be also
included in the set S.

If the functions G(z,y) and ¢(x,y) are more general then the equality con-
straint V,L(z,y,v) = 0, is becoming nonconvex one.

Further, the constraint (v, p(z,y)) = 0 is nonconvex in the problem (P)—(6)
even in the quadratic case above, because it contains the products of components
of the variables v and x (as well as components of v and y) which are bilinear
structures [13].

To apply the GST for the study of the problem (P), it is necessary to con-
struct explicit representations of all mentioned nonconvex functions in its for-
mulation as differences of two convex functions (d.c. decompositions). If the
lower level constraint functions are twice continuously differentiable then, the
complementarity constraints are d.c. functions [7].

Let (VyL(z,y,v)); = gi(x,y,v) — hi(z,y,v), it =p+1,...,p+n, be the d.c.
decompositions of each component of the vector-function V,L(z,y,v). At the
same time, let (v, ©(2,¥)) = gp+n+1(Z, Y, V) — Aptnt1(x,y,v). Note that we can
build such decompositions where h;(z,y,v), i =p+1,....,p+n+ 1, are differen-
tiable with respect to all their variables and these gradients are continuous.

For example, if the function ¢(x,y) is affine, i.e. p(z,y) = Az + By — b,
then the d.c. representation for the function defining the latter constraint in the
problem (P)—(6) can be obtained by the well-known property of scalar product

1 1
({z,y) = Flle+ yl* - yiae yl1?):
1 9 1 2
Iptni1(T,y,v) = Z”” + Azl]® + 1”” + Byl|* — (b,v),

1 1
hpinia(2,y,0) = S o = Az||* + Lo = By|*.
So, the problem (P) might be written in the following way:

F(z,y) = go(x,y) — ho(z,y) | grvnylrll)’

(l‘,y,’l}) €S = {(l"yav) ‘ @(x’y) < Oq’ v 2> Oq}’
(DCC) filz) == gi(x) — hi(z) <0, ie{l,...p} =T, (7)
fi(xayvv) = gi(xayav) - hi(x,y,v) = 07
ie{p+1l,.,p+n+1} =€,

where g;, h;, 1 € £, are convex with respect to the aggregate of all their variables.
Basing on the assumptions above we can conclude that the feasible set F of
the problem (DCC)

F = {(xvy7v) €S | fl(‘r) S 07 1€ I; fi(fU,y,U) - 07 1€ (‘:},
is non-empty and the optimal value V(DCC) of the problem (DCC) is finite:
V(DCC) = Hlf(F, f) = inf ){F(:L'7y) | (Z,y,?)) € f} > —00.

(z,y,v
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Now we can pass to the characterization of global solutions in this problem
(see [9,10]).

3 Exact Penalization and Global Optimality Conditions

First of all, consider the auxiliary problem:

(DC(0)) Po(z,y,v) := F(z,y) + oW (z,y,v) | [in, (z,y,v) €S, (8)
z,y,v

where o > 0 is a penalty parameter, and the penalized function W(-) is defined

in the following way:

W(x,y,v) = max{ov fl(x)v AR fp(x)} + Z |fi($,y,7})
€€

For a fixed o this problem belongs to the class of d.c. minimization problems
[11,12] with a convex feasible set. In what follows, we show that the objective
function of (DC(c)) can be represented as a difference of two convex functions.

It is well-known that if for some o the triple (z(o),y(c),v(0)) is a solu-
tion to the problem (DC(c)) (briefly (z(o),y(o), v(a)) € Sol(DC(0))), and
(z(0),y(0),v(0)) is feasible in the problem (DCC), i.e. (x(0),y(o),v(0)) € F
and Wio| := W(z(0),y(0),v(0c)) = 0, then (x(o),y(c ) v(0)) is a global solution
to the problem (DCC) [4-6,9,10].

Also, the following result takes place.

Proposition 1. [1,4-6] Suppose that for some fized 6 > 0 the equality
W (6] = 0 holds for the solution (x(6),y(5),v(6)) to the problem (DC(5))—(8).
Then for all values of the parameter o > & the function Wlo| vanishes, so that
the triple (x(0),y(0),v(0)) is a solution to (DCC)—(7).

Thus, if the equality Wo] = 0 holds, then a solution to the problem (DC(0))
is a solution to the problem (DCC). In addition, this situation remains the same
when the value of o grows.

Hence, the key point for using Exact Penalty Theory here is the exis-
tence of a threshold value 6 > 0 of the penalty parameter o for which
Wlo] = 0 Vo > &. Due to the assumption above that the objective function
F(-) of the problem (DCC) satisfies the Lipschitz property [5,6] with respect to
both variables, the following assertion holds.

Proposition 2. [5,6,9,10] Let the triple (., y«,vsx) be a global solution to
the problem (DCC)—(7). Then, there exists & > 0 such that (., Y., vs) s a
global solution to the problem (DC(5))—(8). Moreover, Yo > & any solution
(z(0),y(0),v(c)) to the problem (DC(c))—(8) must be feasible in the problem
(DCC)—(7), i.e. W[o] =0, and, therefore, (x(c),y(0),v(0)) is a solution to the
problem (DCC)—(7), so that Sol(DCC) C Sol(DC(c)). The latter inclusion pro-
vides the equality

Sol(DCC) = Sol(DC(o)) Vo > 6, (9)
so that the problems (DCC)—(7) and (DC(c))—(8) turn out to be equivalent (in
the sense of (9)).
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Therefore, combining Propositions 1 and 2 with Theorem 1, we can con-
clude that the established connection between the problems (DC(c)) and (DCC)
enables us to search for a global solution to the problem (DC(o)) (where o > &)
instead of a solution to the problem (DCC) for finding an optimistic solution to
the problem (BP)—(1).

So, the existence of the threshold value & > 0 of a penalty parameter allows
us to solve the single problem (DC(0))—(8) (where o > ¢ is fixed) instead of
solving a sequence of the problems (DC(c))—(8) when the penalty parameter
tends to infinity (o — +00) (see, for example, [4]).

Before characterizing global solutions in the problem (DC(o))—(8) we need
to show that the objective function @,(-) is a d.c. function, so that it can
be represented as a difference of two convex functions. Using the well-known

i
properties: max fi(u) = maxlgi(u) + 3 by ()] = X hifw),  max{, f(u)}
g ? jET i€z

= max{gi(u), hi(u)} — hi(u), and | f;(v)| = 2max{gi(u), hi(u)} — [gi(u) + hi(u)]
[11,30], it can be readily seen that

b, (z,y,v) 2 F(z,y) + cmax{0, fi(z),i € T} 10
+0 31w ,0)| = Golw) = Ho (), (10)

where

Go(z,y,v):=go(z,y)+0 max{ > hj(x); [gi(x)—I—jf:i hj(x)} ¥ EI}

JEI jeI (11)
+20 Ezgmax{gi(xa Y, U); hz(.T, Y, U)}7
H,(z,y,v) := ho(2,y) + 0 [Z hi(@) + > (g;(@,y,v) + hy(@,y, 7J))] - (12)
i€l Jjee

It is easy to see that G,(-) and H,(-) are both convex functions [33,34], so
that the function @,(-) is a d.c. function, as claimed. At the same time, based
on the above assumptions, the function H,(-) is differentiable with respect to all
its variables. Moreover, it is obvious that for a feasible (in the problem (DCC))
point (Z4,ys,vs) € S we have W(x,,y.,vs) = 0, and, therefore, for a number
¢ :=F(x4,y.) (Yo > 0), we obtain

Do (T, Yy Vi) = F(@s, yu) + W (2, Y, v4) = F(24,94) = C. (13)

Now we are ready to formulate the necessary GOCs in terms of the problem
(DC(0))—(8) that constitute the basis of the Global Search Theory.

Theorem 2. [9,10] Let a feasible point (T.,ys,vx) € F, ¢ 1= F(Zx,yx) be
a (global) solution to the problem (DCC)—(7), and a number ¢ : ¢ > & > 0
1s selected, where & is a threshold value of the penalty parameter, such that
Sol(DCC) = Sol(DC,) Vo > 6.



186 A. V. Orlov

Then Y(z,u,w,vy) € R™T" T satisfying the equality
Ho(z,u,w) =7 —(, (14)
the inequality
Go(z,y,v) —v > (VHy(z,u,w), (x,y,v) — (z,u,w)) V(z,y,v) €S (15)
takes place. a

The conditions (14)—(15) possess the so-called algorithmic (constructive)
property. More precisely, if the GOCs are violated, we can construct a feasible
point that will be better than the point in question [9-12]. Indeed, if for some
(2,4, W,7) from (14) on some level ¢ := (}, := @, (z*,y*, v*) for the feasible in
the problem (DC(o)) point (Z,4,7) € S the inequality (15) is violated:

Ga("zv gv ﬁ) < ’7 + <VHU(27 ﬂv ’(I)), (‘%7 gv 6) - (23 ﬂa 'IZ))> )
then it follows from the convexity of H,(-) and the equality (14) that
@U(j}, Zj7 ﬁ) = Ga(ja ga 77) - Ho(ia :ga 17)
< Ho(2,0,@) + ( + Hy(%,9,0) — Ho (2,0, W) — Hy (,3,0) = D, (", y*,v"),

or, o (Z,7,0) < Po(xF,y*, vF), (z*,y*,v*) € F, (&,§,0) € S. Therefore, the
point (z*, y*, v¥) is not a solution to the problem (DC(c)). Moreover, if the triple
(%, 7, 0) is also feasible in the problem (DCC), i.e. W (%, 7,7) = 0 = W (z*, y*, v*),
we obtain the chain F(z*,y*) = &, (z*, y*,v*) > &,(%,7,7) = F(Z, 7). It means
that (z*,y*,v*) & Sol(DCC) and the triple (Z,7,7) € F is better than the point
(2, y*, vF).

It can be readily seen that Theorem 2 reduces the solution of the nonconvex
problem (DC(0)) to study of the family of the convex (linearized) problems

(PoL(z,u,w)) U, (z,y,v) := Go(z,y,v)
—(VH,(z,u,w), (z,y,v)) | grznylrll}7 (z,y,v) € S,} (16)
depending on 4-tuples (z,u,w,v) € IR™T" 41 which satisfy the equality (14).
Note, the linearization in this problem is implemented with respect to “unified”
nonconvexity of the problem (DC(c)) defined by the function H,(-).

According to our previous experience, varying of the parameters (z, u, w, ) is
convenient to carry out together with a local search. Then, by changing param-
eters (z,u,w,v) in (14) for a fixed ¢ = ¢} and obtaining approximate solutions
(x(z,u,w,7),y(z,u, w,7),v(z,u, w,v)) of the linearized problems (P, L(z, u, w)),
we get a family of starting points to launch a local search procedure.

Additionally, we do not need to go over all (z,u,w,7y) at each level ¢
for checking the inequality (15). It is sufficient to prove that the principal
inequality (15) is violated at the single 4-tuple (2, @, w, %) by the feasible point
(%,7,9). After that we move to the new level (zF+1 yF+l o*+1) .= (7, 0),
Cop1 = Py (P +L Y1 vk+1) and vary parameters again.

So, the development of a special Local Search Method that takes into consid-
eration special features of the problem in question is the priority task before con-
structing a Global Search procedure. According to the GST, such Local Search
Method is the principal element of Global Search Algorithms [11-13,20].
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4 Local Search

Note, the problem (DC(c))—(8) belongs to the one of the canonical noncon-
vex optimization classes namely d.c. minimization when a value of the penalty
parameter o := & > 0 is fixed. Hence, in order to carry out a local search in
the problem (DC(5)) one can apply well-known Special Local Search Method
(SLSM), developed in [11]. This method is very popular in the literature as DC-
algorithm (DCA) [35], and it is based on a consecutive solving the sequence of
problems linearized with respect to the basic nonconvexity (see (P, L(z, u,w))—
(16)). It is clear that the linearization is implemented with respect to the function
H,(-) which accumulates all the nonconvexities of the problems (DCC)—(7) and
(DC(0))—(8). But in that case, a question about finding a threshold value of the
penalty parameter (which provide the equality Sol(DCC) = Sol(DC(c)) remains
open, and it should be resolved in advance, before performing a local search.

In this work, we suggest seeking a threshold value of the penalty parameter
at the stage of a local search. Keeping the ideology of linearization, we also use
the recent results concerning steering penalty parameters in nonlinear optimiza-
tion [36,37]. So, we can present the new Special Penalty Local Search Method
(SPLSM) [38] in terms of the problem (DC(o))—(8).

In accordance with the principles of local search in d.c. minimization [11], let
us organize an iterative process that additionally takes into account a dynamic
update of the penalty parameter.

Let there be given a starting point (zo,yo,v0) € S, an initial value ¢ > 0
of the penalty parameter 0. And let at the iteration k we have found the triple
(¥, y¥,v*) € S and the value o}, > 0 of the penalty parameter. Introduce the
following notations: Gy (-) := Gy, (-), Hg() = Hy,(+).

Now, consider the following linearized problem (PyL) = (P,, L(x*,y*, vF))

Uy (z,y,v) = Gz, y,v) }

(PiL) — (VHi(z*, ¢, %), (z,y,0)) | min, (z,y,0) € S. (17)
z,y,v

At the same time, taking into account that the penalty function W(z,y,v)
is also a d.c. function, we can represent it in the following way with the help of
the decomposition (10)—(12):

W(J), Y, U) = GW(QS‘, Y, U) - HW(J:’ Y, U)7
where
1 1
GW(Ivya,U) = E[Ga'(xvyav)igo(xvy)]a HW(I,y,U) = ;[H(T(‘Taz%v)iho(xﬂy)]‘
Now, introduce the following auxiliary linearized problem

Uy (z,y,v) .= Gw(z,y,v)
(prﬁk) - <VHW(‘T(O—k)7y(O—k)7U(O—k))a (xvyav» ! glylga (18)
(xz,y,v) €S.
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This problem is also convex and it is related to minimization of the penalty
function Wz, y,v). Now, pass to the scheme of the SPLSM.

Let also there be given two scalar parameters 71,72 €]0, 1[ of the method.

Step 0. Set k := 0, (z*,y*, v*) := (z0, yo, v0), ok := 0°.

Step 1. Solve the subproblem (PL) to get (x(ok), y(ok),v(ok)) € Sol(PxL).

Step 2. If W(z(o),y(ok),v(0ok)) = 0 then set o := oy,
(@(o4),y(04),v(04)) := (x(ok), y(ok), v(ox)) and go to Step 7.

Step 3. Else (if W(z(ox),y(ox), v(or)) > 0), by solving the linearized prob-
lems (APwLy) find (25, vk, vE,) € Sol(APw Ly).

Step 4. If W(ak, vk ovk) = 0 then solve a few problems
(P, L(zk,, yk, vE,)) —(16) (by increasing, if necessary, the value o, of a penalty
parameter o), trying to find oy > oy and the triple (z(o4),y(o4),v(04)) €
Sol(Py, L(zty,, yki,vh/)), such that W (z(cy),y(oy),v(04)) = 0 and go to
Step 7.

Step 5. Else, if W(m’ﬁv,y%m’ﬁv) > 0, or the value o, > o such that
W(x(oy),y(04),v(c4)) = 0is not found at the previous step, then find o4 > o,
satisfying the inequality

W (z(ok),y(or), v(on)) = W(z(o4),y(o),v(0+)) (19)
> m[W(z(on),y(ow), v(ow)) — Wzl vy, viy)]-

Step 6. Increase o, if necessary, to fulfil the inequality

V(o) y(ok), v(og)) — Yo (x(01),y(oy),v(04)) (20)
> moy [W(z(ow), y(on),v(or)) — W(z(o4), y(oy),v(o4))].

Step 7. opy1 = oy, (2P yFHL WE Y = (2(0)),y(0y), v(0L)), ki=k+1
and loop to Step 1. O

Remark 1. The ideas of additional minimization of the penalty function W(-)
and using the parameters 7, and 7o were inspired by works [36,37]. In these
works also can be found the practical rules on how to select the parameters of
the scheme and how to increase the value of a penalty parameter o.

Remark 2. The presented scheme has a theoretical nature mainly. Its conver-
gence analysis can be found in [38]. In order to apply this scheme in practice,
we should take into account the possibility of approximate solving the linearized
problems (PrL) and (APw L) as well as elaborate the stopping criteria. It is
clear that the usage the only obvious criterion W (z(oy),y(04),v(04)) =0 (or
W(z(o4),y(04+),v(04)) <€) is not sufficient for the local search goals [38].

Remark 3. The convex linearized problems (PL) and (APw L) are not smooth
due to the properties of the functions Gy (-) and Gy (-) respectively. To solve
these problems we can use one of the appropriate method of convex non-
differentiable optimization [5,39] or reformulate these problems in order to elim-
inate non-smoothness (see, e.g. [38]).
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5 Concluding Remarks

The paper proposes a new approach to solving bilevel optimization problem
with a general d.c. optimization problem at the upper level and a convex opti-
mization problem at the lower level. On the one hand, it uses the well-known
KKT-approach for reducing the original bilevel problem to the single-level one.
On the other hand, the reduced problem is investigated by the new Global Opti-
mality Conditions proved for general nonconvex (d.c.) optimization problems by
A.S. Strekalovsky using Exact Penalty Theory.

We described in detail the reduction of the original bilevel problem to a d.c.
optimization problem studied the question about an explicit d.c. decomposition
of all functions from the formulation of the problem presented the Global Opti-
mality Conditions and Special Penalty Local Search Method in terms of the
problem in question.

This paper is the first theoretical stage of scientific research concerning the
very difficult problems of bilevel optimization problems in the sufficiently general
statement. Our further investigations will be devoted to a building of a field of
corresponding test examples, to elaboration and testing of the developed local
search scheme as well as constructing and testing a global search method for
bilevel problems in question, based on presented theoretical foundations.
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Abstract. In this paper we experimentally check a hypothesis, that
dual problem to discrete entropy regularized optimal transport problem
possesses strong convexity on a certain compact set. We present a numer-
ical estimation technique of parameter of strong convexity and show that
such an estimate increases the performance of an accelerated alternat-
ing minimization algorithm for strongly convex functions applied to the
considered problem.

Keywords: Convex optimization + Otimal transport - Sinkhorn’s
algorithm - Alternating ainimization

1 Introduction

Optimal transport problem has different applications since it allows to define
a distance between probability measures including the earth mover’s distance
[51,62] and Monge-Kantorovich or Wasserstein distance [61]. These distances
play an increasing role in different machine learning tasks, such as unsupervised
learning [6,11], semi-supervised learning [56], clustering [31], text classification
[35], as well as in image retrieval, clustering and classification [13,51,53], statis-
tics [24,49], and other applications [33]. In many of these applications the original
optimal distances are substituted by entropically regularized optimal transport
problem [13] which gives rise to a so-called Sinkhorn divergence.

A close problem arises in transportation research and consists in recover-
ing a matrix of traffic demands between city districts from the information on
population and workplace capacities of each district. As it is shown in [28], a
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natural model of the district’s population dynamics leads to an entropy-linear
programming optimization problem for the traffic demand matrix estimation. In
this case, the objective function is a sum of an entropy function and a linear
function. It is important to note also that the entropy function is multiplied by
a regularization parameter v and the model is close to reality when the regu-
larization parameter is small. The same approach is used in IP traffic matrix
estimation [63].

Recent approaches to solving discrete optimal transport problem are based on
accelerated primal-dual gradient-based algorithms [21,30] which in some regimes
demonstrate better performance than well-known Sinkhorn’s algorithm [13,55].
Both these algorithms have complexity polynomially depending on the desired
accuracy [3,21,40]. Despite, formally, the dual for the optimal transport problem
is not strongly convex, it is strongly convex on any bounded subset of any sub-
space orthogonal to a one-dimensional subspace. In this paper we suggest and
check empirically a hypothesis which helps to increase the rate of convergence
for the dual problem to optimal transport. The hypothesis is that dual func-
tion demonstrates strong convexity on the orthogonal subspace and Sinkhorn’s
and other algorithms produce points in this orthogonal subspace meaning that
actually the dual problem is strongly convex on the trajectory of the method.

Since we focus mainly on alternating minimization, the related work contains
such classical works as [10,48]. AM algorithms have a number of applications
in machine learning problems. For example, iteratively reweighted least squares
can be seen as an AM algorithm. Other applications include robust regression
[41] and sparse recovery [16]. Famous Expectation Maximization (EM) algorithm
can also be seen as an AM algorithm [4,42]. Sublinear O(1/k) convergence rate
was proved for AM algorithm in [8]. AM-algorithms converge faster in practice in
comparison to gradient methods as they are free of the choice of the step-size and
are adaptive to the local smoothness of the problem. Besides mentioned above
works on AM algorithms, we mention [9,52,58], where non-asymptotic conver-
gence rates for AM algorithms were proposed and their connection with cyclic
coordinate descent was discussed, but the analyzed algorithms are not acceler-
ated. Accelerated versions are known for random coordinate descent methods
[2,23,26,27,36,37,44,47,54]. These methods use momentum term and block-
coordinate steps, rather than full minimization in blocks. A hybrid accelerated
random block-coordinate method with exact minimization in the last block and
an accelerated alternating minimization algorithm were proposed in [17].

2 Dual Optimal Transport Problem

In this paper we consider the following discrete-discrete entropically regularized
optimal transport problem

f(X):(C,X)+fy<X,1nX>—>Xérb1{i(1;’c), (1)

Ulr,e) = {X e RPN . X1 =7, XT1 =},
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where X is the transportation plan, In X is taken elementwise, C' € Rf *N g

a given cost matrix, 1 € RY is the vector of all ones, r,c € Sy(1) := {s €
RY : (s,1) = 1} are given discrete measures, and (A, B) denotes the Frobenius
N
product of matrices defined as (4, B) = > A;;B;j.
ij=1

Next, we consider the dual problem forjthe above optimal transport problem.
First, we note that U(r,c) C Q := {X € RY*" : 17X1 = 1} and the entropy
(X,In X) is strongly convex on @ w.r.t 1-norm, meaning that the dual problem
has the objective with Lipschitz-continuous gradient [43]. To be more precise,
function f is p-strongly convex on a set () with respect to norm || - || iff

) = @)+ (Vi@)y =) + Sl —yl? VoyeQ.

Further, function f is said to have L-Lipschitz-continuous gradient iff, for all
z,y € Q, |[Vf(x) = Vf(y)ll« < Llz — y|. Here || - ||« is the standard conjugate
norm for || - ||. The proof that Entropy is 1-strongly convex on the standard
simplex w.r.t. to ||-||1-norm can be found in [43]. The dual problem is constructed
as follows

i C, X X,InX 2
XGC?%51<T,C>< ) + (X, In X) (2)

_ : _ Ty _
_)r(ne%y%@{<C,X>+7<X,1nx>+<y,X1 )+ (2, xT1 c>}

N
= max § —{(y,r) —(2,¢) + min X4 (CU 4 yIn X 4yt 4 27 }
WERN{ {y,) = (z,) XGQ;:; (CY +7 y' +27)

Note that for all 4, 7 and some small ¢
X9 (CT+yn X7 +y' +27) <0

foy_Xij € (0,¢) and this quantity approaches 0 as X approaches 0. Hence,
X" > (0 without loss of generality. Using Lagrange multipliers for the constraint
17 X1 = 1, we obtain the problem

ol N
Xmm{z (X7 (O oI X7 4y +27)] [ZX - 1}}

The solution to this problem is
exp (—% (yi+29 +CY) — 1)

XV = .
ST exp (f% (yi + 2 + C¥) — 1)

With a change of variables u = —y/vy — %Lv = —z/y— %1 we arrive at the
following expression for the dual (minimization) problem

o(u,v) = y(In (lTB(u,v)l) —{u,ry —(v,¢)) — min_, (3)

u,vERN
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where [B(u,v)]” = exp (ul +vl — CT”) Let us also define

o(y,2) =<p<—y/v— ;L—Z/W—;l)y (4)

i.e. o(y, z) is the dual objective before change of variables. Note that the gradient
of this function has the form of two blocks
. Bly/v=1/2,—2/y-1/2)1
1B (—y/y—1/2,—z/v—1/2)1
_ B(-y/v-1/2,—2/y-1/2)"1
1B (=y/y—1/2,—z/v—1/2)1
Notably, this dual problem is a smooth minimization problem with the objec-
tive having Lipschitz continuous gradient with constant 2/ [30]. Unfortunately,
generally speaking it is not strongly convex since given a point (ug,vo) the value
of the objective is the same on the whole line (ug + t1,v9 — t1) parameterized
by t. Yet, this function is strongly convex in the subspace orthogonal to these
lines [15]. The goal of this paper is to use this strong convexity to accelerate the
accelerated alternating minimization method based on Nesterov extrapolation
and alternating minimization.
The variables in the dual problem (3) naturally decompose into two blocks u
and v. Moreover, minimization over any one block may be performed analytically.

Vo(y,z) = (5)

Lemma 1. The iterations

k+1 k+1
u ,0),

€ argmin p(u, v*), v*1 € argmin ¢ (u
ueRN vERN

can be written explicitly as
uF = u* +Inr—In (B (uk,vk) 1) ,
" =vF 4 Ine—1In (B (uk+1,vk)T 1) )

This lemma implies that an alternating minimization method applied to the
dual formulation is a natural algorithm. In fact, this is the celebrated Sinkhorn’s
algorithm [13,55] in one of its forms [3] listed as Algorithm 1. This algorithm
may also be implemented more efficiently as a matrix-scaling algorithm, see [13].
For the reader’s convenience, we prove this lemma here.

Algorithm 1. Sinkhorn’s Algorithm
Output: z*
for k> 1do
vt =uF +Inr —1n (B (uk,vk) 1)

k+1 _ 'Uk

v
u =u .
2 =" L lne—In (B (uk'H,UIH'l) 1)

end for

k+2 k+1
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Proof. From optimality conditions, for u to be optimal, it is sufficient to have
Vup(u,v) =0, or
r— (17 B(u,v*)1) 71 B(u,v*)1 = 0. (6)

k+1

Now we check that it is, indeed, the case for u = u from the statement of

this lemma. We check that

e(uk+1_uk

B(u*t vF)1 = diag( NB(u*, v*)1
— diag(eln 7"—1n(B(uk,vk)l))B(uk7 Uk)]_
= diag(r) diag(B(u*,v*)1) "' B(u*,v")1 = diag(r)1 = r

and the conclusion then follows from the fact that
1TB@r* vf)1 =1Tr = 1.

k+1

The optimality of v can be proved in the same way.

3 Accelerated Sinkhorn’s Algorithm

In this section, we describe accelerated alternating minimization method from
[59], which originates from [29,30,46], where the latter preprint [30] describes
accelerated alternating minimization for non-strongly functions. Our goal is to
use the algorithm which has a possibility to use strong convexity. Formally, the
dual OT problem (3) is not strongly convex on the whole space. It is strongly con-
vex on any bounded subset of the subspace orthogonal to lines (ug+t1,vo —t1).
For non-strongly convex problems algorithm (2) has the following sublinear con-
vergence rate f(z*) — f(z.) < 4”kLQR2. The proof can be found in [30]. The
following Algorithm 2 requires the knowledge of the parameter p of strong con-
vexity. Notice, that this algorithm run with u = 0 coincides with its modification
for non-strongly functions from [30]. But actually, we were able to outperform
the algorithm from [30] by estimating a parameter of strong convexity, but only
in iterations.
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Algorithm 2. Accelerated Alternating Minimization 2
Input: Starting point xo.

Output: z*

1: Set Ag=0,2°=2 o =1

2: for k> 0do

3 Set

B = argmin f (z¥ + B(v* — 2¥)) (7
B€[0,1]

4:  Set y* = 2* + Br(v* — z*) {Extrapolation step}

ie{l,...,
6:  Set 2" = argmin f(z) {Block minimization}
€55, (y*)
2
. . Yh+1 - 1
7: If L is known choose ax+1 s.t. ArFan) (mFpans) = In

If L is unknown, find largest ax+1 from the equation

2
. a .
f(yk) N Q(Ak+ak+lk)-é—7}k+#ak+l) HVf(yk)Hg-i-
HUTRa k k2 __ k+1
Q(Ak+ak+];)(k:l;:’//’ak+l) HU -y ”2 - f(x ) (8)

8 Set A1 = Ap + a1, Thr1 = Th + pagt1

9:  Set v = argmin 11 (x) {Update momentum term}
zeRN

10: end for

Theoretical justification is given by the following theorem proved in [59].

Theorem 1 [[59] Theorem 1]. After k steps of Algorithm 2 it holds that

f(@®) — f(2.) < nLR?min {;2 <1 - \/Ey_l} , (9)

where R is an estimate for |xo — x| satisfying ||zo — x| < R.

Applying Algorithm 2 to the dual entropy-regularized optimal transport prob-
lem (3) with the objective (4), and using the estimate L = 2/y and R <

Vn/2 (||C’||Oo —3In nilijn{ri, cj}) [30], we obtain the following Corollary.

Corollary 1. Let the histograms r,c be slightly modified, s.t. min{r;,c;} > e.
i.J

For ezample, one can set (7,¢) = (1— %) ((7‘, c) + n(%_a)(l, 1)) Let Algorithm
2 be applied to the dual entropy-regularized optimal transport problem (3) with

the objective (4). Let this dual problem have p-strongly convex objective. Then,
after k steps of Algorithm 2 it holds that

k—1
2n ¥ 2 4 wy
— < — — L N — L
0y, 2) — @(Ys, 24) < 5 (HCHOo 5 1n5> mln{k2, <1 1 > } (10)
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The specification of Algorithm 2 for the dual entropy regularized optimal trans-
port problem (3) with the objective (4) is listed below as Algorithm 3. Each
variable has two blocks that naturally correspond to the variables (y, z) in (4).

Algorithm 3. Accelerated Sinkhorn with Strong Convexity
Input: Starting point zo.

Output: z*

1: Set Ap=0,2°=w’, 7o =1

2: for k > 0 do

31 Set

B = argmin ¢ (2" + B(w* — ")) (11)
Bel0,1]

4:  Set s" = a* + B (w" — 2¥) {Extrapolation step}
5 Choose i = argmax ||Vi¢(s*)||3, where V(-) is given in (5).
ie{1,2
6: ifikzlthen{ !
T xlfﬂ =s¥+Inr—1In (B (5’{,5’5) 1)7 x§+1 = sk
8 else
9: x§+1:s§+lncfln (B (s}f,slﬁ)Tl), :E'f+1:s’f
10:  end if

2
11:  If L is known choose axt1 s.t. Ykt L

(Aptars1)(Tetpagy1) 2L
If L is unknown, find largest ax+1 from the equation

2
k k41 k\ |12
p(s”) — 2(Aptant1)(Thtrans1) Ve(s®)llz+ L .
HTkOk41 2 _ +1
2(Ak+ak+1)(7'+k+#ak+1) [w® = s7[I2 = (™) (12)

12: Set Apy1 = Ag + Qrt1, Tht1 = Tk + [HGk41
13:  Set w*! = w* — ax11Vp(s¥) {Update momentum term}
14: end for

We point out that usually, the goal is to solve the primal OT problem. For
simplicity, we consider only dual OT problem since the solution of the primal
can be reconstructed via standard primal-dual analysis [5,12,21,22] applied to
the discussed methods.

4 Estimating a Parameter of Strong Convexity

We build an initial estimate of strong convexity parameter p by searching the
value fi from [0, i] which gives the minimum objective value after 10 iterations.
L is an upper bound on the parameter of Lipschitz continuity of the gradient.

Dependence of the objective value after 10 iterations on u is presented on
Fig. 1.

Then we restart the algorithm from the best point with p = [2, [, f1/2] every
10 iterations.

The significant implementation detail is connected with the accumulation
of the momentum term (vector w) by Algorithm 2. If we restart the algorithm
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Fig. 1. Empirical dependence of the progress after 10 iterations h(u) = go(wlﬂo) on the
strong convexity parameter p used in Algorithm 2. The initial value of u is chosen as
a point of minimum of this dependence.
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Fig. 2. Performance of Algorithm 2 with the optimal choice of parameter p on the dual
entropy regularized optimal transport problem (3).

naively (with w® = 2%), we will lose all accumulated information. That is why,
we restart the algorithm with w® obtained from the last iteration of the previous
restart. In order to compare the difference we bring to comparison the case of
naive restarts.

As we can see from (Fig.2), the value of the dual objective decreases faster
when one uses the method with positive strong convexity parameter than when
one uses the method with p = 0.



200 N. Tupitsa et al.

5 Conclusion

In this work we have investigated, how strong convexity can be used to acceler-
ate the accelerated Sinkhorn’s algorithm for the dual entropy-regularized optimal
transport problem. As we see, the accelerated alternating minimization method
in its particular version of accelerated Sinkhorn’s algorithm with strong convex-
ity can utilize an estimated value of the strong convexity parameter to converge
faster. We underline that it is not clear how one can incorporate this informa-
tion in the standard Sinkhorn’s algorithm to accelerate it. As future work we
would like to note the study of automatic strong convexity adaptation proce-
dures like in [25,50], which are now adapted for gradient methods and coordi-
nate descent methods, rather than for alternating minimization methods. Among
other extensions, it would be interesting to understand whether restricted strong
convexity improves convergence rates of the methods for approximating Wasser-
stein barycenter [1,14,19,34,38,60] and related distributed optimization meth-
ods [18]. Another direction is an application to similar optimization problems,
which arise in transportation research in connection to equilibrium in congestion
traffic models and traffic demands matrix estimation [7,20] and multimarginal
optimal transport [39]. Finally, we use regularization for the OT problem to
make the dual problem have Lipshitz gradient. It would be interesting to use
universal methods [32,45,57] for the dual OT problem.
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Abstract. A significant issue in studies of economic development is whether
economies (countries, regions of a country, etc.) converge to one another in
terms of per capita income. In this paper, nonlinear asymptotically subsiding
trends of the income gap in a pair of economies model the convergence process.
A few specific forms of such trends are proposed: log-exponential trend,
exponential trend, and fractional trend. A pair of economies is deemed con-
verging if time series of their income gap is stationary about any of these trends.
To test for stationarity, standard unit root tests are applied with non-standard test
statistics that are estimated for each kind of trends.

Keywords: Income convergence - Time series econometrics - Nonlinear time-
series model - Unit root

1 Introduction

A significant issue in studies of economic development is whether economies (coun-
tries, regions of a country, cities, etc.) converge to one another in terms of per capita
income. There are a number of methodologies to test for the convergence hypothesis.
The most widespread one in the literature is the analysis of a negative cross-section
correlation between initial per capita income and its growth, the so-called beta-
convergence (see, e.g., [1]). An alternative methodology is the distribution dynamics
analysis that explores the evolution of cross-economy income distribution [2]. Both
approaches provide only an aggregated characterization of convergence. If the whole
set of economies under consideration is found to converge, it is not possible to reveal
economies with a deviant behavior (e.g., diverging or randomly walking). On the other
hand, if the convergence hypothesis is rejected, it is not able to detect a subset (or
subsets) of converging economies.

Methodologies based on time-series analysis make it possible to overcome this
problem. They consider time series of the income gap, i.e., the difference of logarithms
of per capita incomes in a pair of economies r and s, V. = V,y — Vs = In(Y,/Y),
t denoting time. To discriminate between logarithmic and real (e.g., percentage) terms,
Y, /Y, — 1 is called income disparity. One element of the pair can be an aggregate, for
instance, the national economy when economies under consideration are the country’s
regions.
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Bernard and Durlauf [3] have put forward a formal definition of convergence:
economies r and s converge if the long-term forecasts of per capita income (condi-
tionally on information available by the moment of the forecast, I) for both economies
are equal, that is

limy—.c E(yysel1) = 0. (1)

Despite this definition of convergence is general, procedures of testing for con-
vergence applied in [3] in fact detect only a particular class of processes satisfying (1),
namely, stationary processes with no trend (implying that y,, and y,, have a common
trend). Thus, such procedures are not able to classify the most interesting case of
catching-up as convergence.

As a way out, [4] proposes to model the (square of) income gap by a trend h(¢) of a
priory unknown form, approximating it by a power series of degree k. The respective
econometric model looks like (¢, denotes residuals with standard properties, «; is a
coefficient to be estimated):

Vi, = ht k) = ag+ont+oot® +.. A+t de(t=1,....T). (2)

Albeit the trend may be nonlinear, Eq. (2) is linear with respect to coefficients.
Convergence takes place if dh/dt < 0 holds for all 7. This condition is supposed to be
equivalent to the negativity of the time average of dh(¢)/dt:

T dh
Zzldt lel Zrl 3)

However, the equivalence is not the fact. It is obvious, considering a continuous-
time counterpart of (3):

1 [Tdn 1
7/ Edtff(h(T)—h(l))<0.

Hence, the mere fact that 2(T) < h(1) suffices to accept the convergence hypothesis.
In the general case, this does not evidence convergence. For instance, a U-shape path of
the income gap may satisfy (3). Moreover, even if dh/dt < 0 is true for every t = 1,...T,
condition (1) knowingly does not hold, as h(o0; k) = +00 for any finite k.

Thus, there is a want of developing an alternative methodology. This paper puts
forward such a methodology, namely, modeling the convergence process by asymp-
totically subsiding trends. This leads to nonlinear econometric models that need non-
standard distributions of test statistics to test models for unit roots.
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2 Modeling Convergence

Actual convergence processes are in fact a superposition of two processes that can be
called long-run, or deterministic, convergence, and stochastic, or short-run, conver-
gence. Long-run convergence is a deterministic path of the income gap v,,, that tends to
zero over time: yt, = h(t), h(z) e 0. In [4], only this process is considered (albeit

with no latter condition). Short-run convergence is an autocorrelated stochastic process
containing no unit root (i.e., a stationary process), v, = pv .| + &, where p is the
autocorrelation coefficient, p < 1, and ¢, ~ N(O, 62) with finite &. Intuitively, short-
run convergence characterizes the behavior of transient random shocks. A unit shock
deviates the income gap from its long-run path, dying out over time with half-life
0 = In(0.5)/In(p), so that the income gap eventually returns to its long-run path. Only
such processes are considered in [3] (assuming y;, = 0).

The superposition of these two processes gives a process that is stationary around
an asymptotically subsiding trend A(t). That is, albeit random shocks force the process
to deviate from the trend, it permanently tends to return to the trend, thus satisfying (1).
The following econometric model of the class AR(1) describes such a process:

Yrst :h(t)"’_ Vl(t: 0,...,T— 1), Vi = PVi-1 +8t(t: L...,T—Lwvw= 80)'

Applying the Cochrane-Orcutt transformation to this equation, the following model
is arrived at:

Ayrg =h(t) — A+ 1Dh(t = 1)+ Ay +&(t=1,...,T — 1), (4)

where Ay;’st = Yrst = Yrs -1 and 4 = p-1

To make the model (4) operational, a specific function /(7)) has to be taken from the
class of asymptotically subsiding functions. A few such functions are preferable in
order to model more adequately the properties of a process under consideration. The
following three functions seem convenient from the practical viewpoint: log-
exponential trend A(f) = In(1 + yed’), 0 < 0, exponential trend A(f) = ye‘st, 0 <0, and
fractional trend A(f) = y/(1 + 8t), 0 > 0. The respective models are nonlinear with
respect to coefficients, having the forms:

Ay,q =In(1+ yeﬁ’) - (A4 l)ln(l + ye‘s(’”)) + A1+ & (4a)
Ay, = 7€ — (24 1)y’ 4 Jy 1+ &5 (4b)
Ay = —— — (G 1) Dyt + e (4c)

T 140t 1+06(r—1)

An advantage of the log-exponential trend is the ease of interpretation. Parameter y
is the initial (at # = 0) income disparity. Parameter § characterizes the convergence rate
which can be simply expressed in terms of the half-life time of the (deterministic)
income disparity, i.e., the time the disparity takes to halve: @ = In(0.5)/d.
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A shortcoming of this trend is that is has no symmetry properties with respect to a
permutation of the economy indices. Albeit y,,, = —y,,, the permutation changes
absolute values of y and § (and may change the estimate of 1 in regression (4a)).
Contrastingly, exponential and fractional trends have symmetry properties. A per-
mutation of 7 and s changes only the sign of y, leaving its absolute value and the value
of 0 (as well as 4 in (4b), (4¢)) intact. However, while the initial income disparity can
be easily calculated from 7y, equaling ¢’ — 1 in both trends, the half-life of the deter-
ministic income gap involves a mixture of y and §. This results in hardly interpretable

In(0.5(e” + 1)))
Y

expressions. For the exponential trend, & = %ln( ; for the fractional trend,

0 =} (sostrm— 1):
6 \In(0.5(e" + 1))

Models (4a)—(4c) are also applicable to the case of deterministic divergence. It
takes place if 0 > 0 in the log-exponential and exponential trends, or é < O in the
fractional trend. The time the (deterministic) income disparity takes to double can
characterize the divergence rate.

Model (4) encompasses two particular cases. With Aa(f) = 0, which corresponds to
y = 0 in (4a)—(4c), it degenerates to ordinary AR(1) model with no constant:

Ayrxt = )Lyrs,tfl + &. (5)

This implies that series y,, and y,, are cointegrated with cointegrating vector [1, —1],
i.e., they have the same trend. Intuitively, this means that convergence as such, i.e.,
catching-up, has completed by ¢ = 0 (if it had occurred before). In the further dynamics,
per capita incomes in economies r and s are equal up to random shocks (hence, only
stochastic convergence takes place).

With A(f) = const, which corresponds to 6 = 0 in (4a)—(4c), model (4) degenerates
to ordinary AR(1) model with a constant:

Ayrst =o+ Yrsit—1 + &. (6)

This implies that series y,, and y,, are cointegrated with cointegrating vector [1, —y],
i.e., they have a common trend: hy(?) = y + h(f), y = —o/A. In other words, the income
gap is constant (up to random shocks); y,; and y,; move parallel to each other with the
distance between their paths equaling y. Again, only stochastic convergence takes place
here. Just models (5) and (6) are considered in [3] (albeit within a more evolved
framework).

Having estimated parameters of a specific model of the form (4), we need to check
its adequacy. First of all, the question is whether y,, is indeed stationary around the
given trend (y,;; has no unit root). There are a number of tests for unit root (testing
hypothesis 4 = 0 against 4 < 0, or 4 < 0 against A = 0). Most of them use z-ratio of 4,
T = Ao, as the test statistic. In the case of testing for unit roots, it has non-standard
distributions, differing from the #z-distribution (that is why it is designated 7, and not ?).
Such distributions (named the Dickey-Fuller distributions) are tabulated for AR(1)
models with no constant, with a constant, and with a linear and quadratic trends, but not
for models with proposed nonlinear trends. To estimate them, 7 in every model with a
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specific trend was estimated for each of 1 million generated random walks y, = y,_; + &,.
Table 1 reports some values of the t-statistic from the obtained distributions for sample
size T = 204 (used in the empirical analysis reported in the next section). Figure 1 plots
the 10-percent tails of the distributions, comparing them with the Dickey-Fuller dis-
tributions for the cases of linear and quadratic trend from [5].

Table 1. Selected values of the 7-statistics for models with nonlinear trends, 7' = 204.

Probability | Log-exponential trend (4a) | Exponential trend (4b) | Fractional trend (4c)
1% -3.841 -3.851 -5.152
5% -3.220 -3.273 -3.820
10% -2.898 -2.971 -3.297
010 r--=i—-=71---r-~ e T T e
0.09 -t
008 r---1m -7~ 4~ - - - Dickey-Fuller distributions: - - -
} } } } } Linear trend
0.07 r---im=-1-=-m--

Probability
o
&

T

Fig. 1. Distributions of the unit root test t-statistics for Eqgs. (4a)—(4c) and selected Dickey-
Fuller distributions; T = 204.

If the unit root test rejects the hypothesis of non-stationarity, the ordinary #-test can
test parameters y and J for statistical significance. Given that there are three versions of
the model (4), every version is estimated and tested. If they turn out to be completive,
the version providing the best fit — namely, the minimal sum of squared residuals
(SSR) — is accepted. Note that valid models with the “incorrect” sign of § suggest
deterministic divergence. The rejection of all versions because of the presence of unit
root or insignificance of y or § evidences the absence of (deterministic) convergence as
well. If statistical reasons for no-convergence are of interest, we can estimate and test
regression (6) and then, if it is rejected, regression (5). In this case, we find whether no-
convergence is due to coinciding or “parallel” dynamics of per capita incomes in a pair
of economies under consideration (the same or common trend), or — if both models are
rejected — it is due to a random walk.
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3 Empirical Application

This section provides an illustration of the empirical application of the proposed
methodology for analyzing convergence of regional incomes per capita in Russia. The
time span covers January 2002 through December 2018 with a monthly frequency (204
months). The indicator under consideration is the real personal income per capita by
region. The term “real” means that the income is adjusted to the respective regional
price level. The cost of the fixed basket of goods and services for cross-region com-
parison of population’s purchasing capacity serves as an indicator of the regional price
level. The official statistical data on nominal incomes and the costs of the fixed basket
come from [6-8].

Convergence is considered with respect to the national income per capita. Thus,
index s is fixed, denoting Russia as a whole; then y,,, is the gap between regional and
national incomes. To test models for unit roots, the Phillips-Perron test (PP test) is
applied with modifications proposed in [9, 10].

Since the whole set of results is cumbersome (involving 79 regions), this section
gives them only partially for illustrative purposes. It presents examples of qualitatively
different cases discussed in the previous section. Table 2 reports these.

Table 2. Selected results of analyzing regional convergence in Russia.

Model | 4 PP-test | y/a in (6) p-value of /o | 0 p-value of 0 | SSR
p-value

Kursk Region

(4a) |-0.484 (0.061) | 0.000 |-0.354 (0.018) | 0.000 -0.011 (0.001) | 0.000 0.550
(4b) | -0.496 (0.062) | 0.000 |-0.430 (0.025) | 0.000 —0.013 (0.001) | 0.000 0.546
(4c) | -0.361 (0.054) | 0.000 |-0.493 (0.066) | 0.000 0.029 (0.008) | 0.000 0.592
Republic of Karelia

(4a) |-0.457 (0.059) | 0.000 |-0.100 (0.012) | 0.000 0.005 (0.001) |0.000 0.680
(4b)  |-0.462 (0.059) | 0.000 |-0.103 (0.013) | 0.000 0.005 (0.001) |0.000 0.679
(4c) |-0.423 (0.057) | 0.000 |-0.122 (0.013) | 0.000 —0.003 (0.000) | 0.000 0.695
Saint Petersburg City

(4a) |-0.427 (0.058) | 0.000 |0.236 (0.035) |0.000 -0.001 (0.001) | 0.287

(4b) | -0.427 (0.058) | 0.000 |0.212 (0.028) | 0.000 —0.001 (0.001) | 0.288

(4c) |-0.427 (0.058) | 0.000 |0.212 (0.030) |0.000 0.001 (0.002) |0.365

6) -0.419 (0.057) | 0.000 |0.078 (0.012) |0.000
Republic of Bashkortostan

(a) |-0.359 (0.053)]0.000 |0.018 (0.033) |0.576 0.000 (0.015) | 0.976
@b) |-0.359 (0.053)] 0.000 |0.018 (0.032) |0.573 0.000 (0.015) | 0.976
(4c) | -0.359 (0.053)]0.003 |0.019 (0.032) |0.564 0.000 (0.014) | 0.985

6) —0.359 (0.053) | 0.000 | 0.006 (0.005) |0.249
®) —0.317 (0.052) | 0.000
Moscow Region

(4a) | -0.211 (0.043) | 0.076 |0.018 (0.016) |0.264 0.013 (0.005) |0.012
(4b) | -0.209 (0.043) | 0.094 | 0.019 (0.016) |0.246 0.013 (0.005) |0.013
(4c) | -0.180 (0.040) | 0.262 | 0.041 (0.019) |0.029 —0.004 (0.001) | 0.000

(6) —-0.125 (0.034) | 0.357 |0.010 (0.005) |0.043
) —-0.091 (0.030) | 0.116

Standard errors are in parentheses.
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Convergence manifests itself in the Kursk Region. All three versions of the trend
model can be accepted, suggesting fast convergence. Choosing model (4b) as providing
the best fit, the half-life time of the income gap equals 5.3 years (65.3 months).
Figure 2(a) plots the path of the actual income gap and its estimated exponential trend.
According to this trend, income per capita in the Kursk Region was below the national
level by 35% at the beginning of the time span under consideration and by only 3% by
its end. The log-exponential and fractional trends suggest even faster convergence with
half-live times 5.1 and 3.6 years, respectively.

Divergence occurs in the Republic of Karelia. Again, all three versions of the trend
model can be accepted. Model (4b) seems preferable, albeit its SSR differs from the
SSR in the model (4a) only slightly. Figure 2(b) depicts the dynamical pattern. The
income gap rises, doubling every 10.4 years. The income per capita in this region was
9% below the national level in January 2002 and 28% in December 2018.

The case of Saint Petersburg City (which is a separate administrative-territorial unit
considered as a region) illustrates the absence of convergence that is due to the “par-
allel” dynamics of the national and regional incomes per capita. Figure 2(c) shows this
case. Although the unit root test rejects the hypothesis of nonstationarity with confi-
dence in all trend models, high p-values of § suggest the absence of a trend. Model (6)
proves to be valid, implying the income gap to be time-invariant. It equals 0.186 (= —o/
A); in other words, real income per capita in Saint Petersburg City remains on average
constant, being 20.5% above the national level.

The Republic of Bashkortostan demonstrates a similar pattern, Fig. 2(d), with the
difference that there is no income gap; real income per capita here remains on average
equal to the national per capita income (in fact, the regional income fluctuates around
the national level). In all trend models, p-values of both y and § are high, thus implying
rejection of these models. The constant in the model (6) has high p-value as well, which
leads to the model (5). It proves to be valid; the unit root hypothesis is rejected with
confidence.

At last, no one model seems to describe the behavior of the income gap in the
Moscow Region, Fig. 2(e). We can reject models (4a) and (4b) because of high p-value
of y, and models (6) and (5) because of the non-rejection of a unit root. The conclusion
may be that non-convergence here is due to a random walk of the income gap.

Briefly summing up the results of the full analysis of income convergence in
Russia, convergence takes place in the whole of Russia, as the Gini index decreases
over time. Analysis by region yields the “anatomy” of convergence. Among all 79
regions in the spatial sample, 44 regions (55.7%) are converging. In 16 regions
(20.3%), non-convergence is due to common trends with the national income per capita
(in three cases, regional trends coincide with the national trend). An unpleasant feature
of the pattern obtained is a considerable number of diverging regions; there are 17 of
them (21.5%). Besides, random walks are peculiar to two regions.
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Fig. 2. Different cases of behavior of the income gap: (a) convergence (the Kursk Region);

(b) divergence (Republic of Karelia); (c) a constant income gap (Saint Petersburg City); (d) no
income gap (Republic of Bashkortostan); (d) random walking of income gap (the Moscow

Region).
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4 Conclusion

This paper develops a methodology of modeling convergence by asymptotically sub-
siding trends of the income gap in a pair of economies. This way conforms to the
theoretical definition of convergence. Three specific kinds of such trends are proposed,
namely, log-exponential trend, exponential trend, and fractional trend. This makes it
possible to select a specific model that most adequately describes properties of actual
dynamics.

Transformation to testable versions generates nonlinear econometric models that
represent a superposition of stochastic and deterministic convergence. Such models
need additional efforts: the application of methods for estimation of nonlinear regres-
sions and estimating distributions of the unit root test statistics for every specific trend.
However, these efforts are repaid, providing a theoretically adequate and practically
fairly flexible and helpful tool for studying processes of convergence between coun-
tries, regions within a country, regions of different countries (e.g., in the European
Union), etc.

The reported examples of applying the proposed methodology to the empirical
analysis of convergence of real incomes per capita between Russian regions show that
the results obtained look reasonable and correspond to economic intuition. As regards the
whole analysis, it has yielded an interesting pattern. In spite of the fact that convergence
occurs in Russia as a whole, a deviant dynamics is peculiar to a number of regions:
almost a quarter of regions are found to diverge, either deterministically or stochastically.
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In the study of various social and economic situations, an important issue is to
analyze the behavior of participants when making some decision. The decision
problem naturally arises in choice problems, e.g., when looking for a job, when
buying (selling) goods or services, when choosing a mate or a business partner,
and when participating in auctions or competitions. Game-theoretic best-choice
problems are a suitable model for TV contests in which participants seek to
choose an object or a group of objects. One of such contests is The Voice, a
popular TV show. In this competition, a jury of several experts chooses vocal-
ists. What is important, experts sit back to the contestants, assessing their vocal
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talents without seeing them. During the competition, each expert can invite a
fixed number of participants to his team. If the vocal talent of a next partic-
ipant suits an expert, he makes an offer to the contestant to join his team. If
a contestant is invited by several experts, the contestant decides himself which
expert team to join. As soon as the choice procedure is complete and the teams
of all experts are filled, a competition between the contestants takes place. An
expert whose team member defeats the other participants becomes the winner.
Note that the result of the competition depends not only on the vocal talent of
the participants, but also on their appearance. A feature of the choice procedure
in this competition is that the experts do not see the appearance of contestants
when making their decision. Such situations are described well by best-choice
models with incomplete information.

In this paper, a game-theoretic model of The Voice show is proposed, in which
two experts (players) seek to enroll several contestants into their own teams. The
players are simultaneously observing the sequence of contestants to choose two
contestants into their own teams based on their qualities. The quality of each
contestant is characterized by two random parameters, the first corresponding
to his vocal talent and the second to his appearance. The experts observe the
first quality parameter in explicit form, whereas the second quality parameter
is hidden from them. The players decide to choose or reject a contestant by the
known quality parameter. In this game, the winner is the player whose team
includes a contestant with the maximum sum of both quality parameters.

This paper is organized as follows. In Sect. 2, the publications in this field
of research are surveyed. The best-choice game with incomplete information is
described in Sect. 3. The case in which only one expert is remaining in the game
is discussed in Sect. 4. Different possible situations (subgames) in the two-player
game are studied in Sects. 5 and 6.

2 Related Works

Best-choice games often arise in the study of behavior of participants in different
auctions and competitions. An example of such a contest is The Price is Right.
In this game, n participants spin the wheel one or two times to gain points. The
goal of the participants is to collect a certain sum of points (score) not exceeding
a given threshold. The game was investigated by Seregina et al. [7], Mazalov and
Ivashko [8], Tenorio and Cason [9], and Bennett and Hickman [10].

The Voice show can be another attractive platform to analyze human behav-
ior. In this show, an expert has to decide on two alternatives: choose a contes-
tant that is performing right now, or continue the choice procedure. Therefore,
an expert acts in the same way as an employee searching for a job, who has to
decide whether to accept the current offer or reject it, in the hope of finding
a more suitable vacant job. Similarly, when considering a series of projects, an
investor has to decide whether a given project is suitable for investment or not.

The problem associated with The Voice show, in which each of several experts
chooses only one contestant into his team, was considered by Mazalov et al. [11].
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This paper presents a generalization of the problem mentioned to the case when
the experts can choose no more than two contestants in their own teams.

The optimal strategies of the players in best-choice problems are often con-
structed using dynamic programming. With this method, a complex problem
is solved by decomposing it into simpler subproblems represented by a recur-
sive sequence. Dynamic programming has applications in various fields, such as
quitting games (Solan and Vieille [1]), the house-selling problem (Sofronov [2]),
the job-search problem (Immorlica et al. [3]), the mate choice problem (Alpern
et al. [4]), to name a few, and has been successfully used for solving economic
problems of best choice and auctions (Whitmeyer [5], Harrell et al. [6]).

This paper proposes a new game-theoretic model of competition as follows.
Each of the two players seeks to choose a contestant better than the opponent.
Each of the two players can accept two participants into his team and information
about them is incomplete (partially available). For this problem, the optimal
choice strategies of the players are found. The optimal threshold strategies and
payoffs of the players are numerically simulated.

3 Two-Player Game with Incomplete Information

Consider a multistage game I y with incomplete information as follows. T'wo
experts (players in this game) are simultaneously observing a certain sequence
of contestants. Each player has to choose and invite to his team an appropri-
ate contestant based on the latter’s quality only. The quality of a contestant
is characterized by two parameters x and y that reflect his vocal talent and
appearance, respectively. Assume that the quality parameters of the contestants
represent a sequence of independent random variables (z;,y;), ¢ = 1,..., N, with
the uniform distribution on the set [0, 1] X [0, 1]. The try-out process (called blind
auditions in The Voice) is organized so that the experts can explicitly assess the
first quality parameter, whereas the second one is hidden from them. There-
fore, the players decide to accept or reject a current contestant using the known
quality parameter only. The players seek to maximize the total quality of the
contestant chosen (i.e., the sum of his quality parameters). The winner is the
player whose team includes a contestant with the maximum sum of both quality
parameters.

The choice procedure is described as follows. At stage 1, the experts are
observing the quality parameter x; from the set (z1,y1) of contestant 1 and
make an independent decision (accept or reject him). If contestant 1 is chosen
by a single expert, he joins the latter’s team. If both experts invite contestant 1,
he chooses one of them equiprobably. Whenever a contestant is chosen by a
player, the hidden quality parameter (x1 + y1) becomes known to all players.
Next, as soon as one of the experts chooses two contestants (e.g., at stages i
and j, where i < j), he quits the game, and the other expert continues further
choice alone. The expert remaining in the game seeks to choose a contestant
Il (I=j41,...,N) for his team (in fact, one or two contestants) so that his
total quality is higher than the total quality of the best contestant of the expert
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quitted, i.e., x;+y; > max{x; +y;, z; +y; }. In the case of rejecting contestant 1
by both experts, the game evolves to the next stage, and the choice procedure
described is repeated again. Also, other situations are when a single expert or
both experts choose a single contestant and continue their choice. All possible
subgames will be listed and studied below.

In the best-choice games the player’s optimal strategies always have threshold
form. For this game, the optimal strategies of the players will be found in the
class of threshold strategies: if the quality parameter x; of a contestant exceeds
some threshold u;, then an expert chooses this contestant; otherwise rejects him.
The optimal threshold strategies of equal-right players in the game with N > 2
contestants will be calculated below.

For this purpose, dynamic programming will be used. Decompose the prob-
lem under consideration into a series of simpler subproblems corresponding to
different situations in the game when n contestants, 0 < n < N, are left to
perform (and hence are still available for choice).

These situations (subgames) are as follows:

I 2(?7;0), a two-player game in which n contestants are left to perform and none
of the players has chosen a contestant into his team so far;

I 2(}720)(2), a two-player game in which n contestants are left to perform,
player 1 has already chosen a contestant of a total quality z, whereas player 2
has chosen nobody so far;

FQ(,ln’l) (t, z), a two-player game in which n contestants are left to perform and
both players have already chosen a single contestant into their teams, of a total
quality ¢ (player 1) and z (player 2);

I 1(,()7;2)(2'), a one-player game (involving player 1) in which n contestants are
left to perform, player 1 has chosen nobody so far, whereas player 2 has already
chosen two contestants and the maximum total quality of them is z;

r 1(}722) (t,z), a one-player game (involving player 1) in which n contestants
are left to perform, player 1 has already chosen a contestant of a total quality
t, whereas player 2 has already chosen two contestants and the maximum total
quality of them is z.

In the original game FQ(?,;O)7 the payoffs of the players depend on the payoffs

gained in the above-mentioned subgames, I v = FQ(O]’\? ).

4 Game with Only One Player Remaining

4.1 Game Fl(},;z)(t, z)
Consider the game I 1(,17;2) (t,z) involving player 1 only, in which n contestants
are left to perform, player 1 has already chosen a contestant of a total quality
t, whereas player 2 has already chosen two contestants and the maximum total
quality of them is z.

Denote by Hl(},"lz)(t,z) the payoff of player 1 in the game Fl(}r;z)(t,z). Con-
struct the optimal strategies in the class of threshold strategies: if a current
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. (1,2) (1,2)
observation z1 exceeds a threshold uy ;" = uy ;" (, 2), then the player chooses
the corresponding contestant; otherwise rejects him.
If no contestants are left to perform in the game, then

H{3(t,2) = 1- Iy 40 Ipeay,

_Jlifwe 4
~ ] 0 otherwise.
Let a single contestant be available for choice. Then

where I{A} = I{A}(w)

Hl(}l’z) (t,2) = Hl(}dz) (t,2)P{z1 < ug}f)} +1-P{tV(x1+y1) > 2,21 > ugf) )

where a V b = max{a, b}.

(1,2)

Obviously, ulii =0, and hence

HNP(t,2) =PtV (01 +y1) > 2,20 > 0} = Hig () jeay + 1 Tisay,

1- y 2 < 17
where Hy1(z) =P{z1 +y1 > 2z} = 2 _%)2
, 2> 1.
2
The same considerations for the game I} 1(,17;2) (t,z) yield

Hf,lr’zg)(tv Z) = Hl,n(z)l{t<z} +1- I{tZz}a

and
Ugf) =utnli<zy +0- Iy>zy,
where Hj ,,(2) is the player’s payoff in the one-player game in which n contestants
are left to perform and a single contestant has to be chosen into the player’s team
with a total quality exceeding z. In accordance with [11], the function Hy ,(z)
has the form

Hip1(2) wipn+ [ 1—(z—21))de1+1—2, 2 <1,

Hyn(z) = oy (1)
Hl,n—l(z) cUln + f (1 - (Z - xl))dxlv z 2 17
Ut,n
and

ul,n =z — (1 — Hlm_l(z)).

4.2 Game 1“1(3;2) (2)

Now, pass to the game Fl(’of)(z) involving player 1 only, in which n contestants
are left to perform, player 1 has chosen nobody so far, whereas player 2 has
already chosen two contestants and the maximum total quality of them is z.

Denote by H {?T’f)(z) the player’s payoff in this game.
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Theorem 1. In the game Fl(gf) (2) the optimal strategy of player 1 has the form

1-H%Y (2)
0,2 _ (0,2) 0.2 — 11
uy ) =y (z) = max{ ,Z TH 12 Hona(2) },

and the player’s payoffs are given by

H{%? (2) = Hia(2),

(0,2)y2 (0,2)12
zZ—U z—
(0,2) (0,2)
Hl(i?)(z) = H1(?Jl221(2) Q”(i)ﬁ) n (1= )(12— uj )+ 22)>
(0 2 (0 2)
I —uy 3+u — 2z
L I .
2

where2 <n < N.
Proof.
Assume that no contestants are left to perform in the game. Then
H(O 2)( ) —0.

Tf a single contestant is still available for choice, then the player will choose
him, gaining the payoff
0,2),y _ _
Hi77(2) =P{z1 +y1 > 2} = Hi1(2).

Now, let n = 2. First of all, consider the case z < 1. Suppose that player 1
uses a strategy u. (Note that v cannot exceed z.) As a result,

u 1
{5 (2) = / H{? (2)day + / Hy 5 (@ + g1, 2)dey
0
[ 1 1
0 —x z

The function H; © 2)( ) is not increasing in u, since its derivative with respect
to u

oH? (2
1(’9#“() = —2H;1(2)(z —u)
is nonpositive. Hence, the optimal value is ug) 2 —u=0.

Next, in the case z > 1,
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1
H{57(2) /H(O2 +/H1(172)($1+y17 z)dry

1

1 z—x
/Hll Ydxy + / /Hl,l )dy, + / dzn}dm-
u 0 z

—T

Calculate the derivative of H( 2)( ) with respect to u and set it equal to 0.

Consequently, the optimal value ug?f) = u satisfies the equation

Hi1(2)—Hia1(2)(—u)—1+2z—u=0.

Hence, it follows that u(O D, 1
Thus,
(0 2) _ 0, 2 <1,
1,2 z—1,2z2>1,
Hi1(2) z—xldxl—i—fl—z—xl))dx1+fdx1,z<1
H(O 2)( 0
1
Hii(z (zlJrf z:cld:cl)+f — (2 —z1))dz1, 2 > 1,
or

22 2

z
HLl(Z)? + 1 — 57 z < 1,

%P (2) = 2, Ly
7 H1,1(2)<z—1+ (22 ))+(2 ) z>1.

2 )
For the game Fl(gf)(z),

Hl(?z) /H1(0n2)1 )d; +/H1(1n2)1 1 + Y1, 2)dxy

ZA1_ z—xq 1 1
/Hlo ,2) d{El + / |: / Hlm,l(z)dyl + / dy1:| dxl + / d1'1,
u 0 zZ—xq zA1

where a A b = min {a, b}.

Calculate the derivative of H(0’2)(z) with respect to u and set it equal to 0.

(0 2)

As a result, the optimal value u; " = u satisfies the equation

Hl(?’rf—)l(z) = Hl,nfl(z)(z —u)+1—z+u.
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Hence, it follows that

0,2
1-HS, (2) }

(032) — O _
ul,n max{ , 2 1— Hl’nil(z)

Note that ug?;f) >z —1for z > 1, because Hl(?r’i)l(z) > Hypn-1(2).
Consequently,

Hl(?yf_)l(z) (ug?f) + [ (z- x1)dx1)

(0,2)
ul,n

z 1
H(O,Z)(Z): + (!2)(1—z+1‘1)dw1+fdx1,z< 1,
“1,7’1 z

1 1

S (2 + [ madn )+ [ (0 badn,e >,
0,2) (0,2)

,n U1,n

(
Uy

The thresholds ug?;lz)(z) as functions of z for different n, 1 < n < 5, are
shown in Fig. 1.

0.2)
Urn(2) 10

0.8

0.6

0,2)
,n

Fig. 1. Graphs of thresholds ug (z) for different n.

5 Two-Player Game
5.1 Game Fz(}rzl)(t, z)

Consider the two-player game FQ(},;l)(t, z), in which n contestants are left to
perform and both players have already chosen a single contestant into their
teams, of a total quality ¢ (player 1) and z (player 2).

Denote by H(l’l)(t7z) the payoff of player 1 in this game. Note that

2,n

Hé’l;ll)(t, z)=1-— HZ(};Ll)(z, t). Therefore, let t < z without loss of generality.

If no contestants are left to perform in the game, then Hé}dl)(t, z) =0.
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Further, in the case n = 1, each of the players is interested in accepting the
last contestant available. Hence, the optimal thresholds of the players coincide
with each other, being equal to ug } D=p. Iociy +(2—1) - Isqy

For z <1, it follows that

z 1 1 1
1 1 2
Hy(t,2) = JPlarty 22 =5 |:/d$1 / dyr + /dm/dyl] = 1/2(1 - %)7
0 z—x1 z 0

1 2

for z > 1, Hé)ll’l)(t,z Lf dry [ dyl} = @

Consider the game F2(1 )( z). Assume that the experts have established
some thresholds v and v, u < v, since ¢ < z. Let n contestants be left to
perform.

The optimal thresholds of the players can be found in the following way. Fix
a threshold strategy v of player 2 and find the opponent’s best response wu.

The payoff of player 1 is given by

z—x1

u v 1
HED (0t 2) = / HSSY, (1, 2)dey + / ey / (1= B, (2.t V (21 + 1))

u

/dxl[ (0/ S (2 tV(x1+y1))dy1)

v
1

1
b5 [HED 05 ot i
0

In order to find the optimal thresholds u(l )( ) and vgﬁl)(z), calculate the
derivatives of H( 1)(u, v|t, z) with respect to u and v, setting them equal to 0.
As a matter of fact, four cases are possible, depending on the values of z.
Here is the solution of this problem for n = 2.
Find the optimal thresholds of the players.
a) If z < u < v, then the optimal value ugél)(z) = u is calculated from the
equation
1—u 1 9
1 (u+ U4y — 2
1_7 =1- / yl) dy1+/7( Y1 )dyl. (2)
2 2
0 1

—Uu

The optimal value vé ; )( ) = v is calculated from the equation

1—v

/ (1(“;“)2)dyl+ /1 de:l/z (3)
0

1—v
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which yields v33" (2) = 0.5.
(1,1

b) If u < z < v, then the optimal value u; ) )(z) = u is calculated from the
equation

1—u 1
1/ 2 (u+y1)? (u+y1 —2)°
(-2 ) -a- 1— 19 SRS gy = 0.
2( 2) ( z+u)+/ ( 5 dyl—i-/ 5 dy1 =0
z—u 1-u
(4)
The optimal value vg : )( ) is calculated from Eq. (3), which yields
1,1
vl (2) = 0.5.
¢) If u < v < z <1, then the optimal value ug;)(z) = u is calculated from
Eq. (4).
The optimal value USQ’I)(Z) = v is calculated from the equation

(w(lj)w[/”(lwﬁ)@ﬁj Con=21 4 )

z—v —v

d) If w < v < 1 < %, then the optimal value ué 1 )(2) = u is calculated from

the equation
1 2 1 ( 2)2
z U+ Yy —
(122 ) = 1——" 7 |dy; =0.
2( 2> /( 5 )y1 0 (6)

The optimal value véé’l)(z) = v is calculated from the equation

z

The qualitative behavior of the optimal thresholds ué{él)( ) and v(l 1)(z)

depending on z is demonstrated in Fig. 2.

Example 1. Here are the optimal thresholds for some values of z.
For 0 < z < z =~ 0.436, the optimal threshold végl)(z) = 0.5 of player 2

is given by Eq. (3), whereas the optimal threshold ugél)(z) of player 1 satisfies

Eq. (2). For example, ué}él)(()) = 0.5, (1 1)(0 4) ~ 045, and ugél)(z) =z~
0.436.
For z < z < 0.5, the optimal threshold of player 2 is végl)(z) = 0.5,

whereas the optimal threshold uglél) (z) of player 1 satisfies Eq. (4). For example,

u$'3D(0.45) ~ 0.434 and uly" (0.5) ~ 0.427.
For 0.5 < z < 1, the optimal threshold ugél)(z) of player 1 satisfies Eq. (4).
For example, ug 5 )(O 75) =~ 0.392 and u(l 2 (1) =~ 0.376.
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10f
r (1.1
[ V32(2)
o8l
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o6l
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e
3 L
= 041 .1
|'E [ Uz (2)
02l
0.436 05 1.0 15 20 <&

Fig. 2. Thresholds u(1 1)( ) and 1/ (1 1)(Z)~

The optimal threshold v( ; )( ) of player 2 is given by Eq. (5). For example,
0$3Y(0.75) & 0.519 and Ugg; (1) ~ 0.533.

For 1 < z, the optimal threshold u2 v )( ) of player 1 satisfies Eq. (6);
us's) (1.5) & 0.427 and u3" (2) ~ 0.476.

The optimal threshold v( ; )( ) of player 2 is given by Eq. (7). For example,
i3V (1.5) = 0.634 and vg}y( )=1.

The optimal strategies of the players depending on the current maximum z
in the game in which both players have already chosen a single contestant are
shown in Fig. 2. The optimal strategies clearly differ, depending on which player
has chosen the contestant of the maximum total quality z. The player with
this contestant in his team has an increasing optimal threshold that exceeds
the opponent’s one. At the same time, the optimal threshold of his opponent is
decreasing for z < 1 and increasing for z > 1.

5.2 Game F2(1 0)( )

Consider the two-player game I 2(}710)(2)7 in which n contestants are left to per-
form, player 1 has already chosen a contestant of a total quality z, whereas
player 2 has chosen nobody so far.

Denote by HQ(;O) (z) the payoff of player 1 in this game. Note that H2(’11,10) (2) =
1- Hé?;zl)(z). Assume that the experts have established some thresholds « and
v, where v < u. Let n contestants be left to perform.

In the game F2(,117 )( ) with no contestants available for choice, Hs (1 0)( )=1.
The thresholds of the players coincide with each other (the players invite any

contestant) and are equal to ug : )( )=0-Trociy +(2—1) - Iroony
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and

1 z z—x]
1
10) 5|:/ dx1+/ 1 / dyl] 'I{z<1}
0 0

—x1

1 1 2 4 —
+ [/dm1+§/dazl (1+/dy1>:|.]{221}:§<1+%)-I{z<1}+2( Z).I{ZZ1}.
0 z—1 0
In the game FQ(}T’LO)(Z) the payoff of player 1 is given by
Hélno) u v| /H2 z)dxy —‘r/d.’L‘ /H2 Z 1+ y1)dy; (8)

/ dxl(/ HEOY (21 +y1))dy1) +3 /Hé,lﬁ—)1(zvxl +y1)dy1 |-
0

In order to find the optimal thresholds ug 0)(2) and v2 0)( ), calculate the
derivatives of H;;L )(u, v|z) with respect to v and v, setting them equal to 0.

Consider, for example, the game I 2(712’0)(2). Since player 2 has chosen nobody
so far, his optimal strategy is given by

V50 (2) = 0 Tocay + (2 = 1) - Tpasay.

Calculate the optimal values u; 20)( ). For this purpose, consider the following

cases:

a) If z < wu < 1, then the optimal value ugéo)(z) = wu is calculated from the
equation
0 ( )? [ 2)* 2
U+ Y1 U+ Y —
1——"—)d ——dy; = =. 9
/ ( 5 ) Y1+ / 5 =3 (9)
0 1-u

As a result, ug 0)( ) &~ 0.273; denote it by z*.
b) If u < z < 1, then the optimal value u( 0)(,2) = wu is calculated from the

equation
Z—u 2 3 1—u ( )2 3 1 ( 2)2
1 U+ Y1 U+ Yy —
1 l1— ———— — —_—
[0 5)meg [ (R [
0 zZ—u 1—u

(10)
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¢) If u <1< 2, then the optimal value u(l 0)(7;) = wu is calculated from the

equation
zZ—u 4 1 9 9 Z—u 9 9
/ udyl +3 / Mdyl 1+ / @dm =0. (11)
4 4 2
0 zZ—u 0

The qualitative behavior of the optimal thresholds ué?él)(z) depending on z
is demonstrated in Fig. 3.

1.0+ (1.0
U2, (2)

081
3
S 06
<
[%2]
Soaf
=

021

* L L
0.273 05 1.0 15 20 z

Fig. 3. Thresholds u<1 O)( ).

Example 2. Here are the optimal thresholds for some values of z.

For 0 < z < z*, the optimal threshold ugéo)(z) is found from Eq. (9),
USQO)(Z> = 2* = 0.273.

For z* < z <1, the optimal threshold ug%éo)(z) is found from Eq. (10). For
example, ué 20)(0 5) ~ 0.284 and u(1 0)( 1) =~ 0.343.

For 1 < z, the optimal threshold u272 )(z) is found from Eq. (11). For example,
usy (1.5) 2 0.569 and u'y (2) = 1.

6 Game F(O -0)

Consider the game I 2( ), in which n contestants are left to perform and none
of the players has chosen a contestant into his team so far.

If n < 2, then the optimal thresholds of the players coincide with each other,

being equal to u(o )
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Let u < v; in this case,

v

1
H2(0n0 (u,v) /Hg(ono)ldxl +/dx1/H2(}7;(21(x1 + y1)dys
u 0
1

1
1 1
+/ dry [Z/Hg(lno)l(ﬂﬁ +y1)dyr + §/H Onl 1 (21 +y1)dy1}
0

1
/del—i—/dx /Hgn (@1 + w0 dy1+/ dwy.

Due to the obvious symmetry of the players, they have the same payoff

1
Héono) 3 and the same optimal threshold, i.e. uglno) ’Uéi’bo).
The optimal value ugﬁo) = u is found from the equation
1
1
/H21n0)1 u+y1)dy, = 3 (12)
0
Calculate the thresholds of the players for n = 3.
Equation (12) takes the form
Z —Uu 1
/ H§12 Y+ y1)dy + / H2(120)(U+y1 )dy1 + / H2(120) (u+y1)dy, = 3
(13)

where z* satisfies Eq. (9), 2* ~ 0.273.
The expressions for the payoffs H2(712’0) (u+ y1) are derived from Eq. (8).
In accordance with the results of numerical simulation, the optimal strategies

are determined by the threshold u(o 9 ~ 0.216.

7 Conclusions

In this paper, a game-theoretic model of The Voice TV show in which two players
seek to form a team of two contestants has been proposed. An important fea-
ture of this formulation is that the players have incomplete information about
the quality parameters of the incoming (performing) contestants. The optimal
threshold strategies and payoffs of the players in this problem have been calcu-
lated using dynamic programming.

In the future, the results can be extended to the case of several players and
also to the case of several vacant places in the team of each player.
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Abstract. Various concepts of solutions can be employed in the non-
cooperative game theory. The Berge equilibrium is one of such solutions.
The Berge equilibrium is an altruistic concept of equilibrium. In this
concept, the players act on the principle “One for all and all for one!” The
Berge equilibrium solves such well known paradoxes in the game theory
as the “Prisoner’s Dilemma”, “Battle of the sexes” and many others.
At the same time, the Berge equilibrium rarely exist in pure strategies.
Moreover, in finite games, the Berge equilibrium may not exist in the
class of mixed strategies. The paper proposes the concept of a weak
Berge equilibrium. Unlike the Berge equilibrium, the moral basis of this
equilibrium is the Hippocratic Oath “First do no harm”. On the other
hand, all Berge equilibria are some weak Berge equilibria. The properties
of the weak Berge equilibrium have been investigated. The existence of
the weak Berge equilibrium in mixed strategies has been established for
finite games. A numerical weak Berge equilibrium approximate search
method, based on 3LP-algorithm, is proposed. The weak Berge equilibria
for finite 3-person non-cooperative games are computed.

Keywords: Three-person game - Non-cooperative game - Berge
equilibrium - Weak Berge equilibrium

1 Introduction

A wide class of economic, social and political processes are well described by
the methods of the game theory. Often, when decisions are made, participants
in such processes can not agree among themselves that are modeled by using
non-cooperative games. Certainly, the most well-known concept of a solution in
the theory of non-cooperative games was proposed by John Nash in 1950 in [1].
For this work in 1994 he was awarded the Nobel Prize in Economics.

However, the application of the Nash equilibrium concept in the modelling
of real socio-economic and political conflicts, in some cases, leads to paradoxical
© Springer Nature Switzerland AG 2020
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results, such as the “prisoner’s dilemma”. One of the first who has noticed this
was Claude Berge in [2]. In this book, Berge proposed a new concept of equi-
librium, according to which, players are divided into coalitions, while players of
one coalition can work together to maximize the payoffs of players of another
coalition. Apparently, a crushing review by Martin Shubik [3] on Berge’s book
[2], led to the fact that Claude Berge switched his attention from the game the-
ory to other areas of mathematics. After decades, based on Berge’s ideas, V.I.
Zhukovsky [4,5] and K.S. Vaisman [6,7] suggested a new altruistic concept of
equilibrium which was called a Berge equilibrium (BE). In this concept, the play-
ers act on the principle of “One for all and all for one!” from Alexander Dumas’s
novel “The Three Musketeers”. Another interpretation of Berge equilibrium is
[8] the Golden Rule of morality: “Do things to others the way you want them
did with you”. The development of the Berge equilibrium concept is described
in details in the review [9]. It is worth noting that the BE solves such well known
paradoxes in the game theory as the “Prisoner’s Dilemma”, “Battle of the sexes”
and many others. Also the use of BE is possible to the economics applications
[10].

At the same time, the Berge equilibrium concept has some drawbacks. One
of these drawbacks is that Berge equilibrium rarely exists in pure strategies.
Moreover, in N- person games (N > 3) with a finite set of strategies, Berge
equilibrium may not exist in the class of mixed strategies. Such example was
constructed, in particular, in [11]. The lack of BE might be caused by the fact
that it is often impossible to follow the Golden Rule of morality in relation
to all players at the same time. For example, if the goals of two players are
opposite, then the third player will not be able to apply the Golden Rule to them
simultaneously. In this case, increasing the payoff of one player, simultaneously
reduces the payoff of the other.

In this paper, we introduce the concept of the weak equilibrium according to
Berge (Weak Berge Equilibrium or WBE), no longer based on the Golden Rule of
morality, and on the Hippocratic oath “First do no harm!”. Here, we will assume
that, making a decision, each player adheres to the situation, one-sided deviation
from which can harm although to one of the other players. Further, in Sect. 2,
the concept of the weak Berge equilibrium is formalized, some of its properties
are studied and sufficient conditions for the existence of such an equilibrium
in N-person games are given. In Sect. 3, a numerical WBE approximate search
method based on [12-14] is proposed, and numerical simulation results are given
for finite games of three person.

2 The Concept of the Weak Berge Equilibrium

Let us consider a non-cooperative N-person game in normal form:

I' = (N, {X;}ien, { fi(2) }ien), (1)

where N = {1,2,..., N} denotes the set of serial numbers of the players; the set
of x; strategies of the i-th player (i € IN) is denoted by X;, where X; C R™.
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As a result of the players choosing their strategies, the strategy profile is x =
(1, ., zN) EX =X1 x Xox...x Xy CR"(n=n1+ny3+...+ny). On
the set of strategy profiles X for each player i (i € N) the scalar payoff function
fi(z) + X — R was defined. The value of f;(z) was realized on the strategy
profile chosen by the players € X was called the payoff of the i-th player.

The game I is played as follows. Each player ¢ (i € N), without entering
into a coalition with other players, chooses his strategy x; € X;. As a result of
this choice, the strategy profile is = (x1,...,xyx) € X. After that, each player
1 gets his payoff f;(x).

Thus, when making a decision, the player is forced to focus not only on his
payoff function, but also on the possible choice of the other participants in the
game.

Further, (y;,x_;) denotes the strategy profile (z;,...,2i—1, Yi, Tit1,---, TN),
which is obtained from strategy profile x by replacing the strategy of the i-th
player z; on y;.

The most popular concept of solution in the theory of non-cooperative games
is Nash equilibrium.

Definition 1. A strategy profile ¢ = (x5,...,2%) € X is called a Nash equi-
librium (NE) in game (1) if for every z € X the system of inequalities

fi(z®) = fi(zi,22;) (i € N) (2)
is true.

The Nash equilibrium strategy profile ¢ € X is stable with the respect to
deviation of an individual player from his strategy which enters in z°. Applying
the concept of the Nash equilibrium, the player proceeds from his own selfish
motives. He only cares about his payoff, do not take into account the interests
of other players. However, this approach leads to a number of paradoxes, such
as the Tucker problem in the classic game called as Prisoner’s Dilemma.

Example 1. Let us consider the Prisoner’s Dilemma game. Two criminals are
arrested on suspicion of a crime, but the police do not have direct evidence.
Therefore, the police, have isolated them from each other, and offered them
the same deal: if one testifies against the other, but he keeps silence, the first
one is released for helping the investigation, and the second gets 10 years - the
maximum term of imprisonment. If both are silent, their deed goes through a
lighter article, and each of them are sentenced to a year in prison. If both testify
against each other, each receives a minimum period of 2 years. Every prisoner
chooses to keep quiet or testify against another. However, none of them knows
exactly what the other will do. The Nash equilibrium in this game dictates
players to testify against each other, although silence will be more beneficial for
them.

Thus, the players’ egoism (the Nash equilibrium) in the Prisoner’s Dilemma
leads them to the most unprofitable solution. This is the Tucker problem.

The opposite approach to the concept of equilibrium, based on altruism, was
called the Berge equilibrium.
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Definition 2. A strategy profile 2% = (2P,...,25) € X is called a Berge equi-
librium (BE) in game (1), if for each x € X the system of inequalities
fia®) = filaf ) (i€ N) 3)

s true.

The difference between Nash and Berge equilibria is that, in a Nash equilib-
rium, each player directs all efforts to increase its individual payoff as much as
possible. The antipode of (2) is (3), where each player strives to maximize the
payoffs of the other players, ignoring its individual interests. Such an altruistic
approach is intrinsic to kindred relations and occurs in religious communities.
The elements of such altruism show up in charity, sponsorship, and so on.

In Example 1, players receive the best result if they use the Berge equilibrium,
thus the Berge equilibrium solves the Tucker problem in the Prisoner’s Dilemma
(the prisoners choose to keep quiet).

Consider a special case of game (1) with two players, i.e., the game I where
N = 1,2. Then a Berge equilibrium 27 = (28, 25) is defined by the equalities

fi(a®) = max fia? e),  fa(a®) = max folwr, b)),
The Nash equilibrium z¢ = (z§,2$) in this two-player game is given by the
conditions

Ji(z®) = max fi(z1,x5),  fo(2f) = max fa (25, x2).

A direct comparison of these standalone formulas leads to the following result.

Property 1. The Berge equilibrium in game (1) with N = {1, 2} coincides with
the Nash equilibrium if both players interchange their payoff functions and then
apply the concept of the Nash equilibrium to solve the game.

In view of Property 1, all results concerning the Nash equilibrium in the two-
player game are automatically transferred to the Berge equilibrium (of course,
with an “interchange” of the payoff functions as described by Property 1).

The differences appear when N > 3. So, the Berge equilibrium may not
exist in finite 3-person games. An example of this is given in [11]. The following
example is taken from [11].

Example 2. Let us consider the following 3-person game in which each of the
players has two pure strategies. Pure strategies of the first, the second, and the
third player are denoted A, As; By, Bs; C1, Cs, respectively.

The left-hand matrix refers to the pure strategy C7 of the third player, while
the right-hand matrix refers to his/her pure strategy Cs. Let us note that this
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game is a very special one. None of the players has any possibility to influence
their own payoff, no matter if they use any of their pure or mixed strategies. On
the contrary, players’ payoffs depend exclusively on the choices of the remaining
players.

One can easily check that the second and the third players’ best support to
any of the first player’s (pure or mixed) strategies is a pair of pure strategies
(B1, C1); the first and the third players’ best support to any of the second player’s
(pure or mixed) strategies is a pair of pure strategies (A;, Cs); and finally, the
first and the second players’ best support to any of (pure or mixed) strategies
of the third player is a pair of pure strategies (As, B2). This game has no Berge
equilibria, neither in pure, nor in mixed strategies.

Then, we recall the concept of Pareto optimality, and then formalize the
Weak Berge Equilibrium.

Definition 3. The alternative x* is a Pareto-optimal alternative in the N -cri-
teria problem

(X A{fi() ien),
if the system of N inequalities

filz) < fi(z") (i€N),
with at least one strict inequality, is inconsistent.

The moral basis of following definition is the Hippocratic Oath “First do no
harm!”

Definition 4. Let us call the strategy profile % = (z¥,...,z¥) a weak Berge
equilibrium (WBE), if for each player i (i € N) strategy x¥ is Pareto-optimal
alternative in the N — 1-criteria problem

I = (X, {fi (@i, 22) Yjenn (iy)-

Note that any BE is WBE. But the converse is not true, there are WBE that
are not BE.
Let us compare the game I" with an auxiliary game

I' = (N, {X;}ien, {9:(2) }ien), (4)

where the set of players N and the set of strategies X; (i € N) are the same as
in the game (1), and the payoff functions g;(z) have the form

gix) = Y fil2). ()
JENVL:)

Lemma 1. The Nash equilibrium strategy profile in the game (4) is a weak
Berge equilibrium strategy profile in the game (1).
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Proof. Let z¢ be a Nash equilibrium strategy profile in the game I, i.e
9i(aT, - T 1, T, Ty, - 2y) S gi(2°) (1 EN). (6)

With regard to (5), the inequality (6) can be rewritten as

Yo filwset) <Y fi@) (ieN). (7)

JEN\{d} JEN\{i}

Suppose z¢ is not a WBE strategy profile, then there exists some number 4
for which the system of inequalities is consistent

filws22y) = f3(2) (G € N\{i}), (®)

of which at least one inequality is strict.
Adding inequalities (8), we obtain

S Sty > Y [0 (eN),

JEN\{i} JEN\{i}
that contradicts (7).

Remark 1. To construct a WBE strategy profile in the game (1), we can use the
following algorithm:

1. to compose auxiliary game I°;

2. to construct a strategy profile ¢ which is the Nash equilibrium strategy
profile in the auxiliary game I

3. the found strategy profile ¢ will be the WBE strategy profile in the original
game I

As an example, let us consider the game “Snowdrift” which is proposed in
[15].

Example 3. Let us consider the 3-person Snowdrift game which is shown in
Table 1. The history of the game lies in the fact that A, B and C are the drivers
of three cars, that stuck in a snowdrift at night, each of them has a shovel. If a
solution is found for any one care, others can use it. Every driver chooses to dig
or wait (in the hope that someone else will dig, or that a snowplow will come
to the place of incident). Digging will cost 6 points, which are divided equally
between those who perform the work; provided that there is at least one dig-
ger. If the players dug out by themselves of a snowdrift, then each player gets
4 points. Thus, if all three players dig, then everyone will get 2 points. If two
players dig, they will get one point each, and the third player will earn 4 points.
If one player digs, then his payoff will be negative (—2), and the payoffs of the
remaining two players will be 4 points each. In the case that the players do not
dig, but wait until the morning when the utilities arrive and clear the snow, their
payoff will be zero.
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Table 1. The 3-person Snowdrift game.

C — to wait C — to dig

A\B to wait | to dig A\B to wait | to dig
to wait (0,0,0) | (4, —2,4) to wait | (4,4, —2) (4,1, 1)
to dig (—2,4,4) | (1,1,4) |todig | (1,4,1) (2,2 2)

Here, the 3-dimensional matrices A, B, C, which determine the payoffs of

the players will be
0 4 44
A A1_<—21>’ AQ‘(12>’

0-2 41
b (02). e (1)
04 -21
¢ a-(0Y). a- ()

The Nash equilibrium (NE) here will (wait, wait, wait) [15] with payoffs (0,0, 0).
We will now compile an auxiliary game, the payoff matrices in which will be:
for the first player

* ” 02 « 22
vepos aie(02). me(22)

for the second player

2
B = A+C: B;:@S), B;‘:(QZ);

for the third player

C*—A+B: cl<g§) c;(ii).

The Nash equilibrium (NE) in the auxiliary game with matrices A*, B*, C*
will be (dig, dig, dig), respectively, the weak Berge equilibrium (WBE) in the
original game will also be (dig, dig, dig) with payoffs (2,2, 2).

Obviously, in this example, the WBE is more profitable for all players than
the NE.

Remark 2. In the Snowdrift game, the Berge equilibrium (BE) [15] coincides
with the WBE.

Follow to Lemma 1 and the sufficient conditions for the existence of a NE, it
is easy possible to obtain sufficient conditions for the existence of a WBE under
the usual restrictions for the game theory.
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Theorem 1. In a non-cooperative N -person game I' with a finite set of strate-
gies, a weak Berge equilibrium strategy profile in mized strategies exists.

Theorem 2. If in a non-cooperative N-person game I, the sets of strategies
X; are conver compacts, and the payoff functions f;(x) are continuous in the
aggregate of variables, then in the game I' a weak Berge equilibrium strategy
profile in mized strategies exists.

3 The WBE in a Finite 3-Person Game

Let us consider a non-cooperative 3-person game.

Iy = ({1,2,3}, {Xitiz1,2,3, {fi(2) }iz1,2.3)-
The strategy profile 2% = (z¥, 2, 2¥) is the WBE strategy profile, if and only
if
1) the strategy z}’ is the Pareto-optimal alternative in the two-criterial problem
<X17 {f2(x1,$g),$§))7 f3(x17x12u7x§))}>;

2) the strategy ¥ is the Pareto-optimal alternative in the two-criterial problem

(Xo, {1 (2}, 2, 28), a2V, w2, 25 });

3) the strategy z¥ is the Pareto-optimal alternative in the two-criterial problem

<X37 {fl(x’f)7xg)7x3)7f2(x1107x1207$3)}>'

Let us compose an axillary game for the game I

Iy = ({1,2,3}, {Xi}iz1,2.3, {0i (%) Yiz1,2,3),

where, according to (5)

g1(z) = f2(x) + f3(2),
92(2) = fi(z) + fs(z), (9)
g3(z) = f1(z) + fa(z).

The NE strategy profile in I'; will be the WBE strategy profile in the original

game [35.

Below, a finite non-cooperative 3-person game I3 is defined with three sets
X, Y, Z of strategies of the first, second, and third player respectively, where
X={z=(21,...,zm)T €R™ 1 2Te,, =1, 2> 0.}, Y ={y=(y1,..,yn)T €
R" : yle, =1, y>0,}, Z={2=(21,...,2)T € R : 2Te; =1, z > 0},
w = (z,y,2) € R™T"* together with their payoff functions as follows

&
€
[
s
M
N

QijkZiY5 2k,
i=1j5=1k=1
m n l
fyw) =22 27 > bijrwiyjze,
i=1j=1k=1
m n l
f2(w) = Z 2o Do CigkTiYjzk-

s
Il
_
<
Il
_
~
Il
-
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Here, one has (a;jr), (bijk), (cijk)—the players’ 3-dimensional payoff tables
(without any loss of generality one can assume that all the entries of those tables
are positive real numbers); the vector w? = (27, yT 27),w € R =X xY xZ C
C RTJF"H. Next, for p = m,n,l, we define the vectors 0, = (0,...,0)T € R%,

ep=1(1,..., )T € RP, as well as Rﬂ—the nonnegative orthant of the Euclidean
space RP. The symbol 7 denotes the operation of transposition of a vector
(matrix).

Following the algorithm in remark 1, we construct the functions (9).

I
NE
s
MN

Q
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_

<
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_
£
Il
—

gm(w) = fy(w) + fz(w)

(biji + Cijr)Tily;2k,
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S
3
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M~

9y(@) = fo(w) + f2(w)

(@ijk + Cij)TiY; 2k,

s
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_
<
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N
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9:(w) = fo(w) + fy(w)

(@ijr + bijr) Ty, 2k
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—

Let us introduce the Nash function G(w) = 0, (w) + 0, (w) + 0, (w), where

6w(w) = nllea§g(33',y,z) - g(w)7

by(w) = max g(z,y', 2) — g(w),
y' ey

5z(w) - ma}gg(:ﬂ,y,z’ 79(""))'
z'e

The function G(w) is an analogue of the Nash function defined for the bi-matrix
games [16]. As the above—defined payoff functions are linear with respect to each
variable z,y, z(when the other two variables are fixed), the auxiliary game Iy
is convex, hence the set of Nash points 2* is non-empty (but not necessarily
convex).

Since G(w) > 0 for all w € £2, and G(w) = 0 if, and only if w is the NE of
the game I, one can find the Nash equilibrium strategy profile of game I'; as
the global minimum (equalling zero) of the function G(w) on {2.

Now we turn to the approximately numerical method for the construction of
WBE in the game I'3. In [12] this algorithm (3LP) approximately solving finite
non-cooperative three-person games was proposed. The testing results illustrat-
ing the efficiency of the mentioned method’s application can be found in [13,14].

The 3LP-Method for Solving the Finite 3-Persons Game

We denote ik = bijk + Cijh, bijk = ijk + Cijhs Gijk = Qiji + bij and dijp =
Elijk- + bijk + 6ijk = 2(a,-jk + bijk + Cijk)-

The iteration counter is set as t = 0. As an starting strategy, one can use any
pair of the players’ pure strategies (the total number of such pairs is mn—+mli+nl);

for example, fix the pair of strategies {y(®), 2(9} with the components y§0) =1,

y§0) =0(=2,...,n), z%o) =1, z,io) =0 (k=2,...,0), and solve successively
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(for t = 0,1,...) the triple problem P, (z(t*+1) 4y 2(0) p, (x4t (0,
P, (x5t (4D where

2,67
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If z* is an optimal solution to the problem P, (z,y',z'), then we set 2’ := z*.
Then we solve:

™=

m l
!
<z > dijkx;zk) yj — a—y — max,
=1 k=1

= y,0,y
n l
L2 i—a< L =1,...
Py(x',y,2') : ]; <kzl a”kzk) eSO i b,
n
Z(chkm> ’7§07 k:17"'al7
Jj=1
yle, =1, y>0, oyeRL.

Again, if y* is an optimal plan for the above problem P,(x',y,%’), then put
y' :=y*, and continue solving:

z a,ﬁ

MN
N
I

M=

dijka;gy;) z — a — 3 — max,

E
Il
-
o
I
—
I
-

MN
/\
MS

P.(2y,2) - kak>zka§0, j=1...,n,

k=1 \i=1

l n B )

Z chkyg zk— <0, i=1,...,m,
k=1 =1

Mey=1, 2>0, o feRL.

Now that z* is an optimal solution of the problem P, (z',y’, z), we denote 2’ :=
z*.

The optimal objective function values Gy = G(w*t1)) are monotone non-in-
creasing by t. The iteration process continues until the value G; stabilizes, that
is, for some t*, the difference G+ — Gy« 11 becomes small enough. In addition, if
G = 0, it means that an (exact) Nash point has been found. If the value G-
is positive but small enough, an approximate solution of the game is reported.
Otherwise, a new pair of the initial strategies is selected and the process starts
again (probably, having altered the order of the solved problems P,, P, P,).

Test Results for the 3LP-Algorithms for Finding the WBE

We tested the algorithms for finding the WBE in the finite 3-person games by
using the personal computer with the processor Intel(R) Core(TM) i5-3427U
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(CPU @ 1.80GHz 2.300 GHz, memory 4.00 GB, 4 cores). The test codes were
written in the MatLab. A series of 10 games was solved for each triple n,m, .

We investigated 2 cases: independent matrices and mutually dependent
matrices. In the first case (independent matrices) we used a pseudo-random
counters to generate independently the elements of the tables aijr, bijr, cijk
(1<i<m,1<j<n 1<k<I).

For the game with mutually dependent matrices, we first used pseudo-ran-
dom counters to generate independently the elements of the auxiliary tables a; ik
;jk, c;jk (1<i<m,1<j<n,1<k<I). At the second stage, we constructed
the mutually dependent payoff tables by the formulas

Qijk = Wiy = A 4,
bijk = b1, — Aiai/jk;cijk +1L
Cijk = Cijp — N 4
foralllSigm,lSjgn,lgkgl,where0<)\§%isacovariance
coefficient.

We solved games up to the dimension dim = m = n = k = 100. For compar-
ison, using the 3LP-algorithm, we calculated the NE for the same games.

The Table2 presents the results of the 3LP-algorithm solving the set of
test games (5 series with 10 instances in each) with independent matrices. The
algorithm switched to the next initial pair of strategies after having made dim
iterations.

In Table 2, the following notation is used: dim = m = n = k are the game’s
sizes (dimension); N E—the number of initial (starting) point when searching
for a Nash equilibrium; W BE—the number of start points when searching for
a weak Berge equilibrium; t/N E—the total amount of time to search a Nash
equilibrium for the series of 10 games (sec); tW BE—the total amount of time
to search a weak Berge equilibrium for the series of 10 games (sec).

Table 2. The results of solving 5 series of games of ten problems with independent
matrices

dim | NE | WBE | tNE |tWBE
20 |327|85 745.85|129.88
40 230159 539.28 | 99.34
60 | 169 |40 404.43 | 88.1

80 12928 373.14 1 92.03
100 | 159 41 904.85 | 162.62

In Table 3, for mutually dependent cases, the following notation is also used:
dim = m = n = k are the game’s sizes (dimension); W BE—the number of start
points when searching for a weak Berge equilibrium; tW BE—the total amount
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of time to search the WBE for the series of 10 games (sec); itn - the total number
of steps of the 3LP algorithm. The covariance coefficient A = 0,4 was used in
the calculation of Table 3.

For mutually dependent cases, the results are given only for the WBE, so
when calculating the NE for these problems take an unacceptable time or they
are not solved at all.

Table 3. The results of solving 5 series of games of ten problems with mutually depen-
dent matrices

dim | itn WBE | tWBE
20 3173 |479 |1106.49
40 6532 | 814 |2101.15
60 | 12826 | 1415 | 5134.66
80 |10306 | 1017 |5564.54
100 | 16725 | 1527 |13049.09

It is easy to notice from the reported results (see Table2 and Table 3), the
reciprocal dependence of the payoff matrices affect much to solve a problem by
the 3LP-algorithm. The reciprocal dependence sufficiently increases the com-
plexity of problems.

It is also clear that, the search for the WBE is much faster than the search
for the NE. This is most likely due to the pure weak Berge equilibrium strategy
profile existing more often than the pure Nash equilibrium strategy profile.

4 Conclusion

In this paper, we formalize the conception of the WBE. The WBE follows the
Hippocratic oath “First do no harm!” In contrast to the NE, the WBE always
exists for every finite N-person game. As an example, we find the WBE in the
finite 3-person games using the 3LP-algorithm. In the future, the authors plan
to transfer the proposed numerical algorithm for finding WBE to finite games
of a larger (N = 4,5) number of persons.
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Abstract. We establish a theorem that equilibria in an exchange econ-
omy can be described as allocations that are stable under the possibili-
ties: () agents can partially and asymmetrically break current contracts,
after that (4¢) a new mutually beneficial contract can be concluded in a
coalition of a size not more than 1 plus the maximum number of prod-
ucts that are not indifferent to the coalition members.

The presented result generalizes previous ones on a Pareto improve-
ment in an exchange economy with [ commodities that requires the active
participation of no more than [ 4 1 traders. This concerned with Pareto
optimal allocations, but we also describe equilibria. Thus according to
the contractual approach to arrive at equilibrium only coalitions of con-
strained size can be applied that essentially raise the confidence of con-
tractual modeling.

Keywords: Contractual economies - Coalitions of constrained size -
Competitive equilibrium - Fuzzy contractual allocations

1 Introduction

I started to develop the theory of formal contractual economic interaction in the
early 2000s and began to apply elaborated methods to the models of different
types: Arrow—Debreu economies, incomplete markets, an economy with public
goods, etc., see [1-4]. In the course of this activity, several specific characteriza-
tions of economic equilibria of different types were developed, but in all of them,
the key feature was the admission of contract breakings—complete or partial.
The idea of the barter exchange (contract) is by no means new in theoretical
economics and seemingly goes back to classical Edgeworth results, but it usually
appeared as an interpretation, in the form of net trades in a formal model. In the
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simplest version of the pure exchange economy, a barter contract is represented
as a vector of acceptable exchanges of commodities among economic agents. A
partial break involves the execution of the contract in an incomplete volume.
Besides, in [1] there was proposed the notion of fuzzy contractual allocation
and it became clear soon that this is the most meaningful concept among other
methods of the contractual interaction. Fuzzy contractual interaction means that
agents are able to break contracts partially and asymmetrically, i.e., it is admit-
ted different agents can break contracts in a different amount. There was stated
that under very weak assumptions in convex economy equilibria coincide with
fuzzy contractual allocations. Nevertheless, the achieved results still are not sat-
isfactory from the modeling point of view, because they assume the existence
of agreements in many unrealistic coalitions between agents living at great dis-
tances, etc. This paper aims to fill this gap.

In this paper we consider a possibility to restrict the number of participants
in the exchange transactions. We show that certain constrains of this type can be
used without prejudice to its equilibrium properties of the final allocation. The
idea goes back to [5-8], where it was found that Pareto optimal allocation can be
achieved via mutually beneficial exchanges carried out in coalitions limited by the
dimension of the commodity space, see also [9,10]. In these works, the contractual
approach itself was not developed and the possibilities of individuals to break
contracts were not considered. As a result, the obtained characterization does
not appeal to Walrasian equilibria. Doing the admission of partially breaking of
current contracts, we also take into account the fact that an agent may not be
interested in absolutely all existing products. We show that the analysis can be
reduced to an effective products’ area of lower dimensionality—Dby eliminating
products that are not of interest to the contracting parties. As a result, a coalition
has a specific product space which dimension can be applied to restrict the size
of coalitions. We will see that such restrictions on the size of coalitions do not
prevent so-called fuzzy contractual allocations to be Walrasian equilibria.

The paper is organized as follows. In the second section, I present a contrac-
tual economic model and formulate some preliminary results that are the basis
for the subsequent considerations. In the third one, I present the main result:
new theorems on characterization of equilibria and other contractual allocations
implemented via contracts of limited number of participants.

2 Contractual Exchange Economy

We consider a typical exchange economy in which L = R’ denotes the (finite
dimensional) space of commodities (I is a number of commodities). Let T =
{1,...,n} be a set of agents (traders or consumers). A consumer i € Z is char-
acterized by a consumption set X; C L, an initial endowment e; € L, and a
preference relation described by a point-to-set mapping P; : X; = X; where
Pi(x;) denotes the set of all consumption bundles strictly preferred by the i-th
agent to the bundle z;. The notation y; >; x; is equivalent to y; € P;(z;).
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So, the pure exchange model may be represented as a triplet
E=(Z,L,(X;,Pi,e)ict)-

Let us denote by e = (e;);cz the vector of initial endowments of all traders of

the economy. Denote X = [[,., X; and let
icT icT

be the set of all feasible allocations. Everywhere below we assume that the model
under study satisfies the following assumption.

(A) For each i € I, X; is a convex solid' closed set, e; € X; and for every
x; € X; there exists an open conver G; C L such that Pi(z;) = G; N X; and if
Pi(wi) # 0 then x; € Pi(x;) \ Pi(w;).?

Notice that due to (A) preferences may be satiated, i.e., P;(z;) = () is possi-
ble for some agent ¢ and x; € X,. However if P;(x;) # (), then preference is
locally non-satiated at the point x; and this implies A(P;(z;) — x;) C Pi(z;) — 24
VA € (0,1]. Next I recall some standard definitions and notions.

A pair (z,p) is said to be a quasi-equilibrium of £ if x € A(X) and there
exists a linear functional p # 0 onto L such that

(p, Pi(x;)) > pr; = pe;, VieT.

A quasi-equilibrium such that x} € P;(z;) actually implies pz; > pz; is a Wal-
rasian or competitive equilibrium.

An allocation z € A(X) is said to be dominated (blocked) by a nonempty
coalition S C Z if there exists y° € [],c¢ Xi such that >, .qyf = > ,cq€; and
y? € Pi(w;) Vi€ S.

The core of £, denoted by C(€), is the set of all z € A(X) that are blocked
by no (nonempty) coalition.

Weak Pareto boundary for £, denoted by PBY(E), is the set of all x € A(X)
that cannot be dominated by the coalition Z of all agents.

An allocation x € A(X) is called individual rational if it cannot be domi-
nated by singleton coalitions. ZR(E) denotes the set of all these allocations.

Let £ = L7 denote the space of all allocations of the economy &. In the
framework of model £, we are going to introduce and study a formal mecha-
nism of contractual interaction. This mechanism reflects the idea that any group
of agents can find and realize some (permissible) within-the-group exchanges
of commodities, referred to as contracts. The mechanism defines rules of
contracting.

! Here “solid” is equivalent to “having nonempty interior.”
2 The symbol A denotes the closure of A and \ is set for the set-theoretical difference.
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By the formal definition, any reallocation of commodities v = (v;);ez € £,
i.e., any vector v € £ satisfying » .., v; = 0, is called a contract.

Not every kind of possible reallocation may be realized in the economy; there
are some institutional, physical, and behavioral restrictions in the economic mod-
els of different types. This is why we equip the abstract contractual economy
model with a new element, the set of permissible contracts W C £. Thus, the
contractual (exchange) economy under study may be shortly represented by the
4-tuple

EC= (T, LW, (Xi,Pi,ei)ic)-

For a contractual economy we study the sets of contracts which represent
feasible allocations and introduce the operation of breaking a part of a given set
of contracts. This motivates the following definition.

A finite collection V' of permissible contracts is called a web of contracts iff

zo(U)=e+ Y veX, YUCV.
veU

So V being a web means that VU C V its generated allocation x¢(U) is feasible
one. Clearly, this notion can be considered with respect to any another allocation
y € A(X) chosen instead of e. Note that V = ) is a web relative to every
y € A(X) (by convention ) _sv =0).

Now we introduce the breaking operation of existing contracts and the signing
of new ones. For any contract v € V, let us set

S(v) = supp (v) = {i € T|v; # 0},

the support of the contract v. It is assumed that any contract v € V may be
broken by any trader in S(v), since he/she may not keep his/her contractual obli-
gations. Also a non-empty group (coalition) of consumers can sign any number
of new contracts. Being applied jointly, i.e., as a simultaneous procedure, these
operations allow coalition 7' C 7 to yield new webs of contracts. The set of all
such webs is denoted by F(V,T).

Notice also that due to the definition of a web of contracts, a coalition can
break any subset of contracts of a given web.?

Further, for the webs of contracts the notion of domination via a coalition
is introduced that allows to consider different forms of web stabilities. This
property, being written as U ? V (U dominates V via coalition T'), means that

(i) Ue F(V,T),
(ii) z;(U) >z (V) forall ieT.

Definition 1. A web of contracts V is called stable if there is no web U and no
coalition T CZ, T # () such that U ? V.

An allocation x is called contractual if x = x(V) for a stable web V.

3 Otherwise, it would occur that an allocation realized via breaking contracts is not
feasible.
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The property that a web of contracts is stable may be relaxed as well as
strengthened. The most important possibilities are described below.

Definition 2. A web of contracts V' is called:

(i) lower stable if there is no web U and no coalition T CZ, T # 0 such that
U ? VandU CV;

(ii) upper stable if there is no web U and no coalition T C I, T # () such that
U ? VandV CU.

(iti) An upper and lower stable web of contracts V is called weakly stable.

An allocation x is called lower, upper, or weakly contractual if x = x(V') for
some lower, upper, or weakly stable web V', respectively.

The next possibility to strengthen contractual stability is to allow agents
to break contracts partially. Partial breaking of the contract v = (v;);ez in
the amount of a € [0,1] means that contract v is replaced by the contract
(1 — a)v. System (web) of contracts is called proper if no one is interested in the
partial break off contracts: for each agent partial break (potentially different for
different contracts) does not lead to the increase of utility. Only the proper web
of contracts can be long-lived. Clearly, to admit agents apply partial breaking
we have to assume the set W is a star-shaped at zero in £, i.e.,

veEW = weWw, VO<ALI.

Allocation 2(V') = e+, . v, implemented by the web of contracts V' is called
properly contractual if the partial breaking of contracts is allowed to dominate
and V is proper one.

One more notion is quite important in our analysis, it is the concept of fuzzy
contractual allocation. To present it in a simplest way let us assume that the
web consists on the only contract, i.e., V = {v}. So one has a feasible allocation
to which the gross contract z — e = v = (v;);ez (net trade) corresponds. It is
assumed that the agents of the economy can (fuzzy and asymmetrically) break
contract v = (v;)iez, decreasing the individual consumption (fragment) from
this contract in shares (1 —t;);ez, t; € [0, 1] forming a tuple?

’Ut = (tl’Ul, tQUQ, e ,tnvn)

of commodity bundles, which can be used in subsequent exchange transactions
together with the initial endowments. After the conclusion of a new contract
wS = (w;)z € L*, Y7 w; = 0 by a coalition S C T (i ¢ S = w; = 0) they yield
(possibly unfeasible!) “allocation”

Et,v,w) =w+ vl +e=(w +tvl +eq,. .., w, + 10l +ep,).

4 This is not a contract, because its key property Yoz tivi = 0 is violated.
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Definition 3. An allocation x € A(X) is called fuzzy contractual if for every
t = (ti)iez, 0 < t; < 1,Vi € T and for x — e = v there is no barter contract
w=(wi,...,wy) € LT, > 7 w; =0, such that

&:Q(t,v,w):wz—i—tzvz—l—el, el (1)

& —ixy Vi & F x;. (2)

Note that by virtue of (2) w = 0 is permissible, i.e. only partial breaking of
contracts is possible. Denying the possibility of such domination means that the
web of contracts is proper and the allocation is stable with respect to asymmetric
partial break of contracts.

Depending on the structure of permissible contracts, specified as a new ele-
ment W C L% of the model, one can describe well known economic theoretical
notions in terms of a stable web of contracts. In a standard exchange model
(every contract is permissible) they are the core (contractual allocations, only
full break off contracts), competitive equilibria (admission of partial break), the
Pareto frontier (upper contractual allocations), etc. The most interesting among
others is the presentation of competitive equilibrium as a fuzzy contractual allo-
cation, described in the following technical lemma and proposition.

The following characteristic lemma can be directly produced from Defini-
tion 3.

Lemma 1. Suppose W = L*. Then an allocation x € A(X) is fuzzy contractual
if and only if®

'PZ(J%) n [Z‘i, ei] = (Z) Viel (3)
and
[TI(Pi(z:) +[0,ei =) Ufe ][ {(z)z € L | Y 2z => e} ={e}. (4)
A €T i€l

Here condition (3) indicates that a partial break off contracts without signing
of a new one cannot be beneficial. The requirement (4) denies the existence
of a dominating coalition after the partial asymmetric break of the contract
v = (z — e). Now applying separation theorem one can easily state (see [1] for
details) the following

Proposition 1. FEvery equilibrium is a fuzzy contractual allocation and vice
versa: any non-satiated fuzzy contractual allocation is a montrivial quasi-
equilibrium.

So, if the model is such that every nontrivial quasi-equilibrium is an equilibrium®
then the notion of competitive equilibrium and fuzzy contractual allocation is
equivalent. This and similar statements from [1-4] allow us to state that our

5 A linear segment with ends a,b € L is the set [a,b] = conv{a,b} = {Aa + (1 — \)b |
0< A<}

5 Conditions, providing this fact are well known in the literature, e.g. it can be irre-
ducibility.
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contractual approach presents a model of perfect competition (simplest among

others).
The sketch of the proof of Proposition 1. Separating sets in (4) by a (non-zero)
linear functional @ = (p1,...,p,) € L one can conclude:

(i) pi =pj =p # 0 for each 4, j € Z; this is so because 7 is bounded on

ALT) ={(z1,...,2) LT | Y 2= e}
i€z ieT
So, one can take p as a price vector.
(ii) Due to construction and in view of preferences are locally non-satiated at
the point « € A(X) the points z; and e; belong to the closure of

Pi(x) + conv{0, e; — x;}.

Therefore via separating property we have

> pej+pr;>> pej = pz;>pe; Vi€l
J#i T
that is possible only if px; = pe; Vi € Z. So, we obtain budget constrains

for consumption bundles.
(iii) By separation property for each i we also have

<p7 P’L(x) + COHV{O, €; — xz}> Z pe;,

that by (ii) implies (p, P;(z)) > px; = pe;. So we proved that p is quasi-
equilibrium prices for allocation x = (z;);ez.

As a result one can see that if an economic model is such that every quasi-equi-
librium is equilibrium, then fuzzy contractual allocation is an equilibrium one.
Conditions delivering this fact are well known in literature; for example, it is the
case when an economy is irreducible. |

3 Result

In a real economy, consumers may not be interested in all existing products,
i.e., individuals may be indifferent to some products’. Excluding them from
consideration, one can reduce the dimension of the actual product space for
each agent. The exact definition is given below.

Definition 4. A commodity j is indifferent for i € T if Vo € A(X)®

Yy = ()= yl) € Pilwi) <= ((yi)—j.e]) € Pi((xi)—j. €l) = Pi(:).

" For example, an ordinary consumer on the market is not interested in all kinds of
spare parts, parts and structural elements (bolts, nuts, gears, transistors ...).

8 Here we indirectly assume that all bundles we need belong to consumption set, i.e.,
((yi)—j,€)), ((zi)—j,€l) € Xy; it is a specific constraint for X;, i € Z.
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Here y; = (y))j=1..; € R and (y;)_; = (y¥)ksjr=1..1 is a vector consisting of
all components of y; excluding yf .

Two properties are postulated in this definition: a product j is indifferent to
a given individual i, if in any consumption bundle y; = ((y;)—;,v!) € X; his/her
consumption can be replaced by the initial one (to nullify?), i.e., one goes to
a bundle ((y;)—;,e]) such that ((y;)—;,e!) € X; and this does not lead to the
change of consumption properties of y; € L. Clearly, for preferences specified via
utility functions for indifferent commodity j we have Vy; € X; w;((vi)—j.y!) =
ui((yi)—j.€1), 1 € T,

Let L; C L be the space of non-indifferent commodities (interesting) for
individual ¢ and let Lg C L be a subspace of commodities that are interesting
for the members of coalition S C Z:

Lg = ZLi.

i€S

In this section, the notation z° means the projection of the vector z € L onto

the subspace Lg C L. Recall that for contracts v € W there is defined S(v) =
supp (v), this is the support of the contract. Given the possible indifference to
some products, as a product space for a coalition S(v), one can specify

Lsey = Z L;.

1€S(v)

Now let us consider the following restriction for the set of all permissible con-
tracts.

v=(V;)iez EW <= w; € LS(U), ieSw), |SW)|< dim(Ls(v)) +1. (5
This specification restricts the size of permissible contracting coalitions.

Remark 1. In the process of manufacturing high-tech products, a huge number
of elements are used, the range of which can be counted in millions—for exam-
ple, in modern aircraft construction. However, the final user needs the resulting
product (the plane!), and not some of its components, bolts, nuts, ailerons, and
other structural elements, the existence of which he may not know at all. How-
ever, this is important for service companies, etc. Production unions enter into
contracts for the supply of the element base of the final product can be very
large, but consumer unions can be much smaller—this fact can be concluded
from Theorem 1 and Corollary 1 below. Formal examples also can be easily con-
structed. Indeed one can consider several exchange economies &1, ..., & having
product ranges Si,...,S; € {1,2,...,1}. Assume that utilities of individuals
from £ may depend of only commodities from S¢. One can consider extended
commodity space L = R! and formally extend these utilities to this space, sup-
posing that they do not depend of new variables. Now we consider the united
E

economy & = |J &. The first result below describes Pareto frontier and says
e=1
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us that if coalition contains only individuals of one economy &, then number of
coalition members may be restricted by card(Sg); for coalition of two individual
kinds from &, , &, the number of its members may be not more of card(Se, USe,)
and so on. Similar conclusion is done for equilibria.

Further we first discuss the concept of upper stable web and upper contrac-
tual allocation, see Definition 2. Now let us consider a slightly modified classical
concept of Pareto optimality”?. We call an allocation x € A(X) strictly Pareto
optimal iff

ﬂSQI&ySGHXi such that ny:sz & yfePz(xz) Vi e S.

i€S i€S i€S

It is easy to see, that according to the definitions if there are no permissibility
constrains for contracts, the notions of upper contractual and strictly Pareto
optimal allocation are equivalent.
It is said that a vector (consumption bundle) x € L is extremely desirable if
for each x; € X; one has
T, + Kk xy, 1E€L.

In the literature, it is standardly assumed that cumulative initial endowments
> icz € = € presents an extremely desirable bundle.
Recall that binary relation > is transitive iff

Va,y,z € Dom(>) z>y>2 = = > 2.

Theorem 1. If W obeys (5) then every upper contractual allocation is strictly
Pareto optimal. Moreover, if preferences of £ are transitive and there is an
extremely desirable bundle k € L, then (5) can be weakened and one can require

veW <= € Lgu), i€Sw) & |S)] < dim(Lgw)).

So, the Theorem states that the economic system can arrive at Pareto optimal
commodity allocation via a contractual process with coalitions size constrained
by (5). In further analysis, we apply the following

Theorem 2 (Carathéodory, 1907). Let A C L be a subset of a vector space
L. If dimaff(A) = d < oo, then any element x € convA can be presented as a
convez hull of not more than d+ 1 elements of A.

Proof of Theorem 1. Suppose that an upper contractual allocation x € A(X)
is not strictly Pareto optimal. Therefore, there exists a coalition S C Z and
contract v = (v;)iez € £ = L%, supp (v) = S such that

VieS x4+ v; € Pi(x). (6)

9 Under classical assumptions they are equivalent, but it is not so in general case.
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Here by Definition 4 for each member of the coalition S, the components of v;
corresponding to indifferent products can be considered as zero, i.e., v; € Lg)
Vi € Z. Since z is upper contractual, then v ¢ W (here v; = 0,4 € 7\ S) and,
therefore, |S(v)| > dim(Lg(,)) + 1. Now we can assume that S is a coalition
of minimal size among those having this property. We have ﬁ Yiesvi = 0,
S = S(v). Using the Caratheodory theorem, one can find a coalition T C S such
that

VieT 3a; € (0,1]: > a;i=1, > ;=0 & |T| < dim(Lg) + 1.
€T €T

Define w; = «;v; # 0, and think without loss of generality that w; € Ly,
1 € T (if necessary, one replaces some components with zeros). Now due to the
main assumption (A) one has A(P;(x;) — x;) € Pi(x;) — x; VA € (0,1], that
implies z; +w; € Pi(x), i € T. Since ) ., w; = 0 and |T| < [S], we come to
a contradiction with the choice of S as a coalition of minimal size. Therefore,
there are no such coalitions at all and x is a strictly Pareto optimal allocation.

In the second part of the statement of the Theorem, we again argue from
the contrary and find a coalition S C Z of minimal size and a contract v € £,
supp (v) = S, v; € Lg, i € T satisfying (6) and such that |S| > dim Lg. Let us
specify

I' = conv{v; € Lg | i € S}.

By construction one has ﬁ > cqv; = 0 € I'. Next, we take an extremely

ies
desirable x € L, consider its projection x° onto Lg and find a real A > 0 such
that —Ax® belongs to the face of (bounded) polyhedron I'. This can be done
from the condition

A =max{\ | -\Nrx% € I'}.

Since the dimension of any proper face is at most dim Lg — 1, there is a coalition
T C S such that |T| < dim Lg and

VieT Ja; €(0,1]: Zaizl, Zaivi:—)\ns.

€T €T

Next one defines w; = a;(v; + Ax?), i € T and w; = 0, i € T\ T. As a result one
has:
T < T + v < X + o + Oéi>\l€s =z, +tw;, € T,
wa = Zaivf + (Z @) A&® = 0.
ieT ieT ieT
These relations indicate that w = (w;);ez is a mutually beneficial contract, the
support of which is the coalition T, no larger than dim(Lg). Thus, we again have

found the coalition that dominates the current allocation, and its size is strictly
less than |S|, which is impossible. [ |

Let us turn now to the characterization of fuzzy contractual allocation, which
represents the main result of the section.
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Lemma 2. Let z be a fuzzy contractual allocation and W obey (5). Then (4) is
true:

[T (Pi(z:) + co{0,e; — 2:}) U {es}] [ A(LT) = {e}.

ieT
Now by virtue of the characterization presented in Proposition1 we directly
conclude

Corollary 1. Let W obey (5). Then every non-satiated fuzzy contractual allo-
cation s a quasi-equilibrium one.

So, these Lemma and Corollary state that applying partial break and contracts
specified in (5), a contractual process can arrive the economy to Walrasian equi-
librium.

Proof of Lemma 2. Let x be a fuzzy contractual allocation, W obey (5) and
conclusion of the Lemma be false. Let us consider the left part of intersection
(4). Now we first show that there is no y = (y;)z # e such that the coalition

T(y)={ieT|yi#ei}#0 (7)

satisfies |T(y)| < dim(Lr) 4+ 1. Indeed, otherwise according to the construction
one can find z; € P;(x;), a; € [0,1], 7 € T such that

yi =zt oi(e; —x;) # e, i€T, Z%‘:Zei-
T T

Applying now Definition4, we may think that z;,z; € X; N (Lr + e;) (for ¢
and the bundle z; one has to change indifferent components with his/her initial
endowments and do not change all other). Now, specifying v; = (y; — €;) € L,
i € 7, via construction and Definition 4 we obtain

zi=vi+o(x;, —e)+te =z, €T, Zvi =0 & supp (v) =T,
e
that contradicts Definition 3 and condition (5).

Thus, if the conclusion of the Lemma is false, then |T'(y)| > dim(Ly) + 1 for
each coalition specified by (7). But in the (finite) set of all such coalitions there
is a coalition of minimal size, which we denote S C Z. Again, one can think
z; € X;N(Lg + €;), i € S. By construction there are z; € P;(x;) N (Ls + €;),
a; €10,1], i € S such that

Vi =2 +a;(e; —x;) #e, i€S, Zyz = Zei-
g S
We have I%I > s(yi —e;) = 0. Since by assumption |S(y)| > dim(Lg) + 1, then

using Caratheodory theorem one concludes there exists R C S and 8; € (0, 1],
i € R such that |R| < |S]| and

d Bilyi—e)=0, > Bi=1 = > (Bizi+ fici(e; — z;) — fie;) = 0.

i€ER i€ER i€R
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Since A(P;(z;) — x;) C Pi(x;) —x; VA € (0,1], the terms on the left-hand side of
the latter equality can be rewritten in the form

Bi(zi — xi) + Pici(e; — x;) — Bi(e; — ;) =& —xi — Bi(1 — oy)(e; — x;) = vy

for some &; >; x;, i € R. By construction ), _,v; = 0 and defining y; = v; +e;,
i€ Rand y; = e; for i € 7\ R one obtains ), _;y; = > ;.7 €; and

y: = 51 —+ (1 - 52(1 - ai))(ei — ﬂfl) S Pz(«xz) + co{O,eZ— — xi}, i€ R.

Thus, we found 3’ such that under condition (7) we have T'(y') = R, where |R| <
|S], which contradicts the minimality of S C Z. This contradiction completes the
proof. ]
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Abstract. The paper is devoted to the optimality conditions as deter-
mined by Pontryagin’s maximum principle for a non-cooperative differen-
tial game with continuous updating. Here it is assumed that at each time
instant players have or use information about the game structure defined
for the closed time interval with a fixed duration. The major difficulty
in such a setting is how to define players’ behavior as the time evolves.
Current time continuously evolves with an updating interval. As a solu-
tion for a non-cooperative game model, we adopt an open-loop Nash
equilibrium within a setting of continuous updating. Theoretical results
are demonstrated on an advertising game model, both initial and contin-
uous updating versions are considered. A comparison of non-cooperative
strategies and trajectories for both cases are presented.

Keywords: Differential games with continuous updating -
Pontryagin’s maximum principle - Open-loop Nash equilibrium -
Hamiltonian

1 Introduction

Most conflict-driven processes in real life evolve continuously in time, and their
participants continuously receive updated information and adapt accordingly.
The principal models considered in classical differential game theory are associ-
ated with problems defined for a fixed time interval (players have all the infor-
mation for a closed time interval) [10], problems defined for an infinite time
interval with discounting (players have all information specified for an infinite
time interval) [1], problems defined for a random time interval (players have
information for a given time interval, but the duration of this interval is a ran-
dom variable) [27]. One of the first works in the theory of differential games

Research of the first author was supported by a grant from the Russian Science Foun-
dation (Project No 18-71-00081).
© Springer Nature Switzerland AG 2020

Y. Kochetov et al. (Eds.): MOTOR 2020, CCIS 1275, pp. 256-270, 2020.
https://doi.org/10.1007/978-3-030-58657-7_22


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58657-7_22&domain=pdf
http://orcid.org/0000-0001-7908-2261
http://orcid.org/0000-0003-1296-1231
https://doi.org/10.1007/978-3-030-58657-7_22

Games with Continuous Updating 257

was devoted to a differential pursuit game (a player’s payoff depends on when
the opponent gets captured) [23]. In all the above models and approaches it
is assumed that at the onset players process all information about the game
dynamics (equations of motion) and about players’ preferences (cost functions).
However, these approaches do not take into account the fact that many real-life
conflict-controlled processes are characterized by the fact that players at the
initial time instant do not have all the information about the game. Therefore
such classical approaches for defining optimal strategies as the Nash equilib-
rium, the Hamilton-Jacobi-Bellman equation [2], or the Pontryagin maximum
principle [24], for example, cannot be directly used to construct a large range
of real game-theoretic models. Another interesting application of dynamic and
differential games is for networks, [5].

Most real conflict-driven processes continuously evolve over time, and their
participants constantly adapt. This paper presents the approach of constructing
a Nash equilibrium for game models with continuous updating using a modern-
ized version of Pontryagin’s maximum principle. In game models with continuous
updating, it is assumed that
1. at each current time ¢ € [tg, +00), players only have or use information on the

interval [t,t + T, where 0 < T < oo is the length of the information horizon,
2. as time t € [tp,+00) goes by, information related to the game continues to

update and players can receive this updated information.

In the framework of the dynamic updating approach, the following papers
were published [17], [18], [20],][21], [22], [29]. Their authors set the foundations
for further study of a class of games with dynamic updating. It is assumed that
information about motion equations and payoff functions is updated in discrete
time instants and the interval for which players know information is defined by
the value of the information horizon. A non-cooperative setting with dynamic
updating was examined along with the concept of the Nash equilibrium with
dynamic updating. Also in the papers above cooperative cases of game models
with dynamic updating were considered and the Shapely value for this setting
was constructed. However, the class of games with continuous updating provides
new theoretical results. The class of differential games with continuous updating
was considered in the papers [11], [19], here it is supposed that the updating
process evolves continuously in time. In the paper [19], the system of Hamilton-
Jacobi-Bellman equations are derived for the Nash equilibrium in a game with
continuous updating. In the paper [11] the class of linear-quadratic differential
games with continuous updating is considered and the explicit form of the Nash
equilibrium is obtained.

The approach of continuous updating has some similarities with Model Pre-
dictive Control (MPC) theory which is worked out within the framework of
numerical optimal control [6], [14], [26], [28], and which has also been used as a
human behavior model in [25]. In the MPC approach, the current control action
is achieved by solving a finite-horizon open-loop optimal control problem at each
sampling instant. For linear systems there exists a solution in explicit form [3],
[7]. However, in general, the MPC approach demands the solution of several
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optimization problems. Another related series of papers corresponds to the class
of stabilizing control [12], [13], [16], here similar approaches were considered for
the class of linear quadratic optimal control problems. But in the current paper
and in papers about the continuous updating approach, the main goal is differ-
ent: to model players’ behavior when information about the course of the game
updates continuously in time.

In this paper the optimality conditions for the Nash equilibrium in the form of
Pontryagin’s maximum principle are derived for a class of non-cooperative game
models with continuous updating. In the previous papers on this topic, [19], [11]
the optimality conditions were formulated in the form of the Hamilton-Jacobi-
Bellman equation and for the special case of a linear quadratic model. From
the authors’ point of view, formulating Pontryagin’s maximum principle for the
continuous updating case is the final step for the Nash equilibrium’s range of
optimality conditions under continuous updating. In future the authors will focus
on convex differential games with continuous updating and on the uniqueness
of the Nash equilibrium with continuous updating. The concept of the Nash
equilibrium for the class of games with continuous updating is defined in the
paper [19], and constructed here using open-loop controls and the Pontryagin
maximum principle with continuous updating. The corresponding trajectory is
also derived. The approach here presented is tested with the advertising game
model consisting of two firms. It is interesting to note that in this particular
game model the equilibrium strategies are constant functions of time ¢, unlike
the equilibrium strategies in the initial game model.

The paper is organized as follows. Section 2 starts by describing the initial dif-
ferential game model. Section 3 demonstrates the game model with continuous
updating and also defines a strategy for it. In Sect. 4, the classical optimality
principle Nash equilibrium is adapted for the class of games with continuous
updating. In Sect.5, a new type of Pontryagin’s maximum principle for a class
of games with continuous updating is presented. Section 6 presents results of the
proposed modeling approach based on continuous updating, such as a logarith-
mic advertising game model. Finally, we draw conclusions in Sect. 7.

2 Initial Game Model

Consider differential n-player game with prescribed duration I'(zg,7 — to)
defined on the interval [to,T).
The state variable evolves according to the dynamics:

I(t) = f(t,z,u), I(tO) = Zo, (1)

where © € R! denotes the state variables of the game, u = (u1,...,uy), u; =
wi(t,x9) € U; C compRF, t € [tg,T], is the control of player 3.
The payoff of player ¢ is then defined as

T

Ki(xo, T —to;u) = /gi[t,x(t),u(t,xo)]dt, 1€ N, (2)

to
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where ¢'[t,z,u], f(t,z,u) are the integrable functions, z(t) is the solution of
Cauchy problem (1) with fixed u(t, zo) = (u1(t, o), ..., un(t, zo)). The strategy
profile u(t,zp) = (u1(t,x0),..., un(t,zp)) is called admissible if the problem
(1) has a unique and continuable solution. The existence and global asymptotic
stability of the open-loop equilibrium for a game with strictly convex adjustment
costs was dealt with by Fershtman and Muller [4].

Using the initial differential game with prescribed duration of T', we construct
the corresponding differential game with continuous updating.

3 Differential Game Model with Continuous Updating

In differential games with continuous updating players do not have information
about the motion equations and payoff functions for the whole period of the
game. Instead at each moment ¢ players get information at the interval [t, ¢+ T,
where 0 < T < +oo. When choosing a strategy at moment ¢, this is the only
information they can use. Therefore, we consider subgames I'(z,t,t+T) in which
players find themselves at each moment ¢.

Let us start with the subgame I'(x, to, to+1) defined on the interval [to, to+
T). The initial conditions in this subgame coincide with the starting point of the
initial game.

Furthermore, assume that the evolution of the state can be described by the
ordinary differential equation:

ho(s) = f(s,zto,ul),  zbo(tg) = o, (3)

where z?0 € R! denotes the state variables of the game that starts from the initial
time to, ulo = (ul0,... ulv), ufo = uzo(s,xo) € U; C compR” is the vector of
actions chosen by the player i at the instant time s.

The payoff function of player ¢ is defined in the following way:
to+T
K[ (xg,to, T;u') = / g'[s,x™(s),u' (s, 20)]ds, i € N, (4)
to

where 20 (s), u'o (s, o) are trajectory and strategies in the game I'(x, to, to+1),
ito(s) is the derivative of s.

Now let us give a description of subgame I'(x,t,t+T) starting at an arbitrary
time t > tg from the situation x.

The motion equation for the subgame I'(z,¢,t + T) has the form:
zt(s) = f(s, 2t ut), 2t(t) ==, (5)

where i!(s) is the derivative of s, z' € R! is the state variables of the subgame
that starts from time ¢, u* = (uf,...,ul), ul = ul(s,2) € U; C compR*, s €

[t,t + T, denotes the control vector of the subgame that starts from time ¢ at
the current time s.
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The payoff function of player i for the subgame I'(z,t,t + T) has the form:

t+T
K!(x,t,T;u") = / g'ls, ' (s),u’(s,x)]ds, i € N, (6)
t

where z(s), u'(s, ) are the trajectories and strategies in the game I'(xz,t,t+T).

A differential game with continuous updating is developed according to the
following rule:

Current time t € [tg, +00) evolves continuously and as a result players con-
tinuously obtain new information about motion equations and payoff functions
in the game I'(z,t,t +T).

The strategy profile u(t, z) in a differential game with continuous updating
has the form:
u(t,x) = u'(s, x)|s=¢, t € [to, +00), (7)

where u'(s, x), s € [t,t + T] are strategies in the subgame I'(x,t,t + T).

The trajectory x(¢) in a differential game with continuous updating is deter-
mined in accordance with
z(t) = f(t,z,u),

Z(to) = Xy, (8)

z e R,
where u = u(t,z) are strategies in the game with continuous updating (7) and
Z(t) is the derivative of t. We suppose that the strategy with continuous updating
obtained using (7) is admissible, or that the problem (8) has a unique and
continuable solution. The conditions of existence, uniqueness and continuability
of open-loop Nash equilibrium for differential games with continuous updating
are presented as follows, for every t € [tg, +00)

1. right-hand side of motion equations f(s,z’,u") (5) is continuous on the set
[t,t+T] x Xt x Uf x --- x UL

2. right-hand side of motion equations f(s, !, u’) satisfies the Lipschitz condi-
tions for ' with the constant k¢ > 0 uniformly regarding to u’:

1f (s, (@"),u") = f(s, (@")", u")]| < Kill(@") = (@)l V s € [t,t + T,
(l‘t)/, (ZL’t)// c Xt,ut c Ut
3. exists such a constant k4 that function f(s,z!, u') satisfies the condition:
1f(s, 2", )| < K51+ [2l]), Vs € [t,t+T), 2" € X', ' €U’
4. for any s € [t,t +T] and z; € X, set
G(a') = {f(s,a",u")Ju" € U"}

is a convex compact from R'.
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The essential difference between the game model with continuous updating
and a classic differential game with prescribed duration I'(zg,T — to) is that
players in the initial game are guided by the payoffs that they will eventually
obtain on the interval [ty, T, but in the case of a game with continuous updating,
at the time instant ¢ they orient themselves on the expected payoffs (6), which

are calculated based on the information defined for interval [t,¢ + T or the
information that they have at the instant ¢.

4 Nash Equilibrium in a Game with Continuous
Updating

In the framework of continuously updated information, it is important to model
players’ behavior. To do this, we use the Nash equilibrium concept in open-loop
strategies. However, for the class of differential games with continuous updating,
modeling will take the following form:

For any fixed ¢ € [to, +00), uV¥(t,2) = (] (t,x),...,ul)F(t,x)) coincides
with the Nash equilibrium in game (5), (6) defined for the interval [t,t + T at
instant .

However, direct application of classical approaches for the definition of the
Nash equilibrium in open-loop strategies is not possible, consider two intervals
[t,t+T], [t+e,t+T+¢€], e<<T.Then according to the problem statement:

—ulVE(t) at instant ¢ coincides with the open-loop Nash equilibrium in the
game defined for interval [t,¢ + T,

—ulVE(t + €) at instant ¢ + € coincides with the open-loop Nash equilibrium
in the game defined for interval [t + €,t + T + €.

In order to construct such strategies, we consider the concept of generalized
Nash equilibrium in open-loop strategies as the principle of optimality

ﬂNE(t, s,x) = (H{VE(t,s,:z:),...,ﬂﬁlE(t,s,z)),t € [to, +00),s € [t,t +T], (9)

which we are going to use further for construction of strategies u™¥¥ (¢, z).

Definition 1. Strategy profile uN®(t,s,z) = (N E(t,s,2),...,ulNE(t,s, 7)) is a
generalized Nash equilibrium in the game with continuous updating, if for any
fived t € [tg, +00), strategy profile uNE(t, s, x) is the open-loop Nash equilibrium
in game I'(x,t,t+T).

Using a generalized open-loop Nash equilibrium, it is possible to define a
solution concept for a game model with continuous updating.
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Definition 2. Strategy profile uNF(t,x) = (ul¥E(t, ), ...,uNE(t,z)) is called an
open-loop-based Nash equilibrium with continuous updating if it is defined in the
following way:

UNE( ) _ ;JNE(

t,x t,8,2)|s=t

_ _ (10)
:(u{VE(t,s,xﬂs:t,...,u,]yE(t,s,xﬂs:t), t € [tg, +00),

where UNE(t,s,xz) is the generalized open-loop Nash equilibrium defined in
Definition 1.

Strategy profile uVN (¢, ) will be used as a solution concept in a game with
continuous updating.

5 Pontryagin’s Maximum Principle with Continuous
Updating

In order to define strategy profile uN¥(t,x), it is necessary to determine the
generalized Nash equilibrium in open-loop strategies uV ¥ (¢, s, 2) of a game with
continuous updating. To do this, we will use a modernized version of Pontryagin’s
maximum principle. Let us start by defining a real-valued function H{ by

Hit(T, ot ut N = Tgi(TT +t, 2t ut) + Ang(TT +t, 2t ut). (11)

The function H!,i € N is called the (current-value) Hamiltonian function and
plays a prominent role in Pontryagin’s Maximum Principle. The variable ! is
called the (current-value) costate variable associated with the state variable x?,
or the (current-value) adjoint variable.

The following theorem is applied:

Theorem 1. Let f(s,-,ut) be continuously differentiable on R!, Vs € [t,t + T
and g'(s,-,ut) be continuously differentiable on R', Vs € [t,t+T|, i € N. Then,
if uNE(t,s,2) provides generalized open-loop Nash equilibrium in a differential
game with continuous updating, and for all t € [tg, +00) Tt(s), with s € [t,t+T),
is the corresponding state trajectory in the game I'(x,t,t +T), then for all t €
[to, +00) exist n costate functions AL(7,x), where T € [0,1], @ € N, such that the
following relations are satisfied:

1. for all T € [0,1]
HY 3V (1, 7,0), X) = mas B 7 @5 (), ML € N, (12)

where uNF = (ad'F, .., ¢, ..., ul F),
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2. M(7,2) is a decision of the system of adjoint equations

d\{(T, ) B OH! (T, z%(7), aNE(t, 7, x), )

dr o Oxt B
_ g9 T Bi’ft’aw) NI B’;ft’am), i € N,(13)
where the transversality conditions are
M(1,z)=0,ie N (14)
3. for all t € [tg,+00)
it(r) =Tf(Tr+t,3,aVF), #(0) ==, 7€[0,1]. (15)
Proof: Let fix t >ty and consider game I'(x,t,t +T).
Using following substitution
s—t
= (16)
we get the motion equation (5) in the form:
i(r)=Tf(TT+t,zt,ut), 280)==z, 7€][0,1]. (17)
And payoff function of player i € N has the form
1
K!(x,t,T;u") / Tg'[Tt +t,2*(1),u’(r,z))dr, i € N. (18)

0

For the optimization problem (17)—(18) Hamiltonian has the form

Hi(r, 2t ut, \Y) = Tg' (T +t, 2 (1), u" (1, 2)) + Mo (7, 2) T f (T4, 2 (1), u' (7, 2)).
(19)

If uVE(t, 7, 2) — generalized open-loop Nash equilibrium in the differential game
with continuous updating, then, according to Definition 1, for every fixed ¢t > to,

NE(t, 7, x) is an open-loop Nash equilibrium in the game I'(z, t,t+T'). Therefore
for any fixed ¢ > to conditions 1-3 of the theorem are satisfied as necessary
conditions for Nash equilibrium in open-loop strategies (see [1]). The Theorem
is proved.

It can been mentioned also that if for every ¢ > ¢, functions H} are concave
in (x¢,us) for all ¢ € N, then the conditions of the theorem are sufficient for a
Nash open-loop solution [15].
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6 Differential Game of Logarithmic Advertising Game
Model with Continuous Updating

As an illustrative example, we consider a logarithmic excess-advertising model
of a duopoly proposed by Jgrgensen in [8]. There are two firms operating in a
market. It is assumed that market potential is constant over time. The only mar-
keting instrument used by the firms is advertising. Advertising has diminishing
returns since it suffers from increasing marginal costs. Nash optimal open-loop
advertising strategies are determined in [8]. Here we obtain open-loop Nash equi-
librium with continuous updating by means of Theorem 1.

6.1 Initial Game Model

Consider the model investigated in [8]. Let x;(¢) denote the rate of sales of firm ¢
at the instant time ¢, (i = 1,2) and assume that 1 + 2 = M, implying that the
market potential is fully exhausted at each instant of time. The game is played
on interval [0, T], where T is an arbitrary but fixed positive number. Because of
the assumption x1 + 22 = M, so s = —x;. The state equation is

u
= l<;1og—1 = k(logu; — logus),
U2
2y = =21 = k(logug — loguy), (20)
21(0) = 27, 22(0) = a3,
where k is a positive constant, z;(0) is a given initial rate of sales of firm 3.
The state equation (20) model describes a market where buyers are perfectly
mobile and switch instantaneously to the firm which has the largest rate of
advertising expenditure, that is, advertises in excess of the other. In the model,

market share increases linearly according to the amount of excess advertising.
Performance indices are given by

T
K= / (pizi — ug) exp{—rit}dt, i=1,2, (21)
0

where xo = M — x1. Assume that r;, > 0, i = 1,2. The open-loop Nash
equilibrium in its explicit form was constructed in [8]:

w" N = S eap{—ri(T - D). (22)
K3
For the case ry = ro, the optimal trajectories are given by

1(t) = (klog %)t +2,(0),

xo(t) = M — (klog %)t —21(0).
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If r1 # ro, then trajectory x; is the solution of

p17r2[l — exp{—r1 (T — 1)}]
pari[l — exp{—r2(T — t)}]

1= k;log

The solution of Eq. (24) is given by

t
©172 1 —exp{—r (T —s)}
21(t) = 21(0) + klo t+k/ lo ds.
1 =m0 klog o R L T (T = )}

6.2 Game Model with Continuous Updating

Now consider this model as a game with continuous updating. It is assumed
that information about motion equations and payoff functions is updated con-
tinuously in time. At every instant ¢ € [0,400), players have information only
at interval [t,t + T].

Therefore, for every time instant ¢, we can get the payoff function of player

i for the interval [t,t + T]. The payoff functions are given as follows:

7 7

t+T
Kt = / ((pimﬁ — 1,Lt)e:><p(—7“¢s)ds7 1=1,2.
t

In order to simplify the problem that we desire to solve, we can do a transfer

T= %t Furthermore, restate the problem to be solved:
sl ui(r, ) = ¢ t
if(r) =Tklog — = Tk(logu} (1) — logub(7)), 7 €10,1],
Ug (Tv iL’)
i(r) = ~}(7). )
21(0) = 1, 25(0) = a2,
1
K!'= | T(pixl(r) —ul(r,z))exp{—r;(TT +t)}dr, i=1,2.
0
The Hamiltonian functions are given by
Hit,m,z,u', N = (g1t — ul)T + N (1, 2)Tk(log u} — logub), (26)

Hi(t, 7, 2,ut, N = (pazly — ub)T — N5 (7, 2)Tk(log u' — logub). (27)

Note that the current-value Hamiltonian is simply exp(r;(T'T + t)) times the
conventional Hamiltonian. Necessary conditions for the maximization of HY, for
ul € (0,+00) are given by

OH! — =1
aul =T + \i(r, :v)Tku—ﬁ =0,
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OH}
=T+ Tk— =0.
Oul +a(r2) ub

Therefore, the optimal control u! is given by

ul(r,z) = N(m o)k, ub(r,z) = N (7, 2)k. (28)

The adjoint variables A!(7) should satisfy the following equations

: OH! _
)\ﬁ(T,ac) 8 5 +Tr1)\ (ry2) = —p1 T + Trl)\ﬁ(T, x),

s (29)
)\5(7, x) = —+-Tr2)\2(7' x) = —poT + Trg/\g(T, x).

8 ot
Note that these equations are uncoupled. The transversality conditions are

MN(l,z) =0, i=1,2.

By solving the above differential equations about the adjoint variables, the
solutions are given by

N(r2) = 1= eap(Tra(r — 1))

(30)
y(r,z) = fj (L — eap{Tra(r - 1)}].
Substituting (30) into (28) yields
WNE(r ) = PP T (r — D). (31)

%

Note that x is the initial state in the subgame I'(z,t,t + T). The open-loop
strategies u!N¥ (7, x) in our example in fact do not depend on initial state z.

Let us show that the solution obtained satisfies sufficiency conditions. Since
9°H!

g = 0, aztau =0, aufau —/\E(T)Tk‘ﬁ < 0, then, accoiding to [9],
uNE (7 1) is mdeed a Nash equlhbrium in the subgame I'(z,t,t+T).

Finally, we convert 7 to ¢, s. Then the generalized open-loop Nash equilibrium
strategies have the following form:
~NE _ ke =
Uy (tv va) - 7[1 - 6xp{7'1(8 —t- T)Hv
- (32)

uYE(t,s,z) = %[1 —exp{ra(s —t —T)}].
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According to Definition 2, we construct an open-loop-based Nash equilibrium
with continuous updating :

N ks _
ulNE(t,x) = alNE(t, s, 1)| = = fz [1—exp{-r,T} i=1,2. (33)
K3
Note that in the example under consideration, strategies ul’¥¥ are independent
of the initial values of the state variables of subgame I'(z,t,t +T), so strategies
ulVE(t,z) in fact do not depend on .

Consider the difference between optimal strategies in the initial game and in
a game with continuous updating:

oy ko _
e NE g NE %exp{—mT}[l —exp{—r;(T —t—-T)}]
K3
We can see that the amounts of players’ advertising expenditure is less in a game
with continuous updating for t < T — T
The optimal trajectories zV#(t), x5 F
are the solutions of

(t) in a game with continuous updating

i1 (1) = klog(P2 [1 - exp{-rT}]
1(t) =kl (Tlspg [1 —exp{—1T}]"

balt) = —1(0), (34)
1'1(0) = xtl)a
372(0) = J)g,

where r; > 0,7 = 1,2. Therefore, the state dynamics of the system are given as
follows: _
p112[l — exp{—r1T}]

r1@a[l — exp{—ryT}]"’
@or1[l — exp{—rT}]
ropi[l — exp{—riT}]"
It can be noted, that if r; = 7o, then optimal trajectories in initial model and
in the game with continuous updating are the same.

21 P (t) = 2} + klog(
(35)
eYE(t) = M — 29 — klog(

Figures 1, 2 represent a comparison of results obtained in the initial model
and in the model with continuous updating for the following parameters:

=01, 2=05 k=1, T=10, T=02r=5 mrn=3 2=
8, 9 =10.

We see that the rate of sales for player 1 in the game with continuous updating
is less than in the initial model.
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05 Nash equilibrium strategies

— — —ininitial game

0.45 - with continuous updating |

0.35 1

Soa2st :
02 ————— .

0.15 \ 4

0.05

Fig. 1. Comparison of Nash equilibrium strategies in the initial model and in the game
with continuous updating

Optimal trajectories

o5 F T ———
20
15
_— X:\‘E(t) with continuous updating
— 10 xgE(t) with continuous updating
X — — =Xt in initial model
5 — — —x\E(t) in initial model
o
5 ~_ _ e
L L L L L L L L \\ = o

Fig. 2. Comparison of optimal trajectories in the initial model and in the game with
continuous updating

7 Conclusion

A differential game model with continuous updating is presented and described.
The definition of the Nash equilibrium concept for a class of games with contin-
uous updating is given. Optimality conditions on the form of Pontryagin’s maxi-
mum principle for the class of games with continuous updating are presented for
the first time and the technique for finding the Nash equilibrium is described.
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The theory of differential games with continuous updating is demonstrated by
means of an advertising model with a logarithmic state dynamic. Ultimately, we
present a comparison of the Nash equilibrium and the corresponding trajectory
in both the initial game model as well as in the game model with continuous
updating and conclusions are drawn.
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Abstract. Previously, the authors proposed a formalization of renew-
able resources rational use problem based on the representation of con-
trolled system as a discrete dynamical system. In the particular case of
structured ecosystem described by Leslie’s binary model, despite its non-
linearity, it turned out that all optimal controls preserving this system
belong to the certain hyperplane. This paper explores the conditions
under which the positive boundary of a feasible set of problem with
so-called quasi-preserving controls also contain a part of some hyper-
plane. In the process, we used a generalization of classical concept of
map irreducibility—the concept of local irreducibility. Statements about
the influence of the irreducibility property of discrete dynamical system
step operator on the properties of an feasible set positive boundary are
proved.

Keywords: Rational exploitation of ecosystems + Binary Leslie’s
model - Concave programming -+ Irreducible map

1 Introduction

The renewable resources rational use problem is currently extremely acute. Cur-
rent estimates are that overfishing has impacted over 85% of the world’s fish
resources and that most fisheries are fished far beyond their sustainable capac-
ity. The depletion of forest resources is increasing; the net loss of the global forest
area (deforestation plus reforestation) in the last decade of the 20th century was
about 94 million hectares, the equivalent of 2.4% of total world forests [10].

We study here some formalization for a problem of sustainable exploita-
tion of renewable resources. The problem statement is inspired by problems of
sustainable management of fisheries, agriculture, forestry and other renewable
resources, including the problems of non-destructive exploitation of ecological
populations (through partial removal of biomass).

The first studies in this direction considered only the total population
biomass. Later, the need to take into account a structure of exploited popu-
lations led to the use of matrix models. The dynamic aspect of the problem was
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not taken into account; in the vast majority of studies, the problem of exploiting
a population in a stationary state was considered. A comprehensive review of
these studies is given in monograph [4].

The first results for non-linear models of exploited populations were obtained
in pioneering papers [1,9], where a density-dependent model of the structured
population was studied.

As a basic model, in studies taking into account the structure of exploited
populations, as a rule, various generalizations of so-called Leslie’s model of the
population age structure were used (biological aspects of this model, as well as
a comprehensive description of its properties, are given in [5]). These papers
became the basis for numerous further publications (see review in [2]).

In the vast majority of studies, even if additive control is used in the initial
formulation, as a rule, the transition to the proportional removal, that is, to mul-
tiplicative control, is subsequently carried out, which simplifies the search and
analysis of optimal strategies. A typical approach is described in [4]. Although
the iterative process with additive control is considered first, then the fractions
to be withdrawn of the structural units are determined. Thus, there is a return to
the multiplicative control (typically, in an equilibrium state of the model used).
Usually, a step operator of dynamical system is multiplied by a diagonal matrix
with these fractions on the main diagonal. In this paper, we use a more natural,
in our opinion, the additive setting the problem under consideration.

This study is a continuation of our series of publications [7,11,12] on the
ecosystems exploitation problem. The results obtained in them will be presented
in the following sections as necessary; in this section, we note only a few of them.

Let us note that for a more complete acquaintance with the history and the
current state on modeling the sustainable exploitation of ecosystems, one can
also use the reviews available in our publications mentioned above.

Although the exact mathematical formulation of the problem of ecosystem
exploitation varied among different authors, there is a common characteristic
property of optimal solutions, consisting in the number of age classes to be
exploited. It was established that there is a bimodal optimal control, which
allows the exploitation (withdrawal, partially or completely) of no more than
two age (stage) classes: the partial withdrawal of one age class and the complete
withdrawal of another (older) one.

All of the above studies examined populations with a one-dimensional (age or
stage) structure. In the series of papers, we consider the problem of exploitation
for a population with a binary structure, when there is an additional criterion
for structuring the population, different from the age or stage of development.
We characterized the properties of a feasible set of the population exploitation
problem for this generalization of Leslie’s model. In particular, we obtained a gen-
eralization of the bimodality property for the binary population structure [12].

Our model of the population belongs to the class of general models that
some authors call compact or global. As emphasized in [3], such models are nec-
essary at the initial stages of ecosystem modeling, because they must be basic for
more detailed models of specific natural systems. A comprehensive study of the
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properties of global models is necessary since the basic properties of detailed con-
crete models follow from the corresponding properties of the underlying global
models.

In previous papers, we dealt with the generally accepted so-called “regular”
case when the dynamical system step operator was irreducible (the definition
and properties of the local map irreducibility can be found in [6]; the classical
irreducibility [8] here will be called as global irreducibility).

The goal of this paper is to study the features of the feasible set of the optimal
exploitation problem for the binary Leslie’s model in the absence of assumptions
about the irreducibility of the dynamical system step operator.

2 Some Definitions, Notation and Preliminary Results

Used notation: Rz_—the nonnegative orthant of R?; M—the closure of a set M:;
co (M)—the convex hull of M; |M|—the number of elements of a finite set M;
m,n={i €Z|m <i<n}; Z—the set of integers; I (x) = {i € 1,¢q | x; > 0}.
Sometimes we briefly write = (z;) instead of x = (21, x2, ..., zq).

We say that x,y are in strict dominance relation or in partial dominance
relation if ¢ <y or x £y, © £ y, respectively; x £ y means x <y, x # y.

The ecosystem that is being exploited is modeled by the iterative process

Ti+1 :Fu(xt)a t:O71a2a"'a (1)

where F,(x) = F(x) — u, x; > 0—the population state at time t =0,1,2,....
The components of x; are the biomass values of ecosystem structural units; the
components of u determine the volumes of withdrawn biomass.

It is assumed that the original system (in the absence of control), along with
the trivial equilibrium (F'(0) = 0), also has a nontrivial equilibrium (i.e., its step
operator F' also has a nonzero fixed point Zr).

In [7] we posed the problem of maximization of ecosystem exploitation effect
c(u) on the feasible set U that is the closure of preserving controls set U. The
control u is preserving if, for at least one initial state xg, the trajectory of
process (1) is separated from zero, so all structural units of the system stably
exist indefinitely.

The map F was also assumed to be concave on RY and irreducible at zero.
Under these conditions, was proved [7] the equivalence of posed optimal exploita-
tion problem to the mathematical programming problem

max{c(u) | z = F(z) —u, x > 0, u > 0}, (2)

where c¢(u)—nonnegative monotone increasing function.

We denote by N, and N, the sets of nonzero and positive fixed points of
F,,, respectively. A nonempty set N, contains the largest element Z,, and the
map Z(u): u — T, is concave and monotone (strictly) decreasing on U [7):

N2, 0<v<u=>N, £, T, >Ty; 0<0< U= Ty > Ty (3)
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The feasible control u is preserving if Z(u) > 0. If Z(u) 3 0, but Z(u) # 0, then
the control w is called quasi-preserving. The feasible set U of the problem (2) is
the closure of the preserving controls set U. These sets are representable [7] as

U={ueRl |Nf#2}, U={ueRl|N,+#o} (4)
Since c¢(u) is monotone increasing, optimal controls of (2) belong to the set
D={ueR%|N,#3, N, =2 (Yo>u)} (5)

This set is a part of the boundary of U; some authors call it as a positive boundary
of U. Clear that D = D’ U D", where D' = DN U, D" = D\ U, so that

D'={u|N} #2,N, =2 (Yvo>u)}, D"={ueR |N, #2, N =2} (6)

Thus, all optimal preserving controls belong to D’; accordingly, all optimal
quasi-preserving controls belong to D”.

In the sequel, we consider only those preserving and quasi-preserving controls
that belong to the positive boundary D = D’ U D" of the feasible set (19).

3 The Optimal Exploitation Problem for an Ecosystem
Modeled by Nonlinear Binary Leslie Model

Let us describe our generalization of the Leslie model. The population consists
of m structural subdivisions, each of which, in turn, contains individuals of n
ages (stages). If we denote by xEtJ) the number of individuals of the structural
subdivision i € 1,m of age (stage) j € 1,n at time ¢t = 0,1,2..., then the
relations of this model will take the following form:

(Hl = fi(ay), xgt;;ll) = ozwxgtj) (iel,m,jel,n—1). (7)

Here oy ; > 0 and 3;; > 0 are the survival and fertility rates in the relevant
subdivisions, a; = >0 Y7 =1 Bija; J)—the number of newborns at time ¢.

The population state vector has a block form =z = (3:(1), z@: . x(m)) with
the blocs 2 = (z;1,...,2;,) (i € I, m). The step operator F(z) = (f; j(z)) of
the iterative process (7) has the following components:

fia(z) = fila(x)), fij+1(z) =ijzi; (i €1,m, j€ln—1). (8)

We assume that among the functions f;(a) there are no identically equal to
zero and they satisfy the following assumptions:

fi(0) =0, fi(a) are concave on Ry (Vi € 1,m). (9)

So, these functions are monotone increasing and positive for a > 0. Denote

o(a) =Y oW fia), 0™ = o), ol = Zmﬂaw
=1 k=1
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The condition of positive equilibrium existence is the following [11]:
o' (+) < 1 < o’(40), (11)
The irreducibility at zero of the map (8) is equivalent to the following condition:
Bin>0 (Vielm). (12)

The global irreducibility of the map (8) is equivalent to irreducibility only at
zero under the following requirement:

fi(a) are strictly increasing on [0, +00) (Vi € 1,m). (13)

We introduce the following notation (here everywhere i € 1,m, j, k € 1,n):

7-‘-(1) _ 71.7(11)’ 7_‘_J(_l) _ pgl’}’ p; i) _ pj m pj k H a0, (14)
. . J
PO w) =pP (), p () =" pui, (15)
k=1

n
ZZ U’l,]? qj() —qj na i Zﬁzsnazta (16)
=1 j=1

wla) =ola) —a, " =maxu(a), Ai(a)=m @ fi(a). (17)

Note that ¢(u) = (g, u), where the symbol (-, -) means the scalar product,

1.,

g™, g =@, 6, gD). (18)

The feasible set U of (2) for the model (7) is given by the restrictions

q=1(¢"q

zi1 = fi(a(x)) —win,  Tijp1 = igrij—uijv ((€1,m, j €1,n—1), (19)

. m n
where x, u are nonnegative, a(z) = 32,7, > i Biji ;-
It is easy to get explicit expressions for coordinates of the feasible vector x:

ziy = fila) = pD(w) (G € T,n), @i = Mila) —pD(u) (i € Tm),  (20)

where a = a(x). We write x with coordinates (19) as « = x(a,w). The following
properties are a consequence of the Egs. (20):

q(u) = p(a) (a = a(x)), q(u) <p” (YueU). (21)
For uw € U, &, = (Z; ;(u)) we introduce the following indices sets:

In(uw)={kel,m|zxn(u) =0} L(u)={kel,m]|3jel,n: u,; >0} (22)
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The set Ip(u) shows blocks z(®) whose last age (stage) groups are completely
eliminated. The fact I;(u) = @ means that « = 0; otherwise, the set I; (u) shows
blocks u(*) containing positive coordinates. Clear that Io(u) C I (u).

From (20), (21) we obtain the following representations (see [11] for details):

D' = {u|pW(u) <A} (i € Tm), q(u) = p*, u >0}, (23)

D" = fu o £ 2, 50 {0 1S P g = e, w0}, (21

A remarkable property of D’ was proved in [11]: it turns out that the set of
potentially optimal preserving controls D’ is not empty and lies entirely on the
hyperplane I' = {u | g(u) = p*}. Moreover,

D'=rnu, D'nrcD, D=InD. (25)

This property allows even before solving the problem (2) to determine whether
optimal preserving controls exist, and if they exist, simplifies their finding.
Now we give (without proof) the auxiliary proposition about the proper-
ties of the function a(u) = a(z(u)). This proposition allows us, in particular, to
determine the change boundaries of the parameter a in the representation (24).

Lemma 1. Let the assumptions (9) and (11) hold. Then the following state-
ments are true:

(i) The function a(u) is nonnegative, monotone decreasing, and concave on U.
(ii) The inequality a(u) > a* (Vu € U) holds; more specifically,

=a*,uel,

a(u) =a* (Yue D), a(u){>a*, W T

(Vu € D"). (26)

As mentioned, the set of preserving controls D’ for the problem (2) in the
case of the generalization of Leslie’s model is always nonempty. To characterize
the conditions when D" # &, we need the following notation.

We will consider ordered subsets of 1,m, 0,n, for the designation of which it is
reasonable to use variable-length row vectors: the notation I = (i1,...,4y) means
that there is the set I = {iy,...,4,} with a fixed order of elements iy,...,i,.

Let I = (i1,...,i¢) € 1,m, J = (j1,...,J¢) C 0,n, and the second of these
sets allow repetition of elements, in contrast to the first: [I| = ¢, |J| € 1,. We
introduce the following notation:

Sh(a) = 8% (a) = Sh(a) + 3 oD fi(a), (27)
igl

where ST (a) = S]’i;’j (a) = Zi:l aﬁik)fik (a). In particular,

59 (@) = o fi(a) + 3 0 fila). (28)
ki



Feasible Set Properties of an Optimal Exploitation Problem 277

The set D" # @ if and only if J* # & [12, Theorem 1], where

Jo={keTm| B Ao}, Ji={jeTn|S¥@)>a} (keTm). (29)

We denote by agi) the solution of the equation

Sj(i,)l(a) =a (iel,m,jel,n). (30)

This equation is solvable if and only if j € J* [12, Lemma 1].
We characterize now the structure of D”. For this we consider the polyhedron

U(a) = {u| p“(u) < Ni(a) (Vi € TTm), q(u) = p(a), w0} (31)
Clear that U = U{U(a) | a € [0,ar]}. We introduce the sets
Vpr=V(a*)ND', Vpr(a)=V(a)nD",
where V (a) is the set of vertex of U(a), a € [a*,ap~]. For i € T,m, let us denote

o) = w20 p9 0 { V(0T 2 o) = p(@)), Le=ULite). 32

Obviously, L;(a) is the nonnegative part of (mn — 2)-dimensional affine variety.
If D(a) = U(a) N D", then using the parameterization (31), we obtain:

D'= U D(a), D(a)= U La). (33)
a€la*,apr] =1
For V' C U we denote sup{a(u) | u € V} = ay. Note that ai = ar, ap = a*;
by Lemma 1, ap = ap~ (if D" # @). It is easy to derive the following equalities:
Li#@=a;=ag, =a? (VieI,m), &D//:mz}x&i, (34)
1eJ*
where a'}) is the solution of the Eq. (30) with j = n.
We use also the following notation (see (27); here i € 1,m, j,k € 0,n):

AL (I dya) = (Sjip sy (@), S ) ) (a)]. (35)
For a given population state vector x = (.Z‘(l),.’L‘(Q), . ,x(m)), we collect the
positive coordinates indices of its blocs z(F) = (Tk1s---,Thpn) in the sets I,j(ac):

I (@)= {j €T | 2xy > 0} (k € T,m).

In [12], the elements of Vp~(a) were found explicitly. If Io(u) C I U {i} and
I (u) € {j, k}, where I = (i1,ia,...,i¢) € I,m\{i}, J = (j1,J2,..-,je) € 1,n),
J < k, then positive coordinates of u € Vpr (a) are determined as follows:

g, =7 fi(a) (re10), wig=(¢\) TSI L (a) —a).  (36)

yeeey,
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in the case Z@S>O a € Al

s=j

(Ia Jv a)a IO(U) = I’ Iz—i_(u) = {.7}3 and

j—1,n

u% 2Jr _Tr flr( )(T € 1 é)
ui.j 4521 DTSR k(@) — a), (37)
Ui, Pgli(qj(z)f ) Ha Sﬁ’ 11,[’,3@ 1,j— 1(a)).

k=1 N
in the case ) Bis >0, a€ A’ (I, ],a), Io(u) = I (u).
o=
We denote by (I, J,a) and u} (I, J,a) the controls with coordinates (36)
and (37), respectively.

4 The Case of Irreducibility Assumption Absence

We consider here some “degenerate situations” for the feasible set (19) the prob-
lem under consideration and show that they lead to the reducibility of the maps
used. The first situation is related to the existence on the positive boundary D of
the feasible set of controls that are in partial dominance relation; the second—
with the existence of linear sections on its nonlinear part D" .

Recall that the strict dominance relation was used in the definition (5) of D.
The following statement shows the adequacy of this approach—it turns out that
the set D may contain the elements that are in partial dominance relation.

Theorem 1. Let the assumptions (9) and (11) hold. Then D’ (resp., D") con-
tains u, v with uw 2 v if and only if the condition (38) is satisfied (resp., at least
one of the conditions (38), (39) is satisfied) :

JieT,m: Bin=0, (38)

m>2; FieJ: fi(a)=const (Va € [ay,+0), af € [a”, m}]n ag ))) (39)
€

Proof. Necessity. If u,v € D’ then, by (23), ¢(u) = p* = ¢(v). Since linearity
of ¢(-) (see (16)), then ¢(w) = 0 for w = uw —v. If w 2 v then w 2 0, so
I (w) # @ for some iy € T,m. If jo € I} (w), then from g(w) = 0 we get,

by (16), quozlwio’jo =0, 80 Biy,; = 0 (Vj € jo,n). Thus, (38) is satisfied.

Now let u,v € D”. It follows from D" # & that J* # @ [12, Theorem 1]. If
uz v and a1 = a(u), az = a(v), then a1 < as by Lemma 1. If ¢ € Iy(v) then we
see from (3) and (22), that Z; ,,(u) < Z; »,(v) =0, so Ip(v) C Iy(u).

We introduce, as above, w = u — v, and show that I = Iy(v) N I1(w) = &,
where the sets Iy(v), I1(w) are defined by equalities (22).

Indeed, otherwise the equalities Z; ,,(u) = 0, Z;,(v) = 0 imply, by (20), the
equalities \;(a1) = p® (u), \i(az) = p® (v) (Vi € I). Since positivity of all p( Y

(j € T,n) in definition (15) of p( (u), we get Ai(a1) = p@ (u) > p®(v) = \i(a ),
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so Ai(a1) > Ai(az) (Vi € I). But this inequality contradicts the condition a; < ag
due to the monotonicity of A;(a) (see (17)). Therefore, I = Iy(v) N I (w) = 2.

For m = 1, this implies that either Iy(v) = @ or I;(w) = &. But both of
these equalities contradict our assumptions: in the first case we get v ¢ D", in
the second—w = 0, so u = v. Therefore, the inequality v 2 v for u,v € D" is
possible only in the case of m > 2.

If a; = as = a, then, as above, from the equality g(u) = u(a) = q(v) we get
Bin = 0 for some i € 1, m, so the condition (38) is satisfied.

Suppose now that a; < as. We show that then Iy(v) C J* (see notation (29)).

Let i € Ip(v). Then i € Iy(u) and it follows from I = & that i ¢ I1(w), so
that u(Y) = v(®. Since u # v this imply Io(v) # T, m. Next, X\i(a;) = p(u) =
p(l) (’U) = )\i(ag), i.e. /\i(al) = )\i(ag) (VZ S Io(u)) Then, by (17), fi(al) = f,-(ag).
For a concave monotone increasing function, this means constancy over the entire
interval [a1,+00). In this case, since a* < a1 (see (26)), we get:

(a*) 7 fila®) = (a1) " filar) > (az) " fi(az). (40)

We see from (28) that S”T(le(a) = afﬁlfi(a) + D ki o® f1.(a). Summing up
the equalities (20) with the coefficients ; ; (taking into account z;, = 0 for

i € In(u)), we derive the inequality 57(21(61) > a, where a = a(u), u € D”. Using
this inequality with @ = ag, thanks to (40) we obtain: 1 < (ag)_lgfﬁl(ag) <
(al)_lgfﬁl(al) < (a*)_lgr(fll(a*), S0 S’T(le(a*) > a* and, by (29), i € J*.

Thus, the inclusion Iy(v) C J* is proved. Therefore, the Eq. (30) is solvable
for some j € J¥ [12, Lemma 1]. If ay) is its solution, then, as proved above,
(aéz))*lgiﬁl(agl)) =1< (al)’lgr(ﬁl(al), so that a; < aﬁ-z). Since a; belongs to
the interval of constancy of f;(a), we have a5 < min{ay) | i€ J*, je Jr}. Thus,
for a1 < ag the condition (39) is satisfied.

Sufficiency. Suppose first that v € D’ and the assumption 3;, , = 0 is satisfied
for some ig € T,m. Then, by (23), q(v) = p*, p?(v) < \f (Vi € T,m). By (16),
we have qgi‘;f = 0, i.e. the coefficient of v;,,, on the L.H.S. of the equality
q(v) = p* is zero. Take v° having a single nonzero coordinate vf ., then for
u(a) = v+ awg, by (15), we have: p((u(a)) = p@(v) < Af (Vi € T,m\{io}).
Further, p{®) (u(a)) = pl) (v) + aplio) (vg) = plio) (v) + av) . Tt follows that for
a € (0,00), where ag = (v9 )71 (A7, — pl®) (v)), the condition pl®) (u(a)) < A%,
also holds. Next, by (16) we have: g(u(a)) = q(v) + ag(vo) = q(v) +aqgfi2v?07n =
q(v) = p*, so that all the conditions (23) guaranteeing u(e) € D’ are met
for a € (0, ). Therefore, as the vector u, we can take any vector u(a) with
a € (0, ap). Thus, u,v € D" are found that satisfy the condition u 3 v.

Proof of the sufficiency of (38) for the existence of u, v from D" with u 2 v,
is completely analogous to the corresponding proof for the case of the set D’;
the control v in this case must be selected in accordance with the representation
(33) from the set U; 77, Li(a)\ Nyt Li(a) (a € [a*,ap)).

Now, suppose that the assumption (39) is satisfied for some i = ig. Then it

follows from (29), due to the monotonicity of SJ(-i)(a) with respect to subscript,
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that ip € J*,n € J , and the Eq. (30) for i = ig, j = n has the solution a$) . The
sufficiency in the case of (38) is proved, therefore we can assume that 3; , > 0
(Vi € 1,m). We show that for m > 2 there exists u € D" from L; (a)\U;zi, Li(a)
(a = a(u) € [ay,ap)) that has a positive coordinate u;, j, in some other block
u) of u (iy € T,m, j1 € T,n, i1 # io).

Since the function a_lS( )1( ) is strictly decreasing for a € [a*, a,(fo)), it

follows from (a ZO)) 1S(Z° ( )) = 1 the inequality a‘lb_”,(ff)l (a) > 1, or, equiv-
alently, S\ (a) > a. For u = ' (I, J,a) with coordinates (36), where I = {io},

n—1
J = {n}, we have: u;;1 = (a(il))_l(g',(ff)l(a) —a), i1 = () a —
Sff’lfo( ), tion = Xig(a). If a € A, (I, J,a) = (57 o(a), 8,7, (a)] =
(S;f’lllo( ), 5’(“’ 1(a)] (see (35)) then, by (36), u;, 1 >0, @, 1 > 0. We saw above

that a < S(lg)( ) for a € [a* agf")). Let us show that there are a € [a*, CLSO))

such that a > S’:f_’ill)o(a).

Indeed, since B, , > 0, the length d of the interval AB{H(I,J, a) is posi-
tive: d = gflif)l(a) - Sfl"_’iio(a) = ol f; (a) > 0, we get A_f)fn(I,J, a) £ 2.
By Lemma 1, a = a(u) > a*, so fi,(a) > fi,(a*) and d > ¢(") f; (a*). This
means that for all a € (ao,'ago)), where ag > a\?) — o f; (a*), we have
a > 8" (a), hence a € A, (I,J,a). In this case x;, n(a,u) > 0, therefore,

u = ugil)(f, J, a) is the sought-for vector. It remains to find v € D” with u 2 v.

Note that since ay < asf °) we can assume that the function fio (@) is constant

over the entire interval (ao, a%”)) ie. a(u) > ay.

Only one coordinate Z;, ,(u) of all the last coordinates Z; ,(u) (i € 1,m)
of the blocks 7 (u) is zero: Zi, ,(u) = 0, T;,(u) > 0 (Vi € 1T,m\{i}), so
u ¢ Uiz, Li(a). Denote by ug = (uf ;) a vector having a single nonzero coordinate
u) ; = 1. Let v(a) = u — aug. We show that v(c) € D" for sufficiently small
a > 0. To do this, it is enough to verify that the constraints (24) are met.

Indeed, v() is nonnegative for 0 < o < a1 = uf, ;. Next, using (16), we

obtain: g(v(a) = q(u) — ag(uo) = u(a(w)) — agi’})uf, 5, = p(a(u) — aoi.
Since o) > 0, for u = u( ( )) — ac'™) we have: 0 < pu < p(a(u)) < p* for all
a € (0,a9), where ap = ()~ p(a(u)).

Therefore, the equation g(v(a)) = p(a) has a solution [11, Lemma 1] for
0 < a < ay; we denote it by a = a@. The function p(a) is monotone decreasing
for a > a*, therefore, a > a(u ) > ayp. It follows that f;,(a) = fi,(a(u)) and
that p()(v(a)) = plo)(u) = X\, (@(u)) = Ay, (a). Next, we obtain from (15):
P (v(a)) = pli)(u) — ap(“)(uo) =\, (@ (u)) — an(™), Thus, the equalities
0 < pl)(v(a)) < A\, (@) are fulfilled for 0 < o < az = (7)) 71\, (@(u)).

Finally, p (v(a)) = p®(u) = N(a(u)) < \(a) (Vi # ig,i1), because of
a(u) < a. So, all conditions for v(«) to belong to D are satisfied for « € (0, a),
where ag = min{aq, ag, a3 }. Therefore, as the vector v, we can take any vector
u(a) with a € (0, ag). Thus, in this case too, vectors u, v were found that satisfy
the condition u 2 v. All statements of Theorem are proved.
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Remembering that a; = sup{a(u) | u € L;} = a'? and given that Li(agf))
contains a single element, we get the following criterion for |L;(a)| > 1:

Lia) @< a" <a<a;, |L(a))>1ea" <a<a; (i€l,m). (41)

As noted above, the set of preserving potentially optimal controls D’ is
entirely contained in the hyperplane I'. Let us characterize situations when the
set of quasi-preserving controls D" contains a part of some hyperplane (when we
say that a certain set contains a part of some hyperplane, it is understood that
this set contains the convex hull of some linearly independent vectors belonging
to this hyperplane, the number of which is equal to the dimension of space).

Theorem 2. Let the assumptions (9) and (11) hold. Then the set D" contains
a part of some hyperplane if and only if at least one of the conditions is satisfied:

(i) Some function f;(a) (i € 1,m) is constant on [a1,+o0), where ay € [a*,a;).
(ii) All functions f;(a) (Vi € 1,m) are affine on some interval [ay, az] C [a*,ap].

Proof. Necessity. Let the set D" contain a part of hyperplane II. We show first
that there exist uj,us € I N D" with a; # ag, where a(u1) = a1, a(uz) = as.
Suppose to the contrary that a(u) = a for all w € II N D”. Then, denoting
i = pu(a), in view of (24) we obtain ¢(u) = . This equality is the equation of
the hyperplane IT that (by (24)) is parallel to the hyperplane I'. Note that since
the inclusion D”NT" € D'\D’ (see (25)), the hyperplane II cannot coincide with
I' (whose equation is g(u) = p*), because the set D” N IT contains (relatively)
internal points (unlike the set D'\ D’). This means, in view of (21), that ji < p*.

Take any vector v; from the (relative) interior of D" N IT and an arbitrary
vector vy € D’. Due to the convexity of U this set contains v = (1 — a)vy + avs
(Va € (0,1)) together with v1, va. Since vo € D', by (23), Zin(va) >0
(Vi € 1,m). From the concavity of Z;,(v) we get: Z; n(v) > (1 — @) n(v1) +
aZin(ve) >0 (Vi € 1,m), so, by (19), z(v) > 0 and, by (4), v € U.

According to our way of choosing vy, the projection w of v onto the hyper-
plane IT for a sufficiently small o« > 0 belongs to D" N II. Since g from (18)
is the normal vector to the hyperplane II, we have v = u + ¢, where 3 > 0.
Therefore, v > w and, by (3), Z(u) > Z(v) > 0, so Z(u) > 0. It follows from (4)
that v € U. But this contradicts, by virtue of (6), the condition u € D".

Thus, the presence of uy,us € II N D" is proved with a(u1) # @(uz). Denote

u(a) = (1 — @)uy + aus, ala) = (1—a)a; + aas, a(a)=a(u(a)).

By Lemma 1, the function a(u) is also concave, therefore, a(a) = a(u(w)) >
(1 —a)a(ur) + aa(uz) = (1 — a)a; + aas = a(a), so a(a) > a(a).

By assumption that ui,us € II N D", we have u(a) € D" for all « € [0,1].
Let us show that uq, ug cannot lie in different sets L; (recall the notation (32)).

Indeed, otherwise, the condition Iy = Io(u1) N Ip(uz) = & would be satisfied
(see (22)). But then Z;,(u1) and Z;,(uz) could not be zero at the same time
(Vi € 1,m). Then, as above, Then, as above, we could 