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Preface

This volume contains the refereed and selected papers presented at 19th International
Conference on Mathematical Optimization Theory and Operations Research (MOTOR
2020)1 held during July 6–10, 2020.

It was originally planned that the conference would be held near Novosibirsk Sci-
entific Center, Russia. But due to the difficult situation all around the world related to
the COVID-19 pandemic, MOTOR 2020 conference only took place online, via Zoom.

MOTOR 2020 is the second joint scientific event2 unifying a number of well-known
international and Russian conferences held in Ural, Siberia, and the Far East for a long
time:

– Baikal International Triennial School Seminar on Methods of Optimization and
Their Applications (BITSS MOPT), established in 1969 by academician N.N.
Moiseev; the 17th event3 in this series was held on 2017, in Buryatia.

– All-Russian Conference on Mathematical Programming and Applications (MPA),
established in 1972 by academician I.I. Eremin; the 15th conference4 in this series
was held in 2015, near Ekaterinburg.

– The International Conference on Discrete Optimization and Operations Research
(DOOR) was organized 9 times since 1996; the last event5 was held in 2016 in
Vladivostok.

– The International Conference on Optimization Problems and Their Applications
(OPTA) was organized regularly in Omsk since 1997; the 7th event6 in this series
was held in 2018.

As per tradition, the main conference scope included, but was not limited to,
mathematical programming, bi-level and global optimization, integer programming and
combinatorial optimization, approximation algorithms with theoretical guarantees and
approximation schemes, heuristics and meta-heuristics, game theory, optimization in
machine learning and data analysis, and valuable practical applications in operations
research and economics.

In response to the call for papers, MOTOR 2020 received 175 submissions. Out of
102 full papers considered for reviewing (73 abstracts and short communications were
excluded because of formal reasons), only 31 papers were selected by the Program

1 http://math.nsc.ru/conference/motor/2020/.
2 The first conference of this series, MOTOR 2019, http://motor2019.uran.ru, was held on July, 2019,
in Ekaterinburg.

3 http://isem.irk.ru/conferences/mopt2017/en/index.html.
4 http://mpa.imm.uran.ru/96/en.
5 http://www.math.nsc.ru/conference/door/2016/.
6 http://opta18.oscsbras.ru/en/.
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Committee (PC) for publication in the first volume of proceedings (published in
Springer LNCS, Vol. 12095). Out of the remaining, the PC selected 33 revised papers
for publication in this volume. Each submission was reviewed by at least three PC
members or invited reviewers, experts in their fields, in order to supply detailed and
helpful comments.

The conference featured nine invited lectures:

– Prof. Aida Abiad (Eindhoven University of Technology, The Netherlands, and
Ghent University, Belgium), “On graph invariants and their application to the graph
isomorphism problem”

– Prof. Evripidis Bampis (Sorbonne Université, France), “Multistage optimization
problems”

– Prof. Bo Chen (University of Warwick, UK), “Capacity auctions: VCG mechanism
vs. submodularity”

– Prof. Sergei Chubanov (Bosch Research, Germany), “Convex geometry in the
context of artificial intelligence”

– Prof. Igor Konnov (Kazan Federal University, Russia) “Equilibrium formulations of
relative optimization problems”

– Prof. Alexander Kostochka (University of Illinois at Chicago, USA), “Long cycles
in graph and hypergraphs”

– Prof. Panos Pardalos (University of Florida, USA), “Inverse combinatorial opti-
mization problems”

– Prof. Soumyendu Raha (Indian Institute of Science, Bangalore, India) “Partitioning
a reaction-diffusion ecological network for dynamic stabilitys”

– Prof. Yakov Zinder (University of Technology Sydney, Australia), “Two-stage
scheduling models with limited storage”

The following four tutorials were given by outstanding scientists:

– Prof. Alexander Grigoriev (Maastricht University, The Netherlands), “Evolution of
sailor and surgical knots”

– Prof. Michael Khachay (Krasovsky Institute of Mathematics and Mechanics,
Ekaterinburg, Russia), “Metrics of a fixed doubling dimension: an efficient
approximation of combinatorial problems”

– Prof. Vladimir Mazalov (Institute of Applied Mathematical Research,
Petrozavodsk, Russia), “Game theory and social networks”

– Dr. Andrey Melnikov (Sobolev Institute of Mathematics, Russia), “Practice of using
the Gurobi optimizer”

We thank the authors for their submissions, members of the PC and external
reviewers for their efforts in providing exhaustive reviews. We thank our sponsors and
partners: Mathematical Center in Akademgorodok, Sobolev Institute of Mathematics,
Novosibirsk State University, Krasovsky Institute of Mathematics and Mechanics,
Higher School of Economics, and Melentiev Energy Systems Institute. We are grateful
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to Alfred Hofmann, Aliaksandr Birukou, Anna Kramer, and colleagues from
Springer LNCS and CCIS editorial boards for their kind and helpful support.

August 2020 Yury Kochetov
Igor Bykadorov

Tatiana Gruzdeva
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A 0.3622-Approximation Algorithm
for the Maximum k-Edge-Colored

Clustering Problem

Alexander Ageev(B) and Alexander Kononov

Sobolev Institute of Mathematics, Novosibirsk, Russia
{ageev,alvenko}@math.nsc.ru

Abstract. In the Max k-Edge-Colored Clustering problem (abbreviated
as MAX-k-EC) we are given an undirected graph and k colors. Each
edge of the graph has a color and a nonnegative weight. The goal is
to color the vertices so as to maximize the total weight of the edges
whose colors coincide with the colors of their endpoints. The problem was
introduced by Angel et al. [3]. In this paper we give a polynomial-time
algorithm for MAX-k-EC with an approximation factor 4225

11664
≈ 0.3622

which significantly improves the best previously known approximation
bound 49

144
≈ 0.3402 established by Alhamdan and Kononov [2].

Keywords: Clustering problem · Edge-colored graph · Linear
relaxation · Approximation algorithm · Worst-case analysis

1 Introduction

In the Max k-Edge-Colored Clustering problem we are given an undirected graph
G = (V,E) whose edges have colors c : E → {1, . . . , k} and weights w : E → Q+.
The goal is to color vertices of G so as to maximize the total weight of edges
whose colors coincide with the colors of their endpoints. Cai and Leung [6] call
the edges whose colors coincide with the colors of their endpoints stable. In these
terms the problem is to color the vertices of G so as to maximize the total weight
of stable edges.

The problem was introduced by Angel et al. in [3]. It is easy to see that the
case when each edge of G has it own color is nothing but the Maximum Weight
Matching Problem. Cai and Leung [6] observed that the MAX-k-EC problem
can be considered as the optimization counterpart of the Vertex-Monochromatic
Subgraph problem or the Alternating Path Removal problem studied in a series
of research papers [5,8].

The MAX-k-EC problem can also be interpreted as an extension of the cen-
tralized version of the information-sharing model introduced by Kleinberg and
Ligett [9] and as a special case of the combinatorial allocation problem [7] (for
a more detailed discussion see [2,3]).

c© Springer Nature Switzerland AG 2020
Y. Kochetov et al. (Eds.): MOTOR 2020, CCIS 1275, pp. 3–15, 2020.
https://doi.org/10.1007/978-3-030-58657-7_1
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1.1 Related Work

Angel et al. [3,4] showed that the MAX-k-EC problem is strongly NP-hard in
the case of edge-tricoloured bipartite graphs. Cai and Leung [6] strengthened
this result by establishing that MAX-k-EC is NP-hard in the strong sense even
on edge-tricoloured planar bipartite graphs of maximum degree four.

On the other hand, Angel et al. [3,4] showed that the MAX-k-EC problem
is polynomially solvable in the case of edge-bicoloured graphs by a reduction to
the maximum independent set problem on bipartite graphs.

Cai and Leung [6] presented two FPT algorithms for the MAX-k-EC problem
under the assumption that the number of stable edges is a fixed parameter.

Angel et al. [3,4] also derived the first constant-factor approximation algo-
rithm for the MAX-k-EC problem. It is base on randomized rounding a linear
relaxation of the problem and finds a set of stable edges with weight 1

e2 ≈ 0.1353
of the optimum. Later Ageev and Kononov [1] showed that a refined worst-case
analysis of this algorithm gives an approximation factor of 0.25. They also pre-
sented an approximation algorithm with a factor of 7

23 ≈ 0.3043 based on round-
ing the same LP relaxation. Very recently, Alhamdan and Kononov [2] further
improved this bound to 49

144 ≈ 0.3402 by applying a modified rounding technique.

1.2 Our Results

We present a modified version of the algorithm by Alhamdan and Kononov [2]
for the MAX-k-EC problem. The algorithm retrieves a set of stable edges whose
weight is a factor of 4225

11664 ≈ 0.3622 of the optimum. This is achieved through
the use a slightly more sophisticated rounding scheme. Though the main ideas
behind our approach are the same as in [3,4]. We use a similar two-phase scheme.
On the first phase the algorithm chooses a set of desired stable edges randomly
and independently for each color. On the second phase the algorithm colors
vertices taking into account the selection of the edges made on the first phase.

2 Algorithm

Angel et al. [3,4] suggest the following integer linear program (ILP) for MAX-
k-EC:

maximize
∑

e∈E

weze (1)

subject to
∑

i∈C
xvi = 1, ∀v ∈ V (2)

ze ≤ min{xvc(e), xuc(e)} ∀e = [v, u] ∈ E (3)
xvi, ze ∈ {0, 1}, ∀v ∈ V, i ∈ C, e ∈ E (4)

In this program, the variables xvi, v ∈ V, i ∈ C specify the colors assigned to the
vertices: xvi = 1 if v is colored with color i and xvi = 0 otherwise. The variables
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ze, e ∈ E indicate the stable edges: ze = 1 if both endpoints of e are colored
with the same color as e and ze = 0 otherwise.

The first set of constraints ensures that each vertex is colored exactly by one
color, and the second ensures that an edge e is stable if its color coincides with
the colors of its endpoints.

The LP-relaxation (LP) of (1)–(4) arises after replacing the constraints xvi ∈
{0, 1} and ze ∈ {0, 1} by xvi ≥ 0 and ze ≥ 0, respectively.

The following two-phase randomized algorithm was first presented in [3] and
analyzed in [1–3]. In the first phase, it starts with solving LP and then works
in k iterations, by considering each color i, 1 ≤ i ≤ k, independently from the
others. For each color, the algorithm picks a threshold r at random in (0, 1)
and selects all edges of this color with z∗

e ≥ r. When an edge is selected, this
means that both its endpoints receive the color of this edge. Since a vertex can
be adjacent to differently colored edges, it may receive more than one colors. In
the second phase, the algorithm chooses randomly one of these colors. Denote by
λv(l, c) the probability with which the algorithm chooses the color c if l colors
were assigned to v at the first phase of the algorithm. We present the algorithm
below.

Algorithm 1. Algorithm 2-PHASE
1: Phase I :
2: Solve LP and let z∗

e be the values of variables ze.
3: for each color c ∈ C do
4: Let r be a random value in [0,1].
5: Choose the c-colored edges e with z∗

e ≥ r and give color c to both of e’s endpoints.
6: end for
7: Phase II :
8: for each vertex v ∈ V do
9: Let vertex v got l colors.
10: assign randomly one of l colors to v, each with the probability λv(l, c).
11: end for

Let (x∗, z∗) be an optimal solution of the LP. Following [2] we say that an
edge e is big if z∗

e > 1
3 ; otherwise an edge e is small. We say that a vertex v is

heavy if it is incident to at least one big edge; otherwise vertex v is light. Given
a vertex v ∈ V , we say that color i is heavy for v if v is incident to an i-colored
big edge, otherwise color i is light for v. We note that each vertex has at most
two heavy colors. If the vertex v got two colors: a heavy color i and a light color
j then we set λv(2, i) .= λv({j}, i) = 1

3 and λv(2, j) .= λv({i}, j) = 2
3 else we

set λv(l, c) = 1
l for all l colors assigned to v at the first phase of the algorithm.

Here λv({i}, q) means the probability with which the algorithm assigns color q to
vertex v on Phase 2 if on Phase 1 v receives two colors q and i. For convenience,
we will use two notation for the probability with which the algorithm chooses
the color c if two colors were assigned to v.
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Our rounding scheme differs from that in [2] by the definition of big edge.
In [2], an edge e is big if z∗

e > 1
2 . This implies that each vertex can have at

most one heavy color, which significantly simplifies the analysis but results in a
weaker approximation factor. Moreover, in our analysis we need a bit stronger
probability lemma than in [2] (Lemma 9).

3 Analysis

In this subsection, we give a worst-case analysis of Algorithm 2-PHASE. Let Xvi

denote the event where vertex v gets color i after Phase I of the algorithm.
Since the first phase of the algorithm coincides with the first phases of the
algorithms RR and RR2, presented in [3] and [1], respectively, the following
simple statements are valid.

Lemma 1. [3] For any edge e ∈ E, the probability that e is chosen in Phase
I is z∗

e .

Lemma 2. [3] For every vertex v ∈ V and for all i ∈ C we have:

Pr[Xvi] = max{z∗
e : e = [v, u] ∈ E & c(e) = i}.

Lemma 3. [3] For every vertex v ∈ V,
∑

i∈C Pr[Xvi] ≤ 1.

Recall that the vertex v can get several colors after Phase I . However, in
general this number will be small. Let Yvi denote the event where vertex v is
colored with i after Phase II of the algorithm.

Assume that a vertex v gets a color q in Phase I of Algorithm 2-Phase.
The probability that a vertex v is colored with a color q in Phase II depends
on how many colors a vertex v received in Phase I . Without loss of generality,
assume that the edges with colors 1, . . . , t and q are incident to the vertex v. By
the law of total probability we have

Pr[Yvq|Xvq] ≥
t∏

i=1

(1 − Pr[Xvi]) +
t∑

i=1

λv({i}, q)Pr[Xvi]
∏

j �=i

(1 − Pr[Xvj ])

+
1
3

∑

i,j

Pr[Xvi]Pr[Xvj ]
∏

l �=i,l �=j

(1 − Pr[Xvl])

+
1
4

∑

i,j,k

Pr[Xvi]Pr[Xvj ]Pr[Xvk]
∏

l �=i,l �=j,l �=k

(1 − Pr[Xvl]) (5)

The following lemmas give a lower bound for the probability that color q was
assigned to vertex v in Phase II .

Lemma 4. Assume that a heavy vertex v gets the only heavy color q in Phase
I of Algorithm 2-PHLV, then Pr[Yvq|Xvq] ≥ 17

27 > 0.62.
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We assume that the vertex v has no heavy colors except q. It follows that
λv({i}, q) = 1

3 for all i = 1, . . . , t and we can rewrite (5) as

Pr[Yvq|Xvq] ≥
t∏

i=1

(1 − Pr[Xvi]) +
1
3

t∑

i=1

Pr[Xv1]
t∏

i=2

(1 − Pr[Xvi])

+
1
3

t−1∑

i=1

t∑

j=i+1

Pr[Xvi]Pr[Xvj ]
∏

l �=i,l �=j

(1 − Pr[Xvl]) (6)

We drop all the remaining terms of the formula because they are equal to
zero in the worst case.

To simplify computations we set Xi = Pr[Xvi] and consider the right-hand-
size of (6) as a function fvq of variables X1,X2, ...,Xt. We have

fvq =
t∏

i=1

(1 − Xi) +
1
3

t∑

i=1

Xi

∏

j �=i

(1 − Xj) +
1
3

t−1∑

i=1

t∑

j=i+1

XiXj

∏

l �=i,l �=j

(1 − Xl).

Taking into account that color q is heavy and other colors are light, we have∑t
i=1 Xi ≤ 2

3 and Xi ≤ 1
3 , i = 1, . . . , t.

Putting the first two variables out of the summation and the product, we
get

fvq = (1 − X1)(1 − X2)
t∏

i=3
(1 − Xi) +

1
3
(X1(1 − X2) + X2(1 − X1))

t∏

i=3
(1 − Xi)

+ 1
3
(1 − X1)(1 − X2)

t∑

i=3
Xi

∏

j≥3,j �=i

(1 − Xj) +
1
3
X1X2

t∏

l=3
(1 − Xl)

+ 1
3
(X1(1 − X2) + (1 − X1)X2)

t∑

i=3
Xi

∏

j≥3,j �=i

(1 − Xj)

+ 1
3
(1 − X1)(1 − X2)

t∑

i=3

t∑

j=i+1
XiXj

∏

l≥3,l�=i,l�=j

(1 − Xl)

≥ (1 − X1)(1 − X2)

t∏

i=3

(1 − Xi) +
1

3
(X1(1 − X2) + X2(1 − X1))

t∏

i=3

(1 − Xi)

+
1

3
X1X2

t∏

i=3

(1 − Xi) = (1 − 2

3
X1 − 2

3
X2)

t∏

i=3

(1 − Xi) +
2

3
X1X2

t∏

i=3

(1 − Xi).

(7)

Consider fvq as a function of two variables X1 and X2. Assume that X1 +
X2 = γ, where γ ≤ 2

3 is a constant. Let X1 ≥ X2 > 0. If we increase X1

and decrease X2 by δ, 0 < δ ≤ X2, then the first term of (7) does not change
and the last term decreases and therefore the function fvq decreases as well. It
follows that the minimum of fvq is attained at X1 = min{1/3, γ} and X2 =
max{0, γ − 1/3}. By repeating this argument we get that the minimum of fvq

is attained when X1 = 1
3 , X2 = 1

3 , and Xi = 0, i = 3, . . . , t. Finally, we get
Pr[Yvq|Xvq] ≥ fvq ≥ 17

27 > 0.62.
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Lemma 5. Assume that a heavy vertex v has only one heavy color and gets a
light color q in Phase I of Algorithm 2-PHLV, then Pr[Yvq|Xvq] ≥ 50

81 > 0.61.

Proof. Let color 1 be the heavy color. It follows that λv({1}, q) = 2
3 and

λv({i}, q) = 1
2 for all i = 1, . . . , t and we can rewrite (5) as

Pr[Yvq|Xvq] ≥
t∏

i=1

(1 − Pr[Xvi]) +
2
3
Pr[Xv1]

t∏

i=2

(1 − Pr[Xvi])

+
1
2
(1 − Pr[Xv1])

t∑

i=2

Pr[Xvi]
∏

j≥2,j �=i

(1 − Pr[Xvj ])

+
1
3

t∑

i=1

t∑

j=i+1

Pr[Xvi]Pr[Xvj ]
∏

l �=i,l �=j

(1 − Pr[Xvl])

By setting A =
∏t

i=3(1−Pr[Xvi]), B =
∑t

i=3 Pr[Xvi]
∏

j≥3,j �=i(1−Pr[Xvj ])
and
C =

∑t
i=3

∑t
j=i+1 Pr[Xvi]Pr[Xvj ]

∏
l≥3,l �=i,l �=j(1−Pr[Xvl]) we can rewrite this

expression as

Pr[Yvq |Xvq ] ≥ (1 − Pr[Xv1])(1 − Pr[Xv2])A +
2

3
Pr[Xv1](1 − Pr[Xv2])A+

1

2
(1 − Pr[Xv1])Pr[Xv2]A +

1

2
(1 − Pr[Xv1])(1 − Pr[Xv2])B +

1

3
Pr[Xv1]Pr[Xv2]A

+
1

3
(Pr[Xv1](1 − Pr[Xv2]) + (1 − Pr[Xv1])Pr[Xv2])B +

1

3
(1 − Pr[Xv1])(1 − Pr[Xv2])C.

Discarding the last term and setting Xi = Pr[Xvi] we get

Pr[Yvq|Xvq] ≥ fvq
.= (1 − X1)(1 − X2)A +

2
3
X1(1 − X2)A +

1
2
(1 − X1)X2A

+
1
2
(1 − X1)(1 − X2)B +

1
3
X1X2A +

1
3
(X1(1 − X2) + (1 − X1)X2)B.

In order to obtain a lower bound for Pr[Yvq|Xvq], we first show that the
minimum of fvq is attained when X1 = 1

3 . After multiplying the terms with each
other, we get

fvq = (1 − 1
3
X1 − 1

2
X2 +

1
6
X1X2)A + (

1
2

− 1
6
X1 − 1

6
X2 − 1

6
X1X2)B

= (1 − 1
3
X1 − 1

3
X2)A + (

1
2

− 1
6
X1 − 1

6
X2)B − 1

6
(X1X2B + X2(1 − X1)A).

Let us consider fvq as a function of two variables X1 and X2. Assume that
X1+X2 = γ. Since color 1 is heavy then 1

3 ≤ X1 ≤ γ and X2 ≤ 1
3 . If we decrease

X1 and increase X2 by δ, 0 < δ ≤ X1 − 1
3 , then the expression X1X2B +X2(1−

X1)A increases. It follows that fvq reaches a minimum when X1 = 1
3 .

Now, substitute X1 by 1
3 . Thus, we obtain

fvq ≥ (
8
9

− 4
9
X2)

t∏

i=3

(1 − Xi) + (
4
9

− 2
9
X2)

t∑

i=3

Xi

∏

j≥3,j �=i

(1 − Xj). (8)
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Rewrite the right-hand side of (8) as

fvq = (
8
9

− 4
9
X2)(1 − X3)

t∏

i=4

(1 − Xi) + (
4
9

− 2
9
X2)X3

t∏

i=4

(1 − Xi)

+ (
4
9

− 2
9
X2)(1 − X3)

t∑

i=4

Xi

t∏

j=4,j �=i

(1 − Xj)

≥ (
8
9

− 4
9
X2)(1 − X3)

t∏

i=4

(1 − Xi) + (
4
9

− 2
9
X2)X3

t∏

i=4

(1 − Xi)

=
8
9

t∏

i=4

(1 − Xi)(1 − X2

2
− X3

2
+

X2X3

4
) (9)

Consider fvq as a function of two variables X2 and X3. Assume that X2 +
X3 = γ, where γ ≤ 2

3 is a constant. Let X2 ≥ X3 > 0. If we increase X2 and
decrease X3 by δ, 0 < δ ≤ X3, then the last term decreases and therefore the
function fvq decreases as well. It follows that the minimum of fvq is attained at
X2 = min{γ, 1

3}. By repeating this argument we get that the minimum of fvq

is attained when X2 = 1
3 , X3 = 1

3 , and Xi = 0, i = 4, . . . , t. Finally, we get
Pr[Yvq|Xvq] ≥ fvq ≥ 50

81 ≈ 0.6172839507.

Lemma 6. Assume that a vertex v has two heavy color and a color q is heavy.
Then Pr[Yvq|Xvq] ≥ 2

3 .

Proof. Let color 1 be the second heavy color. It follows that λv({1}, q) = 1
2 and

λv({i}, q) = 1
3 for all i = 2, . . . , t and we can rewrite (5) as

Pr[Yvq|Xvq] ≥
t∏

i=1

(1 − Pr[Xvi]) +
1
2
Pr[Xv1]

t∏

i=2

(1 − Pr[Xvi])

+
1
3
(1 − Pr[Xv1])

t∑

i=2

Pr[Xvi]
∏

j≥2,j �=i

(1 − Pr[Xvj ])

+
1
3

t∑

i=1

t∑

j=i+1

Pr[Xvi]Pr[Xvj ]
∏

l �=i,l �=j

(1 − Pr[Xvl])

By setting A =
∏t

i=4(1 − Pr[Xvi]) and Xi = Pr[Xvi] we obtain

Pr[Yvq|Xvq] ≥ fvq
.= (1 − X1)(1 − X2)(1 − X3)A +

1
2
X1(1 − X2)(1 − X3)A

+
1
3
(1 − X1)X2(1 − X3)A +

1
3
(1 − X1)(1 − X2)X3A +

1
3
X1X2(1 − X3)A

+
1
3
X1(1 − X2)X3A +

1
3
(1 − X1)X2X3A

= A(1 − X1)(1 − 2
3
X2 − 2

3
X3 +

2
3
X2X3) + AX1(

1
2

− 1
6
X2 − 1

6
X3 − 1

6
X2X3)



10 A. Ageev and A. Kononov

Finally we obtain

fvq = A(1 − X1)(1 − 2
3
X2 − 2

3
X3) + AX1(

1
2

− 1
6
X2 − 1

6
X3)

+ AX2X3(
2
3

− 5
6
X1). (10)

Consider fvq as a function of two variables X2 and X3. Assume that X2 +
X3 = γ, where γ ≤ 1

3 is a constant. Let X2 ≥ X3 > 0. If we increase X2 and
decrease X3 by δ, 0 < δ ≤ X3, then the first two terms of (10) do not change.
Since 2

3 − 5
6X1 ≥ 0 for X1 ≤ 2

3 then the last term decreases and therefore the
function fvq decreases as well. It follows that the minimum of fvq is attained at
X2 = γ and X3 = 0. By repeating this argument we get that the minimum of
fvq is attained when Xi = 0, i = 3, . . . , t. It follows that

fvq ≥ (1 − X1)(1 − 2
3
X2) + X1(

1
2

− 1
6
X2) = 1 − 1

2
X1 − 2

3
X2 +

1
2
X1X2 ≥ 2

3
,

where the last inequality follows from X1 + X2 ≤ 2
3 and X1 ≥ 1

3 .

Lemma 7. Assume that a vertex v has two heavy color and a color q is light.
Then Pr[Yvq|Xvq] ≥ 211

324 .

Proof. Let colors 1 and 2 be the heavy colors. It follows that λv({1}, q) =
λv({2}, q) = 2

3 and λv({i}, q) = 1
2 for all i = 3, . . . , t and we can rewrite (5)

as

Pr[Yvq|Xvq] ≥
t∏

i=1

(1 − Pr[Xvi]) +
2
3
Pr[Xv1](1 − Pr[Xv2])

t∏

i=3

(1 − Pr[Xvi])

+
2
3
Pr[Xv2](1 − Pr[Xv1])

t∏

i=3

(1 − Pr[Xvi])

+
1
2
(1 − Pr[Xv1])(1 − Pr[Xv2])

t∑

i=3

Pr[Xvi]
∏

j≥2,j �=i

(1 − Pr[Xvj ])

+
1
3

t∑

i=1

t∑

j=i+1

Pr[Xvi]Pr[Xvj ]
∏

l �=i,l �=j

(1 − Pr[Xvl])

+
1
4

∑

i,j,k

Pr[Xvi]Pr[Xvj ]Pr[Xvk]
∏

l �=i,l �=j,l �=k

(1 − Pr[Xvl]).
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By setting A =
∏t

i=5(1 − Pr[Xvi]) and Xi = Pr[Xvi] we obtain

fvq = A

4∏

i=1

(1 − Xi) +
2A

3
(X1(1 − X2) + X2(1 − X1))(1 − X3)(1 − X4)

+
A

2
(X3(1 − X4) + X4(1 − X3))(1 − X1)(1 − X2)

+
A

3
(X1X2(1 − X3)(1 − X4) + X1X3(1 − X2)(1 − X4) + X1X4(1 − X2)(1 − X3)

+ X2X3(1 − X1)(1 − X4) + X2X4(1 − X1)(1 − X3) + X3X4(1 − X1)(1 − X2))

+
A

4
(X1X2X3(1 − X4) + X1X2X4(1 − X3) + X1X3X4(1 − X2) + X2X3X4(1 − X1))

(11)

After transforming the expression, we get

fvq(X3, X4) = A(1 − X1)(1 − X2)[1 − X3

2
− X4

2
] + AX1(1 − X2)[

2

3
− 1

3
X3 − 1

3
X4]

+ AX2(1 − X1)[
2

3
− 1

3
X3 − 1

3
X4] + AX1X2[

1

3
− X3

12
− X4

12
]

+ AX3X4[
1

3
(1 − X1)(1 − X2) +

1

4
X1(1 − X2) +

1

4
X2(1 − X1) − 1

6
X1X2] (12)

Consider fvq as a function of two variables X3 and X4. Assume that X3+X4 = γ,
where γ ≤ 1

3 is a constant and X3 ≥ X4 > 0. If we increase X3 and decrease X4

by δ, 0 < δ ≤ X3, then the first four terms of (12) do not change. Transforming
the expression in the last term in square brackets, we obtain

1
3
(1 − X1)(1 − X2) +

1
4
X1(1 − X2) +

1
4
X2(1 − X1) − 1

6
X1X2

=
1
3

− 1
3
X1X2 − 1

12
X1 − 1

12
X2 > 0, (13)

where the last inequality follows from X1 +X2 ≤ 1. It follows that the minimum
of fvq is attained at X3 = γ and X4 = 0. By repeating this argument we get
that the minimum of

fvq ≥
3∏

i=1

(1 − Xi) +
2
3
(X1(1 − X2) + X2(1 − X1))(1 − X3)

+
1
2
X3(1 − X1)(1 − X2) +

1
3
(X1X2(1 − X3) + X1X3(1 − X2)

+ X2X3(1 − X1)) +
1
4
X1X2X3 (14)

Taking into account that X1 +X2 +X3 ≤ 1, X1 ≥ 1
3 , and X2 ≥ 1

3 , we obtain
that the minimum of fvq is attained at X1 = X2 = X3 = 1

3 and fvq ≥ 211
324 > 0.65.

Lemma 8. Assume that a light vertex v gets a color q in Phase I of Algorithm
2-PHLV, then Pr[Yvq|Xvq] ≥ 65

108 > 0.6.
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Proof. Since the vertex v has only light colors then λv({i}, q) = 1
2 for all i =

2, . . . , t and we can rewrite (5) as

Pr[Yvq|Xvq] ≥
t∏

i=1

(1 − Pr[Xvi]) +
1
2

t∑

i=1

Pr[Xvi]
∏

j �=i

(1 − Pr[Xvj ])

+
1
3

∑

i,j

Pr[Xvi]Pr[Xvj ]
∏

l �=i,l �=j

(1 − Pr[Xvl])

+
1
4

∑

i,j,k

Pr[Xvi]Pr[Xvj ]Pr[Xvk]
∏

l �=i,l �=j,l �=k

(1 − Pr[Xvl]) (15)

By setting A =
∏t

i=3(1−Pr[Xvi]), B =
∑t

i=3 Pr[Xvi]
∏

j≥3,j �=i(1−Pr[Xvj ]),
setting Xi = Pr[Xvi] and discarding some terms we get

Pr[Yvq|Xvq] ≥ fvq
.
= (1 − X1)(1 − X2)A +

1

2
X1(1 − X2)A +

1

2
(1 − X1)X2A

+
1

2
(1 − X1)(1 − X2)B +

1

3
X1X2A +

1

3
(X1(1 − X2) + (1 − X1)X2)B +

1

4
X1X2B

= A(1 − 1

2
X1 − 1

2
X2 +

1

3
X1X2) + B(

1

2
− 1

6
X1 − 1

6
X2 +

1

12
X1X2).

Consider fvq as a function of two variables X1 and X2. Assume that X1+X2 = γ.
Remind that X1 ≤ 1

3 and X2 ≤ 1
3 . Let X1 ≥ X2 > 0. If we increase X1 and

decrease X2 by δ, 0 < δ ≤ X2, the function fvq decreases. It follows that the
minimum of fvq is attained at X1 = min{ 1

3 , γ} and X2 = 0. Repeating this
argument for any pair of variables not equal to 0 or 1

3 we get that the minimum
of fvq is attained when X1 = X2 = X3 = 1

3 and Xi = 0, i = 4, . . . , t. Substituting
these values in (15), we get Pr[Yvq|Xvq] ≥ fvq ≥ 65

108 ≈ 0.6018518519 > 0.6.

Denote by λv(Y, c) the probability with which the algorithm chooses the color
c if a set Y ⊆ C colors were assigned to v at the first phase of the algorithm.

Lemma 9. Let e = (u, v) has a color c and it is chosen in the first phase of Algo-
rithm 2-PHASE. If for any two subsets of colors Y and Y ′ such that Y ⊆ Y ′ ⊆ C
we have λv(Y, c) ≥ λv(Y ′, c) then Pr[e is stable] ≥ Pr[Yuc|Xuc]Pr[Yvc|Xvc].

Proof. In order to prove this lemma, we consider a sequence of algorithms
denoted by Σ0, Σ1, ..., Σk where Σ0 is algorithm 2-PHASE. The difference among
these algorithms comes from the way in which the vertices get a color in Phase
I . Let us fix a color x. We consider two different procedures for assigning col-
ors to the vertices. Procedure I assigns the colors in the same way as algorithm
2-PHASE. Procedure II colors the vertices with color x independently.

Let us look at how these two procedures work for just two vertices. Suppose
there is an edge e′ that is incident with u colored by x and another edge e′′

incident with v colored by x. Assume that e′ and e′′ are the edges with the
maximal values of z∗

e′ and z∗
e′′ among all x-colored edges incident with u and v,

respectively. Let z∗
e′ ≤ z∗

e′′ . To simplify the notation we set p = z∗
e′ and q = z∗

e′′ .
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Lemma 2 implies that Procedure I assigns the color x to both vertices u and v
with probability p and only to the vertex v with probability q − p. Procedure I
doesn’t assign the color x to both vertices u and v with probability 1 − q. Using
Procedure II, we color the vertex u with probability p and the vertex v with
probability q, each vertex independently.

In the algorithm Σ0, for each color x, 1 ≤ x ≤ k we use Procedure I to assign
colors to vertices. In the algorithm Σi, 1 ≤ i ≤ k, for colors x such that 1 ≤ x ≤ i
(resp. i+1 ≤ x ≤ k) we use Procedure II (resp. Procedure I ) for assigning those
colors to vertices. Thus, in algorithm Σk, all colors are assigned to vertices using
Procedure II. Denote by pe(Σi) the probability that both extremities of e get the
color c by algorithm Σi.

Let Σi−1 and Σi be two consecutive algorithms; i.e., the algorithm Σi−1

assigns colors from [1, i − 1] using Procedure II and colors from [i, k] using Pro-
cedure I. While for Σi, it assigns colors from [1, i] using Procedure II, and colors
from [(i + 1), k] using Procedure I. Thus, they differ only in the way they assign
color i to vertices. If there is no i-colored edge incident to either u or v, then
pe(Σi−1) = pe(Σi). Recall that we denote by Xvc (resp. Xvc) the event that v
gets (resp. does not get) color c after Phase I of the algorithm.

Let C′ = C \ {c, i}. Denote by A
(Y)
v the event which corresponds to the

situation where vertex v gets a set Y of colors after Phase I . Let Y ⊆ C′ and
Y ′ ⊆ C′, then the probability of the event A

(Y)
v ∧ A

(Y′)
u are the same for both

algorithms Σi and Σi+1, i.e. PrΣi
[A(Y)

v ∧ A
(Y′)
u ] = PrΣi+1 [A

(Y)
v ∧ A

(Y′)
u ].

For Σ ∈ {Σi−1, Σi} we have

pe(Σ) =
∑

Y⊆C′,Y′⊆C′
PrΣ [A(Y)

v ∧ A(Y′)
u ]φY,Y′(Σ),

where

φY,Y′(Σ) = λu(Y, c)λv(Y ′, c)(Pr[Xu,i ∧ Xv,i])

+ λu(Y ∪ {i}, c)λv(Y ′, c)(Pr[Xu,i ∧ Xv,i])

+ λu(Y, c)λv(Y ∪ {i}, c)(Pr[Xu,i ∧ Xv,i])
+ λu(Y ∪ {i}, c)λv(Y ′ ∪ {i}, c)(Pr[Xu,i ∧ Xv,i])

We claim that φ(
∑

i−1) ≥ φ(
∑

i) (from now on we omit subindices of φ for
shortness). Taking into account the notation introduced we have

φ(Σi−1) = (1 − q)λu(Y, c)λv(Y ′, c) + (q − p)λu(Y, c)λv(Y ′ ∪ {i}, c)
+ pλu(Y ∪ {i}, c)λv(Y ′ ∪ {i}, c)

and

φ(Σi) = (1 − p)(1 − q)λu(Y, c)λv(Y ′, c) + (1 − q)pλu(Y ∪ {i}, c)λv(Y ′, c)
+ (1 − p)qλu(Y, c)λv(Y ′ ∪ {i}, c) + pqλu(Y ∪ {i}, c)λv(Y ′ ∪ {i}, c)
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Thus,

φ(Σi−1) − φ(Σi) = (1 − q)pλu(Y, c)λv(Y ′, c) − (1 − q)pλu(Y ∪ {i}, c)λv(Y ′, c)
− (1 − q)pλu(Y, c)λv(Y ′ ∪ {i}, c) + (1 − q)pλu(Y ∪ {i}, c)λv(Y ′ ∪ {i}, c)

= (1 − q)p[λu(Y, c)λv(Y ′, c) − λu(Y ∪ {i}, c)λv(Y ′, c)
− λu(Y, c)λv(Y ′ ∪ {i}, c) + λu(Y ∪ {i}, c)λv(Y ′ ∪ {i}, c)]

= (1 − q)p(λu(Y, c) − λu(Y ∪ {i}, c))(λv(Y ′, c) − λv(Y ′ ∪ {i}, c)) ≥ 0

where the last inequality follows from λu(Y, c) ≥ λu(Y ∪ {i}, c) and
λv(Y ′, c) ≥ λv(Y ′ ∪ {i}, c).

Theorem 1. The expected approximation ratio of Algorithm 2-PHASE is
greater than 0.3622.

Proof. Let OPT denote the sum of the weights of the stable edges in an optimal
solution. Since z∗ is an optimal solution of the LP, we have OPT ≤ ∑

e∈E wez
∗
e .

Consider an edge e ∈ E is chosen in Phase I of Algorithm 2-PHLV. This
occurs with probability z∗

e by Lemma 1. Suppose an edge e = [u, v] has a color
c, then by Lemma 9, the probability that the both endpoints of e are colored
with c at least Pr[Yvc|Xvc]Pr[Yuc|Xuc]. Lemmata 4-8 imply that the expected
contribution of the edge e is greater than (65/108)2wez

∗
e > 0.3622wez

∗
e .

The expected weight of the stable edges in a solution obtained by Algorithm
2-PHLV is

W =
∑

e∈E

wePr[e is stable] > 0.3622
∑

e∈E

wez
∗
e ≥ 0.3622 · OPT.

4 Concluding Remarks

The goal of this paper was to exhaust the limits of the method first presented
in [3]. We think that further significant improvements in approximation bounds
will need some different approaches.
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Abstract. We study the proximity of the optimal value of the m-
dimensional knapsack problem to the optimal value of that problem with
the additional restriction that only one type of items is allowed to include
in the solution. We derive exact and asymptotic formulas for the preci-
sion of such approximation, i.e. for the infinum of the ratio of the optimal
value for the objective functions of the problem with the cardinality con-
straint and without it. In particular, we prove that the precision tends
to 0.59136 . . . /m if n → ∞ and m is fixed. Also, we give the class of
the worst multi-dimensional knapsack problems for which the bound is
attained. Previously, similar results were known only for the case m = 1.

Keywords: Multi-dimensional knapsack problem · Approximate
solution · Cardinality constraints

1 Introduction

In [1,2,4,5] the proximity of the optimal value of the (one-dimensional) knapsack
problem to the optimal value of the problem with the cardinality constraints was
studied. The cardinality constraint is the additional restriction that only k type
of items is allowed to include in the solution (i.e. that only k coordinates of the
optimal solution vector can be non-zero). Different upper and lower bounds for
the guaranteed precision, i.e. for the infinum of the ratio of the optimal value
for the objective functions of the problem with the cardinality constraints and
without them, were obtained. Also, in some cases the classes of worst problems
were constructed.

The importance of such kind of research is due to the fact that some algo-
rithms for solving the knapsack problems require to find an optimal solution to
that problem with the cardinality constraints; see, for example [4,5], where this

This work was performed at UNN Scientific and Educational Mathematical Center.
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approach is used for constructing greedy heuristics for the integer knapsack prob-
lem. Moreover, the results of research can be potentially useful for constructing
new fully polynomial approximation schemes.

Here, from this point of view, we consider the m-dimensional knapsack prob-
lem. The solution to that problem with the additional constraint that only 1
coordinate can be non-zero is called the approximate solution. We derive exact
and asymptotic formulas for the precision of such approximation. In particular,
we prove that the precision tends to 0.59136 . . . /m if n → ∞ and m is fixed.
Also, we give a class of worst multi-dimensional knapsack problems for which
the bound is attained.

2 Definitions

Denote by Z+, R+ the sets of all non-negative integer and real numbers respec-
tively. Let

L(A, b) =
{
x ∈ Z

n
+ : Ax ≤ b

}
, A = (aij) ∈ R

m×n
+ , b = (bi) ∈ R

m
+ .

The integer m-dimensional knapsack problem is to find x such that

cx → max s.t. x ∈ L(A, b), (1)

where c = (cj) ∈ R
n
+ [3,6].

Denote by v(j) (j = 1, 2, . . . , n) a point in L(A, b), all of whose coordinates
v
(j)
i are 0, except for of v

(j)
j , which is

v
(j)
j = min

i: aij>0
�bi/aij� .

It is not hard to see that v(j) ∈ L(A, b) and cv(j) = cjv
(j)
j . Denote V (A, b) ={

v(1), . . . , v(n)
}
. A point v(j), on which the maximum

max
j

cv(j)

attained is called an approximate solution to the problem (1). The precision of
the approximate solution is

α(A, b, c) =
max

x∈V (A,b)
cx

max
x∈L(A,b)

cx
.

In this paper we study the value

αmn = inf
A∈R

m×n
+

b∈R
m
+ , c∈R

n
+

α(A, b, c).
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Table 1. Values of δn, εn and α1n for small n

n δn = δn−1(δn−1 + 1) εn = 1 + εn−1(δn−1 + 1) α1n = δn/εn

1 1 1 1.000000000000000

2 2 3 0.666666666666667

3 6 10 0.600000000000000

4 42 71 0.591549295774648

5 1806 3054 0.591355599214145

6 3263442 5518579 0.591355492056923

7 10650056950806 18009568007498 0.591355492056890

8 113423713055421844361000442 191802924939285448393150887 0.591355492056890

3 Previous Work

The precision of the approximate solution to the 1-dimensional (m = 1) knapsack
problem was studied in [1,2,4,5]. In particular, in [2,4] it was proven that

δn = δn−1(δn−1 + 1), εn = 1 + εn−1(δn−1 + 1), δ1 = ε1 = 1.

The sequence {δn} is the A007018 sequence in On-Line Encyclopedia of Integer
Sequences (OEIS) [7]. The sequence {εn} is currently absent in OEIS.

The sequence α1n = δn/εn decreases monotonously and tends to the value
α1∞ = 0.591355492056890 . . . The values for δn, εn and α1n for small n are
presented in Table 1.

In [4,5] these results are used in constructing the approximate scheme for
the integer knapsack problem. Note that α1n is even higher than the guaranteed
precision 0.5 of the greedy algorithm [6].

The infinum for α1n is achieved on the problem (the worst case)

n∑

j=1

xj

δj
→ max

s.t.
n∑

j=1

xj

δj + μn
≤ 1,

where 0 ≤ μn < 1 and
n∑

j=1

1
δj + μn

= 1. In particular,

μ1 = 1, μ2 =
√

5 − 1
2

= 0.61803 . . . , μ3 = 0.93923 . . . , μ4 = 0.99855 . . .

The optimal solution vector to this problem is (1, 1, . . . , 1) and the optimal solu-
tion value is εn/δn, whereas the approximate solution vectors are

(1, 0, 0 . . . , 0), (0, δ2, 0, . . . , 0), (0, 0, δ3, . . . , 0), . . . , (0, 0, 0, . . . , δn)

and the corresponding value of the objective function is 1.
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Lower and upper bounds for the guaranteed precision for k ≥ 2 are obtained
in [2].

In this paper we obtain formulas for αmn for m ≥ 1. In particular, we prove

that αmn → α1∞
m

if n → ∞ and m is fixed.

4 Preliminaries

Lemma 1. For any fixed m the sequence {αmn} decreases monotonously.

Proof. Let A ∈ R
m×n
+ , h, b ∈ R

m
+ , c ∈ R

n
+ and h > b. Consider a matrix A′ =

(A | h) ∈ R
m×(n+1)
+ and a vector c′ = (c, 0) ∈ R

n+1
+ . It is not hard to see that

all points in L(A′, b) are obtained from the points in L(A, b) by writing the zero
component to the end. Hence α(A, b, c) = α(A′, b, c′) ≥ αm,n+1. Due to the
arbitrariness of A, b, c, we get αmn ≥ αm,n+1.

Lemma 2. α(A, b, c) = α(A′, b, c) for some A′ ≤ A, where each column of A′

contains at least one non-zero element.

Proof. Let for some s, t we have ast > 0 and for all i 
= s
⌊

bs
ast

⌋
≤

⌊
bi
ait

⌋

(if there are no such s, t, then put A′ = A and A′ has the required form). From
the matrix A we construct a matrix A′ by setting a′

it = 0 for all i 
= s and
a′
ij = aij otherwise.

For all x ∈ R
n
+ we have A′x ≤ Ax. Hence L(A, b) ⊆ L(A′, b). Hence

max
x∈L(A,b)

cx ≤ max
x∈L′(A,b)

cx.

But

min
k: akj>0

⌊
bk
akj

⌋
= min

k: a′
kj>0

⌊
bk
a′
kj

⌋

(j = 1, 2, . . . , n),

hence V (A, b) = V (A′, b). Now we have

α(A, b, c) =
max

x∈V (A,b)
cx

max
x∈L(A,b)

cx
≥

max
x∈V (A′,b)

cx

max
x∈L(A′,b)

cx
= α(A′, b, c).

To complete the proof we note that the procedure described above can be
performed until the matrix A′ acquires the required form.

From Lemma 2 it follows that to study αmn it is enough to consider only
multi-dimensional knapsack problems with constraints
⎧
⎪⎪⎨

⎪⎪⎩

a11x1+ ... +a1l1xl1 ≤ b1,
a2,l1+1xl1+1+ ... +a2,l2xl2 ≤ b2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
am,lm−1+1x1+ ... +amnxn ≤ bm,
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that can be called a direct product of m knapsack problems. All inequalities 0 ≤ bi
have to be deleted due to Lemma 1. Denote ni = li − lk−1, where l0 = 0, lm = n
(i = 1, 2, . . . ,m). Thus, we have proved the following.

Lemma 3. For each m, n the infimum αmn is attained on the direct product of
knapsack problems.

5 The Main Result

The main result of the paper is formulated in the following theorem.

Theorem 1. For each m, n

αmn =
α1q

m + r

(
α1q

α1,q+1
− 1

) , (2)

where n = qm + r, q = �n/m�.
The theorem follows from two lemmas below.

Lemma 4. For each m, n

αmn ≥ α1q

m + r

(
α1q

α1,q+1
− 1

) .

Proof. Thanks to Lemma 3, it is enough to consider only direct products of m
knapsack problems. Let τi = γi/βi be the precision of approximate solution to
the i-th knapsack problem (i = 1, 2, . . . ,m), where γi is the approximate solution
value, βi is the optimal solution value. For their product we have

α(A, b, c) =
max

i=1,...,m
γi

m∑

i=1

βi

=
γs

m∑

i=1

βi

=
1

m∑

i=1

βi

γs

=
1

m∑

i=1

γi
γsτi

≥ 1
m∑

i=1

1
τi

.

The inequality turns into equality if and only if γ1 = γ2 = · · · = γm. Since
τs ≥ α1n1 then

α(A, b, c) ≥ 1
m∑

i=1

1
α1ni

.

Thus, we obtain the problem to find n1, n2, . . . , nm such that

1
m∑

i=1

1
α1ni

→ min s.t.
m∑

i=1

ni = n. (3)



On the Proximity of the Optimal Values 21

The sequence

1
α1,n+1

− 1
α1n

=
εn+1

δn+1
− εn

δn
=

1 + εn(δn + 1)
δn+1

− εn(δn + 1)
δn+1

=
1

δn+1

decreases monotonously as n → ∞, hence

1
α1,n+2

+
1

α1n
≤ 2

α1,n+1
.

We conclude that the minimum for (3) is reached if n1 = · · · = nr = q + 1,
nr+1 = · · · = nm = q. Thus,

α(A, b, c) ≥ 1
m∑

i=1

1
α1ni

=
1

r

α1,q+1
+

m − r

α1q

=
α1q

m + r

(
α1q

α1,q+1
− 1

) .

In the following lemma we construct a class of (worst) multi-dimensional
knapsack problems on which the bound (2) is attained.

Lemma 5. For each m and n

αmn ≤ α1q

m + r

(
α1q

α1,q+1
− 1

) ,

where n = qm + r, q = �n/m�.
Proof. Consider the direct product of r knapsack problems of the form

max
q+1∑

j=1

xj

δj
→ max s.t.

q+1∑

j=1

xj

δj + μq+1
≤ 1

and m − r knapsack problems of the form

max
q∑

j=1

xj

δj
→ max s.t.

q∑

j=1

xj

δj + μq
≤ 1.

The precision of the approximate solutions to these problems is α1q and α1,q+1

respectively (see Sect. 3). For the product of these problems the optimal solution
value is

r
εq+1

δq+1
+ (m − r)

εq
δq

=
r

α1,q+1
+

m − r

α1q

and the approximate solution value is 1, hence the precision of the approximate
solution is

α(A, b, c) =
1

r

α1,q+1
+

m − r

α1q

=
α1q

m + r

(
α1q

α1,q+1
− 1

) .
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Corollary 1.
α1,�n/m�

m
≤ αmn ≤ α1,�n/m	

m
.

Proof. The first inequality obviously follows from (2). Let us prove the second
one. If r = 0 then

αmn =
α1q

m
=

α1,�n/m�
m

.

If 0 < r < m then

αmn =
α1q

m + r

(
α1q

α1,q+1
− 1

) >
α1q

m + m

(
α1q

α1,q+1
− 1

) =
α1,q+1

m
=

α1,�n/m�
m

.

From Corollary 1 we obtain the following.

Corollary 2. If n → ∞, m = o(n) then αmn ∼ α1,�n/m	
m

.

Corollary 3. If n → ∞ and m is fixed then αmn → α1∞
m

.

6 Conclusion

In this paper we derived exact and asymptotic formulas for the precision of
approximate solutions to the m-dimensional knapsack problem. In particular, we
proved that the precision tends to 0.59136 . . . /m if n → ∞ and m is fixed. The
proof of the attainability of the obtained bounds for the precision is constructive.

In the future, our results can be base for new fully polynomial time approx-
imation schemes.
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Abstract. Clustering problems form an important section of data anal-
ysis. In machine learning clustering problems are usually classified as
unsupervised learning. Semi-supervised clustering problems are also con-
sidered. In these problems relatively few objects are labeled (i.e., are
assigned to clusters), whereas a large number of objects are unlabeled.

We consider the most visual formalization of a version of semi-
supervised clustering. In this problem one has to partition a given set
of n objects into k clusters (k < n). A collection of k pairwise disjoint
nonempty subsets of objects is fixed. No two objects from different sub-
sets of this collection may belong to the same cluster and all objects from
any subset must belong to the same cluster. Similarity of objects is deter-
mined by an undirected graph. Vertices of this graph are in one-to-one
correspondence with objects, and edges connect similar objects. One has
to partition the vertices of the graph into pairwise disjoint groups (clus-
ters) minimizing the number of edges between clusters and the number
of missing edges inside clusters.

The problem is NP-hard for any fixed k ≥ 2. For k = 2 we present
a polynomial time approximation algorithm and prove a performance
guarantee of this algorithm.

Keywords: Graph clustering · Approximation algorithm ·
Performance guarantee

1 Introduction

The objective of clustering problems is to partition a given set of objects into
a family of subsets (called clusters) such that objects within a cluster are more
similar to each other than objects from different clusters. In pattern recognition
and machine learning clustering methods fall under the section of unsupervised
learning. At the same time, semi-supervised clustering problems are studied. In
these problems relatively few objects are labeled (i.e., are assigned to clusters),
whereas a large number of objects are unlabeled [1,3].
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One of the most visual formalizations of clustering is the graph clustering,
that is, grouping the vertices of a graph into clusters taking into consideration
the edge structure of the graph. In this paper, we consider three interconnected
versions of graph clustering, two of which are semi-supervised ones.

We consider only simple graphs, i.e., undirected graphs without loops and
multiple edges. A graph is called a cluster graph, if each of its connected com-
ponents is a complete graph [6].

Let V be a finite set. Denote by M(V ) the set of all cluster graphs on the
vertex set V . Let Mk(V ) be the set of all cluster graphs on V consisting of
exactly k nonempty connected components, 2 ≤ k ≤ |V |.

If G1 = (V,E1) and G2 = (V,E2) are graphs on the same labeled vertex set
V , then the distance ρ(G1, G2) between them is defined as follows

ρ(G1, G2) = |E1ΔE2| = |E1 \ E2| + |E2 \ E1|,

i.e., ρ(G1, G2) is the number of noncoinciding edges in G1 and G2.

Consider three interconnected graph clustering problems.

GCk (Graph k-Clustering). Given a graph G = (V,E) and an integer k,
2 ≤ k ≤ |V |, find a graph M∗ ∈ Mk(V ) such that

ρ(G,M∗) = min
M∈Mk(V )

ρ(G,M).

SGCk (Semi-supervised Graph k-Clustering). Given a graph G = (V,E),
an integer k, 2 ≤ k ≤ |V |, and a set Z = {z1, . . . zk} ⊂ V of pairwise different
vertices, find M∗ ∈ Mk(V ) such that

ρ(G,M∗) = min
M∈Mk(V )

ρ(G,M),

where minimum is taken over all cluster graphs M = (V,EM ) ∈ Mk(V ) with
zizj /∈ EM for all i, j ∈ {1, . . . k} (in other words, all vertices of Z belong to
different connected components of M).

SSGCk (Set Semi-supervised Graph k-Clustering). Given a graph G =
(V,E), an integer k, 2 ≤ k ≤ |V |, and a collection Z = {Z1, . . . Zk} of pairwise
disjoint nonempty subsets of V , find M∗ ∈ Mk(V ) such that

ρ(G,M∗) = min
M∈Mk(V )

ρ(G,M),

where minimum is taken over all cluster graphs M = (V,EM ) ∈ Mk(V ) such
that

1. zz′ /∈ EM for all z ∈ Zi, z
′ ∈ Zj , i, j = 1, . . . , k, i �= j;

2. zz′ ∈ EM for all z, z′ ∈ Zi, i = 1, . . . , k
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(in other words, all sets of the family Z are subsets of different connected com-
ponents of M).

Problem GCk is NP-hard for every fixed k ≥ 2 [6]. It is not difficult to
construct Turing reduction of problem GCk to problem SGCk and as a result
to show that SGCk is NP-hard too. Thus, problem SSGCk is also NP-hard as
generalization of SGCk.

In 2004, Bansal, Blum, and Chawla [2] presented a polynomial time 3-
approximation algorithm for a version of the graph clustering problem similar to
GC2 in which the number of clusters doesn’t exceed 2. In 2008, Coleman, Saun-
derson, and Wirth [4] presented a 2-approximation algorithm for this version
applying local search to every feasible solution obtained by the 3-approximation
algorithm from [2]. They used a switching technique that allows to reduce cluster-
ing any graph to the equivalent problem whose optimal solution is the complete
graph, i.e., the cluster graph consisting of the single cluster. In [5], we presented
a modified 2-approximation algorithm for problem GC2. In contrast to the proof
of Coleman, Saunderson, and Wirth, our proof of the performance guarantee of
this algorithm didn’t use switchings.

In this paper, we use a similar approach to construct a 2-approximation local
search algorithm for the set semi-supervised graph clustering problem SSGC2.
Applying this method to problem SGC2 we get a variant of 2-approximation
algorithm for this problem.

2 Problem SSGC2

2.1 Notation and Auxiliary Propositions

Consider the special case of problem SSGCk with k = 2. We need to introduce
the following notation.

Given a graph G = (V,E) and a vertex v ∈ V , we denote by NG(v) the set
of all vertices adjacent to v in G, and let NG(v) = V \ (NG(v) ∪ {v}).

Let G1 = (V,E1) and G2 = (V,E2) be graphs on the same labeled vertex set
V , n = |V |. Denote by D(G1, G2) the graph on the vertex set V with the edge
set E1ΔE2. Note that ρ(G1, G2) is equal to the number of edges in the graph
D(G1, G2).

Lemma 1. [5] Let dmin be the minimum vertex degree in the graph D(G1, G2).
Then

ρ(G1, G2) ≥ ndmin

2
.

Let G = (V,E) be an arbitrary graph. For any vertex v ∈ V and a set A ⊆ V
we denote by A+

v the number of vertices u ∈ A such that vu ∈ E, and by A−
v

the number of vertices u ∈ A \ {v} such that vu /∈ E.
For nonempty sets X,Y ⊆ V such that X ∩Y = ∅ and X ∪Y = V we denote

by M(X,Y ) the cluster graph in M2(V ) with connected components induced
by X,Y . The sets X and Y will be called clusters.
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The following lemma was proved in [5] for problem GC2. Its proof for prob-
lem SSGC2 is exactly the same.

Lemma 2. Let G = (V,E) be an arbitrary graph, M∗ = M(X∗, Y ∗) be an
optimal solution to problem SSGC2 on the graph G, and M = M(X,Y ) be an
arbitrary feasible solution to problem SSGC2 on the graph G. Then

ρ(G,M) − ρ(G,M∗) =
∑

u∈X∩Y ∗

(
(X ∩ X∗)−

u − (X ∩ X∗)+u + (Y ∩ Y ∗)+u − (Y ∩ Y ∗)−
u

)
+

∑

u∈Y ∩X∗

(
(Y ∩ Y ∗)−

u − (Y ∩ Y ∗)+u + (X ∩ X∗)+u − (X ∩ X∗)−
u

)
.

2.2 Local Search Procedure

Let us introduce the following local search procedure.

Procedure LS(M,X, Y, Z1, Z2).
Input: cluster graph M = M(X,Y ) ∈ M2(V ), Z1, Z2 are disjoint nonempty

sets, Z1 ⊂ X,Z2 ⊂ Y .
Output: cluster graph L = M(X ′, Y ′) ∈ M2(V ) such that Z1 ⊆ X ′,

Z2 ⊆ Y ′.

Iteration 0. Set X0 = X,Y0 = Y .
Iteration k(k ≥ 1).
Step 1. For each vertex u ∈ V \ (Z1 ∪ Z2) calculate the following quantity

δk(u) (possible variation of the value of the objective function in case of moving
the vertex u to another cluster):

δk(u) =
{

(Xk−1)−
u − (Xk−1)+u + (Yk−1)+u − (Yk−1)−

u for u ∈ Xk−1 \ Z1,
(Yk−1)−

u − (Yk−1)+u + (Xk−1)+u − (Xk−1)−
u for u ∈ Yk−1 \ Z2.

Step 2. Choose the vertex uk ∈ V \ (Z1 ∪ Z2) such that

δk(uk) = max
u∈V \(Z1∪Z2)

δk(u).

Step 3. If δk(uk) > 0, then set Xk = Xk−1 \ {uk}, Yk = Yk−1 ∪ {uk} in
case of uk ∈ Xk−1, and set Xk = Xk−1 ∪ {uk}, Yk = Yk−1 \ {uk} in case of
uk ∈ Yk−1; go to iteration k + 1. Else STOP. Set X ′ = Xk−1, Y ′ = Yk−1,
and L = M(X ′, Y ′).

End.

2.3 2-Approximation Algorithm for Problem SSGC2

Consider the following approximation algorithm for problem SSGC2.
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Algorithm A1.
Input: graph G = (V,E), Z1, Z2 are disjoint nonempty subsets of V .
Output: graph M1 = M(X,Y ) ∈ M2(V ), sets Z1, Z2 are subsets of different

clusters.

Step 1. For every vertex u ∈ V do the following:
Step 1.1. (a) If u /∈ Z1 ∪ Z2, then define the cluster graphs Mu =

M(X,Y ) and Mu = M(X,Y ), where

X = {u} ∪ (
(NG(u) ∪ Z1) \ Z2

)
, Y = V \ X,

X = {u} ∪ (
(NG(u) ∪ Z2) \ Z1

)
, Y = V \ X.

(b) If u ∈ Z1 ∪ Z2, then define the cluster graph Mu = M(X,Y ), where

X = {u} ∪ ((NG(u) ∪ Z) \ Z), Y = V \ X.

Here Z = Z1, Z = Z2 in case of u ∈ Z1, and Z = Z2, Z = Z1, otherwise.
Step 1.2. (a) If u /∈ Z1 ∪ Z2, then run the local search procedure

LS(Mu,X, Y , Z1, Z2) and LS(Mu,X, Y , Z1, Z2). Denote resulting graphs by Lu

and Lu.
(b) If u ∈ Z1 ∪Z2, then run the local search procedure LS(Mu,X, Y, Z1, Z2).

Denote resulting graph by Lu.

Step 2. Among all locally-optimal solutions Lu, Lu, Lu obtained at step 1.2
choose the nearest to G cluster graph M1 = M(X,Y ).

The following lemma can be proved in the same manner as Remark 1 in [5].

Lemma 3. Let G = (V,E) be an arbitrary graph, Z1, Z2 be arbitrary disjoint
nonempty subsets of V , M∗ = M(X∗, Y ∗) ∈ M2(V ) be an optimal solution to
problem SSGC2 on the graph G, and dmin be the minimum vertex degree in the
graph D = D(G,M∗). Among all graphs Mu, Mu, Mu constructed by algorithm
A1 at step 1.1 there is the cluster graph M = M(X,Y ) such that

1. M can be obtained from M∗ by moving at most dmin vertices to another
cluster;

2. If Z1 ⊂ X∗, Z2 ⊂ Y ∗, then Z1 ⊂ X ∩ X∗, Z2 ⊂ Y ∩ Y ∗. Otherwise,
if Z2 ⊂ X∗, Z1 ⊂ Y ∗, then Z1 ⊂ Y ∩ Y ∗, Z2 ⊂ X ∩ X∗.

Now we can prove a performance guarantee of algorithm A1.

Theorem 1. For every graph G = (V,E) and for any disjoint nonempty subsets
Z1, Z2 ⊂ V the following inequality holds:

ρ(G,M1) ≤ 2ρ(G,M∗),

where M∗ ∈ M2(V ) is an optimal solution to problem SSGC2 on the graph G
and M1 ∈ M2(V ) is the solution returned by algorithm A1.
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Proof. Let M∗ = M(X∗, Y ∗) and dmin be the minimum vertex degree in the
graph D = D(G,M∗). By Lemma 3, among all graphs constructed by algorithm
A1 at step 1.1 there is the cluster graph M = M(X,Y ) satisfying the conditions
1 and 2 of Lemma 3. By condition 1, |X ∩ Y ∗| ∪ |Y ∩ X∗| ≤ dmin.

Consider the performance of procedure LS(M,X, Y, Z1, Z2) on the graph
M = M(X,Y ).

Local search procedure LS starts with X0 = X and Y0 = Y . At every
iteration k either LS moves some vertex uk ∈ V \ (Z1 ∪ Z2) to another cluster,
or no vertex is moved and LS finishes.

Consider in detail iteration t + 1 such that

– at every iteration k = 1, . . . , t procedure LS selects some vertex

uk ∈ (X ∩ Y ∗) ∪ (Y ∩ X∗);

– at iteration t + 1 either procedure LS selects some vertex

ut+1 ∈ (
(X ∩ X∗) ∪ (Y ∩ Y ∗)

) \ (Z1 ∪ Z2),

or iteration t + 1 is the last iteration of LS.
Let us introduce the following quantities:

αt+1(u)=
{
(Xt ∩ X∗)−

u −(Xt ∩ X∗)+u + (Yt ∩ Y ∗)+u −(Yt ∩ Y ∗)−
u for u ∈ Xt ∩ Y ∗

(Yt ∩ Y ∗)−
u −(Yt ∩ Y ∗)+u + (Xt ∩ X∗)+u −(Xt ∩ X∗)−

u for u ∈ Yt ∩ X∗.

Consider the cluster graph Mt = M(Xt, Yt). By Lemma 2,

ρ(G,Mt) − ρ(G,M∗) =
∑

u∈Xt∩Y ∗
αt+1(u) +

∑

u∈Yt∩X∗
αt+1(u).

Put r = |Xt ∩ Y ∗| + |Yt ∩ X∗|. Since at all iterations preceding iteration t + 1
only vertices from the set (X ∩ Y ∗) ∪ (Y ∩ X∗) were moved, then

r = |Xt ∩ Y ∗| + |Yt ∩ X∗| ≤ dmin. (1)

Hence

ρ(G,Mt) − ρ(G,M∗) ≤ r max{αt+1(u) : u ∈ (Xt ∩ Y ∗) ∪ (Yt ∩ X∗)}. (2)

Note that at iteration t + 1 for every vertex u ∈ (Xt ∩ Y ∗) ∪ (Yt ∩ X∗) the
following inequality holds:

αt+1(u) ≤ n

2
. (3)

The proof of this inequality is similar to the proof of inequality (5) in [5].
Denote by L the graph returned by procedure LS(M,X, Y, Z1, Z2). Using

(1), (2), (3), and Lemma 1 we obtain

ρ(G,L) − ρ(G,M∗) ≤ ρ(G,Mt) − ρ(G,M∗) ≤
r max{αt+1(u) : u ∈ (Xt ∩ Y ∗) ∪ (Yt ∩ X∗)} ≤ r

n

2
≤ dmin

n

2
≤ ρ(G,M∗).
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Thus, ρ(G,L) ≤ 2ρ(G,M∗).
The graph L is constructed among all graphs Lu, Lu, Lu at step 1.2 of

algorithm A1. Performance guarantee of algorithm A1 follows.
Theorem 1 is proved.

It is easy to see that problem SGC2 is a special case of problem SSGC2 if
|Z1| = |Z2| = 1. The following theorem is the direct corollary of Theorem 1.

Theorem 2. For every graph G = (V,E) and for any subset Z = {z1, z2} ⊂ V
the following inequality holds:

ρ(G,M1) ≤ 2ρ(G,M∗),

where M∗ ∈ M2(V ) is an optimal solution to problem SGC2 on the graph G
and M1 ∈ M2(V ) is the solution returned by algorithm A1.
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Abstract. We consider a strongly NP-hard problem of clustering a finite
set of points in Euclidean space into two clusters. In this problem, we
find a partition of the input set minimizing the sum over both clusters
of the weighted intracluster sums of the squared distances between the
elements of the clusters and their centers. The weight factors are the
cardinalities of the corresponding clusters and the centers are defined as
follows. The center of the first cluster is unknown and determined as the
centroid, while the center of the other one is given as input (is the origin
without loss of generality). In this paper, we present a polynomial-time
exact algorithm for the one-dimensional case of the problem.

Keywords: Euclidean space · Minimum sum-of-squares · Weighted
clustering · NP-hard problem · One-dimensional case · Exact
algorithm · Polynomial-time

1 Introduction

The subject of this study is one strongly NP-hard cardinality-weighted 2-
clustering problem of a finite set of points in Euclidean space. Our goal is to
substantiate an exact polynomial-time algorithm for the one-dimensional case of
the problem.

The motivation of our research consists of two parts. The first part is the
strong NP-hardness of the general case of the considered problem. The important
question is whether the one-dimensional case of the strongly NP-hard problem is
polynomial-time solvable or not? One can find some examples of the algorithmic
results for the one-dimensional cases of the clustering problems in [1–3]. The
second part of our motivation is the problem importance for some applications,
for example, in Data Analysis and Data mining [4,5]. It is known that the efficient
cluster approximation algorithms are the main mathematical tools in the applied
field of testing hypotheses about the data structure.
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The rest of the paper is organized as follows. Section 2 contains the problem
formulation and known results. In the same section, we announce our new result.
We describe the structure of the optimal solution in Sect. 3. The exact algorithm
is presented in Sect. 4. Also in Sect. 4, we substantiate the time complexity of
our algorithm.

2 Problem Statement, Known and Obtained Results

Everywhere below R denotes the set of real numbers, ‖ · ‖ denotes the Euclidean
norm, and 〈·, ·〉 denotes the scalar product. In this paper we consider the fol-
lowing problem.

Problem 1 (Cardinality-weighted variance-based 2-clustering with given center).
Given an N -element set Y of points in R

d and a positive integer number M .
Find a partition of Y into two non-empty clusters C and Y \ C such that

f(C) = |C|
∑

y∈C
‖y − y(C)‖2 + |Y \ C|

∑

y∈Y\C
‖y‖2 → min , (1)

where y(C) = 1
|C|

∑
y∈C

y is the centroid of C, subject to constraint |C| = M .

Due to the limited size of the paper, we omit the examples of the applied
problems. An interested reader can find them in [6].

Problem 1 has been studied since 2015 and a number of results have already
been proposed. First of all, it was proved that this problem is strongly NP-hard
[7,8]. Let us recall that some algorithmic results were obtained for the particular
case of Problem 1 when 2M = N (see, for example, [9] and the references cited
therein). One can easily check that in this case the optimal clusters are separated
by a hyperplane. It is known that the construction of optimal separating sur-
faces (i.e. optimal classifiers) is important for Pattern recognition and Machine
learning [10,11].

Further, in [12], an exact pseudopolynomial algorithm was constructed for the
case of integer components of the input points and fixed dimension of the space.
An approximation scheme that implements an FPTAS in the case of the fixed
space dimension was proposed in [13]. In [14], the modification of the FPTAS
was constructed. It improves the previous algorithm, implements an FPTAS in
the same case and remains polynomial (implements a PTAS) for instances of
dimension O(log n). An approximation algorithm that allows one to find a 2-
approximate solution to the problem in O (

dN2
)

time was constructed in [15].
In [16], a randomized algorithm was constructed. The conditions were found
under which the algorithm is asymptotically exact and runs in O(dN2) time. In
[6], an approximation algorithm that implements a PTAS was constructed.

In this paper, we present an exact algorithm for the one-dimensional case of
Problem 1. The time complexity of the proposed algorithm is O(N logN).
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3 The Structure of the Optimal Solution

In this section, we prove the statement which is necessary for substantiation
of our algorithm. The proof of the following well-known lemma is presented in
many publications (see, for example, [17]).

Lemma 1. For an arbitrary point x ∈ R
d and a finite set Z ⊂ R

d, it is true
that ∑

y∈Z
‖y − x‖2 =

∑

y∈Z
‖y − y(Z)‖2 + |Z| · ‖x − y(Z)‖2 .

Let C ⊆ Y, |C| = M and x ∈ R
d. Let us denote:

S(C, x) = M
∑

y∈C

‖y − x‖2 + (N − M)
∑

y∈Y\C
‖y‖2 .

Everywhere below d = 1. Let C∗ be an optimal solution of Problem1.

Lemma 2. 1) Let M ≥ N
2 . If xa, xb ∈ C∗, xk ∈ Y and xa < xk < xb then

xk ∈ C∗.
2) Let M ≤ N

2 . If xa, xb ∈ Y \ C∗, xk ∈ Y and xa < xk < xb then xk ∈ Y \ C∗.

Proof. 1) Suppose that there are xa, xb ∈ C∗ and xk ∈ Y \ C∗ such that
xa < xk < xb. Let us denote C1 = (C∗ \ {xb}) ∪ {xk}, C2 = (C∗ \ {xa}) ∪ {xk}.

Then

f(C∗) = S(C∗, y(C∗)) = S(C1, y(C∗)) +
+M‖xb − y(C∗)‖2 − M‖xk − y(C∗)‖2 − (N − M)‖xb‖2 + (N − M)‖xk‖2 .

By Lemma 1, S(C1, y(C∗)) = f(C1)+M2‖y(C∗)−y(C1)‖2 = f(C1)+‖xb−xk‖2 .
So,

f(C∗) = f(C1) + M2‖y(C∗) − y(C1)‖2 + M‖xb − y(C∗)‖2 +
+(N − M)‖xk‖2 − M‖xk − y(C∗)‖2 − (N − M)‖xb‖2 ≥
≥ f(C∗) + M2‖y(C∗) − y(C1)‖2 + M‖xb − y(C∗)‖2 +
+(N − M)‖xk‖2 − M‖xk − y(C∗)‖2 − (N − M)‖xb‖2 =

= f(C∗) + ‖xb − xk‖2 + (2M − N)(‖xb‖2 − ‖xk‖2) + 2M〈xk − xb, y(C∗)〉 .

Then, since d = 1, we have:

(xb − xk)2 + (2M − N)(x2
b − x2

k) + 2M(xk − xb)y(C∗) ≤ 0 , (2)

(xb − xk)((2M − N + 1)xb + (2M − N − 1)xk − 2My(C∗)) ≤ 0 .

Since xb > xk, then

2My(C∗) ≥ (2M − N + 1)xb + (2M − N − 1)xk > (2M − N)(xb + xk). (3)
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Similarly, working with C2, we have

(xa − xk)((2M − N + 1)xa + (2M − N − 1)xk − 2My(C∗)) ≤ 0 .

But xa < xk, so

2My(C∗) ≤ (2M − N + 1)xa + (2M − N − 1)xk < (2M − N)(xa + xk) . (4)

Inequalities (3) and (4) imply

(2M − N)xb < (2M − N)xa .

If 2M − N > 0 then xb < xa. It is a contradiction.
If 2M−N = 0 then inequalities (3) and (4) imply 2My(C∗) = 0. Substituting

it in (2), we get (xb − xk)2 ≤ 0. It is a contradiction.
2) The case M ≤ N

2 is treated similarly. �

Remark 1. If N = 2M then one of the following statements holds:

1) x < y for all x ∈ C∗, y ∈ Y \ C∗; 2) x > y for all x ∈ C∗, y ∈ Y \ C∗.

4 Exact Algorithm

We present an exact algorithm for the one-dimensional case of Problem1 in this
section. The main idea of this algorithm can be described as follows. First of all
the algorithm sorts the input set in ascending order. If the desired cardinality
M ≥ N/2, the algorithm forms the sequence of (N − M + 1) sets which consist
of M consecutive points. In the other case, the algorithm forms the sequence
of (M + 1) sets which are the complements to the sets of N − M consecutive
points. In the end, the algorithm chooses (as an output) one of the constructed
sets with the minimal value of the objective function.

Let us define some notations for the following algorithm and for cases of the
desired cardinality value. Reorder points in Y = {x1, . . . , xN} so that xi<xi+1

for i ∈ {1, . . . , N − 1}.
1. M ≥ N

2 . Let us denote: Ci = {xi, xi+1, . . . , xi+M−1} for i ∈ {1, . . . , N −M +
1}. Then we can notice that

f(Ck+1) = f(Ck) +
+(xk+M − xk)((2M − N + 1)xk+M + (2M − N − 1)xk − 2My(Ck+1)).(5)

2. M ≤ N
2 . Let us denote: Bi = {xi, xi+1, . . . , xi+N−M−1} for i ∈ {1, . . . ,M+1},

Ci = Y \ Bi. Then we can notice that

f(Ck+1) = f(Ck) + (xk − xk+N−M )((2M − N + 1)xk +
+(2M − N − 1)xk+N−M − 2My(Ck+1)) . (6)
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The step-by-step description of the algorithm is as follows.

Algorithm A.
Input : a set Y, a positive integer M .
Step 0. Sort the set Y in ascending order.
Step 1. If M ≥ N

2 then go to Step 2, otherwise go to Step 4.
Step 2. Compute y(C1). For all k ∈ {1, . . . , N − M} compute y(Ck+1) by
equation y(Ck+1) = y(Ck) + 1

M (xk+M − xk).
Step 3. Compute f(C1) by formula (1). For all k ∈ {1, . . . , N −M} compute
f(Ck+1) by formula (5). Go to Step 6.
Step 4. Compute y(C1). For all k ∈ {1, . . . ,M} compute y(Ck+1) by equation
y(Ck+1) = y(Ck) + 1

M (xk − xk+N−M ).
Step 5. Compute f(C1) by formula (1). For all k ∈ {1, . . . ,M} compute
f(Ck+1) by formula (6).
Step 6. If M ≥ N

2 then k ∈ {1, . . . , N−M+1}, otherwise k ∈ {1, . . . ,M+1}.
Choose as a solution CA the set Ck with the minimal value f(Ck).
Output : The set CA.

Theorem 1. Algorithm A finds the optimal solution of one-dimensional case of
Problem 1 in O(N logN) time.

Proof. Algorithm A finds the optimal solution by Lemma2 and the fact that we
check each appropriate subset while running the algorithm.

Step 0 of the algorithm sorts Y, so it runs in O(N logN) time. Step 1 of the
algorithm requires O(1) operations. Step 2 (or Step 4) requires O(N) operations.
Step 3 (or Step 5) requires O(N) operations. Step 6 requires O(N − M) (or
O(M)) operations. So, the total time complexity of Algorithm A is O(N logN).
�

Remark 2. If the points of the input set are pre-ordered, then one can find the
optimal solution of Problem1 in O(N) time.

5 Conclusion

In this paper, we presented an exact polynomial-time algorithm for one-
dimensional case of the Euclidean cardinality-weighted 2-clustering problem of a
finite set of points. Our algorithm is based on the optimal solution structure that
was established. It was proved that the algorithm is almost linear (O(N logN)).

This is the first algorithmic result for the one-dimensional case of the consid-
ered problem. In other words, we have found out that strongly NP-hard Prob-
lem 1 can be solved exactly in a polynomial time when the dimension of the
space equals 1. Moreover, the proposed algorithm is very effective one.
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Abstract. This article continues the research of the authors into cooper-
ation between public and private investors in the natural resource sector.
This work aims to analyze the partnership mechanisms in terms of effi-
ciency, using the game-theoretical Stackelberg model. Such mechanisms
determine the investment policy of the state and play an important role
in addressing a whole range of issues related to the strategic manage-
ment of the natural resource sector in Russia. For bilevel mathematical
programming problems, the computational complexity will be evaluated
and effective solution algorithms based on metaheuristics and allowing
solving large-dimensional problems will be developed. This opens up the
possibility of a practical study on the real data of the properties of Stack-
elberg equilibrium, which determines the design of the mechanism for
forming investment policies. The simulation results will allow not only to
assess the impact of various factors on the effectiveness of the generated
subsoil development program but also to formulate the basic principles
that should guide the state in the management process.

Keywords: Stackelberg game · Bilevel mathematical programming
problems · Subsoil development program · Probabilistic local search
algorithm

1 Introduction

The development and evaluation of mechanisms for stimulating private invest-
ment presents an as-yet unresolved problem for the Russian government. The
established practice of making this kind of decisions in subsoil resource manage-
ment tends to operate with political arguments and most unsophisticated effec-
tiveness evaluations, which are derived from analysis of technological projects
and current raw materials prices [1–3].

This problem cannot be solved separately from the general problems of
strategic planning, the core of which lies with the goal of forming a program
of development of the mineral raw materials base (MRB) [4–6]. This program
would set a framework for decision-making on many issues, e.g., the follows.
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What production infrastructure do we need to facilitate spatial development
and attract investors? Can we spend additional money from the state budget to
help investors when it comes to infrastructural or environmental projects?

How can we help the investor overcome the barriers posed by the lack of
necessary infrastructure and by the high costs of environmental protection, which
are so typical of most of Siberian and Far-Eastern regions of Russia? What kind
of mechanism should we employ to stimulate private investment? If we want this
mechanism to unite the various measures of government investment policy and
lay a foundation for a program of development of regional natural resources?

These problems are at the center of attention in this work. The aim of this
article is to work out a model that could lay a foundation for a practical method-
ology to generate an MRB development program. To this end, we propose to
use the apparatus of bilevel mathematical programming [7] and thus take into
account the features of the hierarchy of interactions between the government and
the private investor in the mineral raw materials sector. This approach allows
us to find a compromise between the interests of the state budget and those of
the private investor and generate a natural resources development program that
should be effective in terms of sustainable development prospects.

The first section of the article presents the problem statement and formulates
a model. The second one focuses on analyzing the computational complexity of
the model and on building effective solution algorithms by means of random
local search. The third section presents the results of numerical experiments,
which make it possible to study the properties of the Stackelberg equilibrium
using real data and determine the principles of investment policy formation. The
fourth section discusses the results obtained and formulates recommendations for
subsoil resource management.

2 Mathematical Models

Here, we consider a model of cooperation between the government and the pri-
vate investor in the mineral raw materials sector. This model is a generalization
of two models, which were considered by the authors in [8,9].

The first one is the classical model of public-private partnership [10–12].
In this model, the investor coordinates with the government a list of infras-
tructural projects that open for him an opportunity of realizing the desired
mineral resource development projects and then implements the coordinated
infrastructural projects at his own expense. The government compensates for
his expenses when it begins to receive taxes from the private investor’s mineral
resource extraction operations.

The second model has been in practical use in Russia for a while. This model
suggests that on a frontier territory, the government can help the investor build
the infrastructure and conduct some of the necessary environmental activities
[13–15]. Thus levying some of the issues that arise from the territorial linkage of
development projects, the government encourages the arrival of the investor.

In the generalized cooperation model, the government uses an “all-in-one”
investment policy by taking on the responsibility for a part of the infrastructural
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and environmental projects. The investor also builds the infrastructure, and the
corresponding expenses are compensated by the government with a time lag.
The aim of the government is to develop the territory and obtain the maximum
possible share of the natural resource rent in the form of tax payments.

The investor seeks to maximize his net present value, i.e., an overall effec-
tiveness estimate of his participation in the MRB development program, which
commensurates his expenses and revenues, respectively, incurred and obtained
at different times during the forecasting period. The key role here belongs to the
mechanism of compensating the investor’s expenses related to the infrastructural
projects.

In the first case, the investor claims compensation of his expenses regardless
of the overall outcomes of the MRB development program (model A). Thus, the
government builds a schedule of payments within its budget constraints in order
to compensate for the infrastructural expenses of the investor with a discount
factor. The second scheme of the mutual settlements builds upon coordinated
estimation of the investor’s integral effect from his participation in the joint
(i.e., implemented together with the government) MRB development program.
The estimation takes into account the investor’s infrastructural expenses and
the government’s compensation payments, which guarantee that the investor’s
resulting net present value is positive (model B).

Thus, the input data of the investment policy model are as follows:

– a set of industrial projects implemented by the private investor to open min-
eral deposits;

– a set of infrastructural projects, which can be implemented both by the pri-
vate investor and by the government;

– a list of environmental projects necessary to compensate for environmental
losses due to the implementation of the industrial projects; a part of the
environmental projects can be implemented by the government.

The output of the model is the key investment policy parameters, which
define the compensation schedule and the investor incentivation (i.e., expense
sharing) mechanism. Formally, these data fully defines the MRB development
program and the lists of infrastructural and environmental projects implemented
by the government and the private investor, respectively.

A formal description of the model can be presented as follows. We use the
following notation:

T is a planning horizon; T0 is a compensation lag; I is a set of investment
projects; J is a set of infrastructure development projects; K is a set of environ-
mental projects;

Investment project i in year t:

CFP t
i is the cashflow (the difference between the incomes and expenses of

all kinds, taking into account a transaction costs, constructive borrowed from
[3]);
EPP t

i is the environmental damage from the implementation of the project;
DBP t

i is the government revenue from the implementation of the project.
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Infrastructure development project j in year t:

ZIt
j is the costs of implementation of the project;

EPIt
j is the environmental damage from the implementation of the project;

V DIt
j is the government revenue from local economic development as a result

of the implementation of the project.

Environmental project k in year t: ZEt
k is the costs of implementation of the

project.
The matrices μ and ν define the relationship between the projects, where μij

is a coherence indicator for the infrastructure and investment projects, i ∈ I,
j ∈ J , and νij is a coherence indicator for the environmental and investment
projects, i ∈ I, k ∈ K:

μij =

⎧
⎨

⎩

1, if the implementation of investment project i
requires the implementation of infrastructure development project j,

0 otherwise;

νik =

⎧
⎨

⎩

1, if the implementation of investment project i
requires the implementation of environmental project k,

0 otherwise.

The discounts of the government and the investor:
DG is the discount of the government; DI is the discount of the investor;
The budget constraints:
bG
t is the government budget in year t; bO

t is the investor budget in year t.
We use the following integer variables:

x̄j =

{
1, if the government is prepared to launch infrastructure development project j

(the government has included it into the budget expenses),
0 otherwise;

xj =
{

1, if the government launches infrastructure development project j,
0 otherwise;

ȳk =

⎧
⎨

⎩

1, if the government is prepared to launch environmental project k
(the government has included it into the budget expenses),

0 otherwise;

yk =

⎧
⎨

⎩

1, if the government launches environmental project k
as agreed with the investor,

0 otherwise;

vj =
{

1, if the investor launches infrastructure development project j,
0 otherwise;

zi =
{

1, if the investor launches investment project i,
0 otherwise;
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uk =
{

1, if the investor launches environmental project k,
0 otherwise.

Wt, W̄t is the schedule of compensation payments for infrastructure develop-
ment in year t, which was proposed by the government and used by the investor.

The government problem P̃S can be formulated as follows:
∑

t∈T

(∑

i∈I

(DBP t
i − EPP t

i )zi +
∑

j∈J

(V DIt
j − EPIt

j)(xj + vj)

−
∑

j∈J

ZIt
jxj −

∑

k∈K

ZEt
kyk − Wt

)
/(1 + DG)t → max

x,y,W,v,u,z
(1)

subject to:
∑

1≤t≤ω

( ∑

j∈J

ZIt
j x̄j +

∑

k∈K

ZEt
kȳk + W̄t

)
≤

∑

1≤t≤ω

bG
t ;ω ∈ T ; (2)

W̄t ≥ 0; t ∈ T ; (3)

W̄t = 0; 0 ≤ t ≤ T0; (4)

(x, y,W, z, u, v) ∈ F∗(x̄, ȳ, W̄ ). (5)

The set F∗ is a set of optimal solutions of the following low-level parametric
investor problem P̃I(x̄, ȳ, W̄ ):

∑

t∈T

(∑

i∈I

CFP t
i zi −

∑

k∈K

ZEt
kuk −

∑

j∈J

ZIt
jvj + Wt

)
/(1 + DI)t → max

x,y,W,z,u,v
(6)

subject to:
∑

t∈T

(
Wt −

∑

j∈J

ZIt
jvj

)
/(1 + DI)t ≥ 0; (7)

∑

1≤t≤ω

( ∑

k∈K

ZEt
k uk +

∑

j∈J

ZIt
jvj −

∑

i∈I

CFP t
i zi − Wt

)
≤

∑

1≤t≤ω

bO
t ;ω ∈ T ; (8)

xj + vj ≥ μij zi; i ∈ I, j ∈ J ; (9)

xj + vj ≤ 1; j ∈ J ; (10)

yk + uk ≥ νik zi; i ∈ I, k ∈ K; (11)

yk + uk ≤ 1; k ∈ K; (12)
∑

i∈I

νik zi ≥ yk + uk; k ∈ K; (13)

∑

t∈T

( ∑

i∈I

(DBP t
i − EPP t

i )zi − Wt

)
/(1 + DG)t ≥ 0; (14)
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xj ≤ x̄j ; j ∈ J ; (15)

yk ≤ ȳk; k ∈ K; (16)

Wt ≤ W̄t; t ∈ T ; (17)

xj , yk, vj , zi, uk ∈ {0, 1}; i ∈ I, k ∈ K, j ∈ J. (18)

There are mixed integer linear programming problems at each level. In the
formulated model, the investor maximizes his NPV and the government sets
its aim on obtaining the highest possible budget revenues, taking into account
the costs of infrastructure and environmental protection and a cost estimate for
environmental losses from the MRB program. The government starts the infras-
tructure compensation payments to the investor after a lapse of T0 years (e.g.,
since the time of receipt of the first tax payments from the investor) (3), (4).
The schedule of the compensation payments should ensure: (i) for the govern-
ment, a balance between the budget revenues and the compensation payments to
the investor (14), and (ii) for the investor, a compensation of his infrastructure
expenses with a discount factor (7).

Constraints (9)–(13) formalize the relationships between the industrial,
infrastructural, and environmental projects. Each infrastructural and environ-
mental project can only be launched by one of the partners and must be necessary
for the realization of some industrial project. An infrastructural or environmen-
tal project can likewise be assigned to the government only under the condition
that the government has put the respective project onto its list (15), (16). The
model output provides the key investment policy parameters: x, y, W , v, u, z,
which define the investor incentivization (expense sharing) mechanism and the
long-term effective MRB development program.

Problem (1)–(18) describes model A and the cooperation mechanism whereby
the investor has low trust in the government, i.e., does not expect the latter
to fairly compensate for his infrastructural expenses. Constraint (7) formalizes
the first mechanism of compensation payments, which arises from unconditional
reclamation of the incurred infrastructural expenses, regardless of the overall
outcome of the MRB development program. If the partners have high trust
in each other, the second scheme of mutual settlements can take place (model
B), which builds upon coordinated estimation of the investor’s integral effect
in the joint (with the government) MRB development program. This scheme is
formalized in problem (1)–(6), (8)–(18).

3 Computational Complexity and Solution Algorithm

We recall the definition of the first level of the polynomial hierarchy of complexity
classes of decision problems. The first level consists of classes P , NP and co-
NP . The class P contains problems solvable in polynomial time on deterministic
Turing machines. The class NP is defined as the class of problems solvable in
polynomial time on nondeterministic Turing machines. The third basic class
co-NP consists of decision problems whose complements belong to NP . These



42 S. Lavlinskii et al.

classes are also denoted as ΔP
1 , ΣP

1 , and ΠP
1 , respectively. The second level of

the polynomial hierarchy is defined by deterministic and nondeterministic Turing
machines with oracle [16]. It is said that the decision problem belongs to class ΔP

2

if there exists a deterministic Turing machine with an oracle that recognizes its
in polynomial time, using as oracle some language from class NP . Similarly, the
decision problem belongs to class ΣP

2 if there exists a nondeterministic Turing
machine with an oracle that recognizes its in polynomial time, using as oracle
some language from class NP .

The paper showed that the public-private partnership problem with static
budget distribution (without carry-over to next year and to the investor) is
ΣP

2 -hard. Based on the ideas of the proof of this fact, we obtain the following
statement.

Theorem 1. The problem (1)–(6), (8)–(18) is ΣP
2 -hard.

Proof. Consider the Subset-Sum-Interval problem [18]. There are positive inte-
gers qi, i ∈ {1, ..., k}, R, and r, where r does not exceed k. It is required to
determine whether there exists an S such that R ≤ S < R + 2r and for any
I ⊆ {1, ..., k} it holds

∑
i∈I qi �= S. It is known that the Subset-Sum-Interval

problem is ΣP
2 -hard [18].

We construct the next input of the government problem. Let there be k +
2r + 2 production projects and R + 2r − 1 ecological projects. Suppose that no
infrastructure projects are required to implement production projects. Planning
Horizon T = T0 = 3. For the first k production projects CFP 1

i = 0, CFP 2
i =

−qi, and CFP 3
i = 2qi. Suppose that CFP 2

k+1 = −1/2, CFP 3
k+1 = 1, DBP 3

k+1 =
Δ, CFP 3

k+2 = DBP 3
k+2 = 2Δ, where Δ = (R + 2r + 1)2, and CFP 1

i = −1,
CFP 3

i = R + 2r + 1, k + 3 ≤ i ≤ k + 2r + 2. All other parameters of production
projects will be set equal to zero. All production projects, with the exception
of the (k + 2)th, do not require the implementation of ecological projects. The
production project (k + 2) requires the implementation of all ecological projects.
ZE1

j = ZE2
j = 1, for any ecological project j. All other parameters of ecological

projects are equal to zero. The government’s budget in any year is equal R+2r−1.
The investor’s budget in the first year is equal 2r, in the second years it is
R + 2r − 1, in the third year it is equal to zero.

Obviously, in the optimal solution, a production project (k + 2) is being
implemented. For this, due to the limited budgetary opportunities of the investor
in the first year, the government must implement S ecological projects, where
R ≤ S < R+2r. The investor has to implement the remaining projects and then
he will spend the remainder of the budget in the first year on the production
projects {k + 3, ..., k + 2r + 2}. After that, the investor in the second year has
exactly S left from the budget, which he can spend on the first k +1 production
projects. Obviously, if there is I ⊆ {1, ..., k} such that

∑
i∈I qi = S, then the

investor will not implement the project (k + 1). Note that the (k + 1)th project
is very beneficial to the government. This means that the government will select
S (R ≤ S < R + 2r) in such a way that for any I ⊆ {1, ..., k} it will be carried
out

∑
i∈I qi �= S, if possible. The theorem is proved.
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Corollary 1. The problem (1)–(18) is ΣP
2 -hard.

Also in [17], an algorithm for solving the public-private partnership problem
with static budget distribution is proposed. We modify this algorithm to solve our
problem. The first two steps are similar to the original algorithm. Key differences
are in the third step. We describe the algorithm scheme.

Step 1: Compute the upper bound UB by solving the government’s problem
with constraints of the investor’s problem.
Step 2: Let iter be the number of iteration of the algorithm on step 2. Find
a feasible solution using the following procedure:
Step 2.1: Solve the investor’s problem with constraints of the government’s
problem and additional constraint on the value of the objective function of
the government: value ≥ UB/iter.
Step 2.2: In the previous step, we obtain the values of the government’s vari-
ables. Solve the investor’s problem to get the real objective function value. If
the real objective function value is very different from optimal value of the
investor’s problem with constraints of the government’s problem and addi-
tional constraint then iter:= iter - 1 and repeat the step 2.1.
Step 3: We apply steps 3.1 and 3.2 a given number of times to the solution
obtained in the previous step:
Step 3.1: For a fixed value of W , a specified number of times randomly change
the value of the government’s Boolean variables. Take the best.
Step 3.2: For a fixed values of the government’s Boolean variables, a specified
number of times randomly change the value of W . Take the best.

Note that all auxiliary problems and the investor’s problem are solved by
CPLEX software. To solve the examples described in the next chapter, the fol-
lowing values of the algorithm parameters were a posteriori selected. In the step
2, iter is 30. The step 3 is limited to 2 hours. At steps 3.1 and 3.2, 100 repetitions
are performed.

4 Numerical Experiment

The database of model (1)–(18) builds upon special forecasting models, which
describe in detail the processes of realization of all the three types of projects
[17]. The actual data describe a fragment of the Zabaykalsky Krai MRB, which
consists of 50 deposits of polymetallic ores. The experiment considers the imple-
mentation of 50 environmental and 10 infrastructural projects (railroad, pow-
erlines, autoroads), combined in such a way that the realization of the entire
infrastructural and environmental program would enable the launching of all
the MRB development (i.e., industrial) projects.

The numerical experiment technique builds upon analysis of the changes in
the properties of solutions of (1)–(18) under varying parameters of the model.
These properties include: the values of the objective functions of the govern-
ment and the investor; the number of implemented infrastructural and indus-
trial projects; the expense sharing proportions; the share of rent received by
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the government in the form of taxes; etc. This list allows for a meaningful eco-
nomic interpretation of the implications of a chosen investment policy and helps
identify the expected tendencies of change in effectiveness evaluations based on
sustainable development criteria.

The following figures present the results of the calculations that studied the
reaction of solutions of models A and B to changes in the key model parameters,
i.e., the discounts of the investor and the government.

Fig. 1. The government objective function and the partner discounts

Fig. 2. The investor objective function and the partner discounts

Figure 1 shows the dependence of the government’s objective function on the
discounts of the MRB development stakeholders. Both surfaces reach their high-
est values at small discounts, consistent with the fact that under the conditions
of a good investment climate, the government finds effective both investment
policies, generated by models A and B, respectively. If the conditions worsen
(i.e., the discounts increase), the effectiveness of the interaction between the
government and the investor drops, predictably, to almost zero in both models.
Thus, the problem of policy choice comes to the fore: What policy will provide
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the best results in the range of high discounts for the majority of resource-rich
regions in Russia?

The optimal strategy for a small-discount investor is to claim unconditional
compensation of all his infrastructure expenses (model A, Fig. 2). In contrast
to Investor in model B, whose functional depends on his discount only, Investor
in model A reduces the volume of his infrastructure building operations if the
government begins to raise its discount.

Which model is preferable from the viewpoint of the functional (i.e., the
decision effectiveness indicator) for the government and the investor? And under
what conditions?

Fig. 3. Difference between the values of the objective functions in models B and A

The answers to these questions are contained in Fig. 3, which presents the
difference between the functionals in models B and A. The light-colored part of
the surfaces corresponds to the case where model B is preferable in terms of the
functional, within these parameter ranges. A meaningful interpretation of Fig. 3
enables the government to choose a strategy that would underpin its investment
policy under given conditions.

Thus, in resource-rich regions with a good investment climate, which induces
a small investor discount, the government should consider using model B. Under
worse investment conditions (high inflation, volatile exchange rates, growing
transaction costs, etc.), which force the investor to take decisions with higher
discounts, the government should use model B and a high subsoil owner discount.

A small-discount investor should consider the option with unconditional
reclamation of his infrastructure expenses. At high investor discounts, model
B becomes preferable if the government chooses its investment policy accord-
ingly. This policy builds upon choosing a discount that defines the volume of
government investment into the infrastructure and ensures “hitting” the light
zone of the surface in Fig. 3.

Which model is preferable from the point of view of the government costs?
Figure 4 shows a relationship between the government costs on compensation

payments to the investor in the different models. Here, model B proves to be
more effective for the government.
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Fig. 4. Government expenses on the compensation payments

Fig. 5. Government expenses on the infrastructure projects

Fig. 6. Investor expenses on the infrastructure projects

Figures 5 and 6 show the dependence between the volumes of the govern-
ment and investor infrastructure investments on their discounts. Model B gives a
greater volume of infrastructure building operations to a small-discount investor.
Under adverse conditions, infrastructure is built in both models mostly by the
government, and the volume of these operations narrows down with the growing
investor discount. As a result, model B is also more preferable in terms of the
share of government investment in the infrastructure projects (Fig. 7).
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Fig. 7. Share of the government in infrastructure investments

Fig. 8. Total government expenses

Fig. 9. Difference between the solutions of models B and A

The total government costs, including the expenses on investments and com-
pensations, are shown in Fig. 8. Figure 9 fixes the parameter ranges within which
model B is more preferable than A in total costs, which are negative and are
marked with dark color in the figure. This figure means that the government
costs in model B can be made lower than in A by choosing an appropriate
investment policy. At low investor discounts, this happens automatically; under
worse investment conditions, the government must choose a high discount, which
corresponds to the dark part of the surface.
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As for the government’s share in infrastructure investments, model B is also
preferable for the government (Fig. 9, right panel).

How do the results of this article, [8] and [9] compare?
Substantially, the models differ in the key mechanism for building infrastruc-

ture. In [8], infrastructure projects are implemented by the government. In [9],
an investor builds infrastructure, its costs are compensated with some lag. The
infrastructure is built by both partners in this article.

A comparative analysis of the calculation results allows us to draw the fol-
lowing conclusions. The model [8] provides the highest values of the objective
function of stakeholders, however, it requires the highest government spending.
The classical model of public-private partnership [9] minimizes budgetary costs
but does not provide a sufficient level of profitability today. Models A, B occupy
an intermediate position, realizing a compromise of budget savings and efficiency.
The choice in favor of a particular model depends on the prevailing conditions
of a particular region.

5 Results and Discussion

The bilevel mathematical programming models described above can serve as a
foundation for a practical methodology to form a complex of investment policy
measures in a resource-rich region. The algorithms proposed in this work may
help solve problems of high dimension and formulate real strategic plans for
building industrial infrastructure, which encourage the arrival of the private
investor.

The numerical experiments conducted on the actual data reveal the practical
significance of the proposed tools. Based on the results of the experiments, we
can draw the following main conclusions to underpin the process of management
in the mineral raw materials sector.

1. In regions with a favorable investment climate and mature institutions, which
together ensure a small discount of the potential investor, both models main-
tain an acceptable effectiveness level for the government. Under the same
conditions, the investor should consider a strategy of unconditional reclama-
tion of his infrastructure expenses.

2. If the conditions worsen (the investor discount increases), the government
must use model B and a high subsoil owner discount. This discount defines
the government investment policy and should be chosen in such a way that
model B becomes preferable for the investor as well.

3. Given a budget deficit, the government should consider model B. This model
would enable it not only reduce the volume of compensation payments but
also cut the total costs incurred by it, which include, apart from the payments
to the investor, the government’s own expenses on infrastructure.

Thus, the main goal of the government on a frontier territory rich in natural
resources when it comes to investment policy formation is to create the conditions
for model B to realize. The key condition is a high level of mutual trust between
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the government and the investor, which enables them to use a mutual settlement
scheme based on coordinated estimation of the investor’s integral effect in the
partnership-based MRB development program. If the parties achieve such a level
of trust, then the proposed mathematical tools will allow the formation of a long-
term effective investment policy.
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Abstract. We consider an unexplored discrete optimization problem of
summing the elements of two numerical sequences. One of them belongs
to the given set (alphabet) of sequences, while another one is given. We
have to minimize the sum of M terms (M is unknown), each of them
being the difference between the unweighted auto-convolution of the first
sequence stretched to some length and the weighted convolution of this
stretched sequence with the subsequence of the second one. We show that
this problem is equivalent to the problem of recognizing a quasiperiodic
sequence as a sequence induced by some sequence U from the given
alphabet.

We have constructed the algorithm which finds the exact solution to
this problem in polynomial time. The numerical simulation demonstrates
that this algorithm can be used to solve modeled applied problems of
noise-proof processing of quasiperiodic signals.

Keywords: Discrete optimization problem · Minimization · Weighted
convolutions’ difference · Recognition · Quasiperiodic ·
Polynomial-time solvability

1 Introduction

We study an unexplored discrete optimization problem of summing the elements
of two numerical sequences. The research goal is to prove the polynomial-time
solvability of the problem and construct an algorithm guaranteeing the solution
optimality. The research is motivated by the absence of efficient (polynomial-
time) algorithms solving this problem with theoretical guarantees of quality
(accuracy and complexity).

The problem under consideration is relevant for natural objects noise-
resistant monitoring in the case of quasiperiodic repeatability of their typical
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state in the presence of non-linear temporal fluctuations. That is, the distance
between two consecutive repetitions lies in the given interval, and a typical state
allows some variations from one repetition to another. Namely, it is relevant for
applied problems when we need to identify (recognize) either the object itself or
the state of the object among the set of admissible ones in addition to detecting
these typical repetitions.

This type of state repeatability is typical, first of all, for bio-medical problems
(for example, problems of analysis and recognition of ECG signals). For illustra-
tion, we give an example of modeled ECG-like quasi-periodic signal processing.

2 Problem Formulation and Related Problems

The discrete optimization problem under consideration is

Problem 1. Given: a numerical sequence Y = (y1, . . . , yN ), a collection W =
{U (1), . . . , U (K) | U (k) = (u(k)

1 , . . . , u
(k)
qk ) ∈ �qk , k = 1, . . . ,K}, positive inte-

gers Tmax and �. Find: a numerical sequence U = (u1, . . . , uq(U)) ∈ W ; a
collection M = {n1, . . . nm, . . .} of indices of the sequence Y , a collection
P = {p1, . . . , pm, . . .} of positive integers; a collection J = {J (1), . . . , J (m), . . .}
of contraction mappings, where J (m) : {1, . . . , pm} −→ {1, . . . , q(U)}; and the
size M of these collections; which minimize the objective function

F (U,M,P,J ) =
M∑

m=1

pm∑

i=1

{u2
J(m)(i) − 2ynm+i−1uJ(m)(i)}, (1)

under the constraints

q(U) ≤ pm ≤ � ≤ Tmax ≤ N, m = 1, . . . , M,
pm−1 ≤ nm − nm−1 ≤ Tmax, m = 2, . . . ,M,

pM ≤ N − nM + 1,
(2)

on the elements of the collections M, P, and under the constraints

J (m)(1) = 1, J (m)(pm) = q(U),
0 ≤ J (m)(i) − J (m)(i − 1) ≤ 1, i = 2, . . . , pm,

m = 1, . . . ,M, (3)

on the constraction mappings.

Problem 1 is a problem of optimal (in the sense of the minimum of (1))
summation of elements of two numerical sequences. One of these two sequences—
Y —is given; another one—U—belongs to the given set of sequences. If we rewrite
(1) as follows

F (U,M,P,J ) =
M∑

m=1

{ pm∑

i=1

u2
J(m)(i) − 2

pm∑

i=1

ynm+i−1uJ(m)(i)

}

we can see that Problem 1 is a minimization problem for the sum of weighted
convolutions differences. Indeed, for every m = 1, . . . , M , the first expression in
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the curly brackets is the unweighted autoconvolution of the sequence obtained
as some nonlinear extension of the sequence U (by repetitions of its elements),
while the second sequence is the weighted convolution of this extended sequence
and some subsequence from Y of the same length pm.

The source of Problem 1 is a problem of simultaneous choice of U ∈ W and
approximation of Y by X ∈ X (U) according to the criterion of minimizing the
sum of squared distances between the elements of Y and X, i.e., the problem

‖Y − X‖2 −→ min
U,X (U)

. (4)

Here X (U), U ∈ W , is the set of all permissible approximating sequences
engendered by U . Every element X = (x1, . . . , xN ) ∈ X (U) is uniquely defined
by the collections M, P, and J satisfying (2), (3) according to the rule

xn =
M∑

m=1

uJ(m)(n−nm+1), n = 1, . . . , N, (5)

where uJ(m)(i) = 0, m = 1, . . . ,M , if i < 0 or i > pm; i.e. X = X(U,M,P,J ).
It means that the problem (4) is equivalent to the problem

‖Y − X‖2 = ‖Y − X(U,M,P,J )‖2 −→ min
U,M,P,J

. (6)

The expression on the right-hand side of (5) is the sum of M extended sequences
U ; the following formula is valid for duplication multiplicities of its elements

k
(m)
t =

∣∣∣
{

i |J (m)(i) = t, i ∈ {1, . . . , pm}
}∣∣∣, t = 1, . . . , q(U),

at that pm = k
(m)
1 + . . . + k

(m)
q(U), m = 1, . . . , M. Thus, the sequence X includes

M extended repetitions of U . The index value n = nm, nm ∈ M, defines the
initial number of the m-th repetition; the value p = pm, pm ∈ P, is its length;
the mapping J = J (m), J (m) ∈ J , determines the multiplicities of duplications
for elements from U.

It is easy to see that the total quantity of possible solutions to Problem 1
coincides with the size of the set X =

⋃
U∈W X (U) and except the trivial case

when q1 = . . . = qK = Tmax, we have the lower bound

|X | =
∑

U∈W

|X (U)| ≥ K2� N−qmax+1
qmax+1 �,

where qmax = maxU∈W q(U) and K is the alphabet size. It means that if qmax

is bounded by some constant (which is common in applications), the size of
X grows exponentially with increasing N . Despite this exponential growth, the
algorithm below provides an optimal solution in polynomial time.

Finally, by transforming ‖Y − X‖2 with (5), we have

N∑

n=1

(xn − yn)2 =
N∑

n=1

y2
n +

M∑

m=1

pm∑

i=1

{u2
J(m)(i) − 2ynm+i−1uJ(m)(i)}.
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The first term on the right-hand side of this equation is constant and doesn’t
depend on variables of Problem 1; the second term coincides with the objective
function (1) of Problem 1. Therefore, the problem (6), as well as the problem
(4), is equivalent to optimization Problem1.

Problem 1 is a generalization of previously studied recognition problems. A
particular case of Problem 1, where q1 = . . . qK = q, pm = q, J (m)(i) = i, m =
1, . . . ,M , has been examined in [1]. Its modification, where M is a part of input
data, has been considered in [2]. In the problems studied in [1] and [2] we also
have to recognize a quasiperiodic sequence, but all repetitions in it are identical.
In these papers, the algorithms that allow obtaining optimal solutions in time
O(KTmaxN) and O(KMTmaxN), respectively, have been presented. Another
known particular case, where K = 1, has been studied in [3]. In this case, the
dictionary contains only one sequence, so it can be treated as an approximation
problem solely. The exact O(T 3

maxN)-time algorithm solving this problem has
been presented in [3].

The algorithm for solving Problem1 seems to be a suitable tool to solve
applied problems of recognition and analysis of signals that have a quasiperiodic
structure in the form of fluctuating signal sample repetitions. Such problems
are relevant for various applications dealing with processing quasiperiodic pulse
signals received from natural sources: biomedical, geophysical, etc.

3 Problem Solution and Numerical Simulation

The main mathematical result of this paper is the following.

Theorem 1. There exists an algorithm that finds an exact solution to Problem
1 in time O(KT 3

maxN).

The proof of this theorem is constructive. Specifically, we construct an algo-
rithm and show that this algorithm provides an exact solution to Problem1. The
algorithm is based on solving a family of the following auxiliary problems.

Problem 2 [3]. Given: numeric sequences Y = (y1, . . . , yN ), U =
(u1, . . . , uq(U)), and positive integers Tmax, �. Find: a collection M =
{n1, . . . nm, . . .} of indices of the sequence Y , a collection P = {p1, . . . , pm, . . .} of
positive integers, a collection J = {J (1), . . . , J (m), . . .} of contraction mappings,
where J (m) : {1, . . . , pm} −→ {1, . . . , q(U)}; and the size M of these collections;
which minimize the objective function

G(M,P,J ) = F (• |U),

under the constraints (2), on the elements of the collections M and P, and under
the constraints (3) on the contraction mappings. Here the notation F (• |U)
means that we consider F as a function of three arguments, while U is fixed.

The algorithm that finds an exact solution to auxiliary Problem 2 in time
O(T 3

maxN) has been presented in [3].
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Remark 1. If Tmax is a part of input data and K (the size of the alphabet)
is a fixed parameter, then the running time of the algorithm is O(N4), since
Tmax ≤ N ; thus, the algorithm solving Problem1 is polynomial-time.

We present an example of processing a modeled sequence (time series) that
can be interpreted as quasi-periodic sequence of fluctuating ECG-like sequences
(Fig. 1) pulses in the additive noise presence. In fact, from the mathematical
point of view, it doesn’t matter which sequences are included in the alphabet.
The main reason for choosing exactly ECG-like signal is our desire to illustrate
potential applicability of the algorithm for biomedical applications.

Fig. 1. Example of processing an ECG-like pulse train

In Fig. 1, the alphabet depicted in the top row includes three examples of
ECG-pulses. The typical shapes of these pulses, as well as their characteristic
sections and significant points, were identified by experts in medicine, for exam-
ple, see [4,5]. In Fig. 1, these sections are marked by coloring. Below the alphabet,
on the left, you can see one of the sequences from the alphabet—sequence U .
There is a program-generated sequence to the right of it. This sequence is a
quasiperiodic one engendered by fluctuating repetitions of U . The sequence Y is
depicted in the third row from the top. It is the element-wise sum of the mod-
eled sequence and the sequence of independent identically distributed Gaussian
random variables with zero mathematical expectation. It should be mentioned
that only Y and W belong to the input data of the algorithm. The sequence U
from the alphabet and the modeled sequence X (in the second row of the figure)
are given for illustration only. This data are not available.

The bottom row of the figure represents the result of algorithm operation,
namely, the sequences UA (on the left) and XA (on the right). Here UA is the
recognition result; the components of the sequence XA are recovered using (5)
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and four collections obtained as the algorithm output. The example is computed
for K = 3, q(U) = 203, U ∈ W , Tmax = 370, � = 370, N = 1800, the maximum
amplitude pulse value is 128, and the noise level σ = 35.

The numerical simulation example shows that the algorithm presented allows
processing data in the form of quasiperiodic sequences of fluctuating pulses with
quite acceptable quality. Firstly, the unobservable sequence U and the sequence
UA obtained by the algorithm coincide (recognition is carried out correctly).
Secondly, a visual comparison of two graphs (of the unobserved sequence X and
the recovered sequence XA) shows only insignificant deviations of one graph
from another and almost exact coincidence of the marked sections.

4 Conclusion

We have proved that one of the unexplored discrete optimization problems is
polynomially solvable. We have constructed the algorithm that guarantees the
optimality of the solution to the problem and have obtained the polynomial
complexity estimate.

The numerical simulation has demonstrated that the proposed algorithm can
serve as a suitable tool to solve the problems of noise-resistant recognition and
analysis of quasiperiodic pulse sequences.

The modification of Problem 1, where the number of convolutions to be
summed up is a part of the problem input, remains to be studied. Of con-
siderable mathematical interest is also the discrete optimization problem when
the sequence alphabet is not given, that is, we have to recognize a sequence U
engendering the input sequence Y as an element of an infinite set of numerical
sequences having a fixed finite length. Investigating these problems presents the
nearest perspective.
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Abstract. This article is dedicated to finding stable solutions to change
input data on the example of pricing problems. In other words, we inves-
tigate stability analysis problems based on pricing problems.

Initial pricing problems can be described as the following Stackelberg
game. There are a company and its potential clients. First, the company
sets prices at own facilities for a homogeneous product. After that, each
client chooses the facility in which the minimum of his costs is achieved.
The cost consists of purchase and transportation prices. At the same
time, clients can make a purchase only if their budget allows it. The goal
is to establish prices at which the maximum profit of the company is
achieved. In the generalized problem of competitive pricing, two com-
panies compete with each other for the client demand. They set prices
sequentially. Clients are also the last to decide.

For the pricing of one company, we discuss the computational com-
plexity and algorithm solution of the stability analysis problem for three
different pricing strategies. We also look at the competitive pricing prob-
lem with uniform pricing when the same price is set at all facilities. In
conclusion, we discuss the relationship between the computational com-
plexity of stability analysis problems and initial problems.

Keywords: Stability analysis · Pricing · Bilevel and three-level
problems · Computational complexity

1 Introduction

When solving application problems, it is often necessary to choose a solution that
is acceptable not only for the current source data but also remains acceptable
when changing this data within a sufficiently wide range. In recent years, a
new direction of research in this area has arisen, which is based on the idea of
transforming the formulation [1,2]. For a given set of input data of the problem
to the maximum, instead of maximizing income, in the new formulation, we
will maximize the region of the input data of the problem close to the selected
example, for which there is a solution that leads to income not less than the
specified threshold.
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This article proposes the new implementation of this idea for the bilevel pric-
ing problems based on the idea of the stability radius (proposed in the works of
V.K. Leontiev and E. N. Gordeev [6,9–11]). The type of stability they examined
eventually led to four more new types of stability. These five types of stability
are formulated in terms of the behavior of the set of optimal solutions to the
problem and are independent of specific solutions. Therefore, they are types of
stability of optimization problems. The optimization problem may be:

1) strongly stable [8,10];
2) strongly quasi-stable [5,8];
3) stable [4,8];
4) quasi-stable [4,8];
5) invariable [5,8].
In addition to the stability of optimization problems, the stability of a given

optimal solution was studied in [4,8]. There are an optimization problem P (with
the criterion of maximization), some instance X. We denote by F ∗(X) (F (X))
the set of optimal solutions (the set of feasible solutions) of the problem P for
input X. Let Δ(ρ) = {δ : ||δ|| ≤ ρ} ( Δ=(ρ) = {δ : ||δ|| = ρ}) be the set of
variances of the instance X, where ρ > 0. The optimal solution Y ∗ ∈ F ∗(X) is
called stable if the set ΓP (X,Y ∗) = {ρ > 0 : ∀δ ∈ Δ(ρ) [Y ∗ ∈ F ∗(X + δ)]} is
not empty. The value supΓP (X,Y ∗) is called the stability radius of the optimal
solution Y ∗ ∈ F ∗(X).

The concept of stability, which is studied in the paper, is obtained by relaxing
the condition that solution Y ∗ ∈ F ∗(X) remains optimal when the instance X
is varied, and replacing it with the condition that the solution remains feasible
when the instance X is varied and the value of the objective function on it is
not less the specified threshold V . Denote objective function of P as fP (X,Y ),
where Y is an arbitrary feasible solution. The feasible solution Y ∈ F (X) is
called stable with respect to threshold V if the set ΓP (X,Y, V ) = {ρ ≥ 0 : ∀δ ∈
Δ(ρ) [Y ∈ F (X + δ)&fP (X + δ, Y ) ≥ V ]} is not empty. The value ρ(X,Y, V ) =
supΓP (X,Y, V ) is called the stability radius with respect to threshold V of the
feasible solution Y ∈ F (X).

Definition 1. The stability analysis problem for input X and threshold V is
generally formulated as follows:

ρ(X,Y, V ) → max
Y

,

that is, we need to find the feasible solution ˜Y that is stable with respect to
threshold V and has a maximum stability radius ρ(X, ˜Y , V ).

In the definition of the set ΓP (X,Y, V ), we replace the set of variations Δ(ρ)
with the set Δ=(ρ).

Definition 2. The simplified stability analysis problem for input X and thresh-
old V is generally formulated as follows:

ρ(X,Y, V ) → max
Y

,
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that is, we need to find the feasible solution ˜Y that is stable with respect to the
set Δ=(ρ) of variances and threshold V and has a maximum stability radius
ρ(X, ˜Y , V ).

For one-level problems, this definition is sufficient. For bilevel problems, the
bottleneck is the concept of a feasible solution. The variables of the bilevel
problem are divided into two groups (Yu, Yl), where Yu is the upper-level vari-
ables, but Yl are the lower-level variables. Let us denote by F ∗

l (Yu) the set
of optimal solutions of the lower-level problem and by F (X) |u= {Yu : ∃Yl ∈
F ∗

l (Yu)&(Yu, Yl) ∈ F (X)} the projection of the feasible domain F (X) of the two-
level problem P onto the variables of the upper level. The vector Yu ∈ F (X) |u
is called stable with respect to threshold V if the set

ΓP (X,Yu, V ) = {ρ ≥ 0 : ∀δ ∈ Δ(ρ)∃Yl(δ) ∈ F ∗
l (Yu)

[(Yu, Yl(δ)) ∈ F (X + δ)&fP (X + δ, Y ) ≥ V ]}
is not empty. The value ρ(X,Yu, V ) = supΓP (X,Yu, V ) is called the stability
radius with respect to threshold V of the vector Yu ∈ F (X) |u. These and
subsequent definitions can be used in both optimistic and pessimistic cases.

Definition 3. The stability analysis of the bilevel problem P for input X and
threshold V is generally formulated as follows:

ρ(X,Yu, V ) → max
Yu∈F (X)|u

,

that is, we need to find the vector ˜Yu ∈ F (X) |u that is stable with respect to
threshold V and has a maximum stability radius ρ(X, ˜Yu, V ).

In the definition of the set ΓP (X,Y, V ), we replace the set of variations
Δ(ρ) with the set Δ=(ρ) and replace the universal quantifier before δ with the
existential quantifier and get the following definition

Definition 4. The simplified stability analysis of the bilevel problem P for input
X and threshold V is generally formulated as follows:

ρ(X,Yu, V ) → max
Yu∈F (X)|u

,

that is, we need to find the vector ˜Yu ∈ F (X) |u that is stable with respect to
the set Δ=(ρ) of variances and threshold V and has a maximum stability radius
ρ(X, ˜Yu, V ).

Consider the following Stackelberg game. There are a company and its poten-
tial clients. First the company prices at own facilities for a homogeneous product.
After that, each client chooses the facility in which the minimum of its costs is
achieved. The cost consists of purchase and transportation prices. At the same
time, clients can make a purchase only if their budget allows it. The goal is to
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establish prices at which the maximum profit of the company is achieved. This
problem is considered in [13,14].

Hereinafter, by variances of instance, we mean the change in the client’s bud-
get. This is acceptable since transportation costs or other language distances are
often computable with great accuracy. We also note that for pricing problems,
the choice of pricing strategy is important. We discuss the computational com-
plexity and algorithm solution of the stability analysis problem for three different
pricing strategies. We restrict ourselves to considering the following three strate-
gies: uniform pricing, mill pricing, and discriminatory pricing [7]. Under uniform
pricing, the company sets a product’s price. The mill pricing implies the assign-
ment of its price at each facility. Customer rights are even further violated in
discriminatory pricing when each facility has own price for each customer.

One of the main motivations of this article is the question of changing the
complexity status when the initial problem is formulated as a stability analy-
sis problem. If the original problem is polynomially solvable, will the stability
analysis problem also be polynomially solvable?

In the next section, we consider the computational complexity of bilevel
pricing problems. The third section contains results on exact algorithms for
competitive pricing.

2 Bilevel Models of Pricing

First of all, we formulate the problems of pricing. Then we proceed to reformulate
it in terms of the stability analysis problem under Definitions 1(3) and 2(4). Next,
we will see that for the pricing problems under consideration in the absence of
competition, algorithms for solving the stability analysis problem under both
definitions are identical. In other words, such problems are equivalent.

We introduce the following notation:

I = {1, ...,m} is the set of facilities;
J = {1, ..., n} is the set of clients;
cij ∈ Z+ is the non-negative transportation cost of a product from the facility i
to the client j;
bj ∈ Z+ is the non-negative budget of the client j.

To identify the company’s product price and the allocation of clients to facilities,
we use the following variables:

p is the non-negative product price;

xij =
{

1, if the client j is served from the facility i,
0 otherwise;

Then the uniform pricing problem can be written as a bilevel model of quadratic
mixed-integer programming:

∑

i∈I

∑

j∈J

pxij → max
p≥0,x
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where x is an optimal solution of the lower-level (client’s) problem:
∑

j∈J

∑

i∈I

(bj − cij − p)xij → max
xij∈{0,1};i∈I,j∈J

∑

i∈I

xij ≤ 1; j ∈ J ;

If we add an integer constraint on the price, we get the uniform integer pricing
problem. To obtain a model for the problem of mill (discriminatory) pricing, it
is enough to change the variable p to the variable pi (pij) where pi is the product
price in the facility i (the product price in the facility i for the client j).

As the norm of the variance of instance, we consider the norm || · ||min that
is the minimum budget deviation. In other words, we use the following metric:
r(b, b̄) = minj∈J{|bj − b̄j |}.

2.1 Equivalence of Definitions 1 and 2 for the Bilevel Pricing

We formulate the stability analysis problem for the uniform, mill, and discrimi-
natory pricing problem:

ρ → max
ρ,p≥0

provided that for all values of the variable ρ̄ from
the segment [0, ρ] exists x such as:

∑

i∈I

∑

j∈J

pxij ≥ V ;

where x is an optimal solution of the lower-level (clients) problem:
∑

j∈J

∑

i∈I

(bj − ρ̄ − cij − p)xij → max
xij∈{0,1};i∈I,j∈J

∑

i∈I

xij ≤ 1; j ∈ J.

We call this problem the problem of finding a stable price (stability analysis
problem) with uniform pricing and the norm ||·||min. Here ||·||min = ρ. Similarly,
we can write the problem of finding a stable price with mill or discriminatory
pricing and integer constraint.

We fix the price p. Let’s consider how the set of serviced clients will change
with decreasing ρ. Since transportation costs remain unchanged and client bud-
gets are growing, clients will be served at the same facilities that were previously
served. At the same time, the set of serviced clients can only increase due to the
growth of budgets. This means that the company’s income will not decrease.
Thus we can rewrite the problem of finding a stable price with uniform pricing
and the norm || · ||min as follows:

ρ → max
ρ,p≥0,x
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∑

i∈I

∑

j∈J

pxij ≥ V ;

where x is an optimal solution of the lower-level (client’s) problem:
∑

j∈J

∑

i∈I

(bj − ρ − cij − p)xij → max
xij∈{0,1};i∈I,j∈J

∑

i∈I

xij ≤ 1; j ∈ J.

But it is the simplified stability analysis problem. Analogically, it is for the
mill or discriminatory pricing and integer constraint. Thus, for bilevel pricing,
Definitions 1 and 2 are equivalent. Therefore, in the future, we will not subdivide
problems according to two different definitions of stability analysis.

2.2 Algorithms Solution for the Minimum Budget Deviation

To solve the stability analysis problem for the uniform pricing, we first offer
an algorithm for solving the problem of uniform pricing. As a consequence of
the theorem on necessary optimality conditions [14], the optimal price is bj −
mini∈I cij for some j ∈ J . Then by looking at all clients, we can find the best
solution in time mn + n log n. For the discriminatory pricing, the optimal price
pij is equal to bj − cij . Then the discriminatory pricing problem is solvable in
time mn. The mill pricing problem is NP-hard [13]. But if we fix the Boolean
variables xij , then we get the linear programming problem. Thus, the mill pricing
problem is solvable for (m + 1)n of calls to the algorithm for solving the linear
programming problem.

The optimal value of ρ does not exceed the largest budget. Then, for solving
the problem of finding a stable price with uniform, mill, or discriminatory integer
pricing, we apply the following algorithm:

Algorithm 1

Iterate through the binary search algorithm all values of ρ from the integer seg-
ment [0,maxj∈J,i∈I{bj − cij}] and solve the pricing problem with uniform, mill
or discriminatory pricing where bj := bj − ρ. The goal is to find the maximum
value of ρ, provided that the optimal income of the company is not less V .

Obviously, if we remove the requirement of integer prices, then Algorithm 1
will become useless.

We propose a more efficient algorithm for solving the problem of finding a
stable price with uniform pricing:
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Algorithm 2

Define bj as bj −mini∈I cij and bj(ρ) as bj −ρ. As a consequence of the theorem
on the necessary optimality conditions [14], the optimal price is bj − mini∈I cij

for some j ∈ J . Define kj as |{k ∈ J : bk ≥ bj}|. The optimal objective function
value f is equal bj(ρ)kj for some client j. But f ≥ V . Then we have:

bj(ρ)kj = (bj − ρ)kj ≥ V

�

ρ ≥ bj − V

kj

⇓
ρ = max

j∈J
{bj − min

i∈I
cij − V

kj
}.

For the integer price, we have:

ρ = max
j∈J

{bj − min
i∈I

cij − 
 V

kj
�}.

The complexity of Algorithm 1 applied to uniform pricing is loqB(mn +
n log n) where B = maxj∈J,i∈I{bj − cij}. The complexity of Algorithm2 is
mn + n log n that is equal to the complexity of the solution algorithm of the
uniform pricing problem and less than the complexity of Algorithm1 at loqB
times.

For mill pricing, we offer the following enumeration algorithm:

Algorithm 3

We apply the idea of solving the mill pricing problem. Fix the Boolean variables
xij. Then we have the following problem [13,14]:

ρ → max
ρ,p≥0

∑

i∈I

∑

j∈J

pixij ≥ V ;

∑

i∈I

(bj − ρ − cij − pi)xij ≥ 0, j ∈ J ;

∑

i∈I

(cij + pi)xij ≤ ckj + pk, k ∈ I, j ∈ J.

Note that this problem is a linear programming problem. Then, by sequentially
sorting all the Boolean variables and solving the linear programming problem, we
will find the optimal value of ρ. For the integer pricing, we have to take �ρ
.
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It turns out that the solution algorithm of the mill pricing problem and Algo-
rithm 3 have similar complexity.

In conclusion, we present a solution algorithm for discriminatory pricing:

Algorithm 4

Obviously, the optimal price pij is equal max{0, bj(ρ)}. Then the optimal objec-
tive function value f is

∑

j∈J max{0, bj(ρ)}. This leads to the following inequal-
ity:

f =
∑

j∈J

max{0, bj(ρ)} ≥ V.

Assume that the maximum is reached on the right side on some set of clients
˜J . To calculate the optimal ˜J we offer the following procedure. Sort clients by
increasing this value bj(ρ). Then we can easily calculate at what value of ρ the
first client leaves the set ˜J , the second client, and so on. So for each set ˜J we
have:

ρ = max
˜J

min{ρ( ˜J),

∑

j∈ ˜J(bj − mini∈I) − V

| ˜J | },

where ρ( ˜J) is the maximum possible value of ρ for the selected set ˜J . As for the
mill pricing for the integer pricing, we have to take �ρ
.
The complexity of Algorithm 4 is m(n + 1) + n log n.

2.3 Results of the Chapter

The main result of this section is algorithms for solving the stability analysis
problems of uniform, mill, and discriminatory pricing. The complexity of these
algorithms shows that the complexity of stability analysis problems is compa-
rable to the original pricing problems. In particular, polynomial solvability is
preserved. Looking ahead, for competitive pricing, we cannot get such a result.

Another equally important result is the equivalence of Definitions 1 and 2
for the bilevel pricing. As will be shown in the next chapter for the three-level
problems of competitive pricing, it is not true.

3 Three-Level Models of Competitive Pricing

Suppose now that two companies compete with each other for the client demand.
The first company is the leader. She sets prices first. After that, the second
company (the follower) reacts to this with own prices. We restrict ourselves to
considering only the uniform pricing strategy. Also note that only if the prices
are integer, the problem has an optimal solution.

We introduce the following notations:
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IL = {1, ...,mL} is the set of facilities of the leader company;
IF = {1, ...,mF } is the set of facilities of the follower company.

Then the leader problem is described as follows:
∑

i∈IL

∑

j∈J

pxij → max
x,p,q

p ∈ N ;

where (q,x ) is an optimal solution of the second-level (follower’s) problem:
∑

i∈IF

∑

j∈J

qxij → max
x,q

q ∈ N ;

where x is an optimal solution of the lower-level (client’s) problem:
∑

i∈IL

∑

j∈J

[xij(bj − cij − p)] +
∑

i∈IF

∑

j∈J

[xij(bj − cij − q)] → max
x

∑

i∈IL∪IF

xij ≤ 1, j ∈ J ;

xij ∈ {0, 1}, i ∈ IL ∪ IF , j ∈ J.

Leader

Follower

10
0

10

0
0

7

Fig. 1. An example of the three-level pricing problem.

It is known that this problem is polynomially solvable [12]. We already under-
stood that the uniform pricing problem and its stability analysis analog are
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polynomially solvable too. Can the follower become a serious problem when
developing an algorithm for solving the stability analysis problem of competi-
tive pricing? It turns out so. Let’s try to understand it. The stability analysis
problem under Definition 1 can be described as follows:

ρ → max
ρ,p∈N

provided that for all values of the variable ρ̄ from the segment [0, ρ]
exists q,x such as:

∑

i∈IL

∑

j∈J

pxij ≥ V ;

where (q,x ) is an optimal solution of the second-level (follower’s) problem:
∑

i∈IF

∑

j∈J

qxij → max
x,q∈N

where x is an optimal solution of the lower-level (client’s) problem:
∑

i∈IL

∑

j∈J

[xij(bj − ρ̄ − cij − p)] +
∑

i∈IF

∑

j∈J

[xij(bj − ρ̄ − cij − q)] → max
x

∑

i∈IL∪IF

xij ≤ 1, j ∈ J ;

xij ∈ {0, 1}, i ∈ IL ∪ IF , j ∈ J.

To complete the picture, we also introduce the stability analysis problem
under Definition 2:

ρ → max
ρ,p∈N

∑

i∈IL

∑

j∈J

pxij ≥ V ;

where (q,x ) is an optimal solution of the second-level (follower’s) problem:
∑

i∈IF

∑

j∈J

qxij → max
x,q∈N

where x is an optimal solution of the lower-level (client’s) problem:
∑

i∈IL

∑

j∈J

[xij(bj − ρ − cij − p)] +
∑

i∈IF

∑

j∈J

[xij(bj − ρ − cij − q)] → max
x

∑

i∈IL∪IF

xij ≤ 1, j ∈ J ;

xij ∈ {0, 1}, i ∈ IL ∪ IF , j ∈ J.

We show that these two problems are not equivalent. To do this, consider
the following example:
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Example 1: There are one leader’s facility, one follower’s facility, and three
clients. All clients have the same budget equal to 11. Transportation costs to
the leader facility are distributed as follows: from the first client, the cost is
10; from the second client, the cost is 0; from the third client, it is equal 10.
Transportation costs to the follower facility are equal to 0, 0, and 7 respectively
(Fig. 1). V is equal to 5. Let ρ is 1. Then there is only one feasible solution to
the stability analysis problem in which p = 5. Is this solution feasible for ρ = 0?
It is not so because the follower, in this case, will change his decision to serve
only the first client and will serve all clients.

Hence for competitive pricing problems, Definitions 1 and 2 are not equivalent.
It also follows from the example that we cannot guarantee that if the budget
changes, the follower does not decide to change his price and thereby intercept
some clients from the leader. Therefore, we cannot use the idea of constructing a
solution algorithm (for example, Algorithm2) that has been successfully applied
for bilevel problems.

What can we offer to solve these problems? For Definition 2, we can use the
idea of Algorithm 1. That is, to maximize ρ, we can use the binary search:

Algorithm 5

Iterate through the binary search algorithm all values of ρ from the integer seg-
ment [0,maxj∈J,i∈IL{bj −cij}] and solve the three-level competitive pricing prob-
lem [12] where bj := bj −ρ. The goal is to find the maximum value of ρ, provided
that the optimal income of the leader is not less V .

It is clear that for Definition 2 such the algorithm is correct. It is also clear
that for Definition 1 it cannot be used. In the case of the stability problem under
Definition 1, we need to have a feasible solution that would give the required
income for all budget changes from 0 to ρ. We cannot guarantee this for sure
due to the unpredictability of the behavior of the follower. This leads us to the
idea of enumerating not only the value of ρ and enumerating all the feasible
solutions that provide the required income. We get the following algorithm:

Algorithm 6

View from left to right all values of ρ from the segment [0,maxj∈J,i∈IL{bj −
cij}] while it is possible to present the desired feasible solution for all budget
changes from 0 to ρ. In the first step, we look through all the leader’s prices and
remember those at which, after solving the follower’s problem, the leader achieves
the required income. In the future, we will only look at the selected prices and
discard those for which the condition for achieving the required income greater
than or equal to V is not fulfilled.

Algorithm 5 is pseudopolynomial and Algorithm6 is exponential. Although the
original problem is polynomially solvable. This leads us to the following conclu-
sion.
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4 Conclusion

In this work, we examined several problems of stability analysis corresponding
to previously studied pricing problems. For the simplest pricing problems, it was
found that the computational complexity of stability analysis problems does not
differ much from the computational complexity of the initial problems. At the
same time, for the problems of stability analysis corresponding to the problems
of competitive pricing, the complexity of the developed algorithms significantly
exceeds the complexity of algorithms for solving the initial problems. Therefore,
the following question arises: Can the problem of stability analysis for some
metrics fall into a higher complexity class, i.e. to be higher in the polynomial
hierarchy than the original problem? For example, if the original problem is
polynomially solvable, can the stability analysis problem turn out to be NP-
hard?
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Abstract. We consider the following subset choice problems: given a
family of Euclidean vectors, find a subset having the largest a) norm of
the sum of its elements; b) square of the norm of the sum of its elements
divided by the cardinality of the subset. The NP-hardness of these prob-
lems was proved in two papers about ten years ago by reduction of 3-SAT
problem. However, that proofs were very tedious and hard to read. In
the current paper much easier and natural proofs are presented.

Keywords: Euclidean space · Subset choice · Clustering ·
2-partition · Strong np-hardness

1 Introduction

This paper deals with well-known vector subset choice problems that are induced
by data analysis and pattern recognition problems. A typical problem in data
analysis requires finding in a set of data a subset of the most similar elements
where the similarity is defined according to some criterion. The cardinality of
the sought subset could be known or unknown in advance. One of the possible
criteria is minimum of the sum of squared deviations. This criterion arises, in par-
ticular, in a noise-proof data analysis where the aim is to detect informationally
significant fragments in noisy datasets, to estimate them, and to classify them
afterwards [8,12]. The problem of finding a subset of vectors with the longest
sum has applications in the pattern recognition (finding a correct direction to a
certain object) [25].

Although these problems are known to be NP-hard both in the case of known
(given as a part of input) cardinality of a sought subset [3,8] and in the case of
unknown one [14,15,22], the latter proofs are much more complicated and hard
to read (see the discussion in the next section). In this paper we suggest much
more easy and natural NP-hardness proofs for the case of unknown size of the

The research was supported by the program of fundamental scientific researches of
the SB RAS, project 0314-2019-0014, by the Russian Foundation for Basic Research,
project 19-01-00308, and by the Top-5-100 Program of the Ministry of Education and
Science of the Russian Federation.

c© Springer Nature Switzerland AG 2020
Y. Kochetov et al. (Eds.): MOTOR 2020, CCIS 1275, pp. 70–79, 2020.
https://doi.org/10.1007/978-3-030-58657-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58657-7_8&domain=pdf
http://orcid.org/0000-0001-5355-411X
https://doi.org/10.1007/978-3-030-58657-7_8


Easy NP-hardness Proofs 71

sought set. We believe that the new proofs can be helpful for analyzing related
problems with the unknown cardinalities of the sought subset.

The paper is organized as follows. In the next section the mathematical
formulation of the problems are given and the motivation of the research and
some related results are discussed. In Sect. 3 the main results of the paper are
presented. Section 4 concludes the paper.

2 Problem Formulation, Motivation and Related Results

The problem of noise-proof data analysis in noisy data sets [8,12,15] is as follows.
Each record of the data is a vector representing a set of measured characteristics
of an object transmitted via a noisy channel. The object can be either in an
active or in a passive state. In the passive state all characteristics are 0, while in
the active state all measured characteristics are stabile and at least one of them
must be non-zero. The noise has a d-dimensional normal distribution with zero
mean and an arbitrary dispersion. The goal is to determine the moments when
the object was in the active state and to evaluate the measured characteristics.

As it was shown in [8,12,15], this problem can be reduced to the following
optimization problem.

Problem 1. Given a set of vectors Y = {y1, . . . , yN} in d-dimensional Euclidean
space, find a non-empty subset C ⊆ Y maximizing

h(C) :=
‖∑

x∈C x‖2
|C| .

Everywhere in the paper the norm is Euclidean, unless otherwise stated.
A version of Problem1 with an additional restriction on the cardinality of the
sought set C is referred to as

Problem 2. Given a set of vectors Y = {y1, . . . , yN} in d-dimensional Euclidean
space and a positive integer M , find a subset C ⊆ Y of cardinality M maximizing
h(C).

The following two subset choice problems are very close in formulation to
these ones.

Problem 3. Given a set of vectors Y = {y1, . . . , yN} in d-dimensional Euclidean
space, find a non-empty subset C ⊆ Y maximizing ‖∑

x∈C x‖.

Problem 4. Given a set of vectors Y = {y1, . . . , yN} in d-dimensional Euclidean
space and a positive integer M , find a subset C ⊆ Y of cardinality M minimizing∑

x∈C ‖x − x‖2 where x = (
∑

x∈C x)/|C| is the centroid of the set C.

Note that the variant of Problem 3 with a given cardinality of the subset C is
equivalent to Problem 2, while the variant of Problem 4 without the restriction
on the cardinality of C is trivial (every subset of cadrinality 1 is an optimal
solution).
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Problem 3 has a following interpretation [25]. Each vector is a measurement
result of a direction to some interesting object. Each measurement result has
an additive error having a normal distribution, and there are some redundant
vectors in the set (related to other objects or reflections). The goal is to delete
the redundant vectors and find the correct direction. This can be done by finding
a subset of vectors having the longest sum.

If the dimension of the space d is fixed then all Problems 1–4 are polynomially
solvable. Namely, Problems 1 and 2 can be solved [9] in time O(dN2d+2); Problem
3 is a particular case of Shaped Partition problem [11], which yields an O(Nd)
algorithm for it; a better algorithm of complexity O(dNd−1 log N) is presented
in [25]. Problem 4 can be solved [1] in time O(dNd+1). The universal algorithm
solving Problems 1–4 in time O(dNd+1) using Voronoi diagrams can be found in
[24]. Note that this algorithm indeed can solve any vector subset choice problem
satisfying one of the following two locality properties:

– For every input there is a point x∗ such that the optimal solution consists of
the set of M closest to x∗ points of Y.

– For every input there is a vector y∗ such that the optimal solution consists of
the set of M vectors of Y having minimum scalar products with y∗.

If the dimension of the space d is a part of input then all four problems
mentioned above are NP-hard in a strong sense. Moreover, for Problems 2 and 3
an inapproximability bound (16/17)1/p was proved in [26] for an arbitrary norm
lp where p ∈ [1,∞).

There are a lot of approximation results for these problems. Let us mention
randomized algorithms finding (1 + ε)-approximate solution for Problems 2 and
3 of complexity O(d3/2N log log N/(2ε − ε2)(d−1)/2) in [10] and of complexity
O(dO(1)N(1 + 2/ε)d) with probability 1 − 1/e in [26]. For Problem 4 a (1 + ε)-
approximation algorithm of complexity O(N2(M/ε)d) was suggested in [19] and
a PTAS of complexity O(dN1+2/ε(9/ε)3/ε) was constructed in [23]. For Problem
1 a (1+ε)-approximation algorithm of complexity O(Nd(d+log N)(

√
(d − 1)/ε+

1)d−1) can be found in [15].
The NP-hardness of Problem 2 (i. e. in case of known—given as a part of

input—cardinality of a sought subset) was proved in [3,8]. The proof uses a
natural reduction from the classical NP-hard Clique problem. In this reduction,
each vector corresponds to a vertex of a graph and a subset C is optimal if and
only if the corresponding subset of vertices induces a clique in the graph. This
proof is so natural that the similar idea was used later, in particular, for proving
NP-hardness of Problem 4 in [16], of Maximum Diversity problem in [5] and of
1-Mean and 1-Median 2-Clustering Problem in [18].

The NP-hardness of Problem 1 was proved in [14,15]. It uses quite com-
plicated reduction of 3-SAT problem, where several vectors correspond to each
clause and to each variable, and some irrational numbers (square roots) are used
in their coordinates (and thus, additional arguments justifying the possibility
of rational approximation become necessary). The NP-hardness of Problem 3
was proved in [22] also by reduction of 3-SAT; although there are no irrational
numbers, the reduction still remains complicated and the proof is hard to follow.
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These reductions are highly inconvenient and hard to generalize. So, many other
vector choice or clustering problems with unknown cardinality of the sought set
stay open (see, for example, [18]). In this paper we present an easy and natu-
ral NP-hardness proof for Problems 1 and 3 with almost the same reduction of
Exact Cover by 3-Sets problem.

Let us mention some other problems that are related to Problems 1–4. Make
use of the following well-known folklore identities (the proofs can be found, for
instance, in [15,17]):

∑

y∈Y
‖y‖2 − ‖∑

x∈C x‖2
|C| =

∑

y∈C
‖y − y‖2 +

∑

y∈Y\C
‖y‖2

=

∑
y∈C

∑
z∈C ‖y − z‖2
2|C| +

∑

y∈Y\C
‖y‖2. (1)

Since the sum of the squared norms of all vectors from Y does not depend on C,
Problems 1 and 2 are equivalent to minimization of the function

∑

y∈C
‖y − y‖2 +

∑

y∈Y\C
‖y‖2,

that can be treated as a minimum sum of squares 2-clustering where the center
of one cluster is known. This problem is very close to a classical MSSC (min-
imum sum of squares clustering) problem also known as k-means [2,6,20,21],
but not equivalent to it. Note that in such equivalent formulations these prob-
lems admit polynomial 2-approximation algorithms of complexity O(dN2) both
for known [4] and unknown [13] cardinality of the sought set (cluster with an
unknown center). As far as we know, no polynomial approximation algorithm
with a guaranteed exactness bound is known for Problem 1.

3 Main Results

In this section we present the new NP-hardness proofs for Problems 1 and 3.

3.1 NP-hardness of Problem 1

Let us rewrite Problem 1 in the equivalent (due to (1)) form of the decision
problem.

Problem 5. Given a set of vectors Y = {y1, . . . , yN} in d-dimensional Euclidean
space and a number K > 0, is there a non-empty subset C ⊆ Y such that

f(C) :=
1

2|C|
∑

x∈C

∑

y∈C
‖x − y‖2 +

∑

z∈Y\C
‖z‖2 ≤ K?

We need the following well-known NP-hard [7] version of the Exact Cover by
3-Sets problem where each element lies in at most 3 subsets.
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Problem 6 (X3C3). Given a family E = {e1, . . . , em} of 3-element subsets of the
set V = {v1, . . . , vn} where n = 3q such that every v ∈ V meets in at most
3 subsets from E, find out whether there exist a subfamily E0 = {ei1 , . . . , eiq}
covering the set V , i. e. such that V = ∪q

j=1eij .

The main result of this subsection is the following theorem.

Theorem 1. Problem 1 is NP-hard in a strong sense.

Proof. Consider an arbitrary instance of X3C3 problem and reduce it to an
instance of Problem 5 in the following way. Put N = m, d = 3n + 1 and K =
18a2(m − 1) + m − q where a is a positive integer such that a2 > m(m − q)/6.
Each vector yi ∈ Y corresponds to a set ei ∈ E. For every i ∈ {1, . . . , n} refer
to the coordinates 3i, 3i − 1, 3i − 2 of a vector y ∈ Y as i-th coordinate triple.
Denote by yi(j) the j-th coordinate of yi. If vi �∈ ej then the i-th triple of the
vector yj contains zeroes: yj(3i − 2) = yj(3i − 1) = yj(3i) = 0. Otherwise, let
k = |{l < j | vi ∈ el}| be the number of subsets from E with lesser indices than
j containing the element vi. Since each vi lies in at most 3 subsets from E, we
have k ∈ {0, 1, 2}. Put

yj(3i − 2) = 2a, yj(3i − 1) = yj(3i) = −a, if k = 0;
yj(3i − 1) = 2a, yj(3i − 2) = yj(3i) = −a, if k = 1;
yj(3i) = 2a, yj(3i − 2) = yj(3i − 1) = −a, if k = 2.

Also, put yj(3n + 1) = 1 for all j ∈ {1, . . . , m}.

For example, if E = {(v1, v2, v3), (v1, v3, v4), (v1, v5, v6), (v2, v3, v5), (v4, v5, v6)}
then the family Y contains the following five vectors of dimension 19:

y1 = (2a,−a,−a | 2a,−a,−a | 2a,−a,−a | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 1);

y2 = (−a, 2a,−a | 0, 0, 0 | − a, 2a,−a | 2a,−a,−a | 0, 0, 0 | 0, 0, 0 | 1);

y3 = (−a,−a, 2a | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 2a,−a,−a | 2a,−a,−a | 1);

y4 = (0, 0, 0 | − a, 2a,−a | − a,−a, 2a | 0, 0, 0 | − a, 2a,−a | 0, 0, 0 | 1);

y5 = (0, 0, 0 | 0, 0, 0 | 0, 0, 0 | − a, 2a,−a | − a,−a, 2a | − a, 2a,−a | 1).

For the convenience, different coordinate triples are separated by the vertical
lines.

Note that ‖yi‖2 = 18a2 + 1 for all i and also

‖yi − yj‖2 =

⎧
⎪⎪⎨

⎪⎪⎩

36a2, if ei ∩ ej = ∅;
42a2, if |ei ∩ ej | = 1;
48a2, if |ei ∩ ej | = 2;
54a2, if |ei ∩ ej | = 3

for every i �= j.
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Assume first that an exact cover E0 exists. Put C = {yj | ej ∈ E0}. Then

f(C) =
q(q − 1)36a2

2q
+ (m − q)(18a2 + 1) = 18a2(m − 1) + m − q = K,

as required.
Assume now that there is a subset C of size t > 0 such that f(C) ≤ K. Note

that each coordinate triple can be non-zero in at most 3 vectors from C. For each
k ∈ {0, 1, 2, 3} denote by ak the number of coordinate triples that are non-zero
in exactly k vectors from C and estimate the contributions of such triples into
the first addend of f(C). Note that a0 + a1 + a2 + a3 = n = 3q. Clearly, the
contribution of a0 zero triples is 0. If a triple is non-zero in one vector from C
then it contributes

(t − 1)(4a2 + a2 + a2)
t

,

and the total contribution of such triples is

6a2a1(t − 1)
t

. (2)

If a triple is non-zero in two vectors from C then it contributes

2(t − 2)(4a2 + a2 + a2) + (9a2 + 9a2)
t

;

so, the total contribution of such triples is

6a2a2(2t − 1)
t

. (3)

Finally, the total contribution of triples that are non-zero in three vectors from
C is

(3(t − 3)6a2 + 3 · 18a2)a3

t
= 18a2a3. (4)

Since |ej | = 3 for all j, we have a1 + 2a2 + 3a3 = 3t. Using (2)–(4), estimate
the objctive function

f(C) =
6a2

t
((t − 1)a1 + (2t − 1)a2 + 3ta3) + (m − t)(18a2 + 1)

=
6a2

t
(3t2 − a1 − a2) + (m − t)(18a2 + 1) = 18ma2 + m − t − 6a2

t
(a1 + a2)

= K + 18a2 − 6a2

t
(a1 + a2) + q − t.

If t < q then f(C) > K since a1 + a2 ≤ 3t.
Assume now that t ≥ q and a2+a3 ≥ 1. Then a1+a2 = 3t−a2−2a3 ≤ 3t−1

and since t ≤ m we obtain

f(C) = K + 18a2 − 6a2

t
(a1 + a2) + q − t
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≥ K + 18a2 − 6a2(3t − 1)
t

+ q − t ≥ K +
6a2

m
+ q − m > K

by the choice of a.
Therefore, t ≥ q and a2 = a3 = 0. But then a1 = 3t and a0 + a1 = 3q, i. e.

a0 = 0 and t = q. Hence, the set E0 = {ej | yj ∈ C} induces an exact cover. �


3.2 NP-hardness of Problem 3

Since the norm is always non-negative, maximizing it is the same as maximizing
its square, which is much more convenient. So, the decision version of Problem
3 is equivalent to the following

Problem 7. Given a set of vectors Y = {y1, . . . , yN} in d-dimensional Euclidean
space and a number K, is there a non-empty subset C ⊆ Y such that

g(C) := ‖
∑

x∈C
x‖2 ≥ K?

In order to prove its NP-hardness we first need to show that X3C3 problem
remains NP-complete for 3-uniform family of subsets (i. e. if each vi ∈ V lies in
exactly 3 subsets from E). We refer to this variant of X3C3 problem as X3CE3
problem.

Proposition 1. The X3CE3 problem is NP-complete.

Proof. Consider an arbitrary instance of X3C3 problem. We may assume that
each vi lies in at least 2 subsets (if some vi lies in a unique subset then this
subset must always be in E0 and the instance can be simplified). Denote by
α and β the number of elements lying in 3 and 2 subsets from E respectively.
Since 3α + 2β = 3m, there must be β = 3γ. Enumerate the elements of V so
that v1, . . . , v3γ would lie in two subsets from E. Construct an instance of X3CE3
problem by adding to V a set of new elements U = {ui | i = 1, . . . , 3γ} and by
adding to E the subsets {v3i−2, u3i−2, u3i−1}, {v3i−1, u3i−2, u3i}, {v3i, u3i−1, u3i},
and {u3i−2, u3i−1, u3i} for all i = 1, . . . , γ. Clearly, no exact cover (a subfamily
E0) in the constructed instance can contain a subset that intersects both with
U and V . Therefore, the constructed instance of X3CE3 problem has an exact
cover if and only if the initial instance of X3C3 problem has one. �

Theorem 2. Problem 3 is NP-hard in a strong sense.

Proof. Consider an arbitrary instance of X3CE3 problem. Note that m = n =
3q. Reduce it to an instance of Problem 7 as follows. Put N = n, d = 3n+1 and
K = 6a2n + 4q2 where a is a positive integer such that a2 > (n2 − 4q2)/6, and
construct the set of vectors Y in exactly the same way as in proof of Theorem 1.

In an evident way, each C ⊆ Y corresponds to a subfamily E(C) ⊆ E. Put
u(C) =

∑
y∈C y. Since g(C) = ‖u(C)‖2, the contribution of the i-th coordinate

triple into the objective function g(C) is 6a2 if 1 or 2 vectors corresponding to
subsets containing vi lies in E(C), and the contribution is 0 otherwise.
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If there is an exact cover E0 in X3CE3 problem then let C contain all n−q =
2q vectors corresponding to the elements from E \ E0. Since each element of V
lies in exactly 2 subsets from E \ E0, we have g(C) = 6a2n + 4q2 = K.

Suppose now that there exists a subset C ⊆ Y of cardinality t > 0 such that
g(C) ≥ K. As in the proof of Theorem 1, for each k ∈ {0, 1, 2, 3} denote by ak

the number of coordinate triples that are non-zero in exactly k vectors from C.
We have a0 + a1 + a2 + a3 = n = 3q and a1 + 2a2 + 3a3 = 3t. It follows form the
arguments above that g(C) = 6a2(a1 + a2) + t2.

If t < 2q then g(C) < K since a1 + a2 ≤ n.
If t > 2q then 0 < 3t − 6q = a3 − a1 − 2a0 ≤ a3 and thus a3 ≥ 1 implying

a1 + a2 ≤ n − 1. Therefore,

g(C) ≤ 6a2(n − 1) + n2 = K − 6a2 + n2 − 4q2 < K

by the choice of a.
Hence, t = 2q and a1 + a2 = n, which implies a0 = a1 = a3 = 0 and a2 = 3q.

This means that each element vi ∈ V lies exactly in 2 subsets from E(C). But
then the subfamily E0 = E \ E(C) induces an exact cover in X3CE3 problem.�


4 Conclusions

In this paper we have presented two new NP-hardness proofs for the subset choice
problems with unknown cardinalities of the sought subsets. Namely, the prob-
lems of finding a subset with the longest sum and a subset with the maximum
squared norm of the sum normalized by the size of the subset were considered.
These problems find their applications in the areas of data analysis and pattern
recognition. Namely, the first problem can be used for finding a correct direc-
tion to a certain object, and the second one arises in problem of detection an
informationally significant fragment in a noisy data.

The suggested new NP-hardness proofs use an easy and natural reduction
from Ecact Cover by 3-Sets problem. We believe that new natural reductions
could be helpful for proving NP-hardness of related problems with unknown
cardinalities of the sought subsets.

Anknowledgement. The author is grateful to the unknown referees for their valuable
comments.
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Sensitive Instances of the Cutting Stock
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Abstract. We consider the well-known cutting stock problem (CSP).
The gap of a CSP instance is the difference between its optimal function
value and optimal value of its continuous relaxation. For most instances
of CSP the gap is less than 1 and the maximal known gap 6/5 = 1.2 was
found by Rietz and Dempe [11]. Their method is based on constructing
instances with large gaps from so-called sensitive instances with some
additional constraints, which are hard to fulfill. We adapt our method
presented in [15] to search for sensitive instances with required proper-
ties and construct a CSP instance with gap 77/64 = 1.203125. We also
present several instances with large gaps much smaller than previously
known.

Keywords: Cutting Stock Problem · Integer Round Up Property ·
Integrality gap · Sensitive instances

1 Introduction

In the classical formulation, the cutting stock problem (CSP) is stated as follows:
there are infinite pieces of stock material of fixed length L. We have to produce
m ∈ N groups of pieces of different lengths l1, · · · , lm and demanded quantities
b1, · · · , bm by cutting initial pieces of stock material in such a way that the
number of used initial pieces is minimized.

The cutting stock problem is one of the earliest problems that have been
studied through methods of operational research [6]. This problem has many real-
world applications, especially in industries where high-value material is being
cut [3] (steel industry, paper industry). No exact algorithm is known that solves
practical problem instances optimally, so there are lots of heuristic approaches.
The number of publications about this problem increases each year, so we refer
the reader to bibliography [18] and the most recent survey [2].

Throughout this paper we abbreviate an instance of CSP as E := (L, l, b).
The total number of pieces is n =

∑m
i=1 bi. W.l.o.g., we assume that all numbers

in the input data are positive integers and L ≥ l1 > · · · > lm > 0.
The classical approach for solving CSP is based on the formulation by

Gilmore and Gomory [5]. Any subset of pieces (called a pattern) is formalized as
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a vector a = (a1, · · · , am)� ∈ Z
m
+ where ai ∈ Z+ denotes the number of pieces i

in the pattern a. A pattern a of E is feasible if a�l ≤ L. So, we can define the
set of all feasible patterns P f (L, l) = {a ∈ Z

m
+ | a�l ≤ L}. For a given set of

patterns P = {a1, · · · , ar}, let A(P ) be the (n × r)-matrix whose columns are
given by the patterns ai. Then the CSP can be formulated as follows:

z(E) :=
r∑

i=1

xi → min subject to A(P f (L, l))x = b, x ∈ Z
r
+.

The common approximate solution approach involves considering the contin-
uous relaxation of CSP

zC(E) :=
r∑

i=1

xC
i → min subject to A(P f (L, l))xC = b, xC ∈ R

r
+.

Here z(E) and zC(E) are called the optimal function values for the instance
E. The difference Δ(E) = z(E)−zC(E) is called the gap of instance E. Practical
experience and numerous computations have shown that for most instances the
gap is very small. An instance E has the integer round up property (IRUP)
if Δ(E) < 1. Otherwise, E is called a non-IRUP instance. This notation was
introduced by Baum and Trotter [1].

Subsequently, the largest known gap was increased. In 1986 Marcotte con-
structed the first known non-IRUP instance with the gap of exactly 1 [9].
Fieldhouse found an instance with gap 31/30 ≈ 1.033333 in 1990 [4]. In 1991
Schiethauer and Terno slightly improved this result to 137/132 ≈ 1.037879 [16].
Rietz, Scheithauer and Terno subsequently constructed non-IRUP instances with
gaps 10/9 ≈ 1.111111 and 7/6 ≈ 1.166666 in 1998 and 2000 respectively [12,13]
(both papers were published in 2002). Finally, Rietz constructed an instance
with gap 6/5 = 1.2 and published it in his PhD thesis in 2003 [10] and a slightly
smaller instance with the same gap together with Dempe in 2008 [11].

The MIRUP (modified IRUP) conjecture [17] states that Δ(E) < 2 for
all CSP instances E, but it is still open. More investigations about non-IRUP
instances can be found in [7,8,14].

The main idea of our paper is to connect our algorithm for enumeration of
instances published in [15] together with ideas of Rietz and Dempe [11] in aim
to construct CSP instances with the gap larger than currently known.

The paper has the following structure. In Sect. 2, we describe the construction
of Rietz and Dempe, in Sect. 3, we describe our enumeration algorithm. In Sect. 4,
we present the computational results and, finally, we draw a conclusion in Sect. 5.

2 Preliminaries

The construction principles of Rietz and Dempe are based on the instance

E0(p, q) = (33+ 3p+ q, (21+ p+ q, 19+ p+ q, 15+ p+ q, 10+ p, 9+ p, 7+ p, 6+ p, 4+ p)�, b0),
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where p and q are positive integers, b0 = (1, 1, 1, 1, 1, 2, 1, 1)�, and the following
theorem:

Theorem 1 (Rietz and Dempe). Consider an instance E = (L, l, b) of CSP
with the following properties: l1 > l2 > . . . > lm−1 > 2lm and lm ≤ L/4.
Moreover, assume that this instance is sensitive, i.e. its optimal function value
increases if bm is increased by 1. Then, there are integers p and q such that
instance E′ = E ⊕ E0(p, q) has gap Δ(E′) = 1 + Δ(E).

Here ⊕ means a composition of instances. Let E1 = (L1, l1, b1) and E2 =
(L2, l2, b2) denote two instances of CSP having n1 and n2 pieces respectively
and with L1 = L2. The composed instance E := E1 ⊕ E2 of CSP consists of
the task of cutting all the n1 + n2 pieces of lengths from the both vectors l1
and l2 and with demands according to both vectors b1 and b2. In case when L1

and L2 are different, they can be multiplied by one common multiplier (together
with piece lengths) to adjust the stock material lengths of both instances. For
example, the instances (2, (1)�, (1)�) and (5, (2)�, (2)�) can be composed into
the new instance (2, (1)�, (1)�) ⊕ (5, (2)�, (2)�) = (10, (5, 4)�, (1, 2)�).

Note that bm = 0 is possible in Theorem 1, this means that the maximal
possible trimloss in a cutting pattern used in an optimal solution is smaller than
half of the length of the shortest piece.

Searching for sensitive instances with properties described in Theorem 1 is
a very difficult task. An example of a suitable instance mentioned by Rietz and
Dempe in their paper is the following:

EST ′ = (132, (44, 33, 12)�, (2, 3, 5)�).

Indeed, this instance is sensitive, because its optimal function value
z(EST ′) = 2 increases to 3 when we insert an additional piece of length 12.
Also, l1 > l2 > 2l3 and l3 < L/4. Δ(EST ′) = 17/132, so by Theorem 1 there are
integers p and q such that Δ(E0(p, q) ⊕ EST ′) = 149/132 ≈ 1.128787. Namely,
the instance E1 = E0(p, q) ⊕ EST ′ for p = 74 and q = 669 is the following:

E1 = (924, (764, 762, 758, 308, 231, 84, 83, 81, 80, 78)�, (1, 1, 1, 2, 3, 6, 1, 2, 1, 1)�).

3 Enumeration Algorithm

Consider an instance E = (L, l, b). If L and l are fixed, then the matrix of pat-
terns A(P f (L, l)) is fixed too. We will consider vector b as a vector of variables.
Setting l = (L − lm, L − lm − 1, . . . , 2lm + 2, 2lm + 1, lm), where lm ≤ L/4, we
ensure that the most of required properties of Theorem 1 are satisfied, and now
we have to ensure that E is sensitive.

We will enumerate all sensitive instances with a fixed objective function value.
Namely, let Sk(L, l) be the set of all patterns b such that z((L, l, b)) = k and b
corresponds to a sensitive instance (L, l, b).

Consider the set of inextensible feasible patterns P f
∗ (E) = {a ∈ Z

m
+ | a�l ≤

L ∧ a�l + l1 > L}. Obviously, S0(L, l) = {0}, and S1(L, l) = P f
∗ (L, l). Now
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we will build the set Si+1(L, l) from Si(L, l) by adding vectors from P f
∗ (E) and

considering only those patterns which lead to sensitive instances.
To transform the set Si(L, l) into the set Si+1(L, l) we need a data structure

called a “map”, which contains a set of pairs <key, value> (all keys are pairwise
distinct) and allows us to make the following operations: insert a pair, find a
value by a key (or determine that there is no pair with this key), modify a value
by a key and return the list of all pairs. The algorithm is the following:

1 create an empty map A
2 for all s ∈ Si(L, l)
3 for all a ∈ P f

∗ (L, l)
4 x ← (s1 + a1, . . . , sm−1 + am−1)
5 y ← sm + am

6 if A has no key x, then
7 insert into A the pair (x, y)
8 else A[x] ← max(A[x], y)
9 Si+1(L, l) = {(x1, . . . , xm−1, y) | (x, y) ∈ A}

To find a sensitive instance with maximum gap with fixed L, l and k we
generate Sk(L, l) and then simply calculate Δ(E) over all E = (L, l, s), s ∈
Sk(L, l).

4 Results

We implemented our algorithm as a C++ program using CPLEX 12.7. The
program was run on an Intel Core i7-5820K 4.2 GHz machine with 6 cores and
32 Gb RAM.

Results for the runs where l = (L − lm, L − lm − 1, . . . , 2lm + 1, lm) are
presented in Table 1 and Table 2. Maximum gaps greater than 0.1 are marked
in bold, and the maximal gap in every column is underlined.

Several sensitive instances with large gaps found during the search are pre-
sented in Table 3. Here E1, E2 and E3 correspond to some maximum gaps
presented in Table 1 and Table 2. For instance E4 we continued the search up to
L = 250 setting l = (
L/2�, 
L/2� − 1, . . . , 2lm + 1, lm). The gap 0.1875 is the
maximal over all considered instances with k ≤ 4.

The instance E5 is built from E4 and a non-IRUP instance

ET (t) = (3t, (t + 4, t + 3, t, t − 2, t − 6)�, (1, 1, 2, 1, 1)�)

for some integer t. E6 is a combination of E4 and some pieces from two copies
of ET (t) with different values of t.

Using Theorem 1, we constructed a series of non-IRUP instances E′
1, . . . , E

′
6

from the sensitive instances E1, . . . , E6. They are presented in Table 4. In Table 5
we compare our instances with the previously known ones considering the num-
ber of piece types m.
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Table 1. Maximum gaps for sensitive instances with fixed L, lm and k ≤ 4

L\lm 2 3 4 5 6 7

8 0.000000

9 0.000000

10 0.100000

11 0.000000

12 0.083333 0.000000

13 0.000000 0.000000

14 0.071429 0.000000

15 0.083333 0.100000

16 0.062500 0.100000 0.000000

17 0.058824 0.083333 0.000000

18 0.100000 0.083333 0.000000

19 0.075000 0.083333 0.000000

20 0.068182 0.071429 0.100000 0.000000

21 0.066667 0.119048 0.100000 0.000000

22 0.078947 0.100000 0.100000 0.000000

23 0.066667 0.093750 0.083333 0.000000

24 0.083333 0.129630 0.083333 0.000000 0.000000

25 0.060606 0.100000 0.083333 0.100000 0.000000

26 0.078125 0.083333 0.083333 0.100000 0.000000

27 0.069444 0.111111 0.119048 0.100000 0.000000

28 0.071429 0.100000 0.119048 0.100000 0.000000 0.000000

29 0.064815 0.087500 0.113636 0.083333 0.000000 0.000000

30 0.076389 0.125000 0.145833 0.083333 0.100000 0.000000

31 0.097222 0.129630 0.083333 0.100000 0.000000

32 0.100000 0.127907 0.083333 0.100000 0.000000

33 0.102564 0.106061 0.119048 0.100000 0.000000

34 0.096154 0.129630 0.119048 0.100000 0.000000

35 0.092857 0.111111 0.125000 0.083333 0.100000

36 0.106061 0.133333 0.138889 0.083333 0.100000

37 0.105263 0.145833 0.083333 0.100000

38 0.125000 0.131579 0.083333 0.100000

39 0.128788 0.153333 0.119048 0.100000

40 0.130435 0.138889 0.119048 0.100000

41 0.105263 0.136364 0.125000 0.083333

42 0.125000 0.136364 0.142857 0.083333

43 0.133333 0.138889 0.083333

44 0.136364 0.156250 0.083333

45 0.130952 0.161458 0.119048

46 0.133333 0.149123 0.119048

47 0.136364 0.144068 0.125000

48 0.136364 0.156863 0.142857

49 0.136364 0.142857

50 0.148148 0.140000

51 0.141026 0.166667
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Table 2. Maximum gaps for sensitive instances with fixed L, lm and k ≤ 4

L lm = 7 L lm = 8 L lm = 9 L lm = 10

45 0.119048 51 0.119048 57 0.119048 63 0.119048

46 0.119048 52 0.119048 58 0.119048 64 0.119048

47 0.125000 53 0.125000 59 0.125000 65 0.125000

48 0.142857 54 0.142857 60 0.142857 66 0.142857

49 0.142857 55 0.142857 61 0.142857 67 0.142857

50 0.140000 56 0.142857 62 0.142857 68 0.142857

51 0.166667 57 0.149123 63 0.150794 69 0.150794

52 0.150000 58 0.171875 64 0.149123 70 0.150794

53 0.160000 59 0.167969 65 0.175000 71 0.149123

54 0.154762 60 0.166667 66 0.166667 72 0.177083

55 0.151515 61 0.153333 67 0.171875 73 0.171875

56 0.145833 62 0.161765 68 0.160000 74 0.175000

57 0.166667 63 0.166667 69 0.172043 75 0.166667

58 0.156863 64 0.161765 70 0.166667 76 0.171875

Table 3. Sensitive instances with required properties and large gaps

Ei z(Ei) Δ(Ei)

E1 = (30, (14, 13, 10, 4)�, (1, 1, 2, 2)�) 2 7/48 0.145833

E2 = (51, (23, 22, 19, 17, 16, 7)�, (2, 1, 1, 1, 1, 3)�) 3 1/6 0.166667

E3 = (72, (32, 31, 28, 25, 24, 22, 10)�, (2, 1, 1, 1, 2, 2, 3)�) 4 17/96 0.177083

E4 = (183, (81, 79, 65, 64, 61, 59, 55, 25)�, (1, 1, 2, 1, 2, 1, 1, 4)�) 4 3/16 0.187500

E5 = (1281, (567, 553, 455, 448, 430, 427, 425, 413, 385, 175)�, 5 19/96 0.197917

(1, 1, 2, 1, 2, 1, 1, 2, 1, 4)�)

E6 = (1281, (567, 553, 455, 448, 431, 430, 427, 425, 421, 413, 385, 175)�, 6 13/64 0.203125

(1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 4)�)

Table 4. Non-IRUP instances with large gaps

E′
i = E0(p, q) ⊕ Ei z(E′

i) Δ(E′
i)

E′
1 = (300, (228, 226, 222, 140, 130, 100, 40, 39, 37, 36, 34)�, 6 55/48 1.145833

(1, 1, 1, 1, 1, 2, 3, 1, 2, 1, 1)�)

E′
2 = (510, (378, 376, 372, 230, 220, 190, 170, 160, 70, 69, 67, 66, 64)�, 7 7/6 1.166667

(1, 1, 1, 2, 1, 1, 1, 1, 4, 1, 2, 1, 1)�)

E′
3 = (720, (528, 526, 522, 320, 310, 280, 250, 240, 220, 100, 8 113/96 1.177083

99, 97, 96, 94)�, (1, 1, 1, 2, 1, 1, 1, 2, 2, 4, 1, 2, 1, 1)�)

E′
4 = (1830, (1338, 1336, 1332, 810, 790, 650, 640, 610, 590, 550, 250, 8 19/16 1.187500

249, 247, 246, 244)�, (1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 5, 1, 2, 1, 1)�)

E′
5 = (12810, (9318, 9316, 9312, 5670, 5530, 4550, 4480, 4300, 9 115/96 1.197917

4270, 4250, 4130, 3850, 1750, 1749, 1747, 1746, 1744)�,

(1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 5, 1, 2, 1, 1)�)

E′
6 = (12810, (9318, 9316, 9312, 5670, 5530, 4550, 4480, 4310, 4300, 10 77/64 1.203125

4270, 4250, 4210, 4130, 3850, 1750, 1749, 1747, 1746, 1744)�,

(1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 5, 1, 2, 1, 1)�)
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Table 5. The number of piece types in old and new non-IRUP instances

m Old New

3 137/132 1.0378787

4

5 16/15 1.0666667

6 38/35 1.0857143

7 11/10 1.1000000

8 10/9 1.1111111

9

10 149/132 1.1287879

11 55/48 1.1458333

12

13 7/6 1.1666667

14 51/44 1.1590909 113/96 1.1770833

15 19/16 1.1875000

16 7/6 1.1666667

17 115/96 1.1979167

18 13/11 1.1818182

19 77/64 1.2031250
...

28 6/5 1.2000000

5 Conclusion

We have combined the construction of Rietz and Dempe and our enumeration
algorithm for searching for sensitive instances. We have found a lot of sensi-
tive instances with large gaps. This allowed us to construct a lot of non-IRUP
instances with gap, say, greater than 1.17. We also constructed a non-IRUP
instance with gap 1.203125 which is greater than the previously known world
record 1.2. Also the non-IRUP instances with large gaps that we found are
smaller than the previously known ones.

Producing instances with large gaps using our search method requires a lot
of computational resources, so we do not expect that it will handle the MIRUP
conjecture directly. But the instances we found may provide the hints about
improved constructions. In the future research we are going to improve our tech-
nique of combining instances (using which we produced E5 and E6) and construct
new instances with much larger gaps.

Acknowledgements. The authors would like to thank the anonymous referees for
their valuable remarks.



Sensitive Instances of the Cutting Stock Problem 87

References

1. Baum, S., Trotter Jr., L.: Integer rounding for polymatroid and branching opti-
mization problems. SIAM J. Algebraic Discrete Methods 2(4), 416–425 (1981)

2. Delorme, M., Iori, M., Martello, S.: Bin packing and cutting stock problems: math-
ematical models and exact algorithms. Eur. J. Oper. Res. 255(1), 1–20 (2016)

3. Dyckhoff, H., Kruse, H.J., Abel, D., Gal, T.: Trim loss and related problems. Omega
13(1), 59–72 (1985)

4. Fieldhouse, M.: The duality gap in trim problems. SICUP Bull. 5(4), 4–5 (1990)
5. Gilmore, P., Gomory, R.: A linear programming approach to the cutting-stock

problem. Oper. Res. 9(6), 849–859 (1961)
6. Kantorovich, L.V.: Mathematical methods of organizing and planning production.

Manage. Sci. 6(4), 366–422 (1960)
7. Kartak, V.M., Ripatti, A.V.: Large proper gaps in bin packing and dual bin pack-

ing problems. J. Global Optim. 74(3), 467–476 (2018). https://doi.org/10.1007/
s10898-018-0696-0

8. Kartak, V.M., Ripatti, A.V., Scheithauer, G., Kurz, S.: Minimal proper non-IRUP
instances of the one-dimensional cutting stock problem. Discrete Appl. Math.
187(Complete), 120–129 (2015)

9. Marcotte, O.: An instance of the cutting stock problem for which the rounding
property does not hold. Oper. Res. Lett. 4(5), 239–243 (1986)

10. Rietz, J.: Untersuchungen zu MIRUP für Vektorpackprobleme. Ph.D. thesis, Tech-
nischen Universität Bergakademie Freiberg (2003)

11. Rietz, J., Dempe, S.: Large gaps in one-dimensional cutting stock problems. Dis-
crete Appl. Math. 156(10), 1929–1935 (2008)

12. Rietz, J., Scheithauer, G., Terno, J.: Families of non-IRUP instances of the one-
dimensional cutting stock problem. Discrete Appl. Math. 121(1), 229–245 (2002)

13. Rietz, J., Scheithauer, G., Terno, J.: Tighter bounds for the gap and non-IRUP
constructions in the one-dimensional cutting stock problem. Optimization 51(6),
927–963 (2002)

14. Ripatti, A.V., Kartak, V.M.: Bounds for non-IRUP instances of cutting stock prob-
lem with minimal capacity. In: Bykadorov, I., Strusevich, V., Tchemisova, T. (eds.)
MOTOR 2019. CCIS, vol. 1090, pp. 79–85. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-33394-2 7

15. Ripatti, A.V., Kartak, V.M.: Constructing an instance of the cutting stock problem
of minimum size which does not possess the integer round-up property. J. Appl.
Ind. Math. 14(1), 196–204 (2020). https://doi.org/10.1134/S1990478920010184

16. Scheithauer, G., Terno, J.: About the gap between the optimal values of the integer
and continuous relaxation one-dimensional cutting stock problem. In: Gaul, W.,
Bachem, A., Habenicht, W., Runge, W., Stahl, W.W. (eds.) Operations Research
Proceedings. Operations Research Proceedings 1991, vol. 1991. Springer, Heidel-
berg (1992). https://doi.org/10.1007/978-3-642-46773-8 111

17. Scheithauer, G., Terno, J.: The modified integer round-up property of the one-
dimensional cutting stock problem. Eur. J. Oper. Res. 84(3), 562–571 (1995)

18. Sweeney, P.E., Paternoster, E.R.: Cutting and packing problems: a categorized,
application-orientated research bibliography. J. Oper. Res. Soc. 43(7), 691–706
(1992)

https://doi.org/10.1007/s10898-018-0696-0
https://doi.org/10.1007/s10898-018-0696-0
https://doi.org/10.1007/978-3-030-33394-2_7
https://doi.org/10.1007/978-3-030-33394-2_7
https://doi.org/10.1134/S1990478920010184
https://doi.org/10.1007/978-3-642-46773-8_111


Some Estimates on the Discretization of
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High Dimensions

Vladimir Shenmaier(B)

Sobolev Institute of Mathematics, Novosibirsk, Russia
shenmaier@mail.ru

Abstract. We consider the following concept. A set C in multidimen-
sional real space is said to be a (1+ε)-collection for a set X if C contains
a (1+ε)-approximation of every point of space with respect to the Eucli-
dean distances to all the elements of X. A (1+ε)-collection allows to find
approximate solutions of any geometric center-based problem where it is
required to choose points in space (centers) minimizing a continuity-type
function which depends on the distances from the input points to the
centers. In fact, it gives a universal reduction of such problems to their
discrete versions where all the centers must belong to a prescribed set of
points. As was shown recently, for every fixed ε > 0 and any finite set in
high-dimensional space, there exists a (1+ε)-collection which consists of
a polynomial number of points and can be constructed by a polynomial-
time algorithm. We slightly improve this algorithm and supplement it
with a lower bound for the cardinality of (1 + ε)-collections in the worst
case. Also, we show the non-existence of polynomial (1 + ε)-collections
for some sets of points in the case of �∞ distances.

Keywords: Geometric clustering · Continuous Facility Location ·
Approximate centers · Euclidean space · High dimensions

1 Introduction

We prove some geometric properties of finite sets of points in high-dimensional
real space which may be useful for developing approximation algorithms for data
analysis and optimization problems.

Our interest is the following concept. A set C in space R
d is said to be a

(1 + ε)-collection for a set X ⊆ R
d if, for every point p ∈ R

d, the set C contains
a point p′ such that the Euclidean distance from p′ to each element of X is at
most 1 + ε times of that from p. One may ask: what is the minimum cardinality
of a (1 + ε)-collection for a given set of n points in any-dimensional space in the
worst case? In this paper, we show that, for any fixed ε ∈ (0, 1], this cardinality
is at most Θ

(
n� 1

ε log 2
ε �) and is at least Θ

(
n� 1

16ε+1�).
The concept of a (1 + ε)-collection is closely related to the question of the

discretization of geometric center-based problems. In these problems, we are
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given an n-element set of points in R
d and the goal is to choose a given number

of new points (centers) in space to minimize some objective function which de-
pends on the distances between the input points and the chosen centers. One
of widespread ways for finding approximate solutions of such problems is gene-
rating a set of candidate centers which contains approximations of the optimal
points with respect to the given objective function [5,6,8,10,12,13,15,16,19].
A (1 + ε)-collection is a set of points which contains approximations of all the
points of space with respect to the distances to the input points. Thereby, it
contains approximate centers at once for all the objective functions continuously
depending on the distances between the input points and the centers. In fact, a
(1+ε)-collection gives a reduction of the original instance of a geometric center-
based problem to its discrete version in which all the centers are restricted to be
selected from a prescribed finite set of points.

The only thing we require for the objective function is the natural
“continuity-type” property: small relative changes of the distances between the
input points and the centers must give a bounded relative change of the objective
function value. It may be formalized as follows:

Definition. Let ‖.‖ denote the Euclidean norm and f be a non-negative function
defined for each finite set X ⊂ R

d and every tuple c1, . . . , ck ∈ R
d. Then f is

called a continuity-type function if there exists a mapping μ : [1,∞) → [1,∞)
such that, for each ε > 0 and any tuples ci, c

′
i ∈ R

d satisfying the inequalities
‖x − c′

i‖ ≤ (1 + ε)‖x − ci‖, x ∈ X, i = 1, . . . , k, we have

f(X; c′
1, . . . , c

′
k) ≤ μ(1 + ε) f(X; c1, . . . , ck).

For example, the objective functions of the Euclidean k-Median [4,5,7], Eucli-
dean k-Center [2,5,14], Continuous Facility Location [15], and Smallest m-Enc-
losing Ball [1,17–19] problems are continuity-type with μ(1 + ε) = 1 + ε. Those
of the k-Means [6,12,13] and m-Variance [3,9,16] problems are continuity-type
with μ(1 + ε) = (1 + ε)2. Note that continuity-type functions are not required
to be continuous but, if we want to find approximate solutions close to optimal,
the preferred case is that when μ(1 + ε) → 1 as ε → 0.

On the practical side, using such a universal instrument as (1+ε)-collections
may be actual in the cases when the known fast methods of generating candidate
centers for geometric center-based problems are not applicable or do not give
desired approximation guarantees:

• The objective function has a more complicated dependence on the distances
between the input points and the centers than the sum or the maximum
of these distances or of their squares. In general, it may be an arbitrary
continuity-type function of the point-to-center distance matrix.

• The centers we find are required to cover not all the input points but a
given number of them, which is typical for the clustering and facility location
problems with outliers or penalties. It breaks the standard techniques based
on random sampling, e.g., if the total number of input points we need to cover
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allows to be arbitrarily small and, therefore, any constant number of random
samples may “miss” good clusters.

• The input points are served by the desired centers in a more complicated
manner than in usual clustering models, e.g., if the service areas of the centers
are allowed to overlap by a given number of input points, each input point is
required to be served by a given number of centers, each center has its own
capacity, service radius, and unit distance costs which depend both on the
center and the demand points it serves, etc.

• The problem has one or multiple objectives, possibly not specified explicitly,
and an oracle is given which, for any two tuples of centers, answers which one
is better. In this case, if the objectives are known to be continuity-type, then
enumerating all the tuples of elements of a (1+ ε)-collection for the input set
provides a μ(1 + ε)-approximate solution of the problem.

Besides the considerations mentioned above, the concept of a (1+ε)-collection
seems to be theoretically interesting. It is formulated independently of any opti-
mization problems and can be easily extended to any metrics. The cardinality
of (1 + ε)-collections describes how the given metrics is convenient for the dis-
cretization of space in terms of the distances to given n points.

Related Work. The concept of an α-collection was introduced in [20], where it
was suggested an algorithm which, given an n-element set X in any-dimensional
real space and any ε ∈ (0, 1], constructs an N(n, ε)-element (1 + ε)-collection
for the set X with N(n, ε) = O(

(n
ε )

2
ε log 2

ε

)
(here and everywhere, “log” means

the logarithm to the base 2). As a corollary, it was described a reduction of the
general geometric center-based problem to its discrete version with the same
continuity-type objective function:

Geometric Center-Based Problem. Given an n-element set X in space R
d

and an integer k ≥ 1. Find a tuple c1, . . . , ck ∈ R
d to minimize the value of

f(X; c1, . . . , ck).

Discrete Center-Based Problem. Given an n-element set X ⊂ R
d, an �-ele-

ment set Y ⊂ R
d, and an integer k ≥ 1. Find a tuple c1, . . . , ck ∈ Y to minimize

the value of f(X; c1, . . . , ck).

Fact 1. [20] Suppose that β ≥ 1 and there exists an algorithm which computes a
β-approximate solution of the Discrete Center-Based problem with a continuity-
type function f in time T (n, �, k, d ). Then there exists an algorithm which, given
ε ∈ (0, 1], computes a βμ(1 + ε)-approximate solution of the Geometric Center-
Based problem with the function f in time O(

N(n, ε) d
)

+ T
(
n,N(n, ε), k, d

)
.

In particular, it follows the constant-factor approximability of the Geometric
k-Median problem, in which we need to choose k centers in high-dimensional
Euclidean space to minimize the total distance from the input points to nea-
rest centers. Another known application of (1 + ε)-collections is approximation
algorithms for the following k-clustering problems:
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Problem 1. Given points x1, . . . , xn in space R
d, integers k,m ≥ 1, unit dis-

tance costs fij ≥ 0, and powers αij ∈ [0, α], i = 1, . . . , k, j = 1, . . . , n, where α is
some parameter. Find disjoint subsets S1, . . . , Sk ⊆ {1, . . . , n} with the property
|S1 ∪ . . . ∪ Sk| = m and select a tuple c1, . . . , ck ∈ R

d to minimize the value of

k∑

i=1

∑

j∈Si

fij‖xj − ci‖αij .

Problem 2. The same as in Problem 1 except that, instead of the condition
|S1 ∪ . . . ∪ Sk| = m, each subset Si is required to have its own given cardinality
mi, i = 1, . . . , k.

Fact 2. [20] If the values of k and α are fixed, Problems 1 and 2 admit po-
lynomial-time approximation schemes PTAS computing (1 + ε)α-approximate
solutions of these problems in time O(

N(n, ε)knkd
)

and O(
N(n, ε)k(n3 + nkd)

)

respectively.

Our Contributions. We slightly improve the upper bound for the minimum
cardinality of (1 + ε)-collections for a set of n points and obtain the first lower
bound for this cardinality in the worst case, i.e., the value

C(n, ε) = max
|X|=n

min
{ |C| ∣∣ C is a (1 + ε)-collection for X

}

is estimated. We prove that, in high-dimensional Euclidean space, this value is
at most Θ

(
(n

ε log 2
ε )� 1

ε log 2
ε �) and is at least n� 1

16ε+1�ε� 1
16ε � for each ε ∈ (0, 1],

thereby, it lies between nΘ( 1
ε log 2

ε ) and nΘ( 1
ε ) if ε is fixed.

Both bounds are obtained constructively. To justify the upper bound, we
describe an algorithm which computes a (1 + ε)-collection of the required cardi-
nality for any given n-element set in time proportional to the cardinality of the
output. The suggested algorithm is a modification of that from [20] and is based
on the “affine hull” technique developed in [16]. The main idea of the algorithm
is that we approximate an arbitrary point of space by grids in the affine hulls of
small subsets of the input points. The differences of the modified algorithm from
that from [20] are an improved construction of the approximating grids and an
optimized set of values for the parameters of the algorithm.

To get the lower bound, we present an n-element set of points such that every
(1+ε)-collection for this set contains at least the declared number of points. Note
that both upper and lower bounds are tight at least for ε = 1.

In contrast to the obtained estimates for Euclidean (1 + ε)-collections, we
show that the value of C(n, ε) is not polynomial in high-dimensional �∞ space.
To state it, we construct a set of n points such that every (1 + ε)-collection for
this set in the �∞ metrics contains at least 2�n/2� elements if ε ∈ (0, 1).

2 An Upper Bound

In this section, we prove that, for each fixed ε and every set of n points in any-
dimensional Euclidean space, there exists and can be constructed in polynomial
time a (1 + ε)-collection which consists of O(

n� 1
ε log 2

ε �) elements.
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Definition. Given points p, p′ ∈ R
d, a set X ⊆ R

d, and a real number α ≥ 1, we
say that p′ is an α-approximation of p with respect to X if ‖x − p′‖ ≤ α‖x − p‖
for all x ∈ X.

Definition. Given sets X,C ⊆ R
d and a real number α ≥ 1, we say that C is

an α-collection for X if C contains α-approximations of all the points of space
with respect to X.

Example. Every finite set X ⊂ R
d is a 2-collection for itself. Indeed, let p be any

point in R
d and p′ be a point of X nearest to p. Then, by the triangle inequality

and the choice of p′, we have ‖x − p′‖ ≤ ‖x − p‖ + ‖p − p′‖ ≤ 2 ‖x − p‖ for all
x ∈ X. So p′ is a 2-approximation of p with respect to X.

Theorem 1. For any n-element set X ⊂ R
d and each ε ∈ (0, 1], there exists a

(1+ε)-collection for X which consists of N(n, ε) = O(
(n

ε log 2
ε )� 1

ε log 2
ε �) elements

and can be constructed in time O(
N(n, ε) d

)
.

Proof. As mentioned above, every finite set of points is a 2-collection for itself.
Therefore, the theorem holds if ε = 1. Further, we will assume that ε < 1.

First, describe some geometric constructions underlying both the algorithm
from [20] and its modification we suggest in this paper for computing a required
(1 + ε)-collection. Suppose that δ ∈ (0, ε) and O is an arbitrary point in R

d.
Define the following sequences (xt)t≥1 and (yt)t≥1 depending on O and δ:

set x1 = y1 to be a point of X nearest to O;
for t ≥ 2, consider the ball Bt consisting of the points x ∈ R

d such that
‖x − yt−1‖ ≥ (1 + δ)‖x − O‖;

if the set X ∩Bt is empty, finish the sequences (xt) and (yt); otherwise, define
xt as any point from X ∩Bt and let yt be the orthogonal projection of the point
O into the affine hull of the set {x1, . . . , xt}.

Denote by T the length of the constructed sequences (xt) and (yt).

Lemma 1. [20] If 2 ≤ t ≤ T , then the vector yt − yt−1 is orthogonal to the
affine hull of the set {x1, . . . , xt−1}.
Lemma 2. [20] If 2 ≤ t ≤ T , then the vectors x2 − x1, . . . , xt − x1 are linearly

independent, yt �= yt−1, and the vectors et−1 =
yt − yt−1

‖yt − yt−1‖ can be computed by

the Gram-Schmidt process for orthonormalising the set x2 − x1, . . . , xt − x1.

Lemma 3. [20] If 2 ≤ t ≤ T and rt = ‖yt − O‖, then rt ≤
( 1

1 + δ

)t−1

r1.

Proposition 1. [20] Let t = min{T, T (δ)}, where T (δ) =
⌈ log 1

δ

log(1 + δ)

⌉
+ 1.

Then the point yt is a (1 + δ)-approximation of the point O with respect to X.

Lemma 4. [20] If T ≥ 2 and dist1 =
‖x2 − x1‖

1 + δ
, then dist1δ ≤ r1 ≤ dist1.
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Lemma 5. [20] If 2 ≤ t ≤ T , then ‖yt − yt−1‖ ≤ ‖yt−1 − O‖ ≤ ‖y1 − O‖.
Proposition 2. If 1 ≤ t ≤ T , then the point yt belongs to the hyperrectangle

Boxt(r1), where Boxt(r) =
{

y1 +
t−1∑

i=1

αiei

∣
∣
∣ 0 ≤ αi ≤ r

(1 + δ)i−1

}
.

Proof. This statement directly follows from Lemmas 1–3 and 5. �

Idea of the Algorithm. Propositions 1, 2 and Lemmas 2, 4 give an idea how
to approximate any unknown point O ∈ R

d. We can enumerate all the tuples
x1, . . . , xt ∈ X for all t ≤ T (δ) and, for each of these tuples, construct the
vectors e1, . . . , et−1 defined in Lemma 2. Next, to approximate the point O,
we approximate the point yt. For this aim, we construct a set R1 containing
approximations of the unknown value of r1 by using the bounds established in
Lemma 4. Then, based on Proposition 2, we consider grids in the hyperrectangles
Boxt(r), r ∈ R1. Note that no information about the point O is used, so the
constructed set will contain approximations of all the points of space.

The described idea can be implemented in the following form:

Algorithm A.
Select real parameters δ ∈ (0, ε), h ∈ (0, δ), and an integer parameter I ≥ 1.
Step 1. Include to the output set all the elements of X.
Step 2. Enumerate all the tuples x1, . . . , xt ∈ X, 2 ≤ t ≤ T (δ), such that the
vectors x2−x1, . . . , xt−x1 are linearly independent and, for each of these tuples,
perform Steps 3–5.
Step 3. Execute the Gram-Schmidt process for orthonormalising the set of vec-
tors x2 − x1, . . . , xt − x1 and obtain the orthonormal vectors e1, . . . , et−1.

Step 4. Construct the set R1 of the numbers
‖x2 − x1‖

1 + δ
δi/I , i = 0, . . . , I.

Step 5. For each value r ∈ R1, include to the output set the nodes of the grid

Grid(x1, . . . , xt; r, h) =
{

x1 +
t−1∑

i=1

eirh(0.5 + αi)
∣
∣
∣ αi = 0, . . . ,

⌊ 1
h(1 + δ)i−1

⌋}
.

To justify this algorithm and to estimate the size of its output, we need the
following statements.

Lemma 6. If 2 ≤ t ≤ T (δ), then the union of the (t − 1)-dimensional hyper-
cubes centered at the nodes of Grid(x1, . . . , xt; r, h) with side rh contains the
hiperrectangle Boxt(r) and is contained in the hiperrectangle Boxt(r + rh/δ).

Proof. Given i = 1, . . . , t − 1, denote by bi and gi the maximum values of the
i-th coordinate of the elements of Boxt(r) and Grid(x1, . . . , xt; r, h) respectively
in the coordinate system centered at the point x1 with basis e1, . . . , et−1:

bi =
r

(1 + δ)i−1
and gi = 0.5rh + rh

⌊ 1
h(1 + δ)i−1

⌋
.
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Note that gi − 0.5rh ≥ bi − rh, so gi + 0.5rh ≥ bi. It follows the first statement.
Next, note that (1 + δ)i−1 ≤ (1 + δ)t−2 < 1/δ by the choice of t and the

definition of T (δ). On the other hand, we have gi − 0.5rh ≤ bi. So

gi + 0.5rh ≤ bi + rh =
r + rh(1 + δ)i−1

(1 + δ)i−1
<

r + rh/δ

(1 + δ)i−1
,

which follows the second statement. Lemma 6 is proved. �

Proposition 3. The output set of Algorithm A is a (1 + δ + δ+)-collection for

the set X, where δ+ =
h
√

T (δ) − 1
2δ1/I

.

Proof. Suppose that O is an arbitrary point in space R
d and consider the

sequences (xt)t≥1 and (yt)t≥1 defined for this point. By Proposition 1, there
exists a number t ≤ T (δ) such that the point yt is a (1 + δ)-approximation of
the point O with respect to X. If t = 1, then the required approximation is the
point y1, so it is included to the output set at Step 1. Suppose that t ≥ 2.

In this case, by Lemma 2, the vectors x2−x1, . . . , xt−x1 are linearly indepen-
dent, so the tuple x1, . . . , xt is listed at Step 2. Lemma 4 implies that there exists
a number r ∈ R1 such that r ≥ r1 ≥ rδ1/I , where r1 = ‖x1−O‖. Let z be a node
of Grid(x1, . . . , xt; r, h) nearest to yt. By Proposition 2, the point yt belongs to
the hyperrectangle Boxt(r1) ⊆ Boxt(r). On the other hand, by Lemma 6, the
hyperrectangle Boxt(r) is covered by the union of the hypercubes centered at
the nodes of Grid(x1, . . . , xt; r, h) with side rh. So the distance between z and

yt is at most
rh

√
t − 1
2

. Then, by the triangle inequality, we have

‖x − z‖ ≤ ‖x − yt‖ + ‖yt − z‖ ≤ (1 + δ)‖x − O‖ +
rh

√
t − 1
2

for any x ∈ X. But r ≤ r1/δ1/I ≤ ‖x − O‖/δ1/I by the choice of x1. Therefore,

we have ‖x − z‖ ≤
(
1 + δ +

h
√

t − 1
2δ1/I

)
‖x − O‖. Proposition 3 is proved. �

Proposition 4. The output set of Algorithm A consists of O(
nT (δ)�(δ, h, I)

)

points, where �(δ, h, I) = (1/h + 1/δ)T (δ)−1(1 + δ)−(T (δ)−1)(T (δ)−2)/2I. The run-
ning time of the algorithm is O(

nT (δ)�(δ, h, I) d
)
.

Proof. The number of all the tuples x1, . . . , xt ∈ X, where t ≤ T (δ), is O(nT (δ)).
The set R1 consists of I + 1 elements. Next, to estimate the cardinality of the
set Grid(x1, . . . , xt; r, h), we can assume that t = T (δ) since this set grows
with increasing t. Then, according to Lemma 6 and the fact that the volume of
the hyperrectangle Boxt(r + rh/δ) is (r + rh/δ)t−1(1 + δ)−(t−1)(t−2)/2, each set
Grid(x1, . . . , xt; r, h) contains at most

(1/h + 1/δ)t−1(1 + δ)−(t−1)(t−2)/2 = �(δ, h, I)/I

nodes. Thus, the total number of such nodes is O(
nT (δ)�(δ, h, I)

)
.
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Estimate the running time of Algorithm A. For each tuple x1, . . . , xt ∈ X,
the vectors e1, . . . , et−1 can be constructed in time O(t2d). The vector operations
in space R

d take time O(d). On the other hand, by the definition of T (δ), we
have (1 + δ)t−2 < 1/δ, so �(δ, h, I) > (1/δ)(t−1)/2 = Ω(t2) if δ < 1. Therefore,
the algorithm runs in time

O(
nT (δ)

(
T (δ)2d + �(δ, h, I) d

))
= O(

nT (δ)�(δ, h, I) d
)
.

Proposition 4 is proved. �

To prove Theorem 1, it remains to choose appropriate values of the parame-

ters δ, h, I. Let δ = 0.87ε, I = T (δ) − 1, and h =
0.26ε δ1/I

√
T (δ) − 1

. Then δ+ ≤ 0.13ε

and, by Proposition 3, Algorithm A outputs a (1 + ε)-collection for the set X.
Based on Proposition 4, estimate the cardinality of the constructed set and

the running time of the algorithm. We have

T (δ) = ζ + 1, where ζ =
⌈ log 1

0.87ε

log(1 + 0.87ε)

⌉
,

and

�(δ, h, I) =
( √

ζ

0.26ε (0.87ε)1/ζ
+

1
0.87ε

)ζ

(1 + 0.87ε)−ζ(ζ−1)/2ζ.

The values of T (δ) and �(δ, h, I) can be estimated as follows. Consider the func-
tions

a(ε) =
ζ + 1

� 1
ε log 2

ε� and b(ε) =
�(δ, h, I)

( 1ε log 2
ε )� 1

ε log 2
ε � .

By using asymptotic properties of these functions for small ε and computer
calculations of the values of a(.) and b(.) on a grid with sufficiently small step,
we obtain that a(ε) ≤ 1 and b(ε) < 37 for all ε ∈ (0, 1). It follows that

T (δ) ≤ � 1
ε log 2

ε� and �(δ, h, I) < 37
(
1
ε log 2

ε

)� 1
ε log 2

ε �
.

Thus, by Proposition 4, the number of points in the output of Algorithm A is
N(n, ε) = O(

(n
ε log 2

ε )� 1
ε log 2

ε �) and the algorithm runs in time O(
N(n, ε) d

)
.

Theorem 1 is proved. �

Remark 1. The proposed algorithm for constructing (1 + ε)-collections is a mo-
dification of that from [20]. The differences of the new algorithm are a more
optimal form of the grids we use to approximate the points yt at Step 5 and
a better way to fill the chosen form with the grid nodes. Another factor which
reduces the cardinality of the output (1 + ε)-collections is using a more optimal
set of values for the parameters of the algorithm.

Remark 2. The obtained upper bound for the cardinality of (1 + ε)-collections
is less than that suggested in [20] both in the expression under the O-notation
and in the hidden constant in this notation: ≈37 vs. ≈4400.



96 V. Shenmaier

3 A Lower Bound

In this section, we prove that, for any fixed ε, the minimum cardinality of a
(1+ ε)-collection for a given set of n points in high-dimensional Euclidean space
is Ω

(
n� 1

16ε+1�) in the worst case.

Theorem 2. For each ε > 0 and every positive integer n ≥ 1
8ε , there exists an

n-element set X ⊂ R
n such that any (1 + ε)-collection for this set consists of at

least n� 1
16ε+1�ε� 1

16ε � elements.

Proof. Define X as the set of the n-dimensional unit vectors ei, i = 1, . . . , n,
where ei(i) = 1 and ei(j) = 0 for j �= i. Note that every (1 + ε)-collection for a
finite set of points contains this set itself. At the same time, we have � 1

16ε� = 0
if ε > 1/16. Therefore, the theorem holds in this case. Further, we will assume
that ε ≤ 1/16.

Make some notations. Given a positive integer k, denote by Sk the family of
k-element multisets consisting of elements of X, i.e.,

Sk = { (x1, . . . , xk) |x1 ∈ X, . . . , xk ∈ X }.

Given a multiset S = (x1, . . . , xk), denote by c(S) its mean: c(S) =
1
k

k∑

i=1

xi.

Given a point x ∈ X and a multiset S = (x1, . . . , xk), denote by m(x, S) the
multplicity of x in S, i.e., the number of indices i for which xi = x. Finally, we say
that multisets S1, S2 ∈ Sk differ by t elements if

∑

x∈X

|m(x, S1) − m(x, S2)| = t.

Fact 3 (e.g., see [11,16]). For every multiset S = (x1, . . . , xk), the following

holds:
k∑

i=1

‖xi − c(S)‖2 =
1
2k

k∑

i=1

k∑

j=1

‖xi − xj‖2.

Fact 4 (e.g., see [11,13]). For every multiset S = (x1, . . . , xk) and any point

y ∈ R
n, the following holds:

k∑

i=1

‖xi − y‖2 =
k∑

i=1

‖xi − c(S)‖2 + k ‖y − c(S)‖2.

Lemma 7. Suppose that k ≥ 2, S ∈ Sk, y ∈ R
n, and δ = ‖y−c(S)‖. Then there

exists a point x in the multiset S with the property ‖x − y‖ ≥ α(δ, k)‖x − c(S)‖,
where α(δ, k) =

√

1 + δ2
k

k − 1
.

Proof. By using Fact 3, it can be proved that the sum of the squared distances
from the elements of S to the point c(S) is at most k − 1. Therefore, by Fact 4,
the sum of the squared distances from these elements to the point y is at least

1 + δ2
k

k − 1
times of that to c(S). It follows that the set S contains an element

x such that ‖x − y‖2 is at least 1 + δ2
k

k − 1
times of ‖x − c(S)‖2. Lemma 7 is

proved. �
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Lemma 8. Given integers k and t, where 0 ≤ t < k ≤ n, there exists a subfamily
Fk,t ⊆ Sk such that any different multisets S1, S2 ∈ Fk,t differ by at least 2t + 2

elements and Fk,t consists of at least
nk−t

22t(k − 1 + t)k−1−tk
multisets.

Proof. First, make some combinatorial observations. Denote by Mn,k the number
of k-element multisets whose elements belong to an n-element set. It is well-

known (e.g., see [21]) that Mn,k =
(

n − 1 + k

k

)
. Choose an arbitrary multiset

S ∈ Sk. It is easy to see that there exist at most Mk,t ways to remove t (possibly
repeating) elements from S. At the same time, given a multiset S′, there exist
exactly Mn,t ways to add t (possibly repeating) elements of X to S′. So the set
Nt(S) of multisets in Sk which differ from S by at most 2t elements consists of
at most Mk,tMn,t elements.

Based on this fact, define the following simple algorithm for constructing a
required subfamily Fk,t. Initially, put S = Sk; then, while S is non-empty, add
to Fk,t an arbitrary multiset S ∈ S and remove from S all the elements of Nt(S).
Since the family Sk consists of Mn,k multisets, we have

|Fk,t| ≥ Mn,k

Mk,tMn,t
=

(n − 1 + k)! (t!)2

(k − 1 + t)! (n − 1 + t)! k
.

Taking into account that 22t(t!)2 ≥ (2t)!, the obtained expression is at least

(n − 1 + k)!
(n − 1 + t)!

(2t)!
22t(k − 1 + t)! k

≥ nk−t

22t(k − 1 + t)k−1−tk
.

Lemma 8 is proved. �

Lemma 9. For every k = 1, . . . , n, each
(
1 +

1
8k

)
-collection for the set X

contains at least
n�k/2�+1

(8k)k/2
elements.

Proof. For k = 1, the statement follows from the fact that any (1 + ε)-collection
for a finite set of points contains this set itself. Let k ≥ 2.

Lemma 7 implies that, for every multiset S ∈ Sk and any δ > 0, all the
α(δ, k)-approximations of the point c(S) with respect to the set X belong to
the δ-neighborhood of c(S). So every α(δ, k)-collection for the set X contains at
least one element in each of these δ-neighborhoods.

On the other hand, it is easy to see that ‖c(S1) − c(S2)‖ ≥
√

2t + 2
k

for
every t < k and any different multisets S1, S2 from the family Fk,t defined in

Lemma 8. Therefore, if δ <

√
t + 1√
2 k

, then the δ-neighborhoods of the points c(S)

for the multisets S ∈ Fk,t are disjoint. By the above observations and Lemma 8,
it follows that every α(δ, k)-collection for the set X contains at least βnk−t

elements, where β =
1

22t(k − 1 + t)k−1−tk
.
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Put t = �k/2� − 1 and δ =

√

(k − 1)
( t + 1

2k3
+

(t + 1)2

16k5

)
. Then we have

δ <

√
t + 1√
2 k

and α(δ, k) =

√

1 +
t + 1
2k2

+
(t + 1)2

16k4
= 1 +

t + 1
4k2

≥ 1 +
1
8k

. It

follows that every
(
1 +

1
8k

)
-collection for the set X is an α(δ, k)-collection, so

it contains at least βn�k/2�+1 elements.
Estimate the value of β. Since 2t ≤ k − 1, k − 1 + t ≤ 3k/2 − 3/2, and

k−1−t ≤ k/2, we have β ≥ 1
2k−1(3k/2 − 3/2)k/2k

=
1

2k/2(3k − 3)k/2k/2
. Next,

it can be proved that (3k − 3)k/2k/2 ≤ (4k)k/2 for all k ≥ 1, so β ≥ 1
(8k)k/2

.

Lemma 9 is proved. �

To finish the proof of the theorem, select k = 2
⌊ 1
16ε

⌋
. In this case, we have

ε ≤ 1
8k

and 2 ≤ k ≤ n since ε ≤ 1
16

and n ≥ 1
8ε

. So every (1 + ε)-collection

for the set X is also a
(
1 +

1
8k

)
-collection and, by Lemma 9, contains at least

n�k/2�+1

(8k)k/2
= n� 1

16ε+1�
( 1

16� 1
16ε�

)� 1
16ε �

≥ n� 1
16ε+1�ε� 1

16ε � elements. Theorem 2 is

proved. �

4 The Case of �∞ Distances

In contrast to the obtained estimations of the worst-case cardinality of mini-
mum (1 + ε)-collections in Euclidean space, we show that this cardinality is not
polynomial when the distances between points are defined by the �∞ norm:

‖v‖∞ = max
i=1,...,d

|v(i)|.

First, formulate the concept of an α-collection in an arbitrary metric space.
Let M be any set and dist be any metrics on this set.

Definition. Given points p, p′ ∈ M, a set X ⊆ M, and a real number α ≥ 1,
we say that p′ is an α-approximation of p with respect to X in the metrics dist
if dist(x, p′) ≤ α dist(x, p) for all x ∈ X.

Definition. Given sets X,C ⊆ M, and a real number α ≥ 1, we say that C is an
α-collection for X in the metric space (M, dist) if C contains α-approximations
of all the points of M with respect to X in the metrics dist.

By using the observations in Example from Sect. 2, it is easy to prove that
every finite set is a 2-collection for itself in any metric space. The following
theorem shows that, in the case of �∞ distances, some sets of points do not
admit polynomial-cardinality α-collections if α < 2:
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Theorem 3. For each ε ∈ (0, 1) and every integer n ≥ 4, there exists an n-
element set X ⊂ R

�n/2� such that any (1 + ε)-collection for this set in space
(R�n/2�, �∞) consists of at least 2�n/2� elements.

Proof. Without loss of generality, we can assume that n is even: if n is odd we
will construct the desired set of cardinality n − 1 and add the zero vector.

Let d = n/2 and define X as the set of the d-dimensional unit vectors ±ei,
i = 1, . . . , d, where ei(i) = 1 and ei(j) = 0 for j �= i. Next, given a vector
v ∈ {1,−1}d, define the set Sv = {v(1) e1, . . . , v(d) ed}.

It is easy to see that, for every v ∈ {1,−1}d, the point v/2 has the property
‖x − v/2‖∞ = 1/2 for all x ∈ Sv. Moreover, the following statement holds:

Lemma 10. For each ε ∈ (0, 1) and every v ∈ {−1, 1}d, any (1 + ε)-collection
for the set X in space (Rd, �∞) contains a point xv ∈ R

d such that each coordi-
nate xv(i), i = 1, . . . , d, lies strictly between 0 and v(i).

Proof. Indeed, any (1+ε)-collection for the set X contains a point xv ∈ R
d which

is a (1 + ε)-approximation of the point v/2 with respect to X. Since 1 + ε < 2,
it follows that ‖v(i) ei − xv‖∞ < 2 ‖v(i) ei − v/2‖∞ = 1 for each i = 1, . . . , d.
Therefore, for each i, the coordinate xv(i) lies strictly between 0 and 2v(i). On
the other hand, since d ≥ 2, the set Sv contains at least one point y for which
y(i) = 0. This yields that |xv(i)| ≤ ‖y − xv‖∞ < 2 ‖y − v/2‖∞ = 1. So the
coordinate xv(i) lies strictly between 0 and v(i). Lemma 10 is proved. �

It remains to note that, for every different vectors v, u ∈ {1,−1}d, there
exists at least one coordinate i ∈ {1, . . . , d} such that v(i) = −u(i). It follows
that the points xv, xu defined in Lemma 10 for the vectors v and u differ. Then,
by Lemma 10, any (1 + ε)-collection for the set X in space (Rd, �∞) contains at
least 2d elements. Theorem 3 is proved. �

5 Conclusion

We study the concept of a (1 + ε)-collection, which is closely related to the
question of the polynomial discretization of geometric center-based problems.
Our main result is an upper and a lower bounds for the minimum cardinality of
(1+ε)-collections for a given set of n points in high-dimensional Euclidean space
in the worst case. We prove that this cardinality is at most Θ

(
n� 1

ε log 2
ε �) and is at

least Θ
(
n� 1

16ε+1�) for any fixed ε ∈ (0, 1]. In contrast, it turned out that, in the
case of �∞ distances, there exist sets of points which do not admit polynomial-
cardinality (1 + ε)-collections. An interesting open question is the situation in
high-dimensional �1 space. Another question is an asymptotically exact bound
for the worst-case cardinality of minimum Euclidean (1 + ε)-collections: is it
closer to nΘ( 1

ε log 2
ε ) or to nΘ( 1

ε )?
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Abstract. In the paper, we generalize the approach Gasnikov et al.
2017, which allows to solve (stochastic) convex optimization problems
with an inexact gradient-free oracle, to the convex-concave saddle-point
problem. The proposed approach works, at least, like the best exist-
ing approaches. But for a special set-up (simplex type constraints and
closeness of Lipschitz constants in 1 and 2 norms) our approach reduces
n/log n times the required number of oracle calls (function calculations).
Our method uses a stochastic approximation of the gradient via finite
differences. In this case, the function must be specified not only on the
optimization set itself, but in a certain neighbourhood of it. In the sec-
ond part of the paper, we analyze the case when such an assumption
cannot be made, we propose a general approach on how to modernize
the method to solve this problem, and also we apply this approach to
particular cases ofsomeclassical sets.

Keywords: Zeroth-order optimization · Saddle-point problem ·
Stochastic optimization

1 Introduction

In the last decade in the ML community, a big interest cause different appli-
cations of Generative Adversarial Networks (GANs) [10], which reduce the ML
problem to the saddle-point problem, and the application of gradient-free meth-
ods for Reinforcement Learning problems [17]. Neural networks become rather
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popular in Reinforcement Learning [13]. Thus, there is an interest in gradient-
free methods for saddle-point problems

min
x∈X

max
y∈Y

ϕ(x, y). (1)

One of the natural approach for this class of problems is to construct a stochastic
approximation of a gradient via finite differences. In this case, it is natural to
expect that the complexity of the problem (1) in terms of the number of function
calculations is ∼ n times large in comparison with the complexity in terms of
number of gradient calculations, where n = dim X + dimY. Is it possible to
obtain better result? In this paper, we show that this factor can be reduced in
some situation to a much smaller factor log n.

We use the technique, developed in [8,9] for stochastic gradient-free non-
smooth convex optimization problems (gradient-free version of mirror descent
[2]) to propose a stochastic gradient-free version of saddle-point variant of mirror
descent [2] for non-smooth convex-concave saddle-point problems.

The concept of using such an oracle with finite differences is not new (see
[5,16]). For such an oracle, it is necessary that the function is defined in some
neighbourhood of the initial set of optimization, since when we calculate the
finite difference, we make some small step from the point, and this step can lead
us outside the set. As far as we know, in all previous works, the authors proceed
from the fact that such an assumption is fulfilled or does not mention it at all.
We raise the question of what we can do when the function is defined only on
the given set due to some properties of the problem.

1.1 Our Contributions

In this paper, we present a new method called zeroth-order Saddle-Point Algo-
rithm (zoSPA) for solving a convex-concave saddle-point problem (1). Our algo-
rithm uses a zeroth-order biased oracle with stochastic and bounded determin-
istic noise. We show that if the noise ∼ ε (accuracy of the solution), then the
number of iterations necessary to obtain ε−solution on set with diameter Ω ⊂ R

n

is O
(

M2Ω2

ε2 n
)

or O
(

M2Ω2

ε2 log n
)

(depends on the optimization set, for example,

for a simplex, the second option with log n holds), where M2 is a bound of the
second moment of the gradient together with stochastic noise (see below, (3)).

In the second part of the paper, we analyze the structure of an admissible set.
We give a general approach on how to work in the case when we are forbidden
to go beyond the initial optimization set. Briefly, it is to consider the “reduced”
set and work on it.

Next, we show how our algorithm works in practice for various saddle-point
problems and compare it with full-gradient mirror descent.

One can find the proofs together and additional numerical experiments in
the full version of this paper available on arXiv [4].
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2 Notation and Definitions

We use 〈x, y〉 def=
∑n

i=1 xiyi to define inner product of x, y ∈ R
n where xi is

the i-th component of x in the standard basis in R
n. Hence we get the def-

inition of �2-norm in R
n in the following way ‖x‖2 def=

√〈x, x〉. We define

�p-norms as ‖x‖p
def= (

∑n
i=1 |xi|p)1/p for p ∈ (1,∞) and for p = ∞ we use

‖x‖∞
def= max1≤i≤n |xi|. The dual norm ‖ · ‖q for the norm ‖ · ‖p is defined in the

following way: ‖y‖q
def= max {〈x, y〉 | ‖x‖p ≤ 1}. Operator E[·] is full mathemati-

cal expectation and operator Eξ[·] express conditional mathematical expectation.

Definition 1 (M-Lipschitz continuity). Function f(x) is M -Lipschitz con-
tinuous in X ⊆ R

n with M > 0 w.r.t. norm ‖ · ‖ when

|f(x) − f(y)| ≤ M‖x − y‖, ∀ x, y ∈ X.

Definition 2 (μ-strong convexity). Function f(x) is μ-strongly convex w.r.t.
norm ‖·‖ on X ⊆ R

n when it is continuously differentiable and there is a constant
μ > 0 such that the following inequality holds:

f(y) ≥ f(x) + 〈∇f(x), y − x〉 +
μ

2
‖y − x‖2, ∀ x, y ∈ X.

Definition 3 (Prox-function). Function d(z) : Z → R is called prox-function
if d(z) is 1-strongly convex w.r.t. ‖ · ‖-norm and differentiable on Z function.

Definition 4 (Bregman divergence). Let d(z) : Z → R is prox-function.
For any two points z, w ∈ Z we define Bregman divergence Vz(w) associated
with d(z) as follows:

Vz(w) = d(z) − d(w) − 〈∇d(w), z − w〉.
We denote the Bregman-diameter ΩZ of Z w.r.t. Vz1(z2) as

ΩZ
def= max{√2Vz1(z2) | z1, z2 ∈ Z}.

Definition 5 (Prox-operator). Let Vz(w) Bregman divergence. For all x ∈ Z
define prox-operator of ξ:

proxx(ξ) = arg min
y∈Z

(Vx(y) + 〈ξ, y〉) .

3 Main Result

3.1 Non-smooth Saddle-Point Problem

We consider the saddle-point problem (1), where ϕ(·, y) is convex function
defined on compact convex set X ⊂ R

nx , ϕ(x, ·) is concave function defined
on compact convex set Y ⊂ R

ny .
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We call an inexact stochastic zeroth-order oracle ϕ̃(x, y, ξ) at each iteration.
Our model corresponds to the case when the oracle gives an inexact noisy func-
tion value. We have stochastic unbiased noise, depending on the random variable
ξ and biased deterministic noise. One can write it the following way:

ϕ̃(x, y, ξ) = ϕ(x, y, ξ) + δ(x, y),
Eξ[ϕ̃(x, y, ξ)] = ϕ̃(x, y), Eξ[ϕ(x, y, ξ)] = ϕ(x, y), (2)

where random variable ξ is responsible for unbiased stochastic noise and δ(x, y)
– for deterministic noise.

We assume that exists such positive constant M that for all x, y ∈ X ×Y we
have

‖∇ϕ(x, y, ξ)‖2 ≤ M(ξ), E[M2(ξ)] = M2. (3)

By ∇ϕ(x, y, ξ) we mean a block vector consisting of two vectors ∇xϕ(x, y, ξ) and
∇yϕ(x, y, ξ). One can prove that ϕ(x, y, ξ) is M(ξ)-Lipschitz w.r.t. norm ‖ · ‖2
and that ‖∇ϕ(x, y)‖2 ≤ M .

Also the following assumptions are satisfied:

|ϕ̃(x, y, ξ) − ϕ(x, y, ξ)| = |δ(x, y)| ≤ Δ. (4)

For convenience, we denote Z = X × Y and then z ∈ Z means z
def= (x, y),

where x ∈ X , y ∈ Y. When we use ϕ(z), we mean ϕ(z) = ϕ(x, y), and ϕ(z, ξ) =
ϕ(x, y, ξ).

For e ∈ RSn
2 (1) (a random vector uniformly distributed on the Euclidean

unit sphere) and some constant τ let ϕ̃(z+τe, ξ) def= ϕ̃(x+τex, y+τey, ξ), where

ex is the first part of e size of dimension nx
def= dim(x), and ey is the second

part of dimension ny
def= dim(y). And n

def= nx + ny. Then define estimation of
the gradient through the difference of functions:

g(z, ξ, e) =
n (ϕ̃(z + τe, ξ) − ϕ̃(z − τe, ξ))

2τ

(
ex

−ey

)
. (5)

g(z, ξ, e) is a block vector consisting of two vectors.
Next we define an important object for further theoretical discussion – a

smoothed version of the function ϕ̃ (see [15,16]).

Definition 6. Function ϕ̂(x, y) = ϕ̂(z) defines on set X × Y satisfies:

ϕ̂(z) = Ee [ϕ(z + τe)] .

Note that we introduce a smoothed version of the function only for proof;
in the algorithm, we use only the zero-order oracle (5). Now we are ready to
present our algorithm:
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Algorithm 1. Zeroth-Order Saddle-Point Algorithm (zoSPA)
Input: Iteration limit N .
Let z1 = argmin

z∈Z
d(z).

for k = 1, 2, . . . , N do
Sample ek, ξk independently.
Initialize γk.
zk+1 = proxzk

(γkg(zk, ξk, ek)).
end for
Output: z̄N ,

where

z̄N =
1

ΓN

(
N∑

k=1

γkzk

)
, ΓN =

N∑
k=1

γk. (6)

In Algorithm 1, we use the step γk. In fact, we can take this step as a constant,
independent of the iteration number k (see Theorem 1).

Note that we work only with norms ‖ · ‖p, where p is from 1 to 2 (q is from
2 to ∞). In the rest of the paper, including the main theorems, we assume that
p is from 1 to 2.

Lemma 1 (see Lemma 2 from [3]). For g(z, ξ, e) defined in (5) the following
inequalitie holds:

E
[‖g(z, ξ, e)‖2q

] ≤ 2
(

cnM2 +
n2Δ2

τ2

)
a2

q,

where c is some positive constant (independent of n) and a2
q is determined by√

E[‖e‖4q] ≤ a2
q and the following statement is true

a2
q = min{2q − 1, 32 log n − 8}n

2
q −1, ∀n ≥ 3. (7)

Note that in the case with p = 2, q = 2 we have aq = 1, this follows not from
(7), but from the simplest estimate. And from (7) we get that with p = 1, q = ∞
– aq = O(log n/n) (see also Lemma 4 from [16]).

Lemma 2 (see Lemma 8 from [16]). Let e be from RSn
2 (1). Then function

ϕ̂(z, ξ) is convex-concave and satisfies :

sup
z∈Z

|ϕ̂(z) − ϕ(z)| ≤ τM + Δ.

Lemma 3 (see Lemma 10 from [16] and Lemma 2 from [3]). It holds that

∇̃ϕ̂(z) = Ee

[
n (ϕ(z + τe) − ϕ(z − τe))

2τ

(
ex

−ey

)]
,

‖Ee[g(z, e)] − ∇̃ϕ̂(z)‖q ≤ Δnaq

τ
,
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where

g(z, e) = Eξ [g(z, ξ, e)]

=
n (ϕ̃(z + τe) − ϕ̃(z − τe))

2τ

(
ex

−ey

)
.

Hereinafter, by ∇̃ϕ̂(z) we mean a block vector consisting of two vectors ∇xϕ̂(x, y)
and −∇yϕ̂(x, y).

Lemma 4 (see Lemma 5.3.2 from [2]). Define Δk
def
= g(zk, ξk, ek)−∇̃ϕ̂(zk).

Let D(u)
def
=

∑N
k=1 γk〈Δk, u − zk〉. Then we have

E

[
max
u∈Z

D(u)
]

≤ Ω2 +
ΔΩnaq

τ

N∑
k=1

γk + M2
all

N∑
k=1

γ2
k,

where M2
all

def
= 2

(
cnM2 + n2Δ2

τ2

)
a2

q is from Lemma 1.

Theorem 1. Let problem (1) with function ϕ(x, y) be solved using Algorithm 1
with the oracle g(zk, ξk, ek) from (5). Assume, that the function ϕ(x, y) and its
inexact modification ϕ̃(x, y) satisfy the conditions (2), (3), (4). Denote by N the
number of iterations. Let step in Algorithm 1 γk = Ω

Mall

√
N

. Then the rate of
convergence is given by the following expression

E [εsad(z̄N )] ≤ 3MallΩ√
N

+
ΔΩnaq

τ
+ 2τM,

where z̄N is defined in (6), Ω is a diameter of Z, M2
all = 2

(
cnM2 + n2Δ2

τ2

)
a2

q

and
εsad(z̄N ) = max

y′∈Y
ϕ(x̄N , y′) − min

x′∈X
ϕ(x′, ȳN ),

x̄N , ȳN are defined the same way as z̄N in (6).

Next we analyze the results.

Corollary 1. Under the assumptions of the Theorem 1 let ε be accuracy of the
solution of the problem (1) obtained using Algorithm 1. Assume that

τ = Θ
( ε

M

)
, Δ = O

(
ε2

MΩnaq

)
, (8)

then the number of iterations to find ε-solution

N = O
(

Ω2M2n2/q

ε2
C2(n, q)

)
,

where C(n, q)
def
= min{2q − 1, 32 log n − 8}.

Consider separately cases with p = 1 and p = 2.
Note that in the case with p = 2, we have that the number of iterations

increases n times compared with [2], and in the case with p = 1 – just log2 n
times (Table 1).
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Table 1. Summary of convergence estimation for non-smooth case: p = 2 and p = 1.

p, (1 � p � 2) q, (2 � q � ∞) N , Number of iterations

p = 2 q = 2 O
(

Ω2M2

ε2
n
)

p = 1 q = ∞ O
(

Ω2M2

ε2
log2(n)

)

3.2 Admissible Set Analysis

As stated above, in works (see [5,16]), where zeroth-order approximation (5)
is used instead of the “honest” gradient, it is important that the function is
specified not only on an admissible set, but in a certain neighborhood of it. This
is due to the fact that for any point x belonging to the set, the point x + τe can
be outside it.

But in some cases we cannot make such an assumption. The function and
values of x can have a real physical interpretation. For example, in the case of a
probabilistic simplex, the values of x are the distribution of resources or actions.
The sum of the probabilities cannot be negative or greater than 1. Moreover, due
to implementation or other reasons, we can deal with an oracle that is clearly
defined on an admissible set and nowhere else.

In this part of the paper, we outline an approach how to solve the problem
raised above and how the quality of the solution changes from this.

Our approach can be briefly described as follows:

– Compress our original set X by (1 − α) times and consider a “reduced”
version Xα. Note that the parameter α should not be too small, otherwise
the parameter τ must be taken very small. But it’s also impossible to take
large α, because we compress our set too much and can get a solution far from
optimal. This means that the accuracy of the solution ε bounds α: α ≤ h(ε),
in turn, α bounds τ : τ ≤ g(α).

– Generate a random direction e so that for any x ∈ Xα follows x + τe ∈ X.
– Solve the problem on “reduced” set with ε/2-accuracy. The α parameter must

be selected so that we find ε-solution of the original problem.

In practice, this can be implemented as follows: 1) do as described in the
previous paragraph, or 2) work on the original set X, but if xk + τe is outside
X, then project xk onto the set Xα. We provide a theoretical analysis only for
the method that always works on Xα.

Next, we analyze cases of different sets. General analysis scheme:

– Present a way to “reduce” the original set.
– Suggest a random direction e generation strategy.
– Estimate the minimum distance between Xα and X in �2-norm. This is the

border of τ , since ‖e‖2.
– Evaluate the α parameter so that the ε/2-solution of the “reduced” problem

does not differ by more than ε/2 from the ε-solution of the original problem.
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The first case of set is a probability simplex:

�n =

{
n∑

i=1

xi = 1, xi ≥ 0, i ∈ 1 . . . n

}
.

Consider the hyperplane

H =

{
n∑

i=1

xi = 1

}
,

in which the simplex lies. Note that if we take the directions e that lies in H,
then for any x lying on this hyperplane, x + τe will also lie on it. Therefore, we
generate the direction e randomly on the hyperplane. Note that H is a subspace
of Rn with size dimH = n − 1. One can check that the set of vectors from Rn

v =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1 = 1/
√
2(1,−1, 0, 0, . . . 0),

v2 = 1/
√
6(1, 1,−2, 0, . . . 0),

v3 = 1/
√
12(1, 1, 1,−3, . . . 0),

. . .
vk = 1/

√
k+k2(1, . . . 1,−k, . . . , 0),

. . .
vn−1 = 1/

√
n−1+(n−1)2(1, . . . , 1,−n + 1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

is an orthonormal basis of H. Then generating the vectors ẽ uniformly on the
euclidean sphere RSn−1

2 (1) and computing e by the following formula:

e = ẽ1v1 + ẽ2v2 + . . . + ẽkvk + . . . ẽn−1vn−1, (9)

we have what is required. With such a vector e, we always remain on the hyper-
plane, but we can go beyond the simplex. This happens if and only if for some
i, xi + τei < 0. To avoid this, we consider a “reduced” simplex for some positive
constant α:

�α
n =

{
n∑

i=1

xi = 1, xi ≥ α, i ∈ 1 . . . n

}
.

One can see that for any x ∈ �α
n, for any e from (9) and τ < α follows that

x + τe ∈ �n, because |ei| ≤ 1 and then xi + τei ≥ α − τ ≥ 0.
The last question to be discussed is the accuracy of the solution that we

obtain on a “reduced” set. Consider the following lemma (this lemma does not
apply to the problem (1), for it we prove later):

Lemma 5. Suppose the function f(x) is M -Lipschitz w.r.t. norm ‖ · ‖2. Con-
sider the problem of minimizing f(x) not on original set X, but on the “reduced”
set Xα. Let we find xk solution with ε/2-accuracy on f(x). Then we found
(ε/2 + rM)-solution of original problem, where

r = max
x∈X

∥∥∥∥x − argmin
x̂∈Xα

‖x − x̂‖2
∥∥∥∥
2

.



Gradient-Free Methods for Saddle-Point Problem 113

It is not necessary to search for the closest point to each x and find r. It’s
enough to find one that is “pretty” close and find some upper bound of r. Then
it remains to find a rule, which each point x from X associated with some point
x̂ from Xα and estimate the maximum distance maxX ‖x̂−x‖2. For any simplex
point, consider the following rule:

x̂i =
(xi + 2α)
(1 + 2αn)

, i = 1, . . . n.

One can easy to see, that for α ≤ 1/2n:

n∑
i=1

x̂i = 1, x̂i ≤ α, i = 1, . . . n.

It means that x̂ ∈ Xα. The distance ‖x̂ − x‖2:

‖x̂ − x‖2 =

√√√√
n∑

i=1

(x̂i − xi)2 =
2αn

1 + 2αn

√√√√
n∑

i=1

(
1
n

− xi

)2

.

√
n∑

i=1

(
1
n − xi

)2 is a distance to the center of the simplex. It can be bounded by

the radius of the circumscribed sphere R =
√

n−1
n ≤ 1. Then

‖x̂ − x‖2 ≤ 2αn

1 + 2αn
≤ 2αn. (10)

(10) together with Lemma 5 gives that f(xk) − f(x∗) ≤ ε
2 + 2αnM . Then by

taking α = ε/4nM (or less), we find ε-solution of the original problem. And it
takes τ ≤ α = ε/4nM.

The second case is a positive orthant:

⊥n = {xi ≥ 0, i ∈ 1 . . . n} .

We propose to consider a “reduced” set of the following form:

⊥α
n = {yi ≥ α, i ∈ 1 . . . n} .

One can note that for all i the minimum of the expression yi + τei is equal to
α − τ , because ei ≥ −1 and yi ≥ α. Therefore, it is necessary that α − τ ≥ 0. It
means that for any e ∈ RSn

2 (1), for the vector y + τe the following expression
is valid:

yi + τei ≥ 0, i ∈ 1 . . . n.

The projection onto ⊥α
n is carried out as well as onto ⊥n: if xi < α then xi → α.
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Then let find r in Lemma 5 for orthant. Let for any x ∈ ⊥n define x̂ in the
following way:

x̂i =

{
α, xi < α,

xi, xi ≥ α,
i = 1, . . . n.

One can see that x̂i ∈ ⊥α
n and

‖x̂ − x‖2 =

√√√√
n∑

i=1

(x̂i − xi)2 ≤
√√√√

n∑
i=1

α2 = α
√

n.

By Lemma 5 we have that f(xk) − f(x∗) ≤ ε
2 + α

√
nM . Then by taking α =

ε/2
√

nM (or less), we find ε-solution of the original problem. And it takes τ ≤
α = ε/2

√
nM.

The above reasoning can easily be generalized to an arbitrary orthant:

⊥̃n = {bixi ≥ 0, bi = ±1, i ∈ 1 . . . n} .

The third case is a ball in p-norm for p ∈ [1; 2]:

Bn
p (a,R) = {‖x − a‖p ≤ R} ,

where a is a center of ball, R – its radii. We propose reducing a ball and solving
the problem on the “reduced” ball Bn

p (a,R(1−α)). We need the following lemma:

Lemma 6. Consider two concentric spheres in p norm, where p ∈ [1; 2], α ∈
(0; 1):

Sn
p (a,R) = {‖x − a‖p = R} , Sn

p (a,R(1 − α)) = {‖y − a‖p = R(1 − α)} .

Then the minimum distance between these spheres in the second norm

m =
αR

n1/p−1/2
.

Using the lemma, one can see that for any x ∈ Bα
n(a,R(1−α)), τ ≤ αR/n

1/p−1/2

and for any e ∈ RSn
2 (1), x + τe ∈ Bn(a,R).

Then let find r in Lemma 5 for ball. Let for any x define x̂ in the following
way:

x̂i = a + (1 − α)(xi − a), i = 1, . . . n.

One can see that x̂i is in the “reduced” ball and

‖x̂ − x‖2 =

√√√√
n∑

i=1

(x̂i − xi)2 =

√√√√
n∑

i=1

(α(xi − a))2 = α

√√√√
n∑

i=1

(xi − a)2 ≤ α
n∑

i=1

|xi − a|.

By Holder inequality:

‖x̂ − x‖2 ≤ α

n∑
i=1

|xi − a| ≤ αn
1
q

(
n∑

i=1

|xi − a|p
) 1

p

= αn
1
q R.
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By Lemma 5 we have that f(xk) − f(x∗) ≤ ε
2 + αn1/qRM . Then by taking

α = ε/2n1/qRM (or less), we find ε-solution of the original problem. And it takes
τ ≤ αR/n

1/p−1/2 = ε/2M
√

n.
The fourth case is a product of sets Z = X × Y. We define the “reduced”

set Zα as

Zα = Xα × Y α,

We need to find how the parameter α and τ depend on the parameters αx, τx

and αy, τy for the corresponding sets X and Y , i.e. we have bounds: αx ≤ hx(ε),
αy ≤ hy(ε) and τx ≤ gx(αx) ≤ gx(hx(ε)), τy ≤ gy(αy) ≤ gy(hy(ε)). Obviously,
the functions g, h are monotonically increasing for positive arguments. This
follows from the physical meaning of τ and α.

Further we are ready to present an analogue of Lemma 5, only for the saddle-
point problem.

Lemma 7. Suppose the function ϕ(x, y) inthe saddle-point problem is M -
Lipschitz. Let we find (x̃, ỹ) solution on Xα and Y α with ε/2-accuracy. Then
we found (ε/2 + (rx + ry)M)-solution of the original problem, where rx and ry

we define in the following way:

rx = max
x∈X

∥∥∥∥x − argmin
x̂∈Xα

‖x − x̂‖2
∥∥∥∥
2

,

ry = max
y∈Y

∥∥∥∥∥y − argmin
ŷ∈Y α

‖y − ŷ‖2
∥∥∥∥∥
2

.

In the previous cases we found the upper bound αx ≤ hx(ε) from the con-
dition that rxM ≤ ε/2. Now let’s take α̃x and α̃y so that rxM ≤ ε/4 and
ryM ≤ ε/4. For this we need α̃x ≤ hx(ε/2), α̃y ≤ hy(ε/2). It means that if
we take α = min(α̃x, α̃y), then (rx + ry)M ≤ ε/2 for such α. For a simplex, an
orthant and a ball the function h is linear, therefore the formula turns into a
simpler expression: α = min(αx,αy)/2.

For the new parameter α = min(α̃x, α̃y), we find τ̃x = gx(α) =
gx(min(α̃x, α̃y)) and τ̃y = gy(α) = gy(min(α̃x, α̃y)). Then for any x ∈ Xα,
ex ∈ RSdimX

2 (1), y ∈ Y α, ey ∈ RSdimY
2 (1), x + τ̃xex ∈ X and y + τ̃yey ∈ Y .

Hence, it is easy to see that for τ = min(τ̃x, τ̃y) and the vector ẽx of the first
dimX components of e ∈ RSdimX+dimY

2 (1) and for the vector ẽy of the remain-
ing dimY components, for any x ∈ Xα, y ∈ Y α it is true that x + τ ẽx ∈ X and
y + τ ẽy ∈ Y . We get τ = min(τ̃x, τ̃y). In the previous cases that we analyzed
(simplex, orthant and ball), the function g and h are linear therefore the formula
turns into a simpler expression: τ = min(αx, αy) · min(τx/αx, τy/αy)/2.

Summarize the results of this part of the paper in Table 2.
One can note that in (8) τ is independent of n. According to Table 2, we need

to take into account the dependence on n. In Table 3, we present the constraints
on τ and Δ so that Corollary 1 remains satisfied. We consider three cases when
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Table 2. Summary of the part 3.2

Set α of “reduced” set Bound of τ e

probability simplex ε
4nM

ε
4nM

see (9)

positive orthant ε
2
√

nM
ε

2
√

nM
RSn

2 (1)

ball in p-norm ε

2n1/qRM

ε
2
√

nM
RSn

2 (1)

Xα × Y α min(αx,αy)

2

min(αx,αy)·min(τx/αx,τy/αy)

2
RSn

2 (1)

both sets X and Y are simplexes, orthants and balls with the same dimension
n/2.

The second column of Table 3 means whether the functions are defined not
only on the set itself, but also in some neighbourhood of it.

Table 3. τ and Δ in Corollary 1 in different cases

Set Neigh-d? τ Δ

Probability simplex ✓ Θ
(

ε
M

) O
(

ε2

MΩnaq

)

✗ Θ
(

ε
Mn

)
and ≤ ε

4nM
O

(
ε2

MΩn2aq

)

Positive orthant ✓ Θ
(

ε
M

) O
(

ε2

MΩnaq

)

✗ Θ
(

ε
M

√
n

)
and ≤ ε√

8nM
O

(
ε2

MΩn3/2aq

)

Ball in p-norm ✓ Θ
(

ε
M

) O
(

ε2

MΩnaq

)

✗ Θ
(

ε
M

√
n

)
and ≤ ε√

8nM
O

(
ε2

MΩn3/2aq

)

4 Numerical Experiments

In a series of our experiments, we compare zeroth-order Algorithm 1 (zoSPA)
proposed in this paper with Mirror-Descent algorithm from [2] which uses a
first-order oracle.

We consider the classical saddle-point problem on a probability simplex:

min
x∈Δn

max
y∈Δk

[
yT Cx

]
, (11)

This problem has many different applications and interpretations, one of the
main ones is a matrix game (see Part 5 in [2]), i.e. the element cij of the matrix
are interpreted as a winning, provided that player X has chosen the ith strategy
and player Y has chosen the jth strategy, the task of one of the players is to
maximize the gain, and the opponent’s task – to minimize.
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We briefly describe how the step of algorithm should look for this
case. The prox-function is d(x) =

∑n
i=1 xi log xi (entropy) and Vx(y) =∑n

i=1 xi log xi/yi (KL divergence). The result of the proximal operator is u =
proxzk

(γkg(zk, ξ±
k , ek)) = zk exp(−γkg(zk, ξ±

k , ek)), by this entry we mean:
ui = [zk]i exp(−γk[g(zk, ξ±

k , ek)]i). Using the Bregman projection onto the sim-
plex in following way P (x) = x/‖x‖1, we have

[xk+1]i =
[xk]i exp(−γk[gx(zk, ξ±

k , ek)]i)
n∑

j=1

[xk]j exp(−γk[gx(zk, ξ±
k , ek)]j)

,

[yk+1]i =
[yk]i exp(γk[gy(zk, ξ±

k , ek)]i)
n∑

j=1

[xk]j exp(γk[gy(zk, ξ±
k , ek)]j)

,

where under gx, gy we mean parts of g which are responsible for x and for y.
From theoretical results one can see that in our case, the same step must be
used in Algorithm 1 and Mirror Descent from [2], because n1/q = 1 for q = ∞.

In the first part of the experiment, we take matrix 200 × 200. All elements
of the matrix are generated from the uniform distribution from 0 to 1. Next, we
select one row of the matrix and generate its elements from the uniform from
5 to 10. Finally, we take one element from this row and generate it uniformly
from 1 to 5. Then we take the same matrix, but now at each iteration we add to
elements of the matrix a normal noise with zero expectation and variance of 10,
20, 30, 40% of the value of the matrix element. The results of the experiment is
on Fig. 1.

According to the results of the experiments, one can see that for the consid-
ered problems, the methods with the same step work either as described in the
theory (slower n times or log n times) or generally the same as the full-gradient
method.

5 Possible Generalizations

In this paper we consider non-smooth cases. Our results can be generalized for
the case of strongly convex functions by using restart technique (see for example
[7]). It seems that one can do it analogously.1 Generalization of the results of
1 To say in more details this can be done analogously for deterministic set up. As for

stochastic set up we need to improve the estimates in this paper by changing the
Bregman diameters of the considered convex sets Ω by Bregman divergence between
starting point and solution. This requires more accurate calculations (like in [11])
and doesn’t include in this paper. Note that all the constants, that characterized
smoothness, stochasticity and strong convexity in all the estimates in this paper
can be determine on the intersection of considered convex sets and Bregman balls
around the solution of a radii equals to (up to a logarithmic factors) the Bregman
divergence between the starting point and the solution.
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Fig. 1. zoSPA with 0–40% noise and Mirror Descent applied to solve saddle-problem
(11).

[6,11,18] and [1,14] for the gradient-free saddle-point set-up is more challenging.
Also, based on combinations of ideas from [1,12] it’d be interesting to develop a
mixed method with a gradient oracle for x (outer minimization) and a gradient-
free oracle for y (inner maximization).
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Abstract. The paper is devoted to the multiple covering problem by
circles of two types. The number of circles of each class is given as well
as a ratio radii. The circle covering problem is usually studied in the
case when the distance between points is Euclidean. We assume that the
distance is determined using some particular metric arising in logistics,
which, generally speaking, is not Euclidean. The numerical algorithm is
suggested and implemented. It based on an optical-geometric approach,
which is developed by the authors in recent years and previously used
only for circles of an equal radius. The results of a computational exper-
iment are presented and discussed.

Keywords: Circle covering problem · Multiple covering ·
Non-Euclidean metric · Incongruent circles · Optical-geometric
approach · Logistics

1 Introduction

The covering problems are widely used in various technical and economic fields
of human activity. Examples of such tasks are locating ATMs, hospitals, arti-
ficial Earth satellites, schools, medical ambulance stations, cell towers [3,6,11],
wireless sensors [1,2,8].

In general form, this problem is formulated as follows: how to locate geometric
objects in a bounded area so that the covered area is completely inside in the
union of these objects. Equal circles are often used as covering elements. In most
cases, we are talking about the one-fold circle covering problem (CCP), which
is considered in a large number of papers (for example, [20,30,32]).

There are other statements of the covering problem, such as the single cov-
ering with circles of different radii and the multiple covering by equal circles. In
this case, as a rule, the radii ratio obeys the additional restrictions.
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The problem of a single covering by unequal circles was first investigated
by F. Toth and J. Molnar [31]. They proposed a hypothesis about the lower
bound for the covering density. Then, this hypothesis was proven by G. Toth
[29]. Florian and Heppes [14] established a sufficient condition for such a covering
to be solid in the sense of [31]. Dorninger presented an analytical description for
the general case (covering by unequal circles) in such a way that the conjecture
can easily be numerically verified and upper and lower limits for the asserted
bound can be gained [12].

The multiple covering problem is as interesting and important as the classical
CCP. Global navigation systems GPS (USA), Glonass (Russia), Baidu (China)
and Galileo (EU) use a multiple covering (at least 3-fold) of the served areas to
ensure positioning accuracy. For the multiple covering of a circle by congruent
circles on a plane, the first exact results for k = 2, 3, 4 were obtained by Blundon
[4]. Some analytical results are obtained in the special cases when the covered
area is a regular polygon [17,26,33]. These results are very important to ver-
ify the correctness of approximate results found by numerical methods. Among
approximate methods, we can mention the greedy [10], heuristic [9,18,20], and
combinatorial [15] algorithms.

Note that the most of known results are obtained for the case when a covered
set is a subset of the Euclidean space. In the case of a non-Euclidean metric, this
problem is relatively poorly studied. Moreover, the problem of multiple covering
with unequal circles, apparently, has not been considered yet.

In this paper, we deal with multiple covering by circles of two types with a
specific non-Euclidean metric. This metric allows using the time as a measure
of the distance [21,22]. We expand a technique based on the combination of
optical-geometric approach [21] and Voronoi diagram [16,19,28].

The results of a computational experiment are presented and discussed.

2 Problem Statement and Modeling

Let us consider some bounded field (service area) where it is required to locate a
certain number of service facilities in such a way that their service zones, having
a given shape, completely cover it. Such statements appear in problems of cell
towers or security points placement [3,13], designing energy-efficient monitoring
of distributed objects by wireless sensor networks [2,27], etc. The most straight-
forward problem statement of this type assumes that the service areas have the
form of circles whose radii are the same, and it is enough to cover each point of
the serviced space at least once. As a result, we have the classical circle covering
problem (see, introduction). However, various complications and generalizations
are possible in connection with applications.

Firstly, the need to take into account terrain features (for example, relief)
leads to the fact that service areas cease to be circles. One way to solve this
problem is to introduce a specific metric, which, in fact, replaces the physical
distance between points by the minimum time it takes to pass the path between
them [7,24].
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Secondly, often, it is required that two or more objects service each point of
the area. This situation is more typical for security tasks when it is necessary
to ensure the correct operation of the system in case of failure of some of the
servicing devices due to an accident or sabotage. However, such requirements
may also apply to logistic systems (systems with duplication or redundancy).

Thirdly, service areas may be different. A similar requirement arises if we use
service objects of various types.

Each of the additional requirements separately was previously considered
(see, for example, [2,3]). Moreover, we have already studied models in which two
of the three conditions were taken into account simultaneously [22,25]. However,
three conditions are simultaneously considered for the first time. For definiteness,
we will further talk about logistic systems (and serving logistic centers) and
proceed to model designing.

We make a simplifying assumption. Suppose we are given a bounded domain,
in which consumers are continuously distributed and there are only two types
of logistic centers. Let n and m be a number of logistic centers of the first
and second type, respectively, τ1 and τ2 be their maximum delivery time and
τ2 = ατ1, α > 0. Here, the maximum delivery time is the time for which the
goods are delivered to the most distant consumer at the border of the service
area of the logistic center means the “radius” of this zone. It is required to
locate the centers so that each consumer must be serviced by at least k of them
(k < n + m), and the parameters τ1, τ2 would be minimal.

Note that in logistics, such a statement is quite natural, since the character-
istics of the service centers directly affecting the delivery time of goods (such as
the area of storage facilities, handling equipment, the capacity of parking lots
and garages, etc.) are determined at the design stage.

If we know only the total number of logistic centers n+m and the multiplicity
k, then the best placement is one with the shortest average delivery time τ̄ =
τ1(n + αm)/(n + m).

Next, we turn to the mathematical formulation of the described problem.

3 Mathematical Formulation

Assume we are given a metric space X, a bounded domain M ⊂ X with a
continuous boundary ∂M , n circles Ci(Oi, R1) and m circles Ci(Oi, R2); here
Oi(xi, yi) is a circle center, R1 and R2 are radii. Let f(x, y) > 0 be a continuous
function, which shows the instantaneous speed of movement at every point of
X. The minimum moving time between two points a, b ∈ X is determined as
follows:

ρ(a, b) = min
Γ∈G(a,b)

∫

Γ

dΓ
f(x, y)

, (1)

where G(a, b) is the set of continuous curves, which belong to X and connect two
points a and b. It is easy to verify that for the distance determined by formula
(1), all metric axioms are satisfied. In logistic problems, in particular, ρ(a, b)
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determines the minimum time for the delivery of goods between points. Still, it
may also have another meaning, for example, determining the geodetic distance.
Therefore, to avoid direct association with transportation, we will further use
the traditional symbol R to designate the circle radius in metric (1).

It is required to locate the circles to minimize the radii and to cover M at
least k times. The last means that every point of M must belong at least k
different circles.

In other words, we have the following optimization problem:

R1 → min, (2)

R2 = αR1, α ∈ R
+, (3)

max
j∈Jk(s)

ωρ(s,Oj) ≤ R1. (4)

Here ω =
{

1, i = 1, ..., n
1/α, i = n + 1, ..., n + m

, and Jk(s) is the set of indexes (numbers)

of k centers, that locate closer to s than other n + m − k centers:

Jk(s) =
{
qj , j = 1, ..., k : ρ(Oqj , p) ≤ ωρ(Ol, p) ∀l = {1, ..., n + m} \ {q1, ..., qj}

}
.

The objective function (2) minimizes the radius of the covering. Constraint
(3) fixes the radii ratio, and (4) guarantees that each point of M belongs to at
least k circles.

Note, if α = 1, we have the multiple covering of a bounded domain by equal
circles with non-Euclidean metric [25].

4 Solution Method

In this section, we propose a numerical method for solving problem (2)–(4),
based on traditional principles for our studies. We combine the analogy between
the propagation of the light wave and finding the minimum of integral functional
(1) and Voronoi diagram technic. This approach is described in more details in
[21,23].

The concept of k–th order Voronoi diagrams was introduced by F.L.Toth
[28] and earlier was used in studies [16,17,25]. To apply it, at first, we should
determine a k–fold Voronoi-Dirichlet region for the case of two types of circles.

For a set of n + m points Oi, the generalized k–fold Voronoi region Mk
i

centered at Oi is defined as follows:

Mk
i =

{
p ∈ M : ρ(p,Oi) ≤ max

j∈Jk(p)
λρ(p,Oj)

}
, i = 1, ..., n + m, k < n + m, (5)

where λ =

⎧⎨
⎩

1, i, j = 1, ..., n; i, j = n + 1, ..., n + m,
1/α, i = 1, ..., n, j = n + 1, ..., n + m,
α, i = n + 1, ..., n + m, j = 1, ..., n.



124 A. Kazakov et al.

Fig. 1. Double Voronoi-Dirichlet regions

Figure 1 shows double Voronoi-Dirichlet regions (grey color) for the case of
four circles (we point out their centers only) where the radii of circles 1 and 2
are equal, but they are three times larger than the radii of circles 3 and 4.

At first, we propose the OCMC (One Covering Minimum Circle) algorithm,
which allows finding a circle C(O∗, R∗) centered in O∗, covering region M and
having an approximately minimal radius R∗.

The principle of this algorithm is that the randomly generated center of the
circle moves in the direction of decreasing the maximum distance from it to the
boundary of the covered region. This process finishes when the coordinates of
the center stop changing (Fig. 2).

Here and further we cover set M by a uniform rectangular grid with the step
h and deal with set Mh approximating M . For brevity, we omit the index h.

Algorithm OCMC

Step 1. Put R∗ = +∞, Iter = 1.
Step 2. Randomly generate initial coordinates of a point O(x, y) ∈ M .
Step 3. Define the set of nearest points for the point O:

ΔO = {O(x + χ, y + σ) : χ, σ = {−h, 0, h}}.
Step 4. Find a point Onew:

Onew = arg min
p∈ΔO

max
s∈∂M

ρ(p, s).

Step 5. If ρ(Onew, ∂M) ≤ ρ(O, ∂M), then put O := Onew and go to Step 3.
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Fig. 2. The principle of OCMC algorithm

Step 6. If ρ(O, ∂M) < R∗, then put O∗ := O, R∗ := ρ(O∗, ∂M).
Step 7. The counter Iter of an initial solution generations is incremented. If
it becomes equal a certain prescribed value, then the algorithm is terminated.
Otherwise, go to Step 2.

The general algorithm includes the basic steps: constructing the generalized
k-fold Voronoi diagram for the initial set of centers; moving Oi to the point O∗

i ,
that is the center of the covering circle, which has the minimal radius for each
part of the diagram; revising radius ratio and returning to the first step with the
new centers. Now we describe the general algorithm in details.

General algorithm

Step 1. Randomly generate initial coordinates of the circles centers Oi ∈ M ,
i = 1, ..., n + m.
Step 2. From Oi, i = 1, ..., n + m, we initiate the light waves using the algo-
rithm from [21]. The speed of a light wave emitted from points Oi, i = 1, ..., n
is α times less than from Oi, i = n + 1, ..., n + m. This allows us to find the
time Ti(x, y), i = 1, ..., n which is required to reach s(x, y) by each wave. For
every s(x, y) ∈ M we obtain vector T (x, y) = Ti(x, y).
Step 3. For each s(x, y) we choose k minimal components of vector T (x, y).
Thus, we obtain Jk(s) which is the index set of Voronoi domains contained
s(x, y).
Step 4. Find k–fold Voronoi domain Mk

i , i = 1, ..., n + m and their boundaries
∂Mk

i .
Step 5. For each Mk

i , i = 1, ..., n + m we find a minimal covering circle
Ci(O∗

i , R∗
i ) by OCMC algorithm.

Step 6. To ensure full covering of M by circles, we choose the maximum radius
R1 = max

i=1,...,n
Ri and R2 = max

i=n+1,...,n+m
Ri.

Step 7. Check the inequality R2 ≥ αR1. If it is satisfied, then put R1 = R2/α,
otherwise, put R2 = αR1.
Step 8. If the value of the founded radius is less than the previous one, we
save the current radius and the current set of circles. The counter of an initial
solution generations is incremented. If it becomes equal a certain prescribed
value, then the algorithm is terminated. Otherwise, go to Step 1.
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A drawback of the algorithm is that it does not guarantee a solution that globally
minimizes the circles radii. This feature is inherited from the constructing of
Voronoi diagram. We use multiple generating of initial positions (Step 1) to
increase the probability of finding a global solution.

5 Computational Experiment

The algorithms are implemented in C# using the Visual Studio 2015. The numer-
ical experiment was carried out using the PC of the following configuration: Intel
(R) Core i5-3570K (3.4 GHz, 8 GB RAM) and Windows 10 operating system.

Note that in the tables n is a number of big circles, m is a number of small
circles, k is multiplicity of the covering, Rk

n,m is the best radius of the big circles,
ΔRk

n,m = n+αm
n+m R is the average radius of the covering.

In the figures, the origin is located in the upper left corner, the bold black
closed curves are large circles, the thin ones are small circles, the grey dots are
the centers of circles, the dashed line lines are the boundary of container M . The
number of random generations Iter = 100, the grid step h = 0.001.

Example 1. This example illustrates how the proposed in the previous section
algorithm works in the case of the Euclidean metric f(x, y) ≡ 1. The covered set
is a square with a side equals to 3, α = 0.5, k = 2, 3, 4. Table 1 shows the best
solutions for 15 circles.

Table 1. The best coverings of a square by 15 circles with Euclidean metric

n m R2
n,m ΔR2

n,m R3
n,m ΔR3

n,m R4
n,m ΔR4

n,m

14 1 0.27739 0.26814 0.34132 0.32994 0.50000 0.48333

13 2 0.27877 0.26018 0.35184 0.32838 0.50000 0.46667

12 3 0.28985 0.26086 0.35358 0.31823 0.50018 0.45016

11 4 0.30170 0.26147 0.37174 0.32217 0.50028 0.43357

10 5 0.30699 0.25583 0.38873 0.32394 0.50584 0.42154

9 6 0.31457 0.25166 0.40089 0.32071 0.51499 0.41199

8 7 0.32299 0.24763 0.41846 0.32082 0.52389 0.40165

7 8 0.33483 0.24554 0.42964 0.31507 0.53729 0.39401

6 9 0.35668 0.24968 0.46228 0.32359 0.55318 0.38723

5 10 0.37642 0.25094 0.50071 0.33381 0.55607 0.37071

4 11 0.39016 0.24710 0.51579 0.32667 0.58426 0.37003

3 12 0.41236 0.24742 0.54103 0.32462 0.63004 0.37802

2 13 0.44312 0.25110 0.56356 0.31935 0.70711 0.40069

1 14 0.47796 0.25491 0.61036 0.32553 0.70711 0.37712

Table 1 shows that the radii of circles, as one would expect, grow with an
increase in the number of small circles and a simultaneous decrease in the number
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Fig. 3. The best 2-fold (left) and 3-fold (right) coverings with 15 circles

of large ones. Other, more specific laws could not be identified. It is noteworthy
that for a 4-fold covering, the radii R4

2,13 and R4
1,14 are equal.

Average radii behave even less regularly. The best 2, 3-fold coverings consist
of 7 large circles and 8 small ones (see Fig. 3), and 4-fold covering contains 4
large circles and 11 small ones. In addition, we note that the average radius of
2-fold covering with circles of two types is always less than the best radius of
2-fold covering with equal ones R1

15 = 0.27012 (see [25]).
The operating time is 3′20′′ ÷ 4′34′′.

Example 2. Let f(x, y) = 0.5 + 2x. It means that instantaneous speed of move-
ment increases linearly along the coordinate x. The covered set M is following

M = {(x, y) : (x − 2.5)2 + (y − 2.5)2 ≤ 4}.

The best solutions for the cases of 2,3,4-fold coverings with 13 circles of two
types are shown in Table 2. Here the radii ratio is 1/3.

Note that in this case the wave fronts also have the form of a circle, as in
the Euclidean metric, but the source of the wave (the center of the circle) is
displaced (see more in [5]). The apparent size of the covering circles depends on
the location of their centers: the closer it to the axis Oy, the smaller it looks
(Fig. 4). We emphasize that in the given metric the radii are equal.

Table 2 shows that the radii of circles, as in the previous example, grow
with an increase in the number of small circles. The average radii decrease
monotonously with an increase in the number of small circles. The best 2, 3-
fold coverings consist of 1 large circle and 12 small ones, and 4-fold covering
contains 2 large circles and 11 small ones.
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Table 2. The best coverings of a circle by 13 circles with the “linear” metric

n m R2
n,m ΔR2

n,m R3
n,m ΔR3

n,m R4
n,m ΔR4

n,m

12 1 0.27457 0.26049 0.35948 0.34105 0.43305 0.41084

11 2 0.28117 0.25233 0.37712 0.33844 0.45014 0.40397

10 3 0.29531 0.24988 0.39511 0.33433 0.46838 0.39632

9 4 0.30825 0.24502 0.41499 0.32987 0.47750 0.37955

8 5 0.32948 0.24499 0.43755 0.32536 0.48785 0.36276

7 6 0.35322 0.24454 0.45458 0.31471 0.49786 0.34467

6 7 0.37173 0.23829 0.48095 0.30830 0.50551 0.32404

5 8 0.39442 0.23261 0.48902 0.28839 0.51528 0.30388

4 9 0.43990 0.23687 0.49312 0.26553 0.52712 0.28383

3 10 0.46108 0.22463 0.54984 0.26787 0.58098 0.28304

2 11 0.49159 0.21428 0.61712 0.26900 0.63789 0.27805

1 12 0.55774 0.21451 0.69580 0.26762 0.72432 0.27859

Fig. 4. The best 2-fold (left) and 3-fold (right) coverings of a circle by 13 circles with
the “linear” metric

Figure 4 (right) illustrates the interesting 3-fold covering. It splits into 1-fold
covering by 1 large circle and 2-fold covering by 12 small ones.

The operating time of the proposed algorithm is 3′11′′ ÷ 4′08′′.

Example 3. Let the covered set M is a polygon with the vertices: (0.5, 1.5);
(0.5, 3.5); (1.5, 4.5); (3.5, 4.5); (4.5, 3.5); (4.5, 1.5); (3.5, 0.5); (1.5, 0.5). The
instantaneous speed of movement f(x, y) is defined as follows:

f(x, y) =
3

(x − 2)2 + (y − 2.5)2 + 1
+ 1.
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Fig. 5. Level lines of function f(x, y)

Figure 5 shows level lines of f(x, y). From the lowest to the highest point,
the wave speed increases.

Table 3 shows the best coverings of M by 19 circles of two types for α = 1/4.
One can see that the radii of the circles, as in the two previous examples, grow
with an increasing number of small circles. Moreover, the increase in all cases
occurs with acceleration.

The best 2-fold coverings consist of 7 large and 12 small circles, 3-fold cover-
ings includes of 10 large and 9 small circles, and 4-fold covering contains 2 large
circles and 17 small ones. Figure 6 shows that the wave fronts differ significantly
from the circles, and the covering elements have an oviform shape.

The operating is 4′40′′ ÷ 6′05′′.

Fig. 6. The best 2-fold (left) and 3-fold (right) coverings of a polygon by 19 circles
with the non-Euclidean metric
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Table 3. The best multiple coverings in the example 3

n m R2
n,m ΔR2

n,m R3
n,m ΔR3

n,m R4
n,m ΔR4

n,m

18 1 0.51256 0.49232 0.63925 0.61401 0.78887 0.75773

17 2 0.53152 0.48956 0.65804 0.60609 0.81266 0.74851

16 3 0.55448 0.48882 0.69060 0.60882 0.85300 0.75199

15 4 0.56005 0.47162 0.71822 0.60482 0.86624 0.72947

14 5 0.58186 0.46702 0.74946 0.60154 0.91106 0.73125

13 6 0.60108 0.45872 0.77528 0.59166 0.96564 0.73693

12 7 0.62704 0.45378 0.80655 0.58369 0.96823 0.70069

11 8 0.64791 0.44331 0.82150 0.56208 1.04158 0.71266

10 9 0.68587 0.44221 0.85210 0.54938 1.07594 0.69370

9 10 0.71505 0.43280 0.94860 0.57416 1.11342 0.67391

8 11 0.76475 0.43269 0.98175 0.55546 1.14014 0.64508

7 12 0.80687 0.42467 1.05814 0.55692 1.19896 0.63103

6 13 0.87353 0.42527 1.18404 0.57644 1.27998 0.62315

5 14 0.96564 0.43200 1.25147 0.55987 1.38141 0.61800

4 15 1.05610 0.43078 1.36896 0.55839 1.45417 0.59315

3 16 1.16501 0.42921 1.50528 0.55458 1.62250 0.59776

2 17 1.29896 0.42729 1.67998 0.55262 1.74612 0.57438

1 18 1.47143 0.42594 1.90411 0.55119 2.02766 0.58695

6 Conclusion

The paper considers one of the topical problems for logistic and security systems:
optimal placement of various service facilities (sensors, CCTV cameras, logistic
centers) with the reservation (duplication). We formulate the subject problem in
the form of the problem of constructing an optimal k-fold covering of a bounded
set by circles of two types.

At the same time, we use a specific non-Euclidean metric to take into account
the local characteristics of the service area (for example, relief). The metric is
determined by minimizing the integral functional of a function that defines the
speed of movement. In other words, it replaces the physical distance between
points by the minimum time it takes to pass the path between them.

To solve the optimization problem, we suggest an original computational
algorithm based on the combination of the optical-geometric approach and a
new method for constructing generalized multiple Voronoi diagrams.

We have already presented algorithms based on these principles [25]; however,
in this case, the procedure for constructing multiple Voronoi diagram is much
more complicated. The reason is the presence of various types of elements in
the covering, which, in turn, often leads to the non-convexity and the multiply-
connection of Voronoi regions.
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The algorithm is implemented, and a computational experiment is carried
out. It shows that the developed tools effectively solve the problem with the
number of objects up to 20. Besides, it turned out that in the best (from the
application domain point of view) covering, as a rule, objects of both types are
present. This fact is an additional confirmation of the relevance of the study.

Further studies may be associated, firstly, with an increase in the number
of types of covering elements; secondly, with an increase in the adequacy of the
model, in particular, the use of two-level optimization problems as a mathemat-
ical formalization.
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1 Introduction

Different relaxations of the classical smoothness conditions for functions are
interesting for a large number of modern applied optimization problems. In par-
ticular, in [2] there were proposed conditions of relative smoothness of the objec-
tive function, which mean the replacement of the classic Lipschitz condition by
the following weaker version

f(y) ≤ f(x) + 〈∇f(x), y − x〉 + LVd(y, x), (1)

to hold for any x, y from the domain of the objective function f and some
L > 0; Vd(y, x) represents an analogue of the distance between the points x
and y (often called the Bregman divergence). Such a distance is widely used
in various fields of science, in particular in mathematical optimization. Usually,
the Bregman divergence is defined on the base of the auxiliary 1-strongly convex
and continuously-differentiable function d : Q ⊂ R

n → R (distance generating
function) as follows

Vd(y, x) = d(y) − d(x) − 〈∇d(x), y − x〉 ∀x, y ∈ Q, (2)

where Q is a convex closed set, 〈·, ·〉 is a scalar product in R
n. In partic-

ular, for the Euclidean setting of the problem, we have d(x) = 1
2‖x‖22 and

Vd(y, x) = d(y − x) = 1
2‖y − x‖22 for arbitrary x, y ∈ Q. However, in many

applications, it often becomes necessary to use non-Euclidean norms. Moreover,
the considered condition of relative smoothness in [2,16] implies only the convex-
ity (but not strong convexity) of the distance generating function d. As shown in
[16], the concept of relative smoothness makes it possible to apply a variant of
the gradient method to some problems which were previously being solved only
by interior-point methods. In particular, we talk about the well-known problem
of construction of an optimal ellipsoid which covers a given set of points. This
problem is important in the field of statistics and data analysis.

A similar approach to the Lipschitz property and non-smooth problems was
proposed in [17] (see also [24]). This approach is based on an analogue of the
Lipschitz condition for the objective function f : Q → R with Lipschitz con-
stant Mf > 0, which involves replacing the boundedness of the norm of the
subgradient, i.e. ‖∇f(x)‖∗ ≤ Mf , with the so-called relative Lipschitz condition

‖∇f(x)‖∗ ≤ Mf

√
2Vd(y, x)

‖y − x‖ ∀x, y ∈ Q, y �= x,

where ‖·‖∗ denotes the conjugate norm, see Sect. 2 below. Moreover, the distance
generating function d must not necessarily be strongly convex. In [17] there were
proposed deterministic and stochastic Mirror Descent algorithms for optimiza-
tion problems with convex relatively Lipschitz-continuous objective functionals.
Note that some applications of relative Lipschitz-continuity to the well-known
classical support vector machine (SVM) problem and to the problem of mini-
mizing the maximum of convex quadratic functions (intersection of m ellipsoids
problem in R

n) were discussed in [17].
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In this paper we propose a new concept of an inexact model for objective
functional and functional constraint. More precisely, we introduce some ana-
logues of the concepts of an inexact oracle [8] and an inexact model [32] for
objective functionals. However, unlike [8,32], we do not generalize the smooth-
ness condition. We relax the Lipschitz condition and consider a recently proposed
generalization of relative Lipschitz-continuity [17,24]. We propose some optimal
Mirror Descent methods, in different settings of Relatively Lipschitz-continuous
convex optimization problems.

The Mirror Descent method originated in the works of A. Nemirovski and
D. Yudin more than 30 years ago [21,22] and was later analyzed in [5]. It can be
considered as the non-Euclidean extension of subgradient methods. The method
was used in many applications [19,20,31]. Standard subgradient methods employ
the Euclidean distance function with a suitable step-size in the projection step.
The Mirror Descent extends the standard projected subgradient methods by
employing a nonlinear distance function with an optimal step-size in the non-
linear projection step [18]. The Mirror Descent method not only generalizes the
standard subgradient descent method, but also achieves a better convergence
rate and it is applicable to optimization problems in Banach spaces, while the
subgradient descent is not [9]. Also, in some works [4,10,22] there was proposed
an extension of the Mirror Descent method for constrained problems.

Also, in recent years, online convex optimization (OCO) has become a leading
online learning framework, due to its powerful modeling capability for a lot of
problems from diverse domains. OCO plays a key role in solving problems where
statistical information is being updated [13,14]. There are many examples of such
problems: Internet networks, consumer data sets or financial markets, machine
learning applications, such as adaptive routing in networks, dictionary learning,
classification and regression (see [33] and references therein). In recent years,
methods for solving online optimization problems have been actively developed,
in both deterministic and stochastic settings [7,12,15,25]. Among them one can
mention the Mirror Descent method for the deterministic setting of the problem
[26,30] and for the stochastic setting [1,11,34,35], which allows to solve problems
for an arbitrary distance function.

This paper is devoted to Mirror Descent methods for convex programming
problems with a relatively Lipschitz-continuous objective function and functional
constraints. It consists of an introduction and 5 main sections. In Sect. 2 we con-
sider the problem statement and define the concept of an inexact (δ, φ, V )–model
for the objective function. Also, we propose some modifications of the Mirror
Descent method for the concept of Model Generality. Section 3 is devoted to
some special cases of problems with the properties of relative Lipschitz continu-
ity, here we propose two versions of the Mirror Descent method in order to solve
the problems under consideration. In Sects. 4 and 5 we consider the stochastic
and online (OCO) setting of the optimization problem respectively. In Sect. 6 one
can find numerical experiments which demonstrate the efficiency of the proposed
methods.

The contribution of the paper can be summarized as follows:
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• Continuing the development of Yurii Nesterov’s ideas in the direction of the
relative smoothness and non-smoothness [24], we introduced the concept of
an inexact (δ, φ, V )–model of the objective function. For the proposed model
we proposed some variants of the well-known Mirror Descent method, which
provides an (ε + δ)–solution of the optimization problem, where ε is the
controlled accuracy. There was considered the applicability of the proposed
method to the case of the stochastic setting of the considered optimization
problem.

• We also considered a special case of the relative Lipschitz condition for the
objective function. The proposed Mirror Descent algorithm was specified for
the case of such functions. Furthermore, there was introduced one more mod-
ification of the algorithm with another approach to the step selection. There
was also considered the possibility of applying the proposed methods to the
case of several functional constraints.

• We considered an online optimization problem and proposed a modification
of the Mirror Descent algorithm for such a case. Moreover, there were con-
ducted some numerical experiments which demonstrate the effectiveness of
the proposed methods.

2 Inexact Model for Relative Non-smooth Functionals
and Mirror Descent Algorithm

Let (E, ‖·‖) be a normed finite-dimensional vector space and E∗ be the conjugate
space of E with the norm:

‖y‖∗ = max
x

{〈y, x〉, ‖x‖ ≤ 1},

where 〈y, x〉 is the value of the continuous linear functional y at x ∈ E.
Let Q ⊂ E be a (simple) closed convex set. Consider two subdifferentiable

functions f, g : Q → R. In this paper we consider the following optimization
problem

f(x) → min
x∈Q, g(x)≤0

. (3)

Let d : Q → R be any convex (not necessarily strongly-convex) differentiable
function, we will call it reference function. Suppose we have a constant Θ0 > 0,
such that d(x∗) ≤ Θ2

0, where x∗ is a solution of (3). Note that if there is a set,
X∗ ⊂ Q, of optimal points for the problem (3), we may assume that

min
x∗∈X∗

d(x∗) ≤ Θ2
0.

Let us introduce some generalization of the concept of relative Lipschitz
continuity [24]. Consider one more auxiliary function φ : R → R, which is strictly
increasing and satisfies φ(0) = 0. Clearly, due to the strict monotonicity of φ(·),
there exists the inverse function φ−1(·).
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Definition 1. Let δ > 0. We say that f and g admit the (δ, φ, V )–model at the
point y ∈ Q if

f(x) + ψf (y, x) ≤ f(y), −ψf (y, x) ≤ φ−1
f (Vd(y, x)) + δ (4)

g(x) + ψg(y, x) ≤ g(y), −ψg(y, x) ≤ φ−1
g (Vd(y, x)) + δ, (5)

where ψf (·, x) and ψg(·, x) are convex functions for fixed x and ψf (x, x) =
ψg(x, x) = 0 for all x ∈ Q.

Let h > 0. For problems with a (δ, φ, V )–model, the proximal mapping oper-
ator (Mirror Descent step) is defined as follows

Mirrh(x, ψ) = arg min
y∈Q

{
ψ(y, x) +

1
h

Vd(y, x)
}

.

The following lemma describes the main property of this operator.

Lemma 1 (Main Lemma). Let f be a convex function, which satisfies (4),
h > 0 and x̃ = hMirrh(x, ψf ). Then for any y ∈ Q

h(f(x) − f(y)) ≤ −hψf (y, x) ≤ φ∗
f (h) + Vd(y, x) − Vd(y, x̃) + hδ,

where φ∗
f is the conjugate function of φf .

Proof. From the definition of x̃

x̃ = hMirrh(x, ψf ) = arg min
y∈Q

{hψf (y, x) + Vd(y, x)} ,

for any y ∈ Q, we have hψf (y, x) − hψf (x̃, x) + 〈∇d(x̃) − ∇d(x), y − x̃〉 ≥ 0.
Further, h(f(x) − f(y)) ≤ −hψf (y, x) ≤

≤ −hψf (x̃, x) + 〈∇d(x̃) − ∇d(x), y − x̃〉
= −hψf (x̃, x) + Vd(y, x) − Vd(y, x̃) − Vd(x̃, x) + hδ

≤ hφ−1
f (Vd(x̃, x)) + Vd(y, x) − Vd(y, x̃) − Vd(x̃, x) + hδ

≤ φ∗
f (h) + φf (φ−1

f (Vd(x̃, x))) + Vd(y, x) − Vd(y, x̃) − Vd(x̃, x) + hδ

= φ∗
f (h) + Vd(x̃, x) + Vd(y, x) − Vd(y, x̃) − Vd(x̃, x) + hδ

= φ∗
f (h) + Vd(y, x) − Vd(y, x̃) + hδ.

For problem (3) with an inexact (δ, φ, V )–model, we consider a Mirror
Descent algorithm, listed as Algorithm 1 below. For this proposed algorithm,
we will call step k productive if g(xk) ≤ ε, and non-productive if the reverse
inequality g(xk) > ε holds. Let I and |I| denote the set of indexes of productive
steps and their number, respectively. Similarly, we use the notation J and |J |
for non-productive steps.

Let x∗ denote the exact solution of the problem (3). The next theorem pro-
vides the complexity and quality of the proposed Algorithm 1.
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Theorem 1 (Modified MDA for Model Generality). Let f and g be con-
vex functionals, which satisfy (4), (5) respectively and ε > 0, δ > 0 be fixed pos-
itive numbers. Assume that Θ0 > 0 is a known constant such that d(x∗) ≤ Θ2

0.
Then, after the stopping of Algorithm 1, the following inequalities hold:

f(x̂) − f(x∗) ≤ ε + δ and g(x̂) ≤ ε + δ.

Algorithm 1. Modified MDA for (δ, φ, V )–model.
Require: ε > 0, δ > 0, hf > 0, hg > 0, Θ0 : d(x∗) ≤ Θ2

0.
1: x0 = arg minx∈Q d(x).
2: I =: ∅ and J =: ∅
3: N ← 0
4: repeat
5: if g

(
xN

) ≤ ε + δ then

6: xN+1 = Mirrhf

(
xN , ψf

)
, “productive step”

7: N → I
8: else
9: xN+1 = Mirrhg

(
xN , ψg

)
, “non-productive step”

10: N → J
11: end if
12: N ← N + 1
13: until Θ2

0 ≤ ε
(|J |hg + |I|hf

) − |J |φ∗
g(hg) − |I|φ∗

f (hf ).

Ensure: x̂ := 1
|I|

∑

k∈I

xk.

Proof. By Lemma 1,we have for all k ∈ I and y ∈ Q

hf
(
f(xk) − f(y)

) ≤ φ∗
f (hf ) + Vd(y, xk) − Vd(y, xk+1) + hfδ. (6)

Similarly, for all k ∈ J and y ∈ Q

hg
(
g(xk) − g(y)

) ≤ φ∗
g(h

g) + Vd(y, xk) − Vd(y, xk+1) + hgδ. (7)

Summing up these inequalities over productive and non-productive steps, we
get ∑

k∈I

hf
(
f(xk) − f(x∗)

)
+

∑

k∈J

hg
(
g(xk) − g(x∗)

)

≤
∑

k∈I

φ∗
f (hf ) +

∑

k∈J

φ∗
g(h

g) +
∑

k

(
Vd(x∗, xk) − Vd(x∗, xk+1)

)
+

∑

k∈I

hfδ +
∑

k∈J

hgδ

≤
∑

k∈I

φ∗
f (hf ) +

∑

k∈J

φ∗
g(h

g) + Θ2
0 +

∑

k∈I

hfδ +
∑

k∈J

hgδ.
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Since for any k ∈ J, g(xk) − g(x∗) > ε + δ, we have
∑

k∈I

hf
(
f(xk) − f(x∗)

) ≤
∑

k∈I

φ∗
f (hf ) +

∑

k∈J

φ∗
g(h

g) + Θ2
0 − ε

∑

k∈J

hg +
∑

k∈I

hfδ

= |I| (φ∗
f (hf ) + δhf

)
+ |J |φ∗

g(h
g) − |J |hgε + Θ2

0 ≤ ε|I|hf + δ|I|hf .

So, for x̂ := 1
|I|

∑

k∈I

xk, after the stopping criterion of Algorithm 1 is satisfied,

the following inequalities hold

f(x̂) − f(x∗) ≤ ε + δ and g(x̂) ≤ ε + δ.

3 The Case of Relatively Lipschitz-Continuous
Functionals

Suppose hereinafter that the objective function f and the constraint g satisfy
the so-called relative Lipschitz condition, with constants Mf > 0 and Mg > 0,
i.e. the functions φ−1

f and φ−1
g from (4) and (5) are modified as follows:

φ−1
f (Vd(y, x)) = Mf

√
2Vd(y, x), (8)

φ−1
g (Vd(y, x)) = Mg

√
2Vd(y, x). (9)

Note that the functions f, g must still satisfy the left inequalities in (4), (5):

f(x) + ψf (y, x) ≤ f(y), −ψf (y, x) ≤ Mf

√
2Vd(y, x) + δ; (10)

g(x) + ψg(y, x) ≤ g(y), −ψg(y, x) ≤ Mg

√
2Vd(y, x) + δ, (11)

For this particular case we say that f and g admit the (δ,Mf , V )– and
(δ,Mg, V )–model at each point x ∈ Q respectively. The following remark pro-
vides an explicit form of φf , φg and their conjugate functions φ∗

f , φ∗
g.

Remark 1. Let Mf > 0 and Mg > 0. Then functions φf and φg which correspond
to (8) and (9) are defined as follows:

φf (t) =
t2

2M2
f

, φg(t) =
t2

2M2
g

.

Their conjugate functions have the following form:

φ∗
f (y) =

y2M2
f

2
, (12)

φ∗
g(y) =

y2M2
g

2
. (13)
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For the case of a relatively Lipschitz-continuous objective function and con-
straint, we consider a modification of Algorithm 1, the modified algorithm is
listed as Algorithm 2, below. The difference between Algorithms 1 and 2 is rep-
resented in the control of productivity and the stopping criterion.

For the proposed Algorithm 2, we have the following theorem, which provides
an estimate of its complexity and the quality of the solution of the problem.

Theorem 2. Let f and g be convex functions, which satisfy (10) and (11) for
Mf > 0 and Mg > 0. Let ε > 0, δ > 0 be fixed positive numbers. Assume that
Θ0 > 0 is a known constant such that d(x∗) ≤ Θ2

0. Then, after the stopping of
Algorithm 2, the following inequalities hold:

f(x̂) − f(x∗) ≤ Mfε + δ and g(x̂) ≤ Mgε + δ.

Algorithm 2 . Mirror Descent for Relatively Lipschitz-continuous functions,
version 1.
Require: ε > 0, δ > 0, Mf > 0, Mg > 0, Θ0 : d(x∗) ≤ Θ2

0

1: x0 = arg minx∈Q d(x).
2: I =: ∅
3: N ← 0
4: repeat
5: if g

(
xN

) ≤ Mgε + δ then

6: hf = ε
Mf

,

7: xN+1 = Mirrhf

(
xN , ψf

)
, “productive step”

8: N → I
9: else

10: hg = ε
Mg

,

11: xN+1 = Mirrhg

(
xN , ψg

)
, “non-productive step”

12: end if
13: N ← N + 1

14: until N ≥ 2Θ2
0

ε2
.

Ensure: x̂ := 1
|I|

∑

k∈I

xk.

Proof. By Lemma 1, we have
∑

k∈I

hf
(
f(xk) − f(x∗)

)
+

∑

k∈J

hg
(
g(xk) − g(x∗)

) ≤
∑

k∈I

φ∗
f (hf ) +

∑

k∈J

φ∗
g(h

g)

+ Θ2
0 +

∑

k∈I

hfδ +
∑

k∈J

hgδ

Since for any k ∈ J, g(xk) − g(x∗) > Mgε + δ, we have
∑

k∈I

hf
(
f(xk) − f(x∗)

) ≤
∑

k∈I

φ∗
f (hf ) +

∑

k∈J

φ∗
g(h

g) + Θ2
0 − Mgε

∑

k∈J

hg +
∑

k∈I

hfδ

= |I|(φ∗
f (hf ) + δhf ) + |J |φ∗

g(h
g) − |J |ε2 + Θ2

0.
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Taking into account the explicit form of the conjugate functions (12), (13)
one can get:

∑

k∈I

hf
(
f(xk) − f(x∗)

) ≤ |I|
(

M2
f (hf )2

2
+ δhf

)

+ |J |M
2
g (hg)2

2
− |J |ε2 + Θ2

0

= |I|
(

ε2

2
+ δhf

)
+ |J |ε

2

2
− |J |ε2 + Θ2

0

≤ Mfε|I|hf + δ|I|hf ,

supposing that the stopping criterion is satisfied.
So, for the output value of the form x̂ = 1

|I|
∑

k∈I

xk, the following inequalities

hold:
f(x̂) − f(x∗) ≤ Mfε + δ and g(x̂) ≤ Mgε + δ.

Also, for the case of a relatively Lipschitz-continuous objective function and
constraint, we consider another modification of Algorithm 1, which is listed as
the following Algorithm 3. Note that the difference between Algorithm 2 and
Algorithm 3 lies in the choice of steps hf , hg and the stopping criterion.

Algorithm 3 . Mirror Descent for Relatively Lipschitz-continuous functions,
version 2.
Require: ε > 0, δ > 0, Mf > 0, Mg > 0, Θ0 : d(x∗) ≤ Θ2

0.
1: x0 = arg minx∈Q d(x).
2: I =: ∅ and J =: ∅
3: N ← 0
4: repeat
5: if g

(
xN

) ≤ ε + δ then

6: hf = ε
M2

f
,

7: xk+1 = Mirrhf

(
xN , ψf

)
, “productive step”

8: N → I
9: else

10: hg = ε
M2

g
,

11: xN+1 = Mirrhg

(
xN , ψg

)
, “non-productive step”

12: N → J
13: end if
14: N ← N + 1

15: until
2Θ2

0
ε2

≤ |I|
M2

f
+ |J|

M2
g
.

Ensure: x̂ := 1
|I|

∑

k∈I

xk.

By analogy with the proof of Theorem 2 one can obtain the following result
concerning the quality of the convergence of the proposed Algorithm 3.
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Theorem 3. Let f and g be convex functions, which satisfy (10) and (11) for
Mf > 0 and Mg > 0. Let ε > 0, δ > 0 be fixed positive numbers. Assume that
Θ0 > 0 is a known constant such that d(x∗) ≤ Θ2

0. Then, after the stopping of
Algorithm 3, the following inequalities hold:

f(x̂) − f(x∗) ≤ ε + δ and g(x̂) ≤ ε + δ.

Moreover, the required number of iterations of Algorithm 3 does not exceed

N =
2M2Θ2

0

ε2
, where M = max{Mf ,Mg}.

Remark 2. Clearly, Algorithms 2 and 3 are optimal in terms of the lower bounds
[22]. More precisely, let us understand hereinafter the optimality of the Mirror
Descent methods as the complexity O( 1

ε2 ) (it is well-known that this estimate is
optimal for Lipschitz-continuous functionals [22]).

Remark 3 (The case of several functional constraints). Let us consider a set of
convex functions f and gp : Q → R, p ∈ [m] def= {1, 2, . . . ,m}. We will focus on
the following constrained optimization problem

min {f(x) : x ∈ Q and gp(x) ≤ 0 for all p ∈ [m]} . (14)

It is clear that instead of a set of functionals {gp(·)}m
p=1 we can consider one

functional constraint g : Q → R, such that g(x) = maxp∈[m]{gp(x)}. Therefore,
by this setting, problem (14) will be equivalent to the problem (3).

Assume that for any p ∈ [m], the functional gp satisfies the following condition

−ψgp
(y, x) ≤ Mgp

√
2Vd(y, x) + δ.

For problem (14), we propose a modification of Algorithms 2 and 3 (the mod-
ified algorithms are listed as Algorithm 6 and 7 in [29], Appendix A). The idea
of the proposed modification allows to save the running time of the algorithms
due to consideration of not all functional constraints on non-productive steps.

Remark 4 (Composite Optimization Problems [6,16,23]). Previously proposed
methods are applicable to composite optimization problems, specifically

min{f(x) + r(x) : x ∈ Q, g(x) + η(x) ≤ 0},

where r, η : Q → R are so-called simple convex functionals (i.e. the proximal
mapping operator Mirrh(x, ψ) is easily computable). For this case, for any x, y ∈
Q, we have

ψf (y, x) = 〈∇f(x), y − x〉 + r(y) − r(x),

ψg(y, x) = 〈∇g(x), y − x〉 + η(y) − η(x).
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4 Stochastic Mirror Descent Algorithm

Let us, in this section, consider the stochastic setting of the problem (3). This
means that we can still use the value of the objective function and functional con-
straints, but instead of their (sub)gradient, we use their stochastic (sub)gradient.
Namely, we consider the first-order unbiased oracle that produces ∇f(x, ξ) and
∇g(x, ζ), where ξ and ζ are random vectors and

E[∇f(x, ξ)] = ∇f(x), E[∇g(x, ζ)] = ∇g(x).

Assume that for each x, y ∈ Q

〈∇f(x, ξ), x−y〉 ≤ Mf

√
2Vd(y, x) and 〈∇g(x, ζ), x−y〉 ≤ Mg

√
2Vd(y, x), (15)

where Mf ,Mg > 0. Let us consider a proximal mapping operator for f

Mirrh (x,∇f(x, ξ)) = arg min
y∈Q

{
1
h

Vd(y, x) + 〈∇f(x, ξ), y〉
}

,

and, similarly, we consider a proximal mapping operator for g. The following
lemma describes the main property of this operator.

Lemma 2. Let f be a convex function which satisfies (4), h > 0, δ > 0, ξ be a
random vector and x̃ = Mirrh (x,∇f(x, ξ)). Then for all y ∈ Q

h(f(x) − f(y)) ≤ φ∗
f (h) + Vd(y, x) − Vd(y, x̃) + h〈∇f(x, ξ) − ∇f(x), y − x〉 + hδ,

where, as earlier, φ∗
f (h) = h2M2

f

2 .

Suppose ε > 0 is a given positive real number. We say that a (random) point
x̂ ∈ Q is an expected ε–solution to the problem (3), in the stochastic setting, if

E[f(x̂)] − f(x∗) ≤ ε and g(x̂) ≤ ε. (16)

In order to solve the stochastic setting of the considered problem (3), we
propose the following algorithm.

The following theorem gives information about the efficiency of the proposed
Algorithm 4. The proof of this theorem is given in [29], Appendix B.



144 A. A. Titov et al.

Algorithm 4. Modified Mirror Descent for the stochastic setting.
Require: ε > 0, δ > 0, hf > 0, hg > 0, Θ0 : d(x∗) ≤ Θ2

0.
1: x0 = arg minx∈Q d(x).
2: I =: ∅ and J =: ∅
3: N ← 0
4: repeat
5: if g

(
xN

) ≤ ε + δ then

6: xN+1 = Mirrhf

(
xN , ∇f(x, ξN )

)
, “productive step”

7: N → I
8: else
9: xN+1 = Mirrhg

(
xN , ∇f(x, ζN )

)
, “non-productive step”

10: N → J
11: end if
12: N ← N + 1
13: until Θ2

0 ≤ ε
(|J |hg + |I|hf

) − |J |φ∗
g(hg) − |I|φ∗

f (hf ).

Ensure: x̂ := 1
|I|

∑

k∈I

xk.

Theorem 4. Let f and g be convex functions and (15) hold. Let ε > 0, δ > 0
be fixed positive numbers. Then, after the stopping of Algorithm 4, the following
inequalities hold:

E[f(x̂)] − f(x∗) ≤ ε + δ and g(x̂) ≤ ε + δ.

Remark 5. It should be noted how the optimality of the proposed method can
be understood. With the special assumptions (10)–(11) and choice of hf , hg,
the complexity of the algorithm is O( 1

ε2 ), which is optimal in such a class of
problems.

5 Online Optimization Problem

In this section we consider the online setting of the optimization problem (3).
Namely,

1
N

N∑

i=1

fi(x) → min
x∈Q, g(x)≤0

, (17)

under the assumption that all fi : Q → R (i = 1, . . . , N) and g satisfy (10) and
(11) with constants Mi > 0, i = 1, . . . , N and Mg > 0.

In order to solve problem (17), we propose an algorithm (listed as Algorithm
5 below). This algorithm produces N productive steps and in each step, the
(sub)gradient of exactly one functional of the objectives is calculated. As a result
of this algorithm, we get a sequence {xk}k∈I (on productive steps), which can
be considered as a solution to problem (17) with accuracy κ (see (18)).

Assume that M = max{Mi,Mg}, hf = hg = h = ε
M .
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Algorithm 5. Modified Mirror Descent for the online setting.
Require: ε > 0, δ > 0, M > 0,N, Θ0 : d(x∗) ≤ Θ2

0.
1: x0 = arg minx∈Q d(x).
2: i := 1, k := 0
3: set h = ε

M2

4: repeat
5: if g

(
xk

) ≤ ε + δ then

6: xk+1 = Mirrh

(
xk, ψfi

)
, “productive step”

7: i = i + 1,
8: k = k + 1,
9: else

10: xk+1 = Mirrh

(
xk, ψg

)
, “non-productive step”

11: k = k + 1,
12: end if
13: until i = N + 1.
14: Guaranteed accuracy:

κ =
|J |
N

(
− ε

2

)
+

( ε

2
+ δ

)
+

M2Θ2
0

Nε
. (18)

For Algorithm 5, we have the following result.

Theorem 5. Suppose all fi : Q → R (i = 1, . . . , N) and g satisfy (10) and (11)
with constants Mi > 0, i = 1, . . . , N and Mg > 0, Algorithm 5 works exactly
N productive steps. Then after the stopping of this Algorithm, the following
inequality holds

1
N

N∑

i=1

fi(xk) − min
x∈Q

1
N

N∑

i=1

fi(x) ≤ κ,

moreover, when the regret is non-negative, there will be no more than O(N)
non-productive steps.

The proof of this theorem is given in [29], Appendix C. In particular, note
that the proposed method is optimal [13]: if for some C > 0, κ ∼ ε ∼ δ = C√

N
,

then |J | ∼ O(N).

6 Numerical Experiments

To show the practical performance of the proposed Algorithms 2, 3 and their
modified versions, which are listed as Algorithm 6 and Algorithm 7 in [29], in the
case of many functional constraints, a series of numerical experiments were per-
formed1, for the well-known Fermat-Torricelli-Steiner problem, but with some
non-smooth functional constraints.
1 All experiments were implemented in Python 3.4, on a computer fitted with Intel(R)

Core(TM) i7-8550U CPU @ 1.80 GHz, 1992 Mhz, 4 Core(s), 8 Logical Processor(s).
RAM of the computer is 8 GB.
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For a given set {Pk = (p1k, p2k, . . . , pnk); k ∈ [r]} of r points, in n-
dimensional Euclidean space R

n, we need to solve the considered optimization
problem (3), where the objective function f is given by

f(x) :=
1
r

r∑

k=1

√
(x1 − p1k)2 + . . . + (xn − pnk)2 =

1
r

r∑

k=1

‖x − Pk‖2 . (19)

The functional constraint has the following form

g(x) = max
i∈[m]

{gi(x) = αi1x1 + αi2x2 + . . . + αinxn}. (20)

The coefficients αi1, αi2, . . . , αin, for all i ∈ [m], in (20) and the coordinates of
the points Pk, for all k ∈ [r], are drawn from the normal (Gaussian) distribution
with the location of the mode equaling 1 and the scale parameter equaling 2.

We choose the standard Euclidean norm and the Euclidean distance function
in R

n, δ = 0, starting point x0 =
(

1√
n
, . . . , 1√

n

)
∈ R

n and Q is the unit ball in
R

n.
We run Algorithms 2, 3 and their modified versions, Algorithms 6 and 7

respectively (see [29]), for m = 200, n = 500, r = 100 and different values of
ε ∈ { 1

2i : i = 1, 2, 3, 4, 5}. The results of the work of these algorithms are
represented in Table 1 below. These results demonstrate the comparison of the
number of iterations (Iter.), the running time (in seconds) of each algorithm
and the qualities of the solution, produced by these algorithms with respect
to the objective function f and the functional constraint g, where we calculate
the values of these functions at the output xout := x̂ of the algorithms. We set
fbest := f (xout) and gout := g (xout).

Table 1. The results of Algorithms 2, 3 and their modified versions Algorithms 6 and
7 respectively, with m = 200, n = 500, r = 100 and different values of ε.

Algorithm 2 Algorithm 6

1/ε Iter Time (sec.) fbest gout Iter Time (sec.) fbest gout

2 16 5.138 22.327427 2.210041 16 4.883 22.327427 2.210041

4 64 20.911 22.303430 2.016617 64 20.380 22.303430 2.016617

8 256 84.343 22.283362 1.858965 256 79.907 22.283362 2.015076

16 1024 317.991 22.274366 1.199792 1024 317.033 22.273177 1.988190

32 4096 1253.717 22.272859 0.607871 4096 1145.033 22.269038 1.858965

Algorithm 3 Algorithm 7

2 167 9.455 22.325994 0.417002 164 7.373 22.325604 0.391461

4 710 39.797 22.305980 0.204158 667 29.954 22.305654 0.188497

8 2910 158.763 22.289320 0.103493 2583 119.055 22.289302 0.088221

16 11613 626.894 22.280893 0.051662 10155 468.649 22.280909 0.045343

32 46380 2511.261 22.277439 0.026000 40149 1723.136 22.277450 0.022639
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In general, from the conducted experiments, we can see that Algorithm 2
and its modified version (Algorithm 6) work faster than Algorithms 3 and its
modified version (Algorithm 7). But note that Algorithms 3 and 7 guarantee a
better quality of the resulting solution to the considered problem, with respect
to the objective function f and the functional constraint (20). Also, we can
see the efficiency of the modified Algorithm 7, which saves the running time
of the algorithm, due to consideration of not all functional constraints on non-
productive steps.

7 Conclusion

In the paper, there was introduced the concept of an inexact (δ, φ, V )–model of
the objective function. There were considered some modifications of the Mirror
Descent algorithm, in particular for stochastic and online optimization prob-
lems. A significant part of the work was devoted to the research of a special
case of relative Lipschitz condition for the objective function and functional
constraints. The proposed methods are applicable for a wide class of problems
because relative Lipschitz-continuity is an essential generalization of the classical
Lipschitz-continuity. However, for relatively Lipschitz-continuous problems, we
could not propose adaptive methods like [3,27,28]. Note that Algorithm 3 and
its modified version Algorithm 7 (see [29]) are partially adaptive since the result-
ing number of iterations is not fixed, due to the stopping criterion, although the
step-sizes are fixed.
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Abstract. In the paper, a method is proposed for minimizing a non-
differentiable convex function. This method belongs to a class of bundle
methods. In the developed method it is possible to periodically produce
discarding all previously constructed cutting planes that form the model
of the objective function. These discards are applied when approxima-
tion of the epigraph of the objective function is sufficiently good in the
a neighborhood of the current iteration point, and the quality of this
approximation is estimated by using the model of the objective func-
tion. It is proposed an approach for constructing mixed minimization
algorithms on the basis of the developed bundle method with involving
any relaxation methods. The opportunity to mix the developed bun-
dle method with other methods is provided as follows. In the proposed
method during discarding the cutting planes the main iteration points are
fixed with the relaxation condition. Any relaxation minimization method
can be used to build these points. Moreover, the convergence of all such
mixed algorithms will be guaranteed by the convergence of the devel-
oped bundle method. It is important to note that the procedures for
updating cutting planes introduced in the bundle method will be trans-
ferred to mixed algorithms. The convergence of the proposed method is
investigated, its properties are discussed, an estimate of the accuracy of
the solution and estimation of the complexity of finding an approximate
solution are obtained.

Keywords: Nondifferentiable optimization · Mixed algorithms ·
Bundle methods · Cutting planes · Sequence of approximations ·
Convex functions

1 Introduction

Nowadays a lot of different methods have been developed for solving nonlinear
programming problems. Each of these optimization methods has its own dis-
advantages and advantages. In this regard, for solving practical problems these
methods are used in a complex manner in order to accelerate the convergence of
the optimization process. Namely, at each step to find the next approximation
there are opportunities to choose any minimization method among other meth-
ods which allows to construct descent direction from the current point faster. The
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algorithm that is formed as a result of applying various optimization methods is
called mixed (e.g., [1,2]).

In this paper, based on the ideas of [2], an approach is proposed for con-
structing mixed algorithms on the basis of some proximal bundle method which
is characterized by the possibility to periodically discard the cutting planes.

2 Problem Setting

Let f(x) be a convex function defined in an n-dimensional Euclidian space,
∂f(x), ∂εf(x) be a subdifferential and an ε-subdifferential of the function f(x)
at x respectively.

Suppose f∗ = min{f(x) : x ∈ Rn}, X∗ = {x ∈ Rn : f(x) = f∗} �= ∅, X∗(ε) =
{x ∈ Rn : f(x) ≤ f∗ +ε}, ε > 0, K = {0, 1, . . . }, L(y) = {x ∈ Rn : f(x) ≤ f(y)},
where y ∈ Rn. Denote by �χ� the least integer no less than χ ∈ R1. It is assumed
that the set L(y) is bounded for any y ∈ Rn. Fix an arbitrary point x∗ ∈ X∗.

It is required to find a point from the set X∗(ε) with given ε > 0 for a finite
number of iterations.

3 Minimization Method

First, consider an auxiliary procedure π = π(x̄, ξ̄, θ̄, μ̄) with the following input
parameters:

x̄ ∈ Rn, ξ̄ > 0, θ̄ ∈ (0, 1), μ̄ > 0.

Step 0. Define initial parameters k = 0, xk = x̄.
Step 1. Choose a subgradient sk ∈ ∂f(xk). Assign i = 0, sk,i = sk, xk,i = xk,

f̂k,i(y) = f(xk,i) + 〈sk,i, y − xk,i〉. (1)

Step 2. Find a point

xk,i+1 = arg min{f̂k,i(y) +
μ̄

2
‖y − xk‖2 : y ∈ Rn}. (2)

Step 3. Compute a parameter

δk,i = f(xk) − f̂k,i(xk,i+1) − μ̄

2
‖xk,i+1 − xk‖2. (3)

Step 4. If the inequality
δk,i ≤ ξ̄, (4)

is fulfilled, then the process of finding sequence is stopped, and the point

x̂ = arg min{f(xk,j) : 0 ≤ j ≤ i + 1} (5)

is a result of the procedure.
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Step 5. If the condition
f(xk,i+1) ≤ f(xk) − θ̄δk,i (6)

is fulfilled, then choose a point xk+1 ∈ Rn according to the inequality

f(xk+1) ≤ f(xk,i+1), (7)

fix a number ik = i, increase the value of k by one, and go to Step 1.
Otherwise, go to the next step.

Step 6. Choose a subgradient sk,i+1 ∈ ∂f(xk,i+1), assign

f̂k,i+1(y) = max{f̂k,i(y), f(xk,i+1) + 〈sk,i+1, y − xk,i+1〉}, (8)

and go to Step 2 with incremented i.

Consider some remarks concerning the procedure π.

Remark 1. For some k ≥ 0, i ≥ 0 on the basis of (1), (8) it is not difficult to
obtain the equality

f̂k,i(y) = max
0≤j≤i

{f(xk,j) + 〈sk,j , y − xk,j〉}. (9)

The function f̂k,i(y) is a model of the convex function f(x). Since the model
f̂k,i(y) is the maximum of linear (hence convex) functions, then the function
f̂k,i(y) is convex.

One of the main problems arising in the numerical implementation of bundle
and cutting methods is the unlimited growth of the count of cutting planes which
are used to find iteration points. Currently, several approaches are proposed to
discard cutting planes for bundle methods (e. g., [3,5,6]). These approaches are
realized according to the aggregation technique of cutting planes proposed in
[3] as follows. At the initial step of any bundle method, a storage of cutting
planes (called a bundle) is formed and its size is set. Then the overflow of this
storage is checked at each step. If the storage of the cutting planes is full, then
the procedure is started for discarding the cutting planes in two stages. All
inactive cutting planes are discarded at the first stage, and if the first stage
does not allow to allocate free spaces in the plane storage, then the second stage
is performed. At the second stage any active cutting plane is removed from
the storage to free space and one aggregated cutting plane is added which is
constructed as a convex combination of active and inactive cutting planes. Note
that the application of such an aggregation technique allows approximating the
subdifferential of the objective function at the current point and construct some
e-subgradient. However, the quality of the approximation of the epigraph of the
objective function at the current iteration point is deteriorated after performing
the second stage of the procedure for discarding the cutting planes.

A different approach was developed for cutting plane methods for periodi-
cally discarding cutting planes in [7–9]. This approach is based on some criteria
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for estimating the quality of approximating sets formed by cutting planes in a
neighborhood of current iteration points. In particular, in [8] the quality of the
approximation is estimated by the proximity of the current iteration point to a
feasible set of the initial problem, and in [9] the quality is estimated by the assess-
ment of the proximity of the current iteration value to the optimal value. After
obtaining sufficiently good approximation sets the proposed approach allows to
use update procedures such that it is possible to periodically discard an arbi-
trary number of any previously constructed cutting planes. Namely, both full
and partial updating of approximating sets is permissible. In the case of using
partial updating it is possible to leave, for example, only active cutting planes
or n + 1-last cutting planes.

In this paper, the procedure π is proposed, where cutting planes are dis-
carded based on the approach developed for the cutting plane methods. Namely,
at Step 5 of the procedure π there is the possibility of periodically discarding all
cutting planes as follows. In the neighborhood of the point xk,i+1 the approxi-
mation quality of the epigraph of the function f(x) is evaluated by the model
f̂k,i(x). If inequality (6) is fulfilled for some k ≥ 0, i ≥ 0, then the approximation
quality is enough good, and there is a full update of the model of the function
f(x) by discarding cutting planes. Otherwise, the model of the convex function
f̂k,i(x) is refined and cutting planes are not discarded.

Based on the procedure π the bundle method will be constructed below.
Note that at Step 5 of the procedure π during discarding cutting planes basic
points xk, k ∈ K are determined. In the process of constructing these points
can be used any relaxation minimization methods. It is important to note that
convergence of such mixed algorithms is guaranteed by the convergence of the
proposed bundle method even if the mentioned relaxation methods included in
mixed algorithms are heuristic.

Lemma 1. Let S ⊂ Rn be a bounded closed set, τ ≥ 0. Then the set

B(τ, S) =
⋃

v∈S

{y ∈ Rn : ‖y − v‖ ≤ τ} (10)

is bounded.

Proof. Since the set S is bounded, then there exists a number τ ′ > 0 such that
for any v ∈ S the inequality

‖v‖ ≤ τ ′ (11)

is defined. Now suppose that the set B(τ, S) is not bounded. Then for any ω > 0
there exists a point y ∈ B(τ, S) such that ‖y‖ > ω. Fix any sequence of positive
numbers {ωk}, k ∈ K, such that ωk → +∞, k ∈ K. Due to unboundedness of
the set B(τ, S) there is a sequence of points {yk}, k ∈ K, such that

yk ∈ B(τ, S), ‖yk‖ > ωk, k ∈ K. (12)

Moreover, in accordance with construction of points {yk}, k ∈ K, for each k ∈ K
there exists a point vk ∈ S satisfying the condition

‖yk − vk‖ ≤ τ.
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Hence, from (11), (12) we have

ωk < ‖yk ± vk‖ ≤ ‖yk − vk‖ + ‖vk‖ ≤ τ + τ ′.

The obtained inequality ωk ≤ τ + τ ′ contradicts the assumption ωk → +∞. The
lemma is proved.

Lemma 2. Suppose for some k ≥ 0, i ≥ 0 the points xk, xk,0, xk,1, . . . , xk,i

and the model f̂k,i(y) are constructed by the procedure π. Then we obtain

εk,j = f(xk) − f(xk,j) − 〈sk,j , xk − xk,j〉 ≥ 0, 0 ≤ j ≤ i, (13)

f̂k,i(y) = f(xk) + max
0≤j≤i

{〈sk,j , y − xk〉 − εk,j}.

Proof. Since the function f(x) is convex and sk,j ∈ ∂f(xk,j), 0 ≤ j ≤ i, then
using definition of a subgradient it is not difficult to obtain (13). Further, taking
account (9) and (13) we have

f̂k,i(y) = max
0≤j≤i

{f(xk,j) + 〈sk,j , x − xk,j〉 ± εk,j}
= max

0≤j≤i
{〈sk,j , y − xk,j〉 − εk,j + f(xk) − 〈sk,j , xk − xk,j〉}

= f(xk) + max
0≤j≤i

{〈sk,j , y − xk〉 − εk,j}.

The lemma is proved.

The following theorem is proved in [3, p. 144].

Theorem 1. Suppose for some k ≥ 0, i ≥ 0 the point xk,i+1 is constructed
according to (2) by the procedure π. Then

xk,i+1 = xk − ŝk,i

μ̄
, (14)

where

ŝk,i =
i∑

j=0

α̂j
k,isk,j , (15)

and the vector α̂k,i = (α̂0
k,i, α̂

1
k,i, . . . , α̂

i
k,i) ∈ Ri+1 is a solution of the following

problem:

min
α=(α0,α1,...,αi)∈Ri+1

1
2μ̄

‖
i∑

j=0

αjsk,j‖2 +
i∑

j=0

αjεk,j , (16)

s.t. α = (α0, α1, . . . , αi) ≥ 0,

i∑

j=0

αj = 1. (17)

Moreover, the following expressions

δk,i = ε̂k,i +
1
2μ̄

‖ŝk,i‖2, (18)
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ŝk,i ∈ ∂ε̂k,i
f(xk), (19)

ŝk,i ∈ ∂f̂k,i(xk,i+1) (20)

are valid, where

ε̂k,i =
i∑

j=0

α̂j
k,iεk,j . (21)

From inclusion (19) it follows

Lemma 3. Suppose the points xk, xk,0, . . . , xk,i+1 and the corresponding subgra-
dients sk, sk,0, . . . , sk,i+1 are constructed for some k ≥ 0, i ≥ 0 by the proposed
procedure π. Then for any point y ∈ Rn the inequality

f(xk) − f(y) ≤ 〈ŝk,i, xk − y〉 + ε̂k,i (22)

is fulfilled, where ŝk,i, ε̂k,i are defined according to (15), (21) respectively.

Lemma 4. Suppose that the stopping criterion (4) is fulfilled for some k ≥ 0,
i ≥ 0. Then the following estimate holds:

f(x̂) − f∗ ≤ ρ̄

√
2μ̄ξ̄ + ξ̄, (23)

where ρ̄ > 0 is the diameter of the set L(x̄).

Proof. Note that the equality f(x0) = f(x̄) is fulfilled in accordance with Step 0
of the procedure π, and from (6), (7) we have f(xk) ≤ f(x̄). Consequently,
xk ∈ L(x̄). Moreover, in view of condition (5) the inequality f(x̂) ≤ f(xk) is
defined. Hence and from inequality (22) under y = x∗ the estimate holds

f(x̂) − f∗ ≤ ‖ŝk,i‖‖xk − x∗‖ + ε̂k,i. (24)

Further, according to the stopping criterion (4) and equality (18) we obtain

‖ŝk,i‖ ≤ √
2μ̄δk,i ≤

√
2μ̄ξ̄,

ε̂k,i ≤ δk,i ≤ ξ̄.

Hence and from (24), x∗ ∈ L(x̄), xk ∈ L(x̄) it follows the estimate (23). The
lemma is proved.

To prove finiteness of the procedure π let’s show that values δk,i, ‖xk,i+1−xk‖
are bounded.

Lemma 5. Suppose that for some k ≥ 0, i ≥ 0 the points xk, xk,i+1 are con-
structed, the subgradient sk is fixed, the number δk,i is computed by the procedure
π. Then the following expressions

‖xk,i+1 − xk‖ ≤ 2‖sk‖
μ̄

, (25)
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0 ≤ δk,i ≤ 2‖sk‖2
μ̄

, (26)

f(xk)−δk,i = f̂k,i(xk,i+1)+〈ŝk,i, y−xk,i+1〉+ μ̄

2
‖y−xk‖2− μ̄

2
‖y−xk,i+1‖2 (27)

are fulfilled, where y ∈ Rn.

Proof. Note that according to (9) for all j = 0, . . . , i, we have

f̂k,i(y) ≥ f(xk,j) + 〈sk,j , y − xk,j〉, (28)

where y ∈ Rn, and from Step 1 of the procedure π it follows that xk,0 = xk,
sk,0 = sk. Hence from formula (9) with y = xk,i+1, j = 0, we obtain

f(xk) − f̂k,i(xk,i+1) ≤ 〈sk, xk − xk,i+1〉 ≤ ‖sk‖‖xk − xk,i+1‖. (29)

Moreover, from (3) it follows

μ̄

2
‖xk,i+1 − xk‖2 ≤ f(xk) − f̂k,i(xk,i+1). (30)

Hence combining inequalities (29), (30) we prove (25).
Further, according to Lemma 2 for all j = 0, . . . , i we get εk,j ≥ 0, therefore,

in view of (21) the inequality ε̂k,i ≥ 0 is determined. Hence and from (18) taking
into account μ̄ > 0 it follows that δk,i ≥ 0. Moreover, in accordance with (3),
(29) we have

δk,i ≤ f(xk) − f̂k,i(xk,i+1) ≤ ‖sk‖‖xk − xk,i+1‖.

Using the last inequality, (25) and δk,i ≥ 0 expression (26) is obtained.
Let’s turn to obtain inequality (27). For any y ∈ Rn it is determined

‖y ± xk,i+1 − xk‖2 = ‖y − xk,i+1‖2 + ‖xk,i+1 − xk‖2 + 2〈y − xk,i+1, xk,i+1 − xk〉.
Then multiplying the last equality by μ̄/2 and taking into account (14) we get

μ̄

2
‖xk,i+1 − xk‖2 =

μ̄

2
‖y − xk‖2 − μ̄

2
‖y − xk,i+1‖2 + 〈ŝk,i, y − xk,i+1〉. (31)

Moreover, from (3) it follows

f(xk) − δk,i = f̂k,i(xk,i+1) +
μ̄

2
‖xk,i+1 − xk‖2.

Now substituting μ̄/2‖xk,i+1 − xk‖2 by (31) in the last equality we obtain (27).
The lemma is proved.

Corollary 1. Suppose that conditions of Lemma 5 are defined, S ⊂ Rn is
bounded closed set satisfying the inclusion

L(x̄) ⊂ S. (32)
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Then there exists numbers η = η(S) > 0, ζ = ζ(η) > 0 such that the inequalities

‖sk‖ ≤ η, (33)

‖xk,i+1 − xk‖ ≤ 2η

μ̄
, (34)

δk,i ≤ 2η2

μ̄
, (35)

‖sk,i+1‖ ≤ ζ (36)

are fulfilled.

Proof. Since inclusion (32) is fulfilled according to conditions of the corollary
and we have xk ∈ L(x̄), sk ∈ ∂f(xk) by construction, then in view of boundness
of the set S there exists a number η = η(S) > 0 (e. g., [4, p. 121]) such that
inequality (33) is determined. Moreover, taking into account inequality (33) from
(25), (26) it follows (34), (35).

Further, since the set S is bounded and closed, then according to Lemma 1
the set B(2η/μ̄, S) is bound too. Moreover, from the inclusion xk ∈ L(x̄) ⊂ S
and inequality (34) we have xk,i+1 ∈ B(2η/μ̄, S). Therefore, taking into account
sk,i+1 ∈ ∂f(xk,i+1) there exists a number ζ = ζ(η) > 0 (e. g., [4, p. 121]) such
that inequality (36) is determined. The assertion is proved.

Lemma 6. Suppose that by the proposed procedure π for some k̄ ≥ 0, ī ≥ 2 the
points xk̄ = xk̄,0,

xk̄,1, xk̄,2, . . . , xk̄,̄i+1 (37)

are constructed, the subgradients sk̄ = sk̄,0,

sk̄,1, sk̄,2, . . . , sk̄,̄i+1 (38)

are chosen, and according to (3) the numbers

δk̄,0, δk̄,1, . . . , δk̄,̄i (39)

are computed. Then for each i = 0, . . . , ī − 2 it is determined that

δk̄,i − δk̄,i+1 ≥ μ̄(1 − θ̄)2

2(‖sk̄,i+2‖ + ‖sk̄,i+1‖)2
δ2k̄,i+1. (40)

Proof. According to Step 5 of the procedure π for each l = 0, . . . , ī − 1 it is
determined

f(xk̄,l+1) > f(xk̄) − θ̄δk̄,l, (41)

and in view of equality (14) the vectors

ŝk̄,0, ŝk̄,1, . . . , ŝk̄,̄i
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correspond to points (37). Choose an arbitrary index i such that 0 ≤ i ≤ ī − 2.
Then using definition of a subgradient of a convex function and taking into
account (20) we have

f̂k̄,i(xk̄,i+1) ≤ f̂k̄,i(xk̄,i+2) + 〈ŝk̄,i, xk̄,i+1 − xk̄,i+2〉. (42)

Moreover, according to (8) for any y ∈ Rn it is defined

f̂k̄,i(y) ≤ f̂k̄,i+1(y).

Hence under y = xk̄,i+2 and from (42) it follows that

f̂k̄,i(xk̄,i+1) ≤ f̂k̄,i+1(xk̄,i+2) + 〈ŝk̄,i, xk̄,i+1 − xk̄,i+2〉,
and taking into account for the (i + 1)-th element the last inequality has the
form

f̂k̄,i(xk̄,i+1) ≤ f(xk̄) − δk̄,i+1 − μ̄

2
‖xk̄,i+2 − xk̄‖2 + 〈ŝk̄,i, xk̄,i+1 − xk̄,i+2〉. (43)

Now using equality (27) from Lemma 5 under k = k̄, y = xk̄,i+2 it is obtained

f(xk̄) − δk̄,i +
μ̄

2
‖xk̄,i+2 − xk̄,i+1‖2 =

= f̂k̄,i(xk̄,i+1) + 〈ŝk̄,i, xk̄,i+2 − xk̄,i+1〉 +
μ̄

2
‖xk̄,i+2 − xk̄‖2.

Hence and from (43) it follows that

μ̄

2
‖xk̄,i+2 − xk̄,i+1‖2 ≤ δk̄,i − δk̄,i+1. (44)

On the other hand, from (3), (9) (for the (i + 1)-th element) we get

δk̄,i+1 ≤ f(xk̄) − f(xk̄,i+1) − 〈sk̄,i+1, xk̄,i+2 − xk̄,i+1〉,
and from inequality (41) under l = i + 1 it follows that

−θ̄δk̄,i+1 < f(xk̄,i+2) − f(xk̄).

Now summing the last two inequalities it is determined that

(1 − θ̄)δk̄,i+1 ≤ f(xk̄,i+2) − f(xk̄,i+1) − 〈sk̄,i+1, xk̄,i+2 − xk̄,i+1〉
≤ (‖sk̄,i+2‖ + ‖sk̄,i+1‖)‖xk̄,i+2 − xk̄,i+1‖.

Hence and from (44) we obtain (40). The lemma is proved.

Theorem 2. Let S ⊂ Rn be a bounded closed set satisfied condition (32). Then
complexity of the procedure π is equal to

�f(x̄) − f∗

θ̄ξ̄
��1 +

16η2ζ2

μ̄2(1 − θ̄)2ξ̄2
�, (45)

where η = η(S) > 0, ζ = ζ(η) > 0.
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Proof. First, let’s estimate the number of iterations of the procedure π by k.
Assume that in the procedure π there is a loop in relation to k. In this case, it
is constructed a sequence {xk}, k ∈ K, such that according to Steps 4, 5 of the
procedure π for each k ∈ K the following conditions hold:

Δk > ξ̄, (46)

f(xk+1) ≤ f(xk) − θ̄Δk, (47)

where Δk = δk,ik . Now summing the last inequality by k from 0 to n ≥ 0 we
have

n∑

k=0

θ̄Δk ≤
n∑

k=0

(f(xk) − f(xk+1)) ≤ f(x0) − f∗.

Hence under n → +∞ we obtain Δk → 0 which contradicts condition (46).
Consequently, there exists a number k′ ≥ 0 such that the criterion

Δk′ ≤ ξ̄

is fulfilled.
Further, let’s consider two cases to estimate the value k′.

1) Suppose that condition (4) is determined under k = k′ = 0 and i ≥ 0. Then
it is clear that the number of iterations k′ does not exceed the value of the
first multiplier of valuation (45).

2) Suppose that criterion is fulfilled under k = k′ > 0 and i ≥ 0. Then according
to Steps 4, 5 of the procedure π and in view of (46), (47) we have

k′−1∑

p=0

θ̄ξ̄ ≤
k′−1∑

p=0

(f(xp) − f(xp+1)) ≤ f(x0) − f∗.

Hence taking into account x0 = x̄ (in accordance with Step 0 of the procedure
π) it is obtained that

k′ ≤ �f(x̄) − f∗

θ̄ξ̄
�. (48)

Now let’s obtain a complexity of the procedure π in relation to i while k
is fixed. Suppose that the point xk is constructed under some k ≥ 0 by the
procedure π, and there is a loop in relation to i, i. e. for each i ∈ K conditions
(4), (6) are not fulfilled simultaneously. Then there is a sequence {δk,i}, i ∈ K,
constructed by the procedure π such that according to Lemma 6 for each i ∈ K
it is determined

μ̄(1 − θ̄)2

2(‖sk,i+2‖ + ‖sk,i+1‖)2
δ2k,i+1 ≤ δk,i − δk,i+1.

Hence taking into account (36) from Corollary 1 we get

μ̄(1 − θ̄)2

8ζ2
δ2k,i+1 ≤ δk,i − δk,i+1.
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After summing the last inequality by i from 0 to n ≥ 0 we get

n∑

i=0

μ̄(1 − θ̄)2

8ζ2
δ2k,i+1 ≤

n∑

i=0

(δk,i − δk,i+1) ≤ δk,0.

Hence from n → +∞ it follows that δk,i → 0, i ∈ K. Therefore, there exists a
number i′ ∈ K such that the inequality

δk,i′ ≤ ξ̄

is fulfilled.
To estimate i′ consider the following cases.

1) Suppose that it is defined either criterion (4) or condition (6) for some k ≥ 0,
i′ = i ≤ 1. Then i′ does not exceed the value of the second multiplier of
variable (45).

2) Assume that any condition of (4), (6) is fulfilled for some k ≥ 0, i′ = i ≥ 2.
Then according to Lemma 6, stopping criterion (4) and inequalities (36), (35)
from Corollary 1 we get

i′−2∑

j=0

μ̄(1 − θ̄)2

8ζ2
ξ̄2 ≤

i′−2∑

j=0

(δk,j − δk,j+1) ≤ δk,0 ≤ 2η2

μ̄
.

Therefore, the estimate

i′ ≤ �1 +
16η2ζ2

μ̄2(1 − θ̄)2ξ̄2
�

is obtained. Further, taking into account the last estimate and (48) the theorem
is proved. Now let’s propose a method which permits to find a point allowed to
find a point from the set X∗(ε) under the determined ε > 0 for a finite number
of iterations.

Step 0. Assign t = 0. Choose a point zt ∈ Rn. Determine parameters κ > 0,
σ ∈ (0, 1), μ > 0, θ ∈ (0, 1).

Step 1. Compute ξt = κσt.
Step 2. Find a point zt+1 = π(zt, ξt, θ, μ).
Step 3. Increase the value of t by one, and go to Step 1.

Remark 2. According to Steps 0, 4, 5 of the procedure π and Step 2 of the
proposed method for each t ∈ K we obtain

f(zt+1) ≤ f(zt). (49)

Therefore, the constructed sequence {f(zt)}, k ∈ K, is non-increasing.
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Theorem 3. Suppose the sequence {zt}, t ∈ K, is constructed by the proposed
method. Then for each t ∈ K it holds

zt ∈ L(z0), (50)

f(zt+1) − f∗ ≤ ρ
√

2μξt + ξt, (51)

where ρ > 0 is a diameter of the set L(z0).

Proof. In accordance with Theorem 2 the procedure π is finite for each t ∈ K,
and as already noted in Remark 2 for each t ∈ K inequality (49) is fulfilled.
Consequently, for each t ∈ K we obtain inclusion (50).

In view of Lemma 4, Step 4 of the procedure π and Step 2 of the proposed
method for each t ∈ K we have

f(zt+1) − f∗ ≤ �t

√
2μξt + ξt,

where �t > 0 is a diameter of the set L(zt). Since for each t ∈ K inequality (49)
is fulfilled, then L(zt) ⊂ L(z0), t ∈ K. Therefore, there is a constant ρ > 0 such
that estimate (51) is determined for each t ∈ K.

Theorem 4. Let ε > 0 and ρ > 0 be a diameter of the set L(z0). Then the
complexity of the procedure of finding ε-solution by the proposed method is equal
to

�2 logσ ε − logσ κ − 2 logσ ρ̂�� (f(z0) − f∗)ρ̂2

θε2
��1 +

16η2ζ2ρ̂4

μ2(1 − θ)2ε4
�, (52)

where ρ̂ = ρ
√

2μ +
√

ξ0, η = η(L(z0)) > 0, ζ = ζ(η) > 0.

Proof. From inequality (51) of Theorem 3 for each t ∈ K it follows that

f(zt+1) − f∗ ≤ ξ
1/2
t (ρ

√
2μ +

√
ξt).

Since according to Step 1 of the proposed method we have ξt ≤ ξ0, ξt → 0,
t ∈ K, then there exists a number t′ ∈ K such that for each t ≥ t′ the expression

f(zt+1) − f∗ ≤ ξ
1/2
t (ρ

√
2μ +

√
ξt) ≤

√
κσt(ρ

√
2μ +

√
ξ0) ≤ ε (53)

is defined.
If t′ = 0, then the number of iterations in relations to t does not exceed the

first multiplier of value (52). In this connection assume that t′ > 0. Then from
(53) under t = t′ it follows

t′ ≤ �2 logσ ε − logσ κ − 2 logσ(ρ
√

2μ +
√

ξ0)�, (54)

and for each p < t′ the inequality

1
ξp

≤ ρ̂2

ε2
. (55)

is fulfilled.
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Further, since for each t ∈ K inclusion (50) is determined and L(z0) is a
bounded closed set, then according to Theorem 2 under S = L(z0) there exists
numbers η = η(L(z0)), ζ = ζ(η) > 0 such that for each t < t′ complexity of
finding the point zt+1 on basis of the point zt by the procedure π equals

�f(zt) − f∗

θξt
��1 +

16η2ζ2

μ2(1 − θ)2ξ2t
�.

Hence and from (54), (55), f(zt+1) ≤ f(zt), t < t′ it follows that general com-
plexity of the proposed method equals

t′−1∑

j=0

�f(zj) − f∗

θξj
��1 +

16η2ζ2

μ2(1 − θ)2ξ2j
� ≤

t′−1∑

j=0

� (f(z0) − f∗)ρ̂2

θε2
��1 +

16η2ζ2ρ̂4

μ2(1 − θ)2ε4
� ≤

�2 logσ ε − logσ κ − 2 logσ(ρ
√

2μ +
√

ξ0)�� (f(z0) − f∗)ρ̂2

θε2
��1 +

16η2ζ2ρ̂4

μ2(1 − θ)2ε4
�.

The theorem is proved.

4 Conclusion

The bundle method is proposed for minimizing a convex function. To control the
count of cutting planes the developed method updates the model of the objective
function in case of obtaining good approximation quality of the epigraph in
the neighborhood of the current iteration point. Moreover, at the moment of
discarding cutting planes there are opportunities to involve any minimization
method. The convergence of the proposed method is proved. Estimation of the
complexity of finding an ε-solution is equal to O(ε−6).
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Near-Optimal Hyperfast Second-Order
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Abstract. In this paper, we present a new Hyperfast Second-Order
Method with convergence rate O(N−5) up to a logarithmic factor for
the convex function with Lipshitz 3rd derivative. This method based on
two ideas. The first comes from the superfast second-order scheme of
Yu. Nesterov (CORE Discussion Paper 2020/07, 2020). It allows imple-
menting the third-order scheme by solving subproblem using only the
second-order oracle. This method converges with rate O(N−4). The sec-
ond idea comes from the work of Kamzolov et al. (arXiv:2002.01004). It is
the inexact near-optimal third-order method. In this work, we improve
its convergence and merge it with the scheme of solving subproblem
using only the second-order oracle. As a result, we get convergence rate
O(N−5) up to a logarithmic factor. This convergence rate is near-optimal
and the best known up to this moment.

Keywords: Tensor method · Inexact method · Second-order method ·
Complexity

1 Introduction

In recent years, it has been actively developing higher-order or tensor methods
for convex optimization problems. The primary impulse was the work of Yu.
Nesterov [23] about the possibility of the implementation tensor method. He
proposed a smart regularization of Taylor approximation that makes subproblem
convex and hence implementable. Also Yu. Nesterov proposed accelerated tensor
methods [22,23], later A. Gasnikov et al. [4,11,12,18] proposed the near-optimal
tensor method via the Monteiro–Svaiter envelope [21] with line-search and got
a near-optimal convergence rate up to a logarithmic factor. Starting from 2018–
2019 the interest in this topic rises. There are a lot of developments in tensor
methods, like tensor methods for Hölder-continuous higher-order derivatives [15,
28], proximal methods [6], tensor methods for minimizing the gradient norm
of convex function [9,15], inexact tensor methods [14,19,24], and near-optimal
composition of tensor methods for sum of two functions [19]. There are some
results about local convergence and convergence for strongly convex functions
[7,10,11]. See [10] for more references on applications of tensor method.
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At the very beginning of 2020, Yurii Nesterov proposed a Superfast Second-
Order Method [25] that converges with the rate O(N−4) for a convex func-
tion with Lipshitz third-order derivative. This method uses only second-order
information during the iteration, but assume additional smoothness via Lipshitz
third-order derivative.1 Here we should note that for the first-order methods,
the worst-case example can’t be improved by additional smoothness because it
is a specific quadratic function that has all high-order derivatives bounded [24].2

But for the second-order methods, one can see that the worst-case example does
not have Lipshitz third-order derivative. This means that under the additional
assumption, classical lower bound O(N−2/7) can be beaten, and Nesterov pro-
poses such a method that converges with O(N−4) up to a logarithmic factor.
The main idea of this method to run the third-order method with an inexact
solution of the Taylor approximation subproblem by method from Nesterov with
inexact gradients that converges with the linear speed. By inexact gradients, it
becomes possible to replace the direct computation of the third derivative by
the inexact model that uses only the first-order information. Note that for non-
convex problems previously was proved that the additional smoothness might
speed up algorithms [1,3,14,26,29].

In this paper, we propose a Hyperfast Second-Order Method for a convex
function with Lipshitz third-order derivative with the convergence rate O(N−5)
up to a logarithmic factor. For that reason, firstly, we introduce Inexact Near-
optimal Accelerated Tensor Method, based on methods from [4,19] and prove its
convergence. Next, we apply Bregman-Distance Gradient Method from [14,25]
to solve Taylor approximation subproblem up to the desired accuracy. This leads
us to Hyperfast Second-Order Method and we prove its convergence rate. This
method have near-optimal convergence rates for a convex function with Lipshitz
third-order derivative and the best known up to this moment.

The paper is organized as follows. In Sect. 2 we formulate problem and intro-
duce some basic facts and notation. In Sect. 3 we propose Inexact Near-optimal
Accelerated Tensor Method and prove its convergence rate. In Sect. 4 we propose
Hyperfast Second-Order Method and get its convergence speed.

2 Problem Statement and Preliminaries

In what follows, we work in a finite-dimensional linear vector space E = R
n,

equipped with a Euclidian norm ‖ · ‖ = ‖ · ‖2.
We consider the following convex optimization problem:

min
x

f(x), (1)

1 Note, that for the first-order methods in non-convex case earlier (see, [5] and ref-
erences therein) it was shown that additional smoothness assumptions lead to an
additional acceleration. In convex case, as far as we know these works of Yu. Nes-
terov [24,25] are the first ones where such an idea was developed.

2 However, there are some results [30] that allow to use tensor acceleration for the
first-order schemes. This additional acceleration requires additional assumptions on
smoothness. More restrictive ones than limitations of high-order derivatives.
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where f(x) is a convex function with Lipschitz p-th derivative, it means that

‖Dpf(x) − Dpf(y)‖ ≤ Lp‖x − y‖. (2)

Then Taylor approximation of function f(x) can be written as follows:

Ωp(f, x; y) = f(x) +
p∑

k=1

1
k!

Dkf(x) [y − x]k , y ∈ R
n. (3)

By (2) and the standard integration we can get next two inequalities

|f(y) − Ωp(f, x; y)| ≤ Lp

(p + 1)!
‖y − x‖p+1, (4)

‖∇f(y) − ∇Ωp(f, x; y)‖ ≤ Lp

p!
‖y − x‖p. (5)

3 Inexact Near-Optimal Accelerated Tensor Method

Problem (1) can be solved by tensor methods [23] or its accelerated versions
[4,12,18,22]. This methods have next basic step:

THp
(x) = argmin

y

{
Ω̃p,Hp

(f, x; y)
}

,

where
Ω̃p,Hp

(f, x; y) = Ωp(f, x; y) +
Hp

p!
‖y − x‖p+1. (6)

For Hp ≥ Lp this subproblem is convex and hence implementable.
But what if we can not solve exactly this subproblem. In paper [25] it was

introduced Inexact pth-Order Basic Tensor Method (BTMIp) and Inexact pth-
Order Accelerated Tensor Method (ATMIp). They have next convergence rates
O(k−p) and O(k−(p+1)), respectively. In this section, we introduce Inexact pth-
Order Near-optimal Accelerated Tensor Method (NATMIp) with improved con-
vergence rate Õ(k− 3p+1

2 ), where Õ(·) means up to logarithmic factor. It is an
improvement of Accelerated Taylor Descent from [4] and generalization of Inex-
act Accelerated Taylor Descent from [19].

Firstly, we introduce the definition of the inexact subproblem solution. Any
point from the set

N γ
p,Hp

(x) =
{

T ∈ R
n : ‖∇Ω̃p,Hp

(f, x;T )‖ ≤ γ‖∇f(T )‖
}

(7)

is the inexact subproblem solution, where γ ∈ [0; 1] is an accuracy parameter.
N0

p,Hp
is the exact solution of the subproblem.

Next we propose Algorithm 1.
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Algorithm 1 . Inexact pth-Order Near-optimal Accelerated Tensor Method
(NATMI)
1: Input: convex function f : Rn → R such that ∇pf is Lp-Lipschitz, Hp = ξLp

where ξ is a scaling parameter, γ is a desired accuracy of the subproblem solution.

2: Set A0 = 0, x0 = y0

3: for k = 0 to k = K − 1 do
4: Compute a pair λk+1 > 0 and yk+1 ∈ R

n such that

1

2
≤ λk+1

Hp · ‖yk+1 − x̃k‖p−1

(p − 1)!
≤ p

p + 1
,

where
yk+1 ∈ N γ

p,Hp
(x̃k) (8)

and

ak+1 =
λk+1 +

√
λ2

k+1 + 4λk+1Ak

2
, Ak+1 = Ak + ak+1

x̃k =
Ak

Ak+1
yk +

ak+1

Ak+1
xk .

5: Update xk+1 := xk − ak+1∇f(yk+1)
6: return yK

To get the convergence rate of Algorithm 1 we prove additional lemmas. The
first lemma gets intermediate inequality to connect theory about inexactness
and method’s theory.

Lemma 1. If yk+1 ∈ N γ
p,Hp

(x̃k), then

‖∇Ω̃p,Hp
(f, x̃k; yk+1)‖ ≤ γ

1 − γ
· (p + 1)Hp + Lp

p!
‖yk+1 − x̃k‖p. (9)

Proof. From triangle inequality we get

‖∇f(yk+1)‖ ≤ ‖∇f(yk+1) − ∇Ωp(f, x̃k; yk+1)‖
+ ‖∇Ωp(f, x̃k; yk+1) − ∇Ω̃p,Hp (f, x̃k; yk+1)‖ + ‖∇Ω̃p,Hp (f, x̃k; yk+1)‖
(5),(6),(7)

≤ Lp

p!
‖yk+1 − x̃k‖p

+
(p + 1)Hp

p!
‖yk+1 − x̃k‖p

+ γ‖∇f(yk+1)‖.

Hence,

(1 − γ)‖∇f(yk+1)‖ ≤ (p + 1)Hp + Lp

p!
‖yk+1 − x̃k‖p.

And finally from (7) we get

‖∇Ω̃p,Hp
(f, x̃k; yk+1)‖ ≤ γ

1 − γ
· (p + 1)Hp + Lp

p!
‖yk+1 − x̃k‖p.
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Next lemma plays the crucial role in the prove of the Algorithm 1 conver-
gence. It is the generalization for inexact subpropblem of Lemma 3.1 from [4].

Lemma 2. If yk+1 ∈ N γ
p,Hp

(x̃k), Hp = ξLp such that 1 ≥ 2γ + 1
ξ(p+1) and

1
2

≤ λk+1
Hp · ‖yk+1 − x̃k‖p−1

(p − 1)!
≤ p

p + 1
, then (10)

‖yk+1 − (x̃k − λk+1∇f(yk+1))‖ ≤ σ · ‖yk+1 − x̃k‖ , (11)

σ ≥ pξ + 1 − ξ + 2γξ

(1 − γ)2pξ
, (12)

where σ ≤ 1.

Proof. Note, that by definition

∇Ω̃p,Hp
(f, x̃k; yk+1) = ∇Ωp(f, x̃k; yk+1)

+
Hp(p + 1)

p!
‖yk+1 − x̃k‖p−1(yk+1 − x̃k).

(13)

Hence,

yk+1 − x̃k =
p!

Hp(p + 1)‖yk+1 − x̃k‖p−1

·
(
∇Ω̃p,Hp

(f, x̃k; yk+1) − ∇Ωp(f, x̃k; yk+1)
)

.

(14)

Then, by triangle inequality we get

‖yk+1 − (x̃k − λk+1∇f(yk+1))‖ = ‖λk+1(∇f(yk+1) − ∇Ωp(f, x̃k; yk+1))

+ λk+1∇Ω̃p,Hp
(f, x̃k; yk+1)

+
(
yk+1 − x̃k + λk+1(∇Ωp(f, x̃k; yk+1) − ∇Ω̃p,Hp

(f, x̃k; yk+1))
)∥∥∥

(5),(14)

≤ λk+1
Lp

p!
‖yk+1 − x̃k‖p + λk+1‖∇Ω̃p,Hp

(f, x̃k; yk+1)‖

+
∣∣∣∣λk+1 − p!

Hp · (p + 1) · ‖yk+1 − x̃k‖p−1

∣∣∣∣

· ‖∇Ω̃p,Hp
(f, x̃k; yk+1) − ∇Ωp(f, x̃k; yk+1)‖

(9),(13)

≤ ‖yk+1 − x̃k‖
(

λk+1
Lp

p!
‖yk+1 − x̃k‖p−1

+ λk+1
γ

1 − γ
· (p + 1)Hp + Lp

p!
‖yk+1 − x̃k‖p−1

)

+
∣∣∣∣λk+1 − p!

Hp · (p + 1) · ‖yk+1 − x̃k‖p−1

∣∣∣∣ · (p + 1)Hp

p!
‖yk+1 − x̃k‖p
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= ‖yk+1 − x̃k‖
(

λk+1

p!

(
Lp +

γ

1 − γ
((p + 1)Hp + Lp)

)
‖yk+1 − x̃k‖p−1

)

+ ‖yk+1 − x̃k‖
∣∣∣∣
λk+1(p + 1)Hp

p!
‖yk+1 − x̃k‖p−1 − 1

∣∣∣∣

(10)

≤ ‖yk+1 − x̃k‖
(

λk+1

p!

(
Lp +

γ

1 − γ
((p + 1)Hp + Lp)

)
‖yk+1 − x̃k‖p−1

)

+ ‖yk+1 − x̃k‖
(

1 − λk+1(p + 1)Hp

p!
‖yk+1 − x̃k‖p−1

)

= ‖yk+1 − x̃k‖
(

1 +
λk+1

p!
‖yk+1 − x̃k‖p−1

·
(

Lp − (p + 1)Hp +
γ

1 − γ
((p + 1)Hp + Lp)

))
.

Hence, by (10) and simple calculations we get

σ ≥ 1 +
1

2pHp

(
Lp − (p + 1)Hp +

γ

1 − γ
((p + 1)Hp + Lp)

)

= 1 +
1

2pξ

(
1 − (p + 1)ξ +

γ

1 − γ
((p + 1)ξ + 1)

)

= 1 +
1

2pξ

(
1 − pξ − ξ +

γpξ + γξ + γ

1 − γ

)

= 1 +
1

2pξ

(
1 − pξ − ξ − γ + γpξ + γξ + γpξ + γξ + γ

1 − γ

)

= 1 +
(

1 − pξ − ξ + 2γpξ + 2γξ

(1 − γ)2pξ

)

=
pξ + 1 − ξ + 2γξ

(1 − γ)2pξ
.

Lastly, we prove that σ ≤ 1. For that we need

(1 − γ)2pξ ≥ pξ + 1 − ξ + 2γξ

(p + 1)ξ ≥ 1 + 2γξ(1 + p)
1
2

− 1
2ξ(p + 1)

≥ γ.

We have proved the main lemma for the convergence rate theorem, other parts
of the proof are the same as [4]. As a result, we get the next theorem.

Theorem 1. Let f be a convex function whose pth derivative is Lp-Lipschitz
and x∗ denote a minimizer of f . Then Algorithm 1 converges with rate

f(yk) − f(x∗) ≤ Õ

(
HpR

p+1

k
3p+1

2

)
, (15)
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where
R = ‖x0 − x∗‖ (16)

is the maximal radius of the initial set.

4 Hyperfast Second-Order Method

In recent work [25] it was mentioned that for convex optimization problem
(1) with first order oracle (returns gradient) the well-known complexity bound(
L1R

2/ε
)1/2 can not be beaten even if we assume that all Lp < ∞. This is

because of the structure of the worth case function

fp(x) = |x1|p+1 + |x2 − x1|p+1 + ... + |xn − xn−1|p+1,

where p = 1 for first order method. It’s obvious that fp(x) satisfy the condition
Lp < ∞ for all natural p. So additional smoothness assumptions don’t allow to
accelerate additionally. The same thing takes place, for example, for p = 3. In this
case, we also have Lp < ∞ for all natural p. But what is about p = 2? In this case
L3 = ∞. It means that f2(x) couldn’t be the proper worth case function for the
second-order method with additional smoothness assumptions. So there appears
the following question: Is it possible to improve the bound

(
L2R

3/ε
)2/7? At the

very beginning of 2020 Yu. Nesterov gave a positive answer. For this purpose, he
proposed to use an accelerated third-order method that requires Õ

(
(L3R

4/ε)1/4
)

iterations by using second-order oracle [23]. So all this means that if L3 < ∞,
then there are methods that can be much faster than Õ

((
L2R

3/ε
)2/7

)
.

In this section, we improve convergence speed and reach near-optimal speed
up to logarithmic factor. We consider problem (1) with p = 3, hence L3 < ∞.
In previous section, we have proved that Algorithm 1 converges. Now we fix the
parameters for this method

p = 3, γ =
1
2p

=
1
6
, ξ =

2p

p + 1
=

3
2
. (17)

By (12) we get σ = 0.6 that is rather close to initial exact σ0 = 0.5. For such
parameters we get next convergence speed of Algorithm 1 to reach accuracy ε:

Nout = Õ

((
L3R

4

ε

) 1
5
)

. (18)

Note, that at every step of Algorithm 1 we need to solve next subproblem
with accuracy γ = 1/6

argmin
y

{
〈∇f(xi), y − xi〉 +

1
2
∇2f(xi)[y − xi]2

+
1
6
D3f(xi)[y − xi]3 +

L3

4
‖y − xi‖4

}
.

(19)
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In [14] it was proved, that problem (19) can be solved by Bregman-Distance
Gradient Method (BDGM) with linear convergence speed. According to [25]
BDGM can be improved to work with inexact gradients of the functions. This
made possible to approximate D3f(x) by gradients and escape calculations of
D3f(x) at each step. As a result, in [25] it was proved, that subproblem (19)
can be solved up to accuracy γ = 1/6 with one calculation of Hessian and
O

(
log

(
‖∇f(xi)‖+‖∇2f(xi)‖

ε

))
calculation of gradient.

We use BDGM to solve subproblem from Algorithm 1 and, as a result, we
get next Hyperfast Second-Order method as merging NATMI and BDGM.

Algorithm 2. Hyperfast Second-Order Method
1: Input: convex function f : Rn → R with L3-Lipschitz 3rd-order derivative.
2: Set A0 = 0, x0 = y0

3: for k = 0 to k = K − 1 do
4: Compute a pair λk+1 > 0 and yk+1 ∈ R

n such that

1

2
≤ λk+1

3L3 · ‖yk+1 − x̃k‖2

4
≤ 3

4
,

where yk+1 ∈ N 1/6

3,3L3/2(x̃k) solved by Algorithm 3 and

ak+1 =
λk+1 +

√
λ2

k+1 + 4λk+1Ak

2
, Ak+1 = Ak + ak+1

x̃k =
Ak

Ak+1
yk +

ak+1

Ak+1
xk .

5: Update xk+1 := xk − ak+1∇f(yk+1)
6: return yK

In the Algorithm 3, βρk
(zi, z) is a Bregman distance generated by ρk(z)

βρk
(zi, z) = ρk(z) − ρk(zi) − 〈∇ρk(zi), z − zi〉 .

By gϕk,τ (z) we take an inexact gradient of the subproblem (19)

gϕk,τ (z) = ∇f(x̃k) + ∇2f(x̃k)[z − x̃k] +
1
2
gτ

x̃k
(z) + L3‖z − x̃k‖2(z − x̃k) (22)

and gτ
x̃k

(z) is a inexact approximation of D3f(x̃k)[y − x̃k]2

gτ
x̃k

(z) =
1
τ2

(∇f(x̃k + τ(z − x̃k)) + ∇f(x̃k − τ(z − x̃k)) − 2∇f(x̃k)) . (23)

In paper [25] it is proved, that we can choose

δ = O

(
ε

3
2

‖∇f(x̃k)‖ 1
2∗ + ‖∇2f(x̃k)‖ 3

2 /L
1
2
3

)
,
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Algorithm 3. Bregman-Distance Gradient Method
1: Set z0 = x̃k and τ = 3δ

8(2+
√
2)‖∇f(x̃k)‖

2: Set objective function

ϕk(z) = 〈∇f(x̃k), z − x̃k〉+ 1

2
∇2f(x̃k)[z − x̃k]

2+
1

6
D3f(x̃k)[z − x̃k]

3+
L3

4
‖z − x̃k‖4

3: Set feasible set

Sk =

{
z : ‖z − x̃k‖ ≤ 2

(
2+

√
2

L3
‖∇f(x̃k)‖

) 1
3
}

(20)

4: Set scaling function
ρk(z) =

1
2

〈∇2f(x̃k)(z − x̃k), z − x̃k

〉
+ L3

4
‖z − x̃k‖4 (21)

5: for k ≥ 0 do
6: Compute the approximate gradient gϕk,τ (zi) by (22).
7: IF ‖gϕk,τ (zi)‖ ≤ 1

6
‖∇f(zi)‖ − δ, then STOP

8: ELSE zi+1 = argmin
z∈Sk

{
〈gϕk,τ (zi), z − zi〉 + 2

(
1 + 1√

2

)
βρk (zi, z)

}
,

9: return zi

then total number of inner iterations equal to

Tk(δ) = O

(
ln

G + H

ε

)
, (24)

where G and H are the uniform upper bounds for the norms of the gradients
and Hessians computed at the points generated by the main algorithm. Finally,
we get next theorem.

Theorem 2. Let f be a convex function whose third derivative is L3-Lipschitz
and x∗ denote a minimizer of f . Then to reach accuracy ε Algorithm 2 with
Algorithm 3 for solving subproblem computes

N1 = Õ

((
L3R

4

ε

) 1
5
)

(25)

Hessians and

N2 = Õ

((
L3R

4

ε

) 1
5

log
(

G + H

ε

))
(26)

gradients, where G and H are the uniform upper bounds for the norms of the
gradients and Hessians computed at the points generated by the main algorithm.

One can generalize this result on uniformly-strongly convex functions by
using inverse restart-regularization trick from [13].

So, the main observation of this section is as follows: If L3 < ∞, then we can
use this hyperfast3 second-order algorithm instead of considered in the paper
optimal one to make our sliding faster (in convex and uniformly convex cases).
3 Here we use terminology introduced in [25].
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5 Conclusion

In this paper, we present Inexact Near-optimal Accelerated Tensor Method and
improve its convergence rate. This improvement make it possible to solve the
Taylor approximation subproblem by other methods. Next, we propose Hyper-
fast Second-Order Method and get its convergence speed O(N−5) up to logarith-
mic factor. This method is a combination of Inexact Third-Order Near-Optimal
Accelerated Tensor Method with Bregman-Distance Gradient Method for solv-
ing inner subproblem. As a result, we prove that our method has near-optimal
convergence rates for given problem class and the best known on that moment.

In this paper, we developed near-optimal Hyperfast Second-Order method for
sufficiently smooth convex problem in terms of convergence in function. Based on
the technique from the work [9], we can also developed near-optimal Hyperfast
Second-Order method for sufficiently smooth convex problem in terms of conver-
gence in the norm of the gradient. In particular, based on the work [16] one may
show that the complexity of this approach to the dual problem for 1-entropy
regularized optimal transport problem will be Õ

((
(
√

n)4/ε
)1/5

)
· O(n2.5) =

O(n2.9ε−1/5) a.o., where n is the linear dimension of the transport plan matrix,
that could be better than the complexity of accelerated gradient method and
accelerated Sinkhorn algorithm O(n2.5ε−1/2) a.o. [8,16]. Note, that the best theo-
retical bounds for this problem are also far from to be practical ones [2,17,20,27].

Acknowledgements. I would like to thank Alexander Gasnikov, Yurii Nesterov,
Pavel Dvurechensky and Cesar Uribe for fruitful discussions.
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Abstract. This work addresses the optimistic statement of a bilevel
optimization problem with a general d.c. optimization problem at the
upper level and a convex optimization problem at the lower level. First,
we use the reduction of the bilevel problem to a nonconvex mathemat-
ical optimization problem using the well-known Karush-Kuhn-Tucker
approach. Then we employ the novel Global Search Theory and Exact
Penalty Theory to solve the resulting nonconvex optimization problem.
Following this theory, the special method of local search in this prob-
lem is constructed. This method takes into account the structure of the
problem in question.

Keywords: Bilevel optimization · Optimistic solution ·
KKT-approach · Reduction theorem · Difference of two convex
functions · D.c. optimization · Global Search Theory · Exact Penalty
Theory · Local search

1 Introduction

It is well-known that bilevel optimization is now at the front edge of modern
mathematical optimization [1,2]. Bilevel optimization problems (BOPs) repre-
sent extreme problems, which – side by side with ordinary constraints such
as equalities and inequalities – include a constraint described as an optimiza-
tion subproblem [1]. BOPs are important theoretically and very prospective in
applications. In particular, according to J.-S. Pang [3], a distinguished expert
in optimization, the development of methods for solving various problems with
hierarchical structure is one of the three challenges faced by optimization theory
and methods in the 21st century. Moreover, problems with hierarchical structure
arise in investigations of complex control systems, and bilevel optimization is the
most popular modeling tool in such systems (see e.g. [2]).

A bilevel optimization problem is not well-posed if the inner (or lower level)
problem does not have a unique optimal solution. This situation can be addressed
by using the optimistic or pessimistic formulation of the problem. The optimistic
approach, when the actions of the lower level might coordinate with the interests
of the upper level, is used in most of the investigations since the assumptions that
c© Springer Nature Switzerland AG 2020
Y. Kochetov et al. (Eds.): MOTOR 2020, CCIS 1275, pp. 179–191, 2020.
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guarantee the existence of an optimal solution are weaker and reformulations of
the problem result in ordinary single-level optimization problems [1].

This paper is focused on one of the classes of bilevel problems with a general
d.c. optimization problem (with functions that can be represented as a difference
of two convex functions) at the upper level and a general convex optimization
problem at the lower level. The task is to find an optimistic solution. Such a class
was chosen because it is the most general one which might be solvable by the
well-known Karush-Kuhn-Tucker (KKT) approach when the lower level problem
has to be replaced by the KKT-conditions (or the equivalent duality conditions)
[4–6]. This approach (or the KKT-transformation) leads to a nonconvex single-
level mathematical optimization problem with complementarity constraints
which is intrinsically irregular. For example, the Mangasarian-Fromovitz con-
straint qualification is violated at every feasible point (see, e.g., [7]). Moreover,
the resulting problem is equivalent to the original one only if global optimal
solutions are considered [1,8].

Hence, the principal question here is how we will solve the obtained noncon-
vex optimization problem.

New Global Optimality Conditions (GOCs) proved in [9,10] by
A.S. Strekalovsky for d.c. optimization problem with inequality and equality
constraints open a way to develop efficient global search methods for the most
general nonconvex optimization problems. Previously, the Global Search The-
ory (GST) for the canonical nonconvex optimization classes (such as convex
maximization, d.c. minimization, and problems with one d.c. constraint) [11,12]
allowed to solve some topical problems of Optimization and Operations Research
[13–16] including problems with the bilevel structure [17–21].

In particular, our group, under the guidance of A.S. Strekalovsky, has good
experience in solving linear bilevel problems with up to 500 variables at each
level [17,20], quadratic-linear bilevel problems of dimension up to (150 × 150)
[20], and quadratic bilevel problems of dimension up to (100 × 100) [21]. Here
we intend to generalize our approach for more complicated bilevel problems.

At the same time, as we can see in the available publications, only a few
results published so far deal with numerical solutions of high-dimension bilevel
problems (for example, up to 100 variables at each level for linear bilevel prob-
lems [22]). In most of the cases, authors consider just illustrative examples with
the dimension up to 10 (see, e.g. [23,24]) and only the works [25–27] present
some results on solving nonlinear bilevel problems of dimension up to 30 at each
level (see also the surveys [28,29]).

In contrast to the commonly accepted global optimization methods such as
branch-and-bound based techniques, approximation, and diagonal methods, etc.
[30–32], the GST developed by A.S. Strekalovsky [9–12] employs a reduction of
the nonconvex problem to a family of simpler problems (usually convex) that
can be solved by classic convex optimization methods [4–6].

In accordance with the GST, this paper aims at the construction of basic
elements of the methods for finding optimistic solutions to the problems under
study. Section 2 deals with the reduction of the original bilevel problem to the
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single-level one, and the obtaining of a d.c. decomposition for all functions from
the latter formulation. In Sect. 3 exact penalization and the GOCs in terms of
reduced nonconvex problem are presented and discussed. Section 4 is devoted to
the description of the Special Local Search Method. Section 5 presents concluding
remarks.

2 Problem Statement and Reduction

Consider the following sufficiently general bilevel optimization problem in its
optimistic statement. In the optimistic case, according to the theory [1], the
minimization at the upper level should be performed with respect to the variables
of both levels:

(BP)

F (x, y) := g0(x, y) − h0(x, y) ↓ min
x,y

,

x ∈ X := {x ∈ IRm | gi(x) − hi(x) ≤ 0, i = 1, ..., p},
y ∈ Y∗(x) := Arg min

y
{G(x, y) | y ∈ Y (x)},

⎫
⎪⎬

⎪⎭
(1)

where Y (x) := {y ∈ IRn | ϕj(x, y) ≤ 0, j = 1, ..., q}, the functions g0(·), h0(·),
and ϕj(·), j = 1, ...q, are convex with respect to the aggregate of x and y on
IRm+n, the functions gi(·), hi(·), i = 1, ...p, are convex on IRm, and the function
y → G(x, y) is convex with respect to y on IRn ∀x ∈ X.

Let us make the following assumptions concerning the problem (BP).
Assume that the set Y∗(x) is a nonempty compact for every fixed x ∈ X.

Furthermore, suppose that

(H1)
function F (x, y) is bounded below on the nonempty set
Z := {(x, y) ∈ IRm+n | g(x) − h(x) ≤ 0p, ϕ(x, y) ≤ 0q},

}

(2)

where 0t = (0, ..., 0)T ∈ IRt; g(·), h(·), and ϕ(·) are appropriate vector-valued
functions. Moreover,

(H2)
∀x ∈ X function G(x, y) is bounded below on the nonempty
set Y (x), so that, inf

x
inf
y

{G(x, y) | y ∈ Y (x), x ∈ X} > −∞.

}

(3)

In addition, assume that the objective function of the problem (BP) satisfies
the Lipschitz property [5,6] with respect to both variables. Besides, functions
h0(x, y) and hi(x), i = 1, ..., p, are differentiable with respect to all their variables
and these gradients are continuous.

Further, it can be readily seen that the lower level problem of the problem
(BP) is convex when x ∈ X is fixed:

(FP(x)) G(x, y) ↓ min
y

, ϕj(x, y) ≤ 0, j = 1, ..., q. (4)

So that, e.g. when Slater’s constraint qualification is fulfilled for the lower
level problem at any parameter value x ∈ X:

(SCQ) ∃ȳ(x) : ϕj(x, ȳ(x)) < 0, j = 1, ...q, (5)
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then the KKT optimality conditions are necessary and sufficient in the problem
(FP(x)). Additionally, we have to assume that the functions G(x, ·), ϕj(x, ·),
j = 1, ...q, are differentiable with respect to y ∀x ∈ X and these gradients are
continuous with respect to both x and y [4–6]. Under these assumptions, the
existence of a solution to problem (BP) can be guaranteed [1].

In addition, under these assumptions, the bilevel problem (BP) can be
replaced with the following single-level mathematical optimization problem:

(P)
F (x, y) ↓ min

x,y,v
, x ∈ X,

∇yL(x, y, v) = 0n, ϕ(x, y) ≤ 0q, v ≥ 0q, 〈v, ϕ(x, y)〉 = 0,

}

(6)

where L(x, y, v) = G(x, y) + 〈v, ϕ(x, y)〉 is the normal Lagrange function of
problem (FP(x)).

In [8] the equivalence of the problems (BP) and (P) from the viewpoint of
searching global solutions is proved. The most important theorem for justifica-
tion of the approach for finding optimistic solutions to the problem (BP) using
solving the problem (P) is the following one.

Theorem 1. [8] Let the triple (x∗, y∗, v∗) be a global solution to the single-level
problem (P)–(6). If the Slater’s constraint qualification (SCQ)–(5) is satisfied
∀x ∈ X for the lower level problem (FP(x))–(4), then the pair (x∗, y∗) is a
global solution to the bilevel problem (BP)–(1).

Further, let us study a possibility of finding a global solution to the prob-
lem (P) with the help of the new GOCs [9,10] and the GST developed by
A.S. Strekalovsky [11,12].

First of all, a solution to the problem (P) exists under the assumptions above.
Now let us analyze properties of this problem.

The constraints ϕ(x, y) ≤ 0 and v ≥ 0 define a convex set S and do not
produce additional difficulties to the problem. For simplicity, everywhere further
we will use the term “convex constraints” when the constraints describe a convex
feasible set in the problem in question, as well as the term “nonconvex constraint”
defined similarly.

The constraints ∇yL(x, y, v) = 0n might be convex or nonconvex depending
on properties of the functions G(·) and ϕ(·).

Let function G(x, y) be quadratic, for example,

G(x, y) :=
1
2
〈y, Cy〉 + 〈d, y〉 + 〈x,Qy〉,

where d ∈ IRn, C is a symmetric and positive semidefinite (n × n)-matrix, and
Q is a rectangular (m × n)-matrix. Note that, in that case, the quadratic terms

of the form
1
2
〈x,Dx〉 + 〈c, x〉, where D is symmetric and positive semidefinite

too, are not included in the lower level objective function, because for a fixed
upper-level variable x these terms are constants and do not affect the structure
of the set Y∗(x) [4,6].
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Besides, let function ϕ(x, y) be affine, so that, ϕ(x, y) = Ax + By − b, where
b ∈ IRq, A ∈ IRq×m, B ∈ IRq×n. Then ∇yL(x, y, v) = Cy + d + xT Q + vT B
and affine constraints ∇yL(x, y, v) = 0n define a convex set which can be also
included in the set S.

If the functions G(x, y) and ϕ(x, y) are more general then the equality con-
straint ∇yL(x, y, v) = 0n is becoming nonconvex one.

Further, the constraint 〈v, ϕ(x, y)〉 = 0 is nonconvex in the problem (P)–(6)
even in the quadratic case above, because it contains the products of components
of the variables v and x (as well as components of v and y) which are bilinear
structures [13].

To apply the GST for the study of the problem (P), it is necessary to con-
struct explicit representations of all mentioned nonconvex functions in its for-
mulation as differences of two convex functions (d.c. decompositions). If the
lower level constraint functions are twice continuously differentiable then, the
complementarity constraints are d.c. functions [7].

Let (∇yL(x, y, v))i = gi(x, y, v) − hi(x, y, v), i = p + 1, ..., p + n, be the d.c.
decompositions of each component of the vector-function ∇yL(x, y, v). At the
same time, let 〈v, ϕ(x, y)〉 = gp+n+1(x, y, v) − hp+n+1(x, y, v). Note that we can
build such decompositions where hi(x, y, v), i = p + 1, ..., p + n + 1, are differen-
tiable with respect to all their variables and these gradients are continuous.

For example, if the function ϕ(x, y) is affine, i.e. ϕ(x, y) = Ax + By − b,
then the d.c. representation for the function defining the latter constraint in the
problem (P)–(6) can be obtained by the well-known property of scalar product

(〈x, y〉 =
1
4
‖x + y‖2 − 1

4
‖x − y‖2):

gp+n+1(x, y, v) =
1
4
‖v + Ax‖2 +

1
4
‖v + By‖2 − 〈b, v〉,

hp+n+1(x, y, v) =
1
4
‖v − Ax‖2 +

1
4
‖v − By‖2.

So, the problem (P) might be written in the following way:

(DCC)

F (x, y) := g0(x, y) − h0(x, y) ↓ min
x,y,v

,

(x, y, v) ∈ S := {(x, y, v) | ϕ(x, y) ≤ 0q, v ≥ 0q},
fi(x) := gi(x) − hi(x) ≤ 0, i ∈ {1, ..., p} =: I,

fi(x, y, v) := gi(x, y, v) − hi(x, y, v) = 0,
i ∈ {p + 1, ..., p + n + 1} =: E ,

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(7)

where gi, hi, i ∈ E , are convex with respect to the aggregate of all their variables.
Basing on the assumptions above we can conclude that the feasible set F of

the problem (DCC)

F := {(x, y, v) ∈ S | fi(x) ≤ 0, i ∈ I, fi(x, y, v) = 0, i ∈ E},
is non-empty and the optimal value V(DCC) of the problem (DCC) is finite:

V(DCC) := inf(F,F) := inf
(x,y,v)

{F (x, y) | (x, y, v) ∈ F} > −∞.
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Now we can pass to the characterization of global solutions in this problem
(see [9,10]).

3 Exact Penalization and Global Optimality Conditions

First of all, consider the auxiliary problem:

(DC(σ)) Φσ(x, y, v) := F (x, y) + σW (x, y, v) ↓ min
(x,y,v)

, (x, y, v) ∈ S, (8)

where σ > 0 is a penalty parameter, and the penalized function W (·) is defined
in the following way:

W (x, y, v) := max{0, f1(x), . . . , fp(x)} +
∑

i∈E
|fi(x, y, v)| .

For a fixed σ this problem belongs to the class of d.c. minimization problems
[11,12] with a convex feasible set. In what follows, we show that the objective
function of (DC(σ)) can be represented as a difference of two convex functions.

It is well-known that if for some σ the triple (x(σ), y(σ), v(σ)) is a solu-
tion to the problem (DC(σ)) (briefly (x(σ), y(σ), v(σ)) ∈ Sol(DC(σ))), and
(x(σ), y(σ), v(σ)) is feasible in the problem (DCC), i.e. (x(σ), y(σ), v(σ)) ∈ F
and W [σ] := W (x(σ), y(σ), v(σ)) = 0, then (x(σ), y(σ), v(σ)) is a global solution
to the problem (DCC) [4–6,9,10].

Also, the following result takes place.

Proposition 1. [1,4–6] Suppose that for some fixed σ̂ > 0 the equality
W [σ̂] = 0 holds for the solution (x(σ̂), y(σ̂), v(σ̂)) to the problem (DC(σ̂))–(8).
Then for all values of the parameter σ > σ̂ the function W [σ] vanishes, so that
the triple (x(σ), y(σ), v(σ)) is a solution to (DCC)–(7).

Thus, if the equality W [σ] = 0 holds, then a solution to the problem (DC(σ))
is a solution to the problem (DCC). In addition, this situation remains the same
when the value of σ grows.

Hence, the key point for using Exact Penalty Theory here is the exis-
tence of a threshold value σ̂ > 0 of the penalty parameter σ for which
W [σ] = 0 ∀σ ≥ σ̂. Due to the assumption above that the objective function
F (·) of the problem (DCC) satisfies the Lipschitz property [5,6] with respect to
both variables, the following assertion holds.

Proposition 2. [5,6,9,10] Let the triple (x∗, y∗, v∗) be a global solution to
the problem (DCC)–(7). Then, there exists σ̂ > 0 such that (x∗, y∗, v∗) is a
global solution to the problem (DC(σ̂))–(8). Moreover, ∀σ > σ̂ any solution
(x(σ), y(σ), v(σ)) to the problem (DC(σ))–(8) must be feasible in the problem
(DCC)–(7), i.e. W [σ] = 0, and, therefore, (x(σ), y(σ), v(σ)) is a solution to the
problem (DCC)–(7), so that Sol(DCC) ⊂ Sol(DC(σ)). The latter inclusion pro-
vides the equality

Sol(DCC) = Sol(DC(σ)) ∀σ > σ̂, (9)

so that the problems (DCC)–(7) and (DC(σ))–(8) turn out to be equivalent (in
the sense of (9)).
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Therefore, combining Propositions 1 and 2 with Theorem 1, we can con-
clude that the established connection between the problems (DC(σ)) and (DCC)
enables us to search for a global solution to the problem (DC(σ)) (where σ > σ̂)
instead of a solution to the problem (DCC) for finding an optimistic solution to
the problem (BP)–(1).

So, the existence of the threshold value σ̂ > 0 of a penalty parameter allows
us to solve the single problem (DC(σ))–(8) (where σ > σ̂ is fixed) instead of
solving a sequence of the problems (DC(σ))–(8) when the penalty parameter
tends to infinity (σ → +∞) (see, for example, [4]).

Before characterizing global solutions in the problem (DC(σ))–(8) we need
to show that the objective function Φσ(·) is a d.c. function, so that it can
be represented as a difference of two convex functions. Using the well-known

properties: max
i∈I

fi(u) = max
i∈I

[gi(u) +
j �=i∑

j∈I
hj(u)] − ∑

i∈I
hi(u), max{0, fi(u)}

= max{gi(u), hi(u)} − hi(u), and |fi(u)| = 2max{gi(u), hi(u)} − [gi(u) + hi(u)]
[11,30], it can be readily seen that

Φσ(x, y, v)
�
= F (x, y) + σ max{0, fi(x), i ∈ I}

+σ
∑

i∈E
|fi(x, y, v)| = Gσ(x) − Hσ(x), (10)

where

Gσ(x, y, v) :=g0(x, y)+σ max
{∑

j∈I

hj(x);
[
gi(x)+

j �=i∑

j∈I

hj(x)
]
, i∈I

}

+ 2σ
∑

i∈E
max{gi(x, y, v);hi(x, y, v)},

(11)

Hσ(x, y, v) := h0(x, y) + σ
[∑

i∈I
hi(x) +

∑

j∈E
(gj(x, y, v) + hj(x, y, v))

]
. (12)

It is easy to see that Gσ(·) and Hσ(·) are both convex functions [33,34], so
that the function Φσ(·) is a d.c. function, as claimed. At the same time, based
on the above assumptions, the function Hσ(·) is differentiable with respect to all
its variables. Moreover, it is obvious that for a feasible (in the problem (DCC))
point (x∗, y∗, v∗) ∈ S we have W (x∗, y∗, v∗) = 0, and, therefore, for a number
ζ := F (x∗, y∗) (∀σ > 0), we obtain

Φσ(x∗, y∗, v∗) = F (x∗, y∗) + σW (x∗, y∗, v∗) = F (x∗, y∗) = ζ. (13)

Now we are ready to formulate the necessary GOCs in terms of the problem
(DC(σ))–(8) that constitute the basis of the Global Search Theory.

Theorem 2. [9,10] Let a feasible point (x∗, y∗, v∗) ∈ F , ζ := F (x∗, y∗) be
a (global) solution to the problem (DCC)–(7), and a number σ : σ ≥ σ̂ > 0
is selected, where σ̂ is a threshold value of the penalty parameter, such that
Sol(DCC) = Sol(DCσ) ∀σ ≥ σ̂.
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Then ∀(z, u, w, γ) ∈ IRm+n+q+1, satisfying the equality

Hσ(z, u, w) = γ − ζ, (14)

the inequality

Gσ(x, y, v) − γ ≥ 〈∇Hσ(z, u, w), (x, y, v) − (z, u, w)〉 ∀(x, y, v) ∈ S (15)

takes place. ��
The conditions (14)–(15) possess the so-called algorithmic (constructive)

property. More precisely, if the GOCs are violated, we can construct a feasible
point that will be better than the point in question [9–12]. Indeed, if for some
(z̃, ũ, w̃, γ̃) from (14) on some level ζ := ζk := Φσ(xk, yk, vk) for the feasible in
the problem (DC(σ)) point (x̃, ỹ, ṽ) ∈ S the inequality (15) is violated:

Gσ(x̃, ỹ, ṽ) < γ̃ + 〈∇Hσ(z̃, ũ, w̃), (x̃, ỹ, ṽ) − (z̃, ũ, w̃)〉 ,

then it follows from the convexity of Hσ(·) and the equality (14) that

Φσ(x̃, ỹ, ṽ) = Gσ(x̃, ỹ, ṽ) − Hσ(x̃, ỹ, ṽ)
< Hσ(z̃, ũ, w̃) + ζ + Hσ(x̃, ỹ, ṽ) − Hσ(z̃, ũ, w̃) − Hσ(x̃, ỹ, ṽ) = Φσ(xk, yk, vk),

or, Φσ(x̃, ỹ, ṽ) < Φσ(xk, yk, vk), (xk, yk, vk) ∈ F , (x̃, ỹ, ṽ) ∈ S. Therefore, the
point (xk, yk, vk) is not a solution to the problem (DC(σ)). Moreover, if the triple
(x̃, ỹ, ṽ) is also feasible in the problem (DCC), i.e. W (x̃, ỹ, ṽ) = 0 = W (xk, yk, vk),
we obtain the chain F (xk, yk) = Φσ(xk, yk, vk) > Φσ(x̃, ỹ, ṽ) = F (x̃, ỹ). It means
that (xk, yk, vk) �∈ Sol(DCC) and the triple (x̃, ỹ, ṽ) ∈ F is better than the point
(xk, yk, vk).

It can be readily seen that Theorem 2 reduces the solution of the nonconvex
problem (DC(σ)) to study of the family of the convex (linearized) problems

(PσL(z, u, w)) Ψσ(x, y, v) := Gσ(x, y, v)
− 〈∇Hσ(z, u, w), (x, y, v)〉 ↓ min

x,y,v
, (x, y, v) ∈ S,

}
(16)

depending on 4-tuples (z, u, w, γ) ∈ IRm+n+q+1 which satisfy the equality (14).
Note, the linearization in this problem is implemented with respect to “unified”
nonconvexity of the problem (DC(σ)) defined by the function Hσ(·).

According to our previous experience, varying of the parameters (z, u, w, γ) is
convenient to carry out together with a local search. Then, by changing param-
eters (z, u, w, γ) in (14) for a fixed ζ = ζk and obtaining approximate solutions
(x(z, u, w, γ), y(z, u, w, γ), v(z, u, w, γ)) of the linearized problems (PσL(z, u, w)),
we get a family of starting points to launch a local search procedure.

Additionally, we do not need to go over all (z, u, w, γ) at each level ζ
for checking the inequality (15). It is sufficient to prove that the principal
inequality (15) is violated at the single 4-tuple (z̃, ũ, w̃, γ̃) by the feasible point
(x̃, ỹ, ṽ). After that we move to the new level (xk+1, yk+1, vk+1) := (x̃, ỹ, ṽ),
ζk+1 := Φσ(xk+1, yk+1, vk+1) and vary parameters again.

So, the development of a special Local Search Method that takes into consid-
eration special features of the problem in question is the priority task before con-
structing a Global Search procedure. According to the GST, such Local Search
Method is the principal element of Global Search Algorithms [11–13,20].
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4 Local Search

Note, the problem (DC(σ))–(8) belongs to the one of the canonical noncon-
vex optimization classes namely d.c. minimization when a value of the penalty
parameter σ := σ̄ > 0 is fixed. Hence, in order to carry out a local search in
the problem (DC(σ̄)) one can apply well-known Special Local Search Method
(SLSM), developed in [11]. This method is very popular in the literature as DC-
algorithm (DCA) [35], and it is based on a consecutive solving the sequence of
problems linearized with respect to the basic nonconvexity (see (PσL(z, u, w))–
(16)). It is clear that the linearization is implemented with respect to the function
Hσ(·) which accumulates all the nonconvexities of the problems (DCC)–(7) and
(DC(σ))–(8). But in that case, a question about finding a threshold value of the
penalty parameter (which provide the equality Sol(DCC) = Sol(DC(σ)) remains
open, and it should be resolved in advance, before performing a local search.

In this work, we suggest seeking a threshold value of the penalty parameter
at the stage of a local search. Keeping the ideology of linearization, we also use
the recent results concerning steering penalty parameters in nonlinear optimiza-
tion [36,37]. So, we can present the new Special Penalty Local Search Method
(SPLSM) [38] in terms of the problem (DC(σ))–(8).

In accordance with the principles of local search in d.c. minimization [11], let
us organize an iterative process that additionally takes into account a dynamic
update of the penalty parameter.

Let there be given a starting point (x0, y0, v0) ∈ S, an initial value σ0 > 0
of the penalty parameter σ. And let at the iteration k we have found the triple
(xk, yk, vk) ∈ S and the value σk ≥ σ0 of the penalty parameter. Introduce the
following notations: Gk(·) := Gσk

(·), Hk(·) := Hσk
(·).

Now, consider the following linearized problem (PkL) = (Pσk
L(xk, yk, vk))

(PkL)
Ψk(x, y, v) := Gk(x, y, v)

−〈∇Hk(xk, yk, vk), (x, y, v)〉 ↓ min
x,y,v

, (x, y, v) ∈ S.

}

(17)

At the same time, taking into account that the penalty function W (x, y, v)
is also a d.c. function, we can represent it in the following way with the help of
the decomposition (10)–(12):

W (x, y, v) = GW (x, y, v) − HW (x, y, v),

where

GW (x, y, v) :=
1
σ

[Gσ(x, y, v)−g0(x, y)], HW (x, y, v) :=
1
σ

[Hσ(x, y, v)−h0(x, y)].

Now, introduce the following auxiliary linearized problem

(APW Lk)
ΨW (x, y, v) := GW (x, y, v)

−〈∇HW (x(σk), y(σk), v(σk)), (x, y, v)〉 ↓ min
x,y,v

,

(x, y, v) ∈ S.

⎫
⎪⎬

⎪⎭
(18)



188 A. V. Orlov

This problem is also convex and it is related to minimization of the penalty
function W (x, y, v). Now, pass to the scheme of the SPLSM.

Let also there be given two scalar parameters η1, η2 ∈]0, 1[ of the method.
Step 0. Set k := 0, (xk, yk, vk) := (x0, y0, v0), σk := σ0.
Step 1. Solve the subproblem (PkL) to get (x(σk), y(σk), v(σk)) ∈ Sol(PkL).
Step 2. If W (x(σk), y(σk), v(σk)) = 0 then set σ+ := σk,

(x(σ+), y(σ+), v(σ+)) := (x(σk), y(σk), v(σk)) and go to Step 7.
Step 3. Else (if W (x(σk), y(σk), v(σk)) > 0), by solving the linearized prob-

lems (APW Lk) find (xk
W , yk

W , vk
W ) ∈ Sol(APW Lk).

Step 4. If W (xk
W , yk

W , vk
W ) = 0 then solve a few problems

(PσL(xk
W , yk

W , vk
W )) –(16) (by increasing, if necessary, the value σk of a penalty

parameter σ), trying to find σ+ > σk and the triple (x(σ+), y(σ+), v(σ+)) ∈
Sol(Pσ+L(xk

W , yk
W , vk

W )), such that W (x(σ+), y(σ+), v(σ+)) = 0 and go to
Step 7.

Step 5. Else, if W (xk
W , yk

W , vk
W ) > 0, or the value σ+ > σk such that

W (x(σ+), y(σ+), v(σ+)) = 0 is not found at the previous step, then find σ+ > σk

satisfying the inequality

W (x(σk), y(σk), v(σk)) − W (x(σ+), y(σ+), v(σ+))
≥ η1[W (x(σk), y(σk), v(σk)) − W (xk

W , yk
W , vk

W )]. (19)

Step 6. Increase σ+, if necessary, to fulfil the inequality

Ψk(x(σk), y(σk), v(σk)) − Ψσ+(x(σ+), y(σ+), v(σ+))
≥ η2σ+[W (x(σk), y(σk), v(σk)) − W (x(σ+), y(σ+), v(σ+))]. (20)

Step 7. σk+1 := σ+, (xk+1, yk+1, vk+1) := (x(σ+), y(σ+), v(σ+)), k := k + 1
and loop to Step 1. ��
Remark 1. The ideas of additional minimization of the penalty function W (·)
and using the parameters η1 and η2 were inspired by works [36,37]. In these
works also can be found the practical rules on how to select the parameters of
the scheme and how to increase the value of a penalty parameter σ.

Remark 2. The presented scheme has a theoretical nature mainly. Its conver-
gence analysis can be found in [38]. In order to apply this scheme in practice,
we should take into account the possibility of approximate solving the linearized
problems (PkL) and (APW Lk) as well as elaborate the stopping criteria. It is
clear that the usage the only obvious criterion W (x(σ+), y(σ+), v(σ+)) = 0 (or
W (x(σ+), y(σ+), v(σ+)) ≤ ε) is not sufficient for the local search goals [38].

Remark 3. The convex linearized problems (PkL) and (APW Lk) are not smooth
due to the properties of the functions Gk(·) and GW (·) respectively. To solve
these problems we can use one of the appropriate method of convex non-
differentiable optimization [5,39] or reformulate these problems in order to elim-
inate non-smoothness (see, e.g. [38]).
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5 Concluding Remarks

The paper proposes a new approach to solving bilevel optimization problem
with a general d.c. optimization problem at the upper level and a convex opti-
mization problem at the lower level. On the one hand, it uses the well-known
KKT-approach for reducing the original bilevel problem to the single-level one.
On the other hand, the reduced problem is investigated by the new Global Opti-
mality Conditions proved for general nonconvex (d.c.) optimization problems by
A.S. Strekalovsky using Exact Penalty Theory.

We described in detail the reduction of the original bilevel problem to a d.c.
optimization problem studied the question about an explicit d.c. decomposition
of all functions from the formulation of the problem presented the Global Opti-
mality Conditions and Special Penalty Local Search Method in terms of the
problem in question.

This paper is the first theoretical stage of scientific research concerning the
very difficult problems of bilevel optimization problems in the sufficiently general
statement. Our further investigations will be devoted to a building of a field of
corresponding test examples, to elaboration and testing of the developed local
search scheme as well as constructing and testing a global search method for
bilevel problems in question, based on presented theoretical foundations.
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Abstract. In this paper we experimentally check a hypothesis, that
dual problem to discrete entropy regularized optimal transport problem
possesses strong convexity on a certain compact set. We present a numer-
ical estimation technique of parameter of strong convexity and show that
such an estimate increases the performance of an accelerated alternat-
ing minimization algorithm for strongly convex functions applied to the
considered problem.

Keywords: Convex optimization · Otimal transport · Sinkhorn’s
algorithm · Alternating ainimization

1 Introduction

Optimal transport problem has different applications since it allows to define
a distance between probability measures including the earth mover’s distance
[51,62] and Monge-Kantorovich or Wasserstein distance [61]. These distances
play an increasing role in different machine learning tasks, such as unsupervised
learning [6,11], semi-supervised learning [56], clustering [31], text classification
[35], as well as in image retrieval, clustering and classification [13,51,53], statis-
tics [24,49], and other applications [33]. In many of these applications the original
optimal distances are substituted by entropically regularized optimal transport
problem [13] which gives rise to a so-called Sinkhorn divergence.

A close problem arises in transportation research and consists in recover-
ing a matrix of traffic demands between city districts from the information on
population and workplace capacities of each district. As it is shown in [28], a
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natural model of the district’s population dynamics leads to an entropy-linear
programming optimization problem for the traffic demand matrix estimation. In
this case, the objective function is a sum of an entropy function and a linear
function. It is important to note also that the entropy function is multiplied by
a regularization parameter γ and the model is close to reality when the regu-
larization parameter is small. The same approach is used in IP traffic matrix
estimation [63].

Recent approaches to solving discrete optimal transport problem are based on
accelerated primal-dual gradient-based algorithms [21,30] which in some regimes
demonstrate better performance than well-known Sinkhorn’s algorithm [13,55].
Both these algorithms have complexity polynomially depending on the desired
accuracy [3,21,40]. Despite, formally, the dual for the optimal transport problem
is not strongly convex, it is strongly convex on any bounded subset of any sub-
space orthogonal to a one-dimensional subspace. In this paper we suggest and
check empirically a hypothesis which helps to increase the rate of convergence
for the dual problem to optimal transport. The hypothesis is that dual func-
tion demonstrates strong convexity on the orthogonal subspace and Sinkhorn’s
and other algorithms produce points in this orthogonal subspace meaning that
actually the dual problem is strongly convex on the trajectory of the method.

Since we focus mainly on alternating minimization, the related work contains
such classical works as [10,48]. AM algorithms have a number of applications
in machine learning problems. For example, iteratively reweighted least squares
can be seen as an AM algorithm. Other applications include robust regression
[41] and sparse recovery [16]. Famous Expectation Maximization (EM) algorithm
can also be seen as an AM algorithm [4,42]. Sublinear O(1/k) convergence rate
was proved for AM algorithm in [8]. AM-algorithms converge faster in practice in
comparison to gradient methods as they are free of the choice of the step-size and
are adaptive to the local smoothness of the problem. Besides mentioned above
works on AM algorithms, we mention [9,52,58], where non-asymptotic conver-
gence rates for AM algorithms were proposed and their connection with cyclic
coordinate descent was discussed, but the analyzed algorithms are not acceler-
ated. Accelerated versions are known for random coordinate descent methods
[2,23,26,27,36,37,44,47,54]. These methods use momentum term and block-
coordinate steps, rather than full minimization in blocks. A hybrid accelerated
random block-coordinate method with exact minimization in the last block and
an accelerated alternating minimization algorithm were proposed in [17].

2 Dual Optimal Transport Problem

In this paper we consider the following discrete-discrete entropically regularized
optimal transport problem

f(X) = 〈C,X〉 + γ〈X, ln X〉 → min
X∈U(r,c)

, (1)

U(r, c) = {X ∈ R
N×N
+ : X1 = r,XT1 = c},
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where X is the transportation plan, lnX is taken elementwise, C ∈ R
N×N
+ is

a given cost matrix, 1 ∈ R
N is the vector of all ones, r, c ∈ SN (1) := {s ∈

R
N
+ : 〈s,1〉 = 1} are given discrete measures, and 〈A,B〉 denotes the Frobenius

product of matrices defined as 〈A,B〉 =
N∑

i,j=1

AijBij .

Next, we consider the dual problem for the above optimal transport problem.
First, we note that U(r, c) ⊂ Q := {X ∈ R

N×N
+ : 1T X1 = 1} and the entropy

〈X, ln X〉 is strongly convex on Q w.r.t 1-norm, meaning that the dual problem
has the objective with Lipschitz-continuous gradient [43]. To be more precise,
function f is μ-strongly convex on a set Q with respect to norm ‖ · ‖ iff

f(y) � f(x) + 〈∇f(x), y − x〉 +
μ

2
‖x − y‖2 ∀x, y ∈ Q.

Further, function f is said to have L-Lipschitz-continuous gradient iff, for all
x, y ∈ Q, ‖∇f(x) − ∇f(y)‖∗ � L‖x − y‖. Here ‖ · ‖∗ is the standard conjugate
norm for ‖ · ‖. The proof that Entropy is 1-strongly convex on the standard
simplex w.r.t. to ‖·‖1-norm can be found in [43]. The dual problem is constructed
as follows

min
X∈Q∩U(r,c)

〈C,X〉 + γ〈X, ln X〉 (2)

= min
X∈Q

max
y,z∈RN

{
〈C,X〉 + γ〈X, ln X〉 + 〈y,X1 − r〉 +

〈
z,XT1 − c

〉 }

= max
y,z∈RN

{
− 〈y, r〉 − 〈z, c〉 + min

X∈Q

N∑

i,j=1

Xij
(
Cij + γ ln Xij + yi + zj

)}
.

Note that for all i, j and some small ε

Xij
(
Cij + γ ln Xij + yi + zj

)
< 0

for Xij ∈ (0, ε) and this quantity approaches 0 as Xij approaches 0. Hence,
Xij > 0 without loss of generality. Using Lagrange multipliers for the constraint
1T X1 = 1, we obtain the problem

min
Xij>0

max
ν

{
N∑

i,j=1

[
Xij

(
Cij + γ ln Xij + yi + zj

)] − ν

[ N∑

i,j=1

Xij − 1
]}

.

The solution to this problem is

Xij =
exp

(
− 1

γ

(
yi + zj + Cij

) − 1
)

∑n
i,j=1 exp

(
− 1

γ (yi + zj + Cij) − 1
) .

With a change of variables u = −y/γ − 1
21, v = −z/γ − 1

21 we arrive at the
following expression for the dual (minimization) problem

ϕ(u, v) = γ(ln
(
1T B(u, v)1

) − 〈u, r〉 − 〈v, c〉) → min
u,v∈RN

, (3)
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where [B(u, v)]ij = exp
(
ui + vj − Cij

γ

)
. Let us also define

ϕ(y, z) = ϕ

(

−y/γ − 1
2
1,−z/γ − 1

2
1
)

, (4)

i.e. ϕ(y, z) is the dual objective before change of variables. Note that the gradient
of this function has the form of two blocks

∇ϕ(y, z) =

⎛

⎜
⎜
⎜
⎝

r − B (−y/γ − 1/2,−z/γ − 1/2)1
1T B (−y/γ − 1/2,−z/γ − 1/2)1

c − B (−y/γ − 1/2,−z/γ − 1/2)T 1
1T B (−y/γ − 1/2,−z/γ − 1/2)1

⎞

⎟
⎟
⎟
⎠

. (5)

Notably, this dual problem is a smooth minimization problem with the objec-
tive having Lipschitz continuous gradient with constant 2/γ [30]. Unfortunately,
generally speaking it is not strongly convex since given a point (u0, v0) the value
of the objective is the same on the whole line (u0 + t1, v0 − t1) parameterized
by t. Yet, this function is strongly convex in the subspace orthogonal to these
lines [15]. The goal of this paper is to use this strong convexity to accelerate the
accelerated alternating minimization method based on Nesterov extrapolation
and alternating minimization.

The variables in the dual problem (3) naturally decompose into two blocks u
and v. Moreover, minimization over any one block may be performed analytically.

Lemma 1. The iterations

uk+1 ∈ argmin
u∈RN

ϕ(u, vk), vk+1 ∈ argmin
v∈RN

ϕ(uk+1, v),

can be written explicitly as

uk+1 = uk + ln r − ln
(
B

(
uk, vk

)
1
)
,

vk+1 = vk + ln c − ln
(
B

(
uk+1, vk

)T
1
)

.

This lemma implies that an alternating minimization method applied to the
dual formulation is a natural algorithm. In fact, this is the celebrated Sinkhorn’s
algorithm [13,55] in one of its forms [3] listed as Algorithm 1. This algorithm
may also be implemented more efficiently as a matrix-scaling algorithm, see [13].
For the reader’s convenience, we prove this lemma here.

Algorithm 1. Sinkhorn’s Algorithm
Output: xk

for k � 1 do
uk+1 = uk + ln r − ln

(
B

(
uk, vk

)
1
)

vk+1 = vk

uk+2 = uk+1

vk+2 = vk+1 + ln c − ln
(
B

(
uk+1, vk+1

)T
1
)

end for
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Proof. From optimality conditions, for u to be optimal, it is sufficient to have
∇uϕ(u, v) = 0, or

r − (1T B(u, vk)1)−1B(u, vk)1 = 0. (6)

Now we check that it is, indeed, the case for u = uk+1 from the statement of
this lemma. We check that

B(uk+1, vk)1 = diag(e(u
k+1−uk))B(uk, vk)1

= diag(eln r−ln(B(uk,vk)1))B(uk, vk)1

= diag(r) diag(B(uk, vk)1)−1B(uk, vk)1 = diag(r)1 = r

and the conclusion then follows from the fact that

1T B(uk+1, vk)1 = 1T r = 1.

The optimality of vk+1 can be proved in the same way.

3 Accelerated Sinkhorn’s Algorithm

In this section, we describe accelerated alternating minimization method from
[59], which originates from [29,30,46], where the latter preprint [30] describes
accelerated alternating minimization for non-strongly functions. Our goal is to
use the algorithm which has a possibility to use strong convexity. Formally, the
dual OT problem (3) is not strongly convex on the whole space. It is strongly con-
vex on any bounded subset of the subspace orthogonal to lines (u0 + t1, v0 − t1).
For non-strongly convex problems algorithm (2) has the following sublinear con-
vergence rate f(xk) − f(x∗) � 4nLR2

k2 . The proof can be found in [30]. The
following Algorithm 2 requires the knowledge of the parameter μ of strong con-
vexity. Notice, that this algorithm run with μ = 0 coincides with its modification
for non-strongly functions from [30]. But actually, we were able to outperform
the algorithm from [30] by estimating a parameter of strong convexity, but only
in iterations.
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Algorithm 2. Accelerated Alternating Minimization 2
Input: Starting point x0.
Output: xk

1: Set A0 = 0, x0 = v0, τ0 = 1
2: for k � 0 do
3: Set

βk = argmin
β∈[0,1]

f
(
xk + β(vk − xk)

)
(7)

4: Set yk = xk + βk(vk − xk) {Extrapolation step}
5: Choose ik = argmax

i∈{1,...,n}
‖∇if(yk)‖2

2

6: Set xk+1 = argmin
x∈Sik

(yk)

f(x) {Block minimization}

7: If L is known choose ak+1 s.t.
a2
k+1

(Ak+ak+1)(τk+μak+1)
= 1

Ln

If L is unknown, find largest ak+1 from the equation

f(yk) − a2
k+1

2(Ak+ak+1)(τk+μak+1)
‖∇f(yk)‖2

2+
μτkak+1

2(Ak+ak+1)(τk+μak+1)
‖vk − yk‖2

2 = f(xk+1) (8)

8: Set Ak+1 = Ak + ak+1, τk+1 = τk + μak+1

9: Set vk+1 = argmin
x∈RN

ψk+1(x) {Update momentum term}
10: end for

Theoretical justification is given by the following theorem proved in [59].

Theorem 1 [[59] Theorem 1]. After k steps of Algorithm 2 it holds that

f(xk) − f(x∗) � nLR2 min

{
4
k2

,

(

1 −
√

μ

nL

)k−1
}

, (9)

where R is an estimate for ‖x0 − x∗‖ satisfying ‖x0 − x∗‖ � R.

Applying Algorithm 2 to the dual entropy-regularized optimal transport prob-
lem (3) with the objective (4), and using the estimate L = 2/γ and R �
√

n/2
(

‖C‖∞ − γ
2 ln min

i,j
{ri, cj}

)

[30], we obtain the following Corollary.

Corollary 1. Let the histograms r, c be slightly modified, s.t. min
i,j

{ri, cj} � ε.

For example, one can set (r̃, c̃) =
(
1 − ε

8

) (
(r, c) + ε

n(8−ε) (1,1)
)
. Let Algorithm

2 be applied to the dual entropy-regularized optimal transport problem (3) with
the objective (4). Let this dual problem have μ-strongly convex objective. Then,
after k steps of Algorithm 2 it holds that

ϕ(y, z) − ϕ(y∗, z∗) � 2n

γ

(
‖C‖∞ − γ

2
ln ε

)2

min

{
4
k2

,

(

1 −
√

μγ

4

)k−1
}

. (10)



198 N. Tupitsa et al.

The specification of Algorithm 2 for the dual entropy regularized optimal trans-
port problem (3) with the objective (4) is listed below as Algorithm 3. Each
variable has two blocks that naturally correspond to the variables (y, z) in (4).

Algorithm 3. Accelerated Sinkhorn with Strong Convexity
Input: Starting point x0.
Output: xk

1: Set A0 = 0, x0 = w0, τ0 = 1
2: for k � 0 do
3: Set

βk = argmin
β∈[0,1]

ϕ
(
xk + β(wk − xk)

)
(11)

4: Set sk = xk + βk(wk − xk) {Extrapolation step}
5: Choose ik = argmax

i∈{1,2}
‖∇iϕ(sk)‖2

2, where ∇ϕ(·) is given in (5).

6: if ik = 1 then
7: xk+1

1 = sk
1 + ln r − ln

(
B

(
sk
1 , sk

2

)
1
)
, xk+1

2 = sk
2

8: else
9: xk+1

2 = sk
2 + ln c − ln

(
B

(
sk
1 , sk

2

)T
1
)

, xk+1
1 = sk

1

10: end if

11: If L is known choose ak+1 s.t.
a2
k+1

(Ak+ak+1)(τk+μak+1)
= 1

2L

If L is unknown, find largest ak+1 from the equation

ϕ(sk) − a2
k+1

2(Ak+ak+1)(τk+μak+1)
‖∇ϕ(sk)‖2

2+
μτkak+1

2(Ak+ak+1)(τk+μak+1)
‖wk − sk‖2

2 = ϕ(xk+1) (12)

12: Set Ak+1 = Ak + ak+1, τk+1 = τk + μak+1

13: Set wk+1 = wk − ak+1∇ϕ(sk) {Update momentum term}
14: end for

We point out that usually, the goal is to solve the primal OT problem. For
simplicity, we consider only dual OT problem since the solution of the primal
can be reconstructed via standard primal-dual analysis [5,12,21,22] applied to
the discussed methods.

4 Estimating a Parameter of Strong Convexity

We build an initial estimate of strong convexity parameter μ by searching the
value μ̂ from [0, L̂] which gives the minimum objective value after 10 iterations.
L̂ is an upper bound on the parameter of Lipschitz continuity of the gradient.

Dependence of the objective value after 10 iterations on μ is presented on
Fig. 1.

Then we restart the algorithm from the best point with μ = [2μ̂, μ̂, μ̂/2] every
10 iterations.

The significant implementation detail is connected with the accumulation
of the momentum term (vector w) by Algorithm 2. If we restart the algorithm



Strongly Convex Dual Optimal Transport 199

Fig. 1. Empirical dependence of the progress after 10 iterations h(μ) = ϕ(x10
μ ) on the

strong convexity parameter μ used in Algorithm 2. The initial value of μ is chosen as
a point of minimum of this dependence.

Fig. 2. Performance of Algorithm 2 with the optimal choice of parameter μ on the dual
entropy regularized optimal transport problem (3).

naively (with w0 = x0), we will lose all accumulated information. That is why,
we restart the algorithm with w0 obtained from the last iteration of the previous
restart. In order to compare the difference we bring to comparison the case of
naive restarts.

As we can see from (Fig. 2), the value of the dual objective decreases faster
when one uses the method with positive strong convexity parameter than when
one uses the method with μ = 0.
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5 Conclusion

In this work we have investigated, how strong convexity can be used to acceler-
ate the accelerated Sinkhorn’s algorithm for the dual entropy-regularized optimal
transport problem. As we see, the accelerated alternating minimization method
in its particular version of accelerated Sinkhorn’s algorithm with strong convex-
ity can utilize an estimated value of the strong convexity parameter to converge
faster. We underline that it is not clear how one can incorporate this informa-
tion in the standard Sinkhorn’s algorithm to accelerate it. As future work we
would like to note the study of automatic strong convexity adaptation proce-
dures like in [25,50], which are now adapted for gradient methods and coordi-
nate descent methods, rather than for alternating minimization methods. Among
other extensions, it would be interesting to understand whether restricted strong
convexity improves convergence rates of the methods for approximating Wasser-
stein barycenter [1,14,19,34,38,60] and related distributed optimization meth-
ods [18]. Another direction is an application to similar optimization problems,
which arise in transportation research in connection to equilibrium in congestion
traffic models and traffic demands matrix estimation [7,20] and multimarginal
optimal transport [39]. Finally, we use regularization for the OT problem to
make the dual problem have Lipshitz gradient. It would be interesting to use
universal methods [32,45,57] for the dual OT problem.
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Abstract. A significant issue in studies of economic development is whether
economies (countries, regions of a country, etc.) converge to one another in
terms of per capita income. In this paper, nonlinear asymptotically subsiding
trends of the income gap in a pair of economies model the convergence process.
A few specific forms of such trends are proposed: log-exponential trend,
exponential trend, and fractional trend. A pair of economies is deemed con-
verging if time series of their income gap is stationary about any of these trends.
To test for stationarity, standard unit root tests are applied with non-standard test
statistics that are estimated for each kind of trends.
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1 Introduction

A significant issue in studies of economic development is whether economies (coun-
tries, regions of a country, cities, etc.) converge to one another in terms of per capita
income. There are a number of methodologies to test for the convergence hypothesis.
The most widespread one in the literature is the analysis of a negative cross-section
correlation between initial per capita income and its growth, the so-called beta-
convergence (see, e.g., [1]). An alternative methodology is the distribution dynamics
analysis that explores the evolution of cross-economy income distribution [2]. Both
approaches provide only an aggregated characterization of convergence. If the whole
set of economies under consideration is found to converge, it is not possible to reveal
economies with a deviant behavior (e.g., diverging or randomly walking). On the other
hand, if the convergence hypothesis is rejected, it is not able to detect a subset (or
subsets) of converging economies.

Methodologies based on time-series analysis make it possible to overcome this
problem. They consider time series of the income gap, i.e., the difference of logarithms
of per capita incomes in a pair of economies r and s, yrst = yrt – yst = ln(Yrt/Yst),
t denoting time. To discriminate between logarithmic and real (e.g., percentage) terms,
Yrt/Yst – 1 is called income disparity. One element of the pair can be an aggregate, for
instance, the national economy when economies under consideration are the country’s
regions.
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Bernard and Durlauf [3] have put forward a formal definition of convergence:
economies r and s converge if the long-term forecasts of per capita income (condi-
tionally on information available by the moment of the forecast, I) for both economies
are equal, that is

limt!1 E yrstjIð Þ ¼ 0: ð1Þ

Despite this definition of convergence is general, procedures of testing for con-
vergence applied in [3] in fact detect only a particular class of processes satisfying (1),
namely, stationary processes with no trend (implying that yrt and yst have a common
trend). Thus, such procedures are not able to classify the most interesting case of
catching-up as convergence.

As a way out, [4] proposes to model the (square of) income gap by a trend h(t) of a
priory unknown form, approximating it by a power series of degree k. The respective
econometric model looks like (et denotes residuals with standard properties, ai is a
coefficient to be estimated):

y2rst ¼ h t; kð Þ ¼ a0 þ a1tþ a2t
2 þ . . .þ akt

k þ et t ¼ 1; . . .; Tð Þ: ð2Þ

Albeit the trend may be nonlinear, Eq. (2) is linear with respect to coefficients.
Convergence takes place if dh/dt < 0 holds for all t. This condition is supposed to be
equivalent to the negativity of the time average of dh(t)/dt:

1
T

XT

t¼1

dh
dt

¼
Xk

i¼1
ai

i
T

XT

t¼1
ti�1\0: ð3Þ

However, the equivalence is not the fact. It is obvious, considering a continuous-
time counterpart of (3):

1
T

Z T

1

dh
dt

dt ¼ 1
T

h Tð Þ � h 1ð Þð Þ\0:

Hence, the mere fact that h(T) < h(1) suffices to accept the convergence hypothesis.
In the general case, this does not evidence convergence. For instance, a U-shape path of
the income gap may satisfy (3). Moreover, even if dh/dt < 0 is true for every t = 1,…T,
condition (1) knowingly does not hold, as h(∞; k) = ±∞ for any finite k.

Thus, there is a want of developing an alternative methodology. This paper puts
forward such a methodology, namely, modeling the convergence process by asymp-
totically subsiding trends. This leads to nonlinear econometric models that need non-
standard distributions of test statistics to test models for unit roots.
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2 Modeling Convergence

Actual convergence processes are in fact a superposition of two processes that can be
called long-run, or deterministic, convergence, and stochastic, or short-run, conver-
gence. Long-run convergence is a deterministic path of the income gap yrst that tends to
zero over time: y�rst ¼ h tð Þ; h tð Þ !

t!1 0: In [4], only this process is considered (albeit

with no latter condition). Short-run convergence is an autocorrelated stochastic process
containing no unit root (i.e., a stationary process), mt = qm t–1 + et, where q is the
autocorrelation coefficient, q < 1, and et * N(0, r2) with finite r. Intuitively, short-
run convergence characterizes the behavior of transient random shocks. A unit shock
deviates the income gap from its long-run path, dying out over time with half-life
h = ln(0.5)/ln(q), so that the income gap eventually returns to its long-run path. Only
such processes are considered in [3] (assuming y�rst ¼ 0).

The superposition of these two processes gives a process that is stationary around
an asymptotically subsiding trend h(t). That is, albeit random shocks force the process
to deviate from the trend, it permanently tends to return to the trend, thus satisfying (1).
The following econometric model of the class AR(1) describes such a process:

yrst ¼ h tð Þþ vt t ¼ 0; . . .; T � 1ð Þ; vt ¼ qvt�1 þ e t t ¼ 1; . . .; T � 1; v0 ¼ e0ð Þ:

Applying the Cochrane-Orcutt transformation to this equation, the following model
is arrived at:

Dyrst ¼ h tð Þ � kþ 1ð Þh t � 1ð Þþ kyrs;t�1 þ et t ¼ 1; . . .; T � 1ð Þ; ð4Þ

where Dyrst = yrst – yrs,t–1 and k = q – 1.
To make the model (4) operational, a specific function h(t) has to be taken from the

class of asymptotically subsiding functions. A few such functions are preferable in
order to model more adequately the properties of a process under consideration. The
following three functions seem convenient from the practical viewpoint: log-
exponential trend h(t) = ln(1 + cedt), d < 0, exponential trend h(t) = cedt, d < 0, and
fractional trend h(t) = c/(1 + dt), d > 0. The respective models are nonlinear with
respect to coefficients, having the forms:

Dyrst ¼ ln 1þ cedt
� �� kþ 1ð Þln 1þ ced t�1ð Þ

� �
þ kyrs;t�1 þ et; ð4aÞ

Dyrst ¼ cedt � kþ 1ð Þced t�1ð Þ þ kyrs;t�1 þ et; ð4bÞ

Dyrst ¼ c
1þ dt

� kþ 1ð Þ c
1þ d t � 1ð Þ þ kyrs;t�1 þ et: ð4cÞ

An advantage of the log-exponential trend is the ease of interpretation. Parameter c
is the initial (at t = 0) income disparity. Parameter d characterizes the convergence rate
which can be simply expressed in terms of the half-life time of the (deterministic)
income disparity, i.e., the time the disparity takes to halve: H = ln(0.5)/d.
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A shortcoming of this trend is that is has no symmetry properties with respect to a
permutation of the economy indices. Albeit yrst = –ysrt, the permutation changes
absolute values of c and d (and may change the estimate of k in regression (4a)).

Contrastingly, exponential and fractional trends have symmetry properties. A per-
mutation of r and s changes only the sign of c, leaving its absolute value and the value
of d (as well as k in (4b), (4c)) intact. However, while the initial income disparity can
be easily calculated from c, equaling ec – 1 in both trends, the half-life of the deter-
ministic income gap involves a mixture of c and d. This results in hardly interpretable

expressions. For the exponential trend, H ¼ 1
d ln

ln 0:5 ec þ 1ð Þð Þ
c

� �
; for the fractional trend,

H ¼ 1
d

c
ln 0:5 ec þ 1ð Þð Þ � 1

� �
.

Models (4a)–(4c) are also applicable to the case of deterministic divergence. It
takes place if d > 0 in the log-exponential and exponential trends, or d < 0 in the
fractional trend. The time the (deterministic) income disparity takes to double can
characterize the divergence rate.

Model (4) encompasses two particular cases. With h(t) = 0, which corresponds to
c = 0 in (4a)–(4c), it degenerates to ordinary AR(1) model with no constant:

Dyrst ¼ kyrs;t�1 þ et: ð5Þ

This implies that series yrt and yst are cointegrated with cointegrating vector [1, –1],
i.e., they have the same trend. Intuitively, this means that convergence as such, i.e.,
catching-up, has completed by t = 0 (if it had occurred before). In the further dynamics,
per capita incomes in economies r and s are equal up to random shocks (hence, only
stochastic convergence takes place).

With h(t) = const, which corresponds to d = 0 in (4a)–(4c), model (4) degenerates
to ordinary AR(1) model with a constant:

Dyrst ¼ a þ yrs;t�1 þ et: ð6Þ

This implies that series yrt and yst are cointegrated with cointegrating vector [1, –c],
i.e., they have a common trend: hs(t) = c + hr(t), c = –a/k. In other words, the income
gap is constant (up to random shocks); yrt and yst move parallel to each other with the
distance between their paths equaling c. Again, only stochastic convergence takes place
here. Just models (5) and (6) are considered in [3] (albeit within a more evolved
framework).

Having estimated parameters of a specific model of the form (4), we need to check
its adequacy. First of all, the question is whether yrst is indeed stationary around the
given trend (yrst has no unit root). There are a number of tests for unit root (testing
hypothesis k = 0 against k < 0, or k < 0 against k = 0). Most of them use t-ratio of k,
s = k/rk, as the test statistic. In the case of testing for unit roots, it has non-standard
distributions, differing from the t-distribution (that is why it is designated s, and not t).
Such distributions (named the Dickey-Fuller distributions) are tabulated for AR(1)
models with no constant, with a constant, and with a linear and quadratic trends, but not
for models with proposed nonlinear trends. To estimate them, s in every model with a
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specific trend was estimated for each of 1 million generated random walks yt = yt–1 + et.
Table 1 reports some values of the s-statistic from the obtained distributions for sample
size T = 204 (used in the empirical analysis reported in the next section). Figure 1 plots
the 10-percent tails of the distributions, comparing them with the Dickey-Fuller dis-
tributions for the cases of linear and quadratic trend from [5].

If the unit root test rejects the hypothesis of non-stationarity, the ordinary t-test can
test parameters c and d for statistical significance. Given that there are three versions of
the model (4), every version is estimated and tested. If they turn out to be completive,
the version providing the best fit – namely, the minimal sum of squared residuals
(SSR) – is accepted. Note that valid models with the “incorrect” sign of d suggest
deterministic divergence. The rejection of all versions because of the presence of unit
root or insignificance of c or d evidences the absence of (deterministic) convergence as
well. If statistical reasons for no-convergence are of interest, we can estimate and test
regression (6) and then, if it is rejected, regression (5). In this case, we find whether no-
convergence is due to coinciding or “parallel” dynamics of per capita incomes in a pair
of economies under consideration (the same or common trend), or – if both models are
rejected – it is due to a random walk.

Table 1. Selected values of the s-statistics for models with nonlinear trends, T = 204.

Probability Log-exponential trend (4a) Exponential trend (4b) Fractional trend (4c)

1% –3.841 –3.851 –5.152
5% –3.220 –3.273 –3.820
10% –2.898 –2.971 –3.297
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Fig. 1. Distributions of the unit root test s-statistics for Eqs. (4a)–(4c) and selected Dickey-
Fuller distributions; T = 204.
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3 Empirical Application

This section provides an illustration of the empirical application of the proposed
methodology for analyzing convergence of regional incomes per capita in Russia. The
time span covers January 2002 through December 2018 with a monthly frequency (204
months). The indicator under consideration is the real personal income per capita by
region. The term “real” means that the income is adjusted to the respective regional
price level. The cost of the fixed basket of goods and services for cross-region com-
parison of population’s purchasing capacity serves as an indicator of the regional price
level. The official statistical data on nominal incomes and the costs of the fixed basket
come from [6–8].

Convergence is considered with respect to the national income per capita. Thus,
index s is fixed, denoting Russia as a whole; then yrst is the gap between regional and
national incomes. To test models for unit roots, the Phillips-Perron test (PP test) is
applied with modifications proposed in [9, 10].

Since the whole set of results is cumbersome (involving 79 regions), this section
gives them only partially for illustrative purposes. It presents examples of qualitatively
different cases discussed in the previous section. Table 2 reports these.

Table 2. Selected results of analyzing regional convergence in Russia.

Model k PP-test
p-value

c/a in (6) p-value of c/a d p-value of d SSR

Kursk Region
(4a) –0.484 (0.061) 0.000 –0.354 (0.018) 0.000 –0.011 (0.001) 0.000 0.550
(4b) –0.496 (0.062) 0.000 –0.430 (0.025) 0.000 –0.013 (0.001) 0.000 0.546

(4c) –0.361 (0.054) 0.000 –0.493 (0.066) 0.000 0.029 (0.008) 0.000 0.592
Republic of Karelia

(4a) –0.457 (0.059) 0.000 –0.100 (0.012) 0.000 0.005 (0.001) 0.000 0.680
(4b) –0.462 (0.059) 0.000 –0.103 (0.013) 0.000 0.005 (0.001) 0.000 0.679
(4c) –0.423 (0.057) 0.000 –0.122 (0.013) 0.000 –0.003 (0.000) 0.000 0.695

Saint Petersburg City
(4a) –0.427 (0.058) 0.000 0.236 (0.035) 0.000 –0.001 (0.001) 0.287

(4b) –0.427 (0.058) 0.000 0.212 (0.028) 0.000 –0.001 (0.001) 0.288
(4c) –0.427 (0.058) 0.000 0.212 (0.030) 0.000 0.001 (0.002) 0.365
(6) –0.419 (0.057) 0.000 0.078 (0.012) 0.000

Republic of Bashkortostan
(4a) –0.359 (0.053) 0.000 0.018 (0.033) 0.576 0.000 (0.015) 0.976

(4b) –0.359 (0.053) 0.000 0.018 (0.032) 0.573 0.000 (0.015) 0.976
(4c) –0.359 (0.053) 0.003 0.019 (0.032) 0.564 0.000 (0.014) 0.985
(6) –0.359 (0.053) 0.000 0.006 (0.005) 0.249

(5) –0.317 (0.052) 0.000
Moscow Region
(4a) –0.211 (0.043) 0.076 0.018 (0.016) 0.264 0.013 (0.005) 0.012

(4b) –0.209 (0.043) 0.094 0.019 (0.016) 0.246 0.013 (0.005) 0.013
(4c) –0.180 (0.040) 0.262 0.041 (0.019) 0.029 –0.004 (0.001) 0.000

(6) –0.125 (0.034) 0.357 0.010 (0.005) 0.043
(5) –0.091 (0.030) 0.116

Standard errors are in parentheses.
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Convergence manifests itself in the Kursk Region. All three versions of the trend
model can be accepted, suggesting fast convergence. Choosing model (4b) as providing
the best fit, the half-life time of the income gap equals 5.3 years (65.3 months).
Figure 2(a) plots the path of the actual income gap and its estimated exponential trend.
According to this trend, income per capita in the Kursk Region was below the national
level by 35% at the beginning of the time span under consideration and by only 3% by
its end. The log-exponential and fractional trends suggest even faster convergence with
half-live times 5.1 and 3.6 years, respectively.

Divergence occurs in the Republic of Karelia. Again, all three versions of the trend
model can be accepted. Model (4b) seems preferable, albeit its SSR differs from the
SSR in the model (4a) only slightly. Figure 2(b) depicts the dynamical pattern. The
income gap rises, doubling every 10.4 years. The income per capita in this region was
9% below the national level in January 2002 and 28% in December 2018.

The case of Saint Petersburg City (which is a separate administrative-territorial unit
considered as a region) illustrates the absence of convergence that is due to the “par-
allel” dynamics of the national and regional incomes per capita. Figure 2(c) shows this
case. Although the unit root test rejects the hypothesis of nonstationarity with confi-
dence in all trend models, high p-values of d suggest the absence of a trend. Model (6)
proves to be valid, implying the income gap to be time-invariant. It equals 0.186 (= –a/
k); in other words, real income per capita in Saint Petersburg City remains on average
constant, being 20.5% above the national level.

The Republic of Bashkortostan demonstrates a similar pattern, Fig. 2(d), with the
difference that there is no income gap; real income per capita here remains on average
equal to the national per capita income (in fact, the regional income fluctuates around
the national level). In all trend models, p-values of both c and d are high, thus implying
rejection of these models. The constant in the model (6) has high p-value as well, which
leads to the model (5). It proves to be valid; the unit root hypothesis is rejected with
confidence.

At last, no one model seems to describe the behavior of the income gap in the
Moscow Region, Fig. 2(e). We can reject models (4a) and (4b) because of high p-value
of c, and models (6) and (5) because of the non-rejection of a unit root. The conclusion
may be that non-convergence here is due to a random walk of the income gap.

Briefly summing up the results of the full analysis of income convergence in
Russia, convergence takes place in the whole of Russia, as the Gini index decreases
over time. Analysis by region yields the “anatomy” of convergence. Among all 79
regions in the spatial sample, 44 regions (55.7%) are converging. In 16 regions
(20.3%), non-convergence is due to common trends with the national income per capita
(in three cases, regional trends coincide with the national trend). An unpleasant feature
of the pattern obtained is a considerable number of diverging regions; there are 17 of
them (21.5%). Besides, random walks are peculiar to two regions.
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Fig. 2. Different cases of behavior of the income gap: (a) convergence (the Kursk Region);
(b) divergence (Republic of Karelia); (c) a constant income gap (Saint Petersburg City); (d) no
income gap (Republic of Bashkortostan); (d) random walking of income gap (the Moscow
Region).
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4 Conclusion

This paper develops a methodology of modeling convergence by asymptotically sub-
siding trends of the income gap in a pair of economies. This way conforms to the
theoretical definition of convergence. Three specific kinds of such trends are proposed,
namely, log-exponential trend, exponential trend, and fractional trend. This makes it
possible to select a specific model that most adequately describes properties of actual
dynamics.

Transformation to testable versions generates nonlinear econometric models that
represent a superposition of stochastic and deterministic convergence. Such models
need additional efforts: the application of methods for estimation of nonlinear regres-
sions and estimating distributions of the unit root test statistics for every specific trend.
However, these efforts are repaid, providing a theoretically adequate and practically
fairly flexible and helpful tool for studying processes of convergence between coun-
tries, regions within a country, regions of different countries (e.g., in the European
Union), etc.

The reported examples of applying the proposed methodology to the empirical
analysis of convergence of real incomes per capita between Russian regions show that
the results obtained look reasonable and correspond to economic intuition. As regards the
whole analysis, it has yielded an interesting pattern. In spite of the fact that convergence
occurs in Russia as a whole, a deviant dynamics is peculiar to a number of regions:
almost a quarter of regions are found to diverge, either deterministically or stochastically.
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Abstract. This paper considers a game-theoretic model of a competi-
tion in which experts (players) seek to enroll two contestants into their
own teams. The quality of the contestants is characterized by two random
parameters, the first corresponding to the vocal talent of a contestant and
the second to his appearance. The first quality parameter is known to the
players, whereas the second is hidden from them. Each expert chooses an
appropriate contestant based on the value of the known quality parame-
ter only. The winner is the player whose team includes a contestant with
the maximum sum of both quality parameters. This game is described by
the best-choice model with incomplete information. The optimal strate-
gies and payoffs of the players for different situations (subgames) of the
game are found. The results of numerical simulation are presented.

Keywords: Best-choice game · Two-player game · Incomplete
information · TV show · Threshold strategies

1 Introduction

In the study of various social and economic situations, an important issue is to
analyze the behavior of participants when making some decision. The decision
problem naturally arises in choice problems, e.g., when looking for a job, when
buying (selling) goods or services, when choosing a mate or a business partner,
and when participating in auctions or competitions. Game-theoretic best-choice
problems are a suitable model for TV contests in which participants seek to
choose an object or a group of objects. One of such contests is The Voice, a
popular TV show. In this competition, a jury of several experts chooses vocal-
ists. What is important, experts sit back to the contestants, assessing their vocal
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talents without seeing them. During the competition, each expert can invite a
fixed number of participants to his team. If the vocal talent of a next partic-
ipant suits an expert, he makes an offer to the contestant to join his team. If
a contestant is invited by several experts, the contestant decides himself which
expert team to join. As soon as the choice procedure is complete and the teams
of all experts are filled, a competition between the contestants takes place. An
expert whose team member defeats the other participants becomes the winner.
Note that the result of the competition depends not only on the vocal talent of
the participants, but also on their appearance. A feature of the choice procedure
in this competition is that the experts do not see the appearance of contestants
when making their decision. Such situations are described well by best-choice
models with incomplete information.

In this paper, a game-theoretic model of The Voice show is proposed, in which
two experts (players) seek to enroll several contestants into their own teams. The
players are simultaneously observing the sequence of contestants to choose two
contestants into their own teams based on their qualities. The quality of each
contestant is characterized by two random parameters, the first corresponding
to his vocal talent and the second to his appearance. The experts observe the
first quality parameter in explicit form, whereas the second quality parameter
is hidden from them. The players decide to choose or reject a contestant by the
known quality parameter. In this game, the winner is the player whose team
includes a contestant with the maximum sum of both quality parameters.

This paper is organized as follows. In Sect. 2, the publications in this field
of research are surveyed. The best-choice game with incomplete information is
described in Sect. 3. The case in which only one expert is remaining in the game
is discussed in Sect. 4. Different possible situations (subgames) in the two-player
game are studied in Sects. 5 and 6.

2 Related Works

Best-choice games often arise in the study of behavior of participants in different
auctions and competitions. An example of such a contest is The Price is Right.
In this game, n participants spin the wheel one or two times to gain points. The
goal of the participants is to collect a certain sum of points (score) not exceeding
a given threshold. The game was investigated by Seregina et al. [7], Mazalov and
Ivashko [8], Tenorio and Cason [9], and Bennett and Hickman [10].

The Voice show can be another attractive platform to analyze human behav-
ior. In this show, an expert has to decide on two alternatives: choose a contes-
tant that is performing right now, or continue the choice procedure. Therefore,
an expert acts in the same way as an employee searching for a job, who has to
decide whether to accept the current offer or reject it, in the hope of finding
a more suitable vacant job. Similarly, when considering a series of projects, an
investor has to decide whether a given project is suitable for investment or not.

The problem associated with The Voice show, in which each of several experts
chooses only one contestant into his team, was considered by Mazalov et al. [11].
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This paper presents a generalization of the problem mentioned to the case when
the experts can choose no more than two contestants in their own teams.

The optimal strategies of the players in best-choice problems are often con-
structed using dynamic programming. With this method, a complex problem
is solved by decomposing it into simpler subproblems represented by a recur-
sive sequence. Dynamic programming has applications in various fields, such as
quitting games (Solan and Vieille [1]), the house-selling problem (Sofronov [2]),
the job-search problem (Immorlica et al. [3]), the mate choice problem (Alpern
et al. [4]), to name a few, and has been successfully used for solving economic
problems of best choice and auctions (Whitmeyer [5], Harrell et al. [6]).

This paper proposes a new game-theoretic model of competition as follows.
Each of the two players seeks to choose a contestant better than the opponent.
Each of the two players can accept two participants into his team and information
about them is incomplete (partially available). For this problem, the optimal
choice strategies of the players are found. The optimal threshold strategies and
payoffs of the players are numerically simulated.

3 Two-Player Game with Incomplete Information

Consider a multistage game Γ2,N with incomplete information as follows. Two
experts (players in this game) are simultaneously observing a certain sequence
of contestants. Each player has to choose and invite to his team an appropri-
ate contestant based on the latter’s quality only. The quality of a contestant
is characterized by two parameters x and y that reflect his vocal talent and
appearance, respectively. Assume that the quality parameters of the contestants
represent a sequence of independent random variables (xi, yi), i = 1, . . . , N, with
the uniform distribution on the set [0, 1]×[0, 1]. The try-out process (called blind
auditions in The Voice) is organized so that the experts can explicitly assess the
first quality parameter, whereas the second one is hidden from them. There-
fore, the players decide to accept or reject a current contestant using the known
quality parameter only. The players seek to maximize the total quality of the
contestant chosen (i.e., the sum of his quality parameters). The winner is the
player whose team includes a contestant with the maximum sum of both quality
parameters.

The choice procedure is described as follows. At stage 1, the experts are
observing the quality parameter x1 from the set (x1, y1) of contestant 1 and
make an independent decision (accept or reject him). If contestant 1 is chosen
by a single expert, he joins the latter’s team. If both experts invite contestant 1,
he chooses one of them equiprobably. Whenever a contestant is chosen by a
player, the hidden quality parameter (x1 + y1) becomes known to all players.
Next, as soon as one of the experts chooses two contestants (e.g., at stages i
and j, where i < j), he quits the game, and the other expert continues further
choice alone. The expert remaining in the game seeks to choose a contestant
l (l = j + 1, . . . , N) for his team (in fact, one or two contestants) so that his
total quality is higher than the total quality of the best contestant of the expert
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quitted, i.e., xl +yl > max{xi +yi, xj +yj}. In the case of rejecting contestant 1
by both experts, the game evolves to the next stage, and the choice procedure
described is repeated again. Also, other situations are when a single expert or
both experts choose a single contestant and continue their choice. All possible
subgames will be listed and studied below.

In the best-choice games the player’s optimal strategies always have threshold
form. For this game, the optimal strategies of the players will be found in the
class of threshold strategies: if the quality parameter xi of a contestant exceeds
some threshold ui, then an expert chooses this contestant; otherwise rejects him.
The optimal threshold strategies of equal-right players in the game with N � 2
contestants will be calculated below.

For this purpose, dynamic programming will be used. Decompose the prob-
lem under consideration into a series of simpler subproblems corresponding to
different situations in the game when n contestants, 0 ≤ n ≤ N, are left to
perform (and hence are still available for choice).

These situations (subgames) are as follows:
Γ

(0,0)
2,n , a two-player game in which n contestants are left to perform and none

of the players has chosen a contestant into his team so far;
Γ

(1,0)
2,n (z), a two-player game in which n contestants are left to perform,

player 1 has already chosen a contestant of a total quality z, whereas player 2
has chosen nobody so far;

Γ
(1,1)
2,n (t, z), a two-player game in which n contestants are left to perform and

both players have already chosen a single contestant into their teams, of a total
quality t (player 1) and z (player 2);

Γ
(0,2)
1,n (z), a one-player game (involving player 1) in which n contestants are

left to perform, player 1 has chosen nobody so far, whereas player 2 has already
chosen two contestants and the maximum total quality of them is z;

Γ
(1,2)
1,n (t, z), a one-player game (involving player 1) in which n contestants

are left to perform, player 1 has already chosen a contestant of a total quality
t, whereas player 2 has already chosen two contestants and the maximum total
quality of them is z.

In the original game Γ
(0,0)
2,n , the payoffs of the players depend on the payoffs

gained in the above-mentioned subgames, Γ2,N = Γ
(0,0)
2,N .

4 Game with Only One Player Remaining

4.1 Game Γ
(1,2)
1,n (t, z)

Consider the game Γ
(1,2)
1,n (t, z) involving player 1 only, in which n contestants

are left to perform, player 1 has already chosen a contestant of a total quality
t, whereas player 2 has already chosen two contestants and the maximum total
quality of them is z.

Denote by H
(1,2)
1,n (t, z) the payoff of player 1 in the game Γ

(1,2)
1,n (t, z). Con-

struct the optimal strategies in the class of threshold strategies: if a current
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observation x1 exceeds a threshold u
(1,2)
1,n = u

(1,2)
1,n (t, z), then the player chooses

the corresponding contestant; otherwise rejects him.
If no contestants are left to perform in the game, then

H
(1,2)
1,0 (t, z) = 1 · I{t≥z} + 0 · I{t<z},

where I{A} = I{A}(ω) =
{

1 if ω ∈ A;
0 otherwise.

Let a single contestant be available for choice. Then

H
(1,2)
1,1 (t, z) = H

(1,2)
1,0 (t, z)P{x1 < u

(1,2)
1,1 } + 1 · P{t ∨ (x1 + y1) ≥ z, x1 ≥ u

(1,2)
1,1 },

where a ∨ b = max{a, b}.
Obviously, u

(1,2)
1,1 = 0, and hence

H
(1,2)
1,1 (t, z) = P{t ∨ (x1 + y1) ≥ z, x1 ≥ 0} = H1,1(z)I{t<z} + 1 · I{t≥z},

where H1,1(z) = P{x1 + y1 ≥ z} =

⎧⎪⎨
⎪⎩

1 − z2

2
, z < 1;

(2 − z)2

2
, z ≥ 1.

The same considerations for the game Γ
(1,2)
1,n (t, z) yield

H
(1,2)
1,n (t, z) = H1,n(z)I{t<z} + 1 · I{t≥z},

and
u
(1,2)
1,n = u1,nI{t<z} + 0 · I{t≥z},

where H1,n(z) is the player’s payoff in the one-player game in which n contestants
are left to perform and a single contestant has to be chosen into the player’s team
with a total quality exceeding z. In accordance with [11], the function H1,n(z)
has the form

H1,n(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

H1,n−1(z) · u1,n +
z∫

u1,n

(1 − (z − x1)) dx1 + 1 − z, z < 1,

H1,n−1(z) · u1,n +
1∫

u1,n

(1 − (z − x1)) dx1, z ≥ 1,
(1)

and
u1,n = z − (1 − H1,n−1(z)).

4.2 Game Γ
(0,2)
1,n (z)

Now, pass to the game Γ
(0,2)
1,n (z) involving player 1 only, in which n contestants

are left to perform, player 1 has chosen nobody so far, whereas player 2 has
already chosen two contestants and the maximum total quality of them is z.

Denote by H
(0,2)
1,n (z) the player’s payoff in this game.
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Theorem 1. In the game Γ
(0,2)
1,n (z) the optimal strategy of player 1 has the form

u
(0,2)
1,n = u

(0,2)
1,n (z) = max

{
0, z − 1 − H

(0,2)
1,n−1(z)

1 − H1,n−1(z)

}
,

and the player’s payoffs are given by

H
(0,2)
1,1 (z) = H1,1(z),

H
(0,2)
1,n (z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

H
(0,2)
1,n−1(z)

(

u
(0,2)
1,n +

(z − u
(0,2)
1,n )2

2

)

+ 1− u
(0,2)
1,n − (z − u

(0,2)
1,n )2

2
, z < 1,

H
(0,2)
1,n−1(z)

(

u
(0,2)
1,n +

(1 − u
(0,2)
1,n )(1 − u

(0,2)
1,n + 2z)

2

)

+
(1 − u

(0,2)
1,n )(3 + u

(0,2)
1,n − 2z)

2
, z ≥ 1,

where2 ≤ n ≤ N.

Proof.
Assume that no contestants are left to perform in the game. Then
H

(0,2)
1,0 (z) = 0.

If a single contestant is still available for choice, then the player will choose
him, gaining the payoff

H
(0,2)
1,1 (z) = P{x1 + y1 ≥ z} = H1,1(z).

Now, let n = 2. First of all, consider the case z < 1. Suppose that player 1
uses a strategy u. (Note that u cannot exceed z.) As a result,

H
(0,2)
1,2 (z) =

u∫
0

H
(0,2)
1,1 (z)dx1 +

1∫
u

H
(1,2)
1,1 (x1 + y1, z)dx1

=

u∫
0

H
(0,2)
1,1 (z)dx1 +

z∫
u

[ z−x1∫
0

H1,1(z)dy1 +

1∫
z−x1

dy1

]
dx1 +

1∫
z

dx1.

The function H
(0,2)
1,2 (z) is not increasing in u, since its derivative with respect

to u

∂H
(0,2)
1,2 (z)
∂u

= −2H1,1(z)(z − u)

is nonpositive. Hence, the optimal value is u
(0,2)
1,2 = u = 0.

Next, in the case z ≥ 1,
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H
(0,2)
1,2 (z) =

u∫
0

H
(0,2)
1,1 (z)dx1 +

1∫
u

H
(1,2)
1,1 (x1 + y1, z)dx1

=

u∫
0

H1,1(z)dx1 +

1∫
u

[ z−x1∫
0

H1,1(z)dy1 +

1∫
z−x1

dy1

]
dx1.

Calculate the derivative of H
(0,2)
1,2 (z) with respect to u and set it equal to 0.

Consequently, the optimal value u
(0,2)
1,2 = u satisfies the equation

H1,1(z) − H1,1(z)(z − u) − 1 + z − u = 0.

Hence, it follows that u
(0,2)
1,2 = z − 1.

Thus,

u
(0,2)
1,2 =

{
0, z < 1,

z − 1, z ≥ 1,

H
(0,2)
1,2 (z) =

⎧⎪⎪⎨
⎪⎪⎩

H1,1(z)
z∫
0

(z − x1)dx1 +
z∫
0

(1 − (z − x1))dx1 +
1∫
z

dx1, z < 1,

H1,1(z)
(

z − 1 +
1∫

z−1

(z − x1)dx1

)
+

1∫
z−1

(1 − (z − x1))dx1, z ≥ 1,

or

H
(0,2)
1,2 (z) =

⎧⎪⎨
⎪⎩

H1,1(z)
z2

2
+ 1 − z2

2
, z < 1,

H1,1(z)
(

z − 1 +
z(2 − z)

2

)
+

(2 − z)2

2
, z ≥ 1.

For the game Γ
(0,2)
1,n (z),

H
(0,2)
1,n (z) =

u∫
0

H
(0,2)
1,n−1(z)dx1 +

1∫
u

H
(1,2)
1,n−1(x1 + y1, z)dx1

=

u∫
0

H
(0,2)
1,n−1(z)dx1 +

z∧1∫
u

[ z−x1∫
0

H1,n−1(z)dy1 +

1∫
z−x1

dy1

]
dx1 +

1∫
z∧1

dx1,

where a ∧ b = min {a, b}.
Calculate the derivative of H

(0,2)
1,n (z) with respect to u and set it equal to 0.

As a result, the optimal value u
(0,2)
1,n = u satisfies the equation

H
(0,2)
1,n−1(z) = H1,n−1(z)(z − u) + 1 − z + u.
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Hence, it follows that

u
(0,2)
1,n = max

{
0, z − 1 − H

(0,2)
1,n−1(z)

1 − H1,n−1(z)

}
.

Note that u
(0,2)
1,n ≥ z − 1 for z ≥ 1, because H

(0,2)
1,n−1(z) ≥ H1,n−1(z).

Consequently,

H
(0,2)
1,n (z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H
(0,2)
1,n−1(z)

(

u
(0,2)
1,n +

z∫

u
(0,2)
1,n

(z − x1)dx1

)

+
z∫

u
(0,2)
1,n

(1 − z + x1)dx1+
1∫

z

dx1, z < 1,

H
(0,2)
1,n−1(z)

(

u
(0,2)
1,n +

1∫

u
(0,2)
1,n

(z − x1)dx1

)

+
1∫

u
(0,2)
1,n

(1 − z + x1)dx1, z ≥ 1.

The thresholds u
(0,2)
1,n (z) as functions of z for different n, 1 ≤ n ≤ 5, are

shown in Fig. 1.

Fig. 1. Graphs of thresholds u
(0,2)
1,n (z) for different n.

5 Two-Player Game

5.1 Game Γ
(1,1)
2,n (t, z)

Consider the two-player game Γ
(1,1)
2,n (t, z), in which n contestants are left to

perform and both players have already chosen a single contestant into their
teams, of a total quality t (player 1) and z (player 2).

Denote by H
(1,1)
2,n (t, z) the payoff of player 1 in this game. Note that

H
(1,1)
2,n (t, z) = 1 − H

(1,1)
2,n (z, t). Therefore, let t < z without loss of generality.

If no contestants are left to perform in the game, then H
(1,1)
2,0 (t, z) = 0.
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Further, in the case n = 1, each of the players is interested in accepting the
last contestant available. Hence, the optimal thresholds of the players coincide
with each other, being equal to u

(1,1)
2,1 = 0 · I{z≤1} + (z − 1) · I{z>1}.

For z ≤ 1, it follows that

H
(1,1)
2,1 (t, z) =

1

2
P{x1 + y1 ≥ z} =

1

2

[ z∫

0

dx1

1∫

z−x1

dy1 +

1∫

z

dx1

1∫

0

dy1

]

= 1/2

(

1 − z2

2

)

;

for z > 1, H
(1,1)
2,1 (t, z) =

1
2

[
1∫

z−1

dx1

1∫
z−x1

dy1

]
=

(z − 2)2

4
.

Consider the game Γ
(1,1)
2,n (t, z). Assume that the experts have established

some thresholds u and v, u < v, since t < z. Let n contestants be left to
perform.

The optimal thresholds of the players can be found in the following way. Fix
a threshold strategy v of player 2 and find the opponent’s best response u.

The payoff of player 1 is given by

H
(1,1)
2,n (u, v|t, z) =

u∫
0

H
(1,1)
2,n−1(t, z)dx1 +

v∫
u

dx1

1∫
0

(1 − H
(1,2)
1,n−1(z, t ∨ (x1 + y1)))dy1

+

1∫
v

dx1

[
1
2

( 1∫
0

(1 − H
(1,2)
1,n−1(z, t ∨ (x1 + y1))dy1

)

+
1
2

1∫
0

H
(1,2)
1,n−1(t, z ∨ (x1 + y1))dy1

]
.

In order to find the optimal thresholds u
(1,1)
2,n (z) and v

(1,1)
2,n (z), calculate the

derivatives of H
(1,1)
2,n (u, v|t, z) with respect to u and v, setting them equal to 0.

As a matter of fact, four cases are possible, depending on the values of z.
Here is the solution of this problem for n = 2.
Find the optimal thresholds of the players.

a) If z ≤ u < v, then the optimal value u
(1,1)
2,2 (z) = u is calculated from the

equation

1
2

(
1 − z2

2

)
= 1 −

[ 1−u∫
0

(
1 − (u + y1)2

2

)
dy1 +

1∫
1−u

(u + y1 − 2)2

2
dy1

]
. (2)

The optimal value v
(1,1)
2,2 (z) = v is calculated from the equation

1−v∫
0

(
1 − (v + y1)2

2

)
dy1 +

1∫
1−v

(v + y1 − 2)2

2
dy1 = 1/2, (3)
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which yields v
(1,1)
2,2 (z) = 0.5.

b) If u < z ≤ v, then the optimal value u
(1,1)
2,2 (z) = u is calculated from the

equation

1
2

(
1− z2

2

)
−(1−z+u)+

1−u∫
z−u

(
1 − (u + y1)2

2

)
dy1+

1∫
1−u

(u + y1 − 2)2

2
dy1 = 0.

(4)
The optimal value v

(1,1)
2,2 (z) is calculated from Eq. (3), which yields

v
(1,1)
2,2 (z) = 0.5.

c) If u < v < z ≤ 1, then the optimal value u
(1,1)
2,2 (z) = u is calculated from

Eq. (4).
The optimal value v

(1,1)
2,2 (z) = v is calculated from the equation

(z − v)

(
1− z2

2

)
+ 2

[ 1−v∫
z−v

(
1− (v + y1)2

2

)
dy1 +

1∫
1−v

(v + y1 − 2)2

2
dy1

]
= 1− z + v. (5)

d) If u < v < 1 < z, then the optimal value u
(1,1)
2,1 (z) = u is calculated from

the equation

1
2

(
1 − z2

2

)
−

1∫
z−u

(
1 − (u + y1 − 2)2

2

)
dy1 = 0. (6)

The optimal value v
(1,1)
2,2 (z) = v is calculated from the equation

(z − v)
(z − 2)2

2
+ 2

1∫
z−v

(v + y1 − 2)2

2
dy1 = 1 − z + v. (7)

The qualitative behavior of the optimal thresholds u
(1,1)
2,2 (z) and v

(1,1)
2,2 (z)

depending on z is demonstrated in Fig. 2.

Example 1. Here are the optimal thresholds for some values of z.
For 0 ≤ z ≤ z̄ ≈ 0.436, the optimal threshold v

(1,1)
2,2 (z) = 0.5 of player 2

is given by Eq. (3), whereas the optimal threshold u
(1,1)
2,2 (z) of player 1 satisfies

Eq. (2). For example, u
(1,1)
2,2 (0) = 0.5, u

(1,1)
2,2 (0.4) ≈ 0.45, and u

(1,1)
2,2 (z̄) = z̄ ≈

0.436.
For z̄ < z ≤ 0.5, the optimal threshold of player 2 is v

(1,1)
2,2 (z) = 0.5,

whereas the optimal threshold u
(1,1)
2,2 (z) of player 1 satisfies Eq. (4). For example,

u
(1,1)
2,2 (0.45) ≈ 0.434 and u

(1,1)
2,2 (0.5) ≈ 0.427.

For 0.5 < z ≤ 1, the optimal threshold u
(1,1)
2,2 (z) of player 1 satisfies Eq. (4).

For example, u
(1,1)
2,2 (0.75) ≈ 0.392 and u

(1,1)
2,2 (1) ≈ 0.376.
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Fig. 2. Thresholds u
(1,1)
2,2 (z) and v

(1,1)
2,2 (z).

The optimal threshold v
(1,1)
2,2 (z) of player 2 is given by Eq. (5). For example,

v
(1,1)
2,2 (0.75) ≈ 0.519 and v

(1,1)
2,12 (1) ≈ 0.533.

For 1 < z, the optimal threshold u
(1,1)
2,2 (z) of player 1 satisfies Eq. (6);

u
(1,1)
2,2 (1.5) ≈ 0.427 and u

(1,1)
2,2 (2) ≈ 0.476.

The optimal threshold v
(1,1)
2,2 (z) of player 2 is given by Eq. (7). For example,

v
(1,1)
2,2 (1.5) ≈ 0.634 and v

(1,1)
2,2 (2) = 1.

The optimal strategies of the players depending on the current maximum z
in the game in which both players have already chosen a single contestant are
shown in Fig. 2. The optimal strategies clearly differ, depending on which player
has chosen the contestant of the maximum total quality z. The player with
this contestant in his team has an increasing optimal threshold that exceeds
the opponent’s one. At the same time, the optimal threshold of his opponent is
decreasing for z ≤ 1 and increasing for z > 1.

5.2 Game Γ
(1,0)
2,n (z)

Consider the two-player game Γ
(1,0)
2,n (z), in which n contestants are left to per-

form, player 1 has already chosen a contestant of a total quality z, whereas
player 2 has chosen nobody so far.

Denote by H
(1,0)
2,n (z) the payoff of player 1 in this game. Note that H

(1,0)
2,n (z) =

1 − H
(0,1)
2,n (z). Assume that the experts have established some thresholds u and

v, where v < u. Let n contestants be left to perform.
In the game Γ

(1,0)
2,1 (z) with no contestants available for choice, H

(1,0)
2,0 (z) = 1.

The thresholds of the players coincide with each other (the players invite any
contestant) and are equal to u

(1,0)
2,1 (z) = 0 · I{z≤1} + (z − 1) · I{z>1}
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and

H
(1,0)
2,1 (z) =

1

2

[ 1∫

0

dx1 +

z∫

0

dx1

z−x1∫

0

dy1

]

· I{z<1}

+

[z−1∫

0

dx1+
1

2

1∫

z−1

dx1

(

1 +

z−x1∫

0

dy1

)]

·I{z≥1} =
1

2

(

1 +
z2

2

)

·I{z<1}+
z(4 − z)

4
·I{z≥1}.

In the game Γ
(1,0)
2,n (z) the payoff of player 1 is given by

H
(1,0)
2,n (u, v|z) =

v∫
0

H
(1,0)
2,n−1(z)dx1 +

u∫
v

dx1

1∫
0

H
(1,1)
2,n−1(z, x1 + y1)dy1 (8)

+

1∫
u

dx1
1
2

( 1∫
0

(1 − H
(0,2)
1,n−1(x1 + y1))dy1

)
+

1
2

1∫
0

H
(1,1)
2,n−1(z, x1 + y1)dy1

]
.

In order to find the optimal thresholds u
(1,0)
2,n (z) and v

(1,0)
2,n (z), calculate the

derivatives of H
(1,0)
2,n (u, v|z) with respect to u and v, setting them equal to 0.

Consider, for example, the game Γ
(1,0)
2,2 (z). Since player 2 has chosen nobody

so far, his optimal strategy is given by

v
(1,0)
2,2 (z) = 0 · I{z<1} + (z − 1) · I{z≥1}.

Calculate the optimal values u
(1,0)
2,2 (z). For this purpose, consider the following

cases:

a) If z ≤ u < 1, then the optimal value u
(1,0)
2,2 (z) = u is calculated from the

equation

1−u∫
0

(
1 − (u + y1)2

2

)
dy1 +

1∫
1−u

(u + y1 − 2)2

2
dy1 =

2
3
. (9)

As a result, u
(1,0)
2,2 (z) ≈ 0.273; denote it by z∗.

b) If u < z ≤ 1, then the optimal value u
(1,0)
2,2 (z) = u is calculated from the

equation

z−u∫
0

1
2

(
1 +

z2

2

)
dy1 +

3
2

1−u∫
z−u

(
1 − (u + y1)2

2

)
dy1 +

3
2

1∫
1−u

(u + y1 − 2)2

4
dy1

(10)

− 1 +

z−u∫
0

(
1 − z2

2

)
dy1 = 0.
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c) If u < 1 < z, then the optimal value u
(1,0)
2,2 (z) = u is calculated from the

equation

z−u∫
0

z(4 − z)
4

dy1 + 3

1∫
z−u

(u + y1 − 2)2

4
dy1 − 1 +

z−u∫
0

(z − 2)2

2
dy1 = 0. (11)

The qualitative behavior of the optimal thresholds u
(0,1)
2,2 (z) depending on z

is demonstrated in Fig. 3.

Fig. 3. Thresholds u
(1,0)
2,2 (z).

Example 2. Here are the optimal thresholds for some values of z.
For 0 ≤ z ≤ z∗, the optimal threshold u

(1,0)
2,2 (z) is found from Eq. (9),

u
(1,0)
2,2 (z) = z∗ ≈ 0.273.

For z∗ < z ≤ 1, the optimal threshold u
(1,0)
2,2 (z) is found from Eq. (10). For

example, u
(1,0)
2,2 (0.5) ≈ 0.284 and u

(1,0)
2,2 (1) ≈ 0.343.

For 1 < z, the optimal threshold u
(1,0)
2,2 (z) is found from Eq. (11). For example,

u
(1,0)
2,2 (1.5) ≈ 0.569 and u

(1,0)
2,2 (2) = 1.

6 Game Γ
(0,0)
2,n

Consider the game Γ
(0,0)
2,n , in which n contestants are left to perform and none

of the players has chosen a contestant into his team so far.
If n ≤ 2, then the optimal thresholds of the players coincide with each other,

being equal to u
(0,0)
2,n = 0.



A Game-Theoretic Approach to Team Formation in The Voice Show 229

Let u < v; in this case,

H
(0,0)
2,n (u, v) =

u∫
0

H
(0,0)
2,n−1dx1 +

v∫
u

dx1

1∫
0

H
(1,0)
2,n−1(x1 + y1)dy1

+

1∫
v

dx1

[
1
2

1∫
0

H
(1,0)
2,n−1(x1 + y1)dy1 +

1
2

1∫
0

H
(0,1)
2,n−1(x1 + y1)dy1

]

=

u∫
0

1
2
dx1 +

v∫
u

dx1

1∫
0

H
(1,0)
2,n−1(x1 + y1)dy1 +

1∫
v

1
2
dx1.

Due to the obvious symmetry of the players, they have the same payoff

H
(0,0)
2,n =

1
2

and the same optimal threshold, i.e., u
(1,0)
2,n = v

(1,0)
2,n .

The optimal value u
(1,0)
2,n = u is found from the equation

1∫
0

H
(1,0)
2,n−1(u + y1)dy1 =

1
2
. (12)

Calculate the thresholds of the players for n = 3.
Equation (12) takes the form

z∗−u∫
0

H
(1,0)
2,2 (u + y1)dy1 +

1−u∫
z∗−u

H
(1,0)
2,2 (u + y1)dy1 +

1∫
1−u

H
(1,0)
2,2 (u + y1)dy1 =

1
2
,

(13)
where z∗ satisfies Eq. (9), z∗ ≈ 0.273.

The expressions for the payoffs H
(1,0)
2,2 (u + y1) are derived from Eq. (8).

In accordance with the results of numerical simulation, the optimal strategies
are determined by the threshold u

(0,0)
2,3 ≈ 0.216.

7 Conclusions

In this paper, a game-theoretic model of The Voice TV show in which two players
seek to form a team of two contestants has been proposed. An important fea-
ture of this formulation is that the players have incomplete information about
the quality parameters of the incoming (performing) contestants. The optimal
threshold strategies and payoffs of the players in this problem have been calcu-
lated using dynamic programming.

In the future, the results can be extended to the case of several players and
also to the case of several vacant places in the team of each player.
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Abstract. Various concepts of solutions can be employed in the non-
cooperative game theory. The Berge equilibrium is one of such solutions.
The Berge equilibrium is an altruistic concept of equilibrium. In this
concept, the players act on the principle “One for all and all for one!” The
Berge equilibrium solves such well known paradoxes in the game theory
as the “Prisoner’s Dilemma”, “Battle of the sexes” and many others.
At the same time, the Berge equilibrium rarely exist in pure strategies.
Moreover, in finite games, the Berge equilibrium may not exist in the
class of mixed strategies. The paper proposes the concept of a weak
Berge equilibrium. Unlike the Berge equilibrium, the moral basis of this
equilibrium is the Hippocratic Oath “First do no harm”. On the other
hand, all Berge equilibria are some weak Berge equilibria. The properties
of the weak Berge equilibrium have been investigated. The existence of
the weak Berge equilibrium in mixed strategies has been established for
finite games. A numerical weak Berge equilibrium approximate search
method, based on 3LP-algorithm, is proposed. The weak Berge equilibria
for finite 3-person non-cooperative games are computed.

Keywords: Three-person game · Non-cooperative game · Berge
equilibrium · Weak Berge equilibrium

1 Introduction

A wide class of economic, social and political processes are well described by
the methods of the game theory. Often, when decisions are made, participants
in such processes can not agree among themselves that are modeled by using
non-cooperative games. Certainly, the most well-known concept of a solution in
the theory of non-cooperative games was proposed by John Nash in 1950 in [1].
For this work in 1994 he was awarded the Nobel Prize in Economics.

However, the application of the Nash equilibrium concept in the modelling
of real socio-economic and political conflicts, in some cases, leads to paradoxical
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results, such as the “prisoner’s dilemma”. One of the first who has noticed this
was Claude Berge in [2]. In this book, Berge proposed a new concept of equi-
librium, according to which, players are divided into coalitions, while players of
one coalition can work together to maximize the payoffs of players of another
coalition. Apparently, a crushing review by Martin Shubik [3] on Berge’s book
[2], led to the fact that Claude Berge switched his attention from the game the-
ory to other areas of mathematics. After decades, based on Berge’s ideas, V.I.
Zhukovsky [4,5] and K.S. Vaisman [6,7] suggested a new altruistic concept of
equilibrium which was called a Berge equilibrium (BE). In this concept, the play-
ers act on the principle of “One for all and all for one!” from Alexander Dumas’s
novel “The Three Musketeers”. Another interpretation of Berge equilibrium is
[8] the Golden Rule of morality: “Do things to others the way you want them
did with you”. The development of the Berge equilibrium concept is described
in details in the review [9]. It is worth noting that the BE solves such well known
paradoxes in the game theory as the “Prisoner’s Dilemma”, “Battle of the sexes”
and many others. Also the use of BE is possible to the economics applications
[10].

At the same time, the Berge equilibrium concept has some drawbacks. One
of these drawbacks is that Berge equilibrium rarely exists in pure strategies.
Moreover, in N - person games (N ≥ 3) with a finite set of strategies, Berge
equilibrium may not exist in the class of mixed strategies. Such example was
constructed, in particular, in [11]. The lack of BE might be caused by the fact
that it is often impossible to follow the Golden Rule of morality in relation
to all players at the same time. For example, if the goals of two players are
opposite, then the third player will not be able to apply the Golden Rule to them
simultaneously. In this case, increasing the payoff of one player, simultaneously
reduces the payoff of the other.

In this paper, we introduce the concept of the weak equilibrium according to
Berge (Weak Berge Equilibrium or WBE), no longer based on the Golden Rule of
morality, and on the Hippocratic oath “First do no harm!”. Here, we will assume
that, making a decision, each player adheres to the situation, one-sided deviation
from which can harm although to one of the other players. Further, in Sect. 2,
the concept of the weak Berge equilibrium is formalized, some of its properties
are studied and sufficient conditions for the existence of such an equilibrium
in N -person games are given. In Sect. 3, a numerical WBE approximate search
method based on [12–14] is proposed, and numerical simulation results are given
for finite games of three person.

2 The Concept of the Weak Berge Equilibrium

Let us consider a non-cooperative N -person game in normal form:

Γ = 〈N, {Xi}i∈N, {fi(x)}i∈N〉, (1)

where N = {1, 2, . . . , N} denotes the set of serial numbers of the players; the set
of xi strategies of the i-th player (i ∈ N) is denoted by Xi, where Xi ⊆ Rni .
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As a result of the players choosing their strategies, the strategy profile is x =
(x1, . . . , xN ) ∈ X = X1 × X2 × . . . × XN ⊆ Rn (n = n1 + n2 + . . . + nN ). On
the set of strategy profiles X for each player i (i ∈ N) the scalar payoff function
fi(x) : X → R was defined. The value of fi(x) was realized on the strategy
profile chosen by the players x ∈ X was called the payoff of the i-th player.

The game Γ is played as follows. Each player i (i ∈ N), without entering
into a coalition with other players, chooses his strategy xi ∈ Xi. As a result of
this choice, the strategy profile is x = (x1, . . . , xN ) ∈ X. After that, each player
i gets his payoff fi(x).

Thus, when making a decision, the player is forced to focus not only on his
payoff function, but also on the possible choice of the other participants in the
game.

Further, (yi, x−i) denotes the strategy profile (xi, . . . , xi−1, yi, xi+1, . . . , xN ),
which is obtained from strategy profile x by replacing the strategy of the i-th
player xi on yi.

The most popular concept of solution in the theory of non-cooperative games
is Nash equilibrium.

Definition 1. A strategy profile xe = (xe
1, . . . , x

e
N ) ∈ X is called a Nash equi-

librium (NE) in game (1) if for every x ∈ X the system of inequalities

fi(xe) ≥ fi(xi, x
e
−i) (i ∈ N) (2)

is true.

The Nash equilibrium strategy profile xe ∈ X is stable with the respect to
deviation of an individual player from his strategy which enters in xe. Applying
the concept of the Nash equilibrium, the player proceeds from his own selfish
motives. He only cares about his payoff, do not take into account the interests
of other players. However, this approach leads to a number of paradoxes, such
as the Tucker problem in the classic game called as Prisoner’s Dilemma.

Example 1. Let us consider the Prisoner’s Dilemma game. Two criminals are
arrested on suspicion of a crime, but the police do not have direct evidence.
Therefore, the police, have isolated them from each other, and offered them
the same deal: if one testifies against the other, but he keeps silence, the first
one is released for helping the investigation, and the second gets 10 years - the
maximum term of imprisonment. If both are silent, their deed goes through a
lighter article, and each of them are sentenced to a year in prison. If both testify
against each other, each receives a minimum period of 2 years. Every prisoner
chooses to keep quiet or testify against another. However, none of them knows
exactly what the other will do. The Nash equilibrium in this game dictates
players to testify against each other, although silence will be more beneficial for
them.

Thus, the players’ egoism (the Nash equilibrium) in the Prisoner’s Dilemma
leads them to the most unprofitable solution. This is the Tucker problem.

The opposite approach to the concept of equilibrium, based on altruism, was
called the Berge equilibrium.
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Definition 2. A strategy profile xB = (xB
1 , . . . , xB

N ) ∈ X is called a Berge equi-
librium (BE) in game (1), if for each x ∈ X the system of inequalities

fi(xB) ≥ fi(xB
i , x−i) (i ∈ N) (3)

is true.

The difference between Nash and Berge equilibria is that, in a Nash equilib-
rium, each player directs all efforts to increase its individual payoff as much as
possible. The antipode of (2) is (3), where each player strives to maximize the
payoffs of the other players, ignoring its individual interests. Such an altruistic
approach is intrinsic to kindred relations and occurs in religious communities.
The elements of such altruism show up in charity, sponsorship, and so on.

In Example 1, players receive the best result if they use the Berge equilibrium,
thus the Berge equilibrium solves the Tucker problem in the Prisoner’s Dilemma
(the prisoners choose to keep quiet).

Consider a special case of game (1) with two players, i.e., the game Γ where
N = 1, 2. Then a Berge equilibrium xB = (xB

1 , xB
2 ) is defined by the equalities

f1(xB) = max
x2∈X2

f1(xB
1 , x2), f2(xB) = max

x1∈X1
f2(x1, x

B
2 ).

The Nash equilibrium xe = (xe
1, x

e
2) in this two-player game is given by the

conditions

f1(xe) = max
x1∈X1

f1(x1, x
e
2), f2(xe) = max

x2∈X2
f2(xe

1, x2).

A direct comparison of these standalone formulas leads to the following result.

Property 1. The Berge equilibrium in game (1) with N = {1, 2} coincides with
the Nash equilibrium if both players interchange their payoff functions and then
apply the concept of the Nash equilibrium to solve the game.

In view of Property 1, all results concerning the Nash equilibrium in the two-
player game are automatically transferred to the Berge equilibrium (of course,
with an “interchange” of the payoff functions as described by Property 1).

The differences appear when N ≥ 3. So, the Berge equilibrium may not
exist in finite 3-person games. An example of this is given in [11]. The following
example is taken from [11].

Example 2. Let us consider the following 3-person game in which each of the
players has two pure strategies. Pure strategies of the first, the second, and the
third player are denoted A1, A2; B1, B2; C1, C2, respectively.

B1 B2 B1 B2

C1 :
A1

A2

(
(2, 1, 0) (1, 1, 1)
(2, 0, 1) (1, 0, 2)

)
C2 :

A1

A2

(
(1, 2, 0) (0, 2, 1)
(1, 1, 1) (0, 1, 2)

)

The left-hand matrix refers to the pure strategy C1 of the third player, while
the right-hand matrix refers to his/her pure strategy C2. Let us note that this
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game is a very special one. None of the players has any possibility to influence
their own payoff, no matter if they use any of their pure or mixed strategies. On
the contrary, players’ payoffs depend exclusively on the choices of the remaining
players.

One can easily check that the second and the third players’ best support to
any of the first player’s (pure or mixed) strategies is a pair of pure strategies
(B1, C1); the first and the third players’ best support to any of the second player’s
(pure or mixed) strategies is a pair of pure strategies (A1, C2); and finally, the
first and the second players’ best support to any of (pure or mixed) strategies
of the third player is a pair of pure strategies (A2, B2). This game has no Berge
equilibria, neither in pure, nor in mixed strategies.

Then, we recall the concept of Pareto optimality, and then formalize the
Weak Berge Equilibrium.

Definition 3. The alternative x∗ is a Pareto-optimal alternative in the N -cri-
teria problem

〈X, {fi(x)}i∈N〉,
if the system of N inequalities

fi(x) ≤ fi(x∗) (i ∈ N),

with at least one strict inequality, is inconsistent.

The moral basis of following definition is the Hippocratic Oath “First do no
harm!”

Definition 4. Let us call the strategy profile xw = (xw
1 , . . . , xw

n ) a weak Berge
equilibrium (WBE), if for each player i (i ∈ N) strategy xw

i is Pareto-optimal
alternative in the N − 1-criteria problem

Γi = 〈Xi, {fj(xi, x
w
−i)}j∈N\{i}〉.

Note that any BE is WBE. But the converse is not true, there are WBE that
are not BE.

Let us compare the game Γ with an auxiliary game

Γ̃ = 〈N, {Xi}i∈N, {gi(x)}i∈N〉, (4)

where the set of players N and the set of strategies Xi (i ∈ N) are the same as
in the game (1), and the payoff functions gi(x) have the form

gi(x) =
∑

j∈N\{i}
fj(x). (5)

Lemma 1. The Nash equilibrium strategy profile in the game (4) is a weak
Berge equilibrium strategy profile in the game (1).
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Proof. Let xe be a Nash equilibrium strategy profile in the game Γ̃ , i.e

gi(xe
1, ..., x

e
i−1, xi, x

e
i+1, ..., x

e
n) ≤ gi(xe) (i ∈ N). (6)

With regard to (5), the inequality (6) can be rewritten as

∑
j∈N\{i}

fj(xi, x
e
−i) ≤

∑
j∈N\{i}

fj(xe) (i ∈ N). (7)

Suppose xe is not a WBE strategy profile, then there exists some number i
for which the system of inequalities is consistent

fj(xi, x
e
−i) ≥ fj(xe) (j ∈ N \ {i}), (8)

of which at least one inequality is strict.
Adding inequalities (8), we obtain

∑
j∈N\{i}

fj(xi, x
e
−i) >

∑
j∈N\{i}

fj(xe) (i ∈ N),

that contradicts (7).

Remark 1. To construct a WBE strategy profile in the game (1), we can use the
following algorithm:

1. to compose auxiliary game Γ̃ ;
2. to construct a strategy profile xe which is the Nash equilibrium strategy
profile in the auxiliary game Γ̃ ;
3. the found strategy profile xe will be the WBE strategy profile in the original
game Γ .

As an example, let us consider the game “Snowdrift” which is proposed in
[15].

Example 3. Let us consider the 3-person Snowdrift game which is shown in
Table 1. The history of the game lies in the fact that A, B and C are the drivers
of three cars, that stuck in a snowdrift at night, each of them has a shovel. If a
solution is found for any one care, others can use it. Every driver chooses to dig
or wait (in the hope that someone else will dig, or that a snowplow will come
to the place of incident). Digging will cost 6 points, which are divided equally
between those who perform the work; provided that there is at least one dig-
ger. If the players dug out by themselves of a snowdrift, then each player gets
4 points. Thus, if all three players dig, then everyone will get 2 points. If two
players dig, they will get one point each, and the third player will earn 4 points.
If one player digs, then his payoff will be negative (−2), and the payoffs of the
remaining two players will be 4 points each. In the case that the players do not
dig, but wait until the morning when the utilities arrive and clear the snow, their
payoff will be zero.
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Table 1. The 3-person Snowdrift game.

C – to wait C – to dig

A \ B to wait to dig A \ B to wait to dig

to wait (0, 0, 0) (4, −2, 4) to wait (4, 4, −2) (4, 1, 1)

to dig (−2, 4, 4) (1, 1, 4) to dig (1, 4, 1) (2, 2, 2)

Here, the 3-dimensional matrices A, B, C, which determine the payoffs of
the players will be

A : A1 =
(

0 4
−2 1

)
, A2 =

(
4 4
1 2

)
;

B : B1 =
(

0 −2
4 1

)
, B2 =

(
4 1
4 2

)
;

C : C1 =
(

0 4
4 4

)
, C2 =

(−2 1
1 2

)
.

The Nash equilibrium (NE) here will (wait, wait, wait) [15] with payoffs (0, 0, 0).
We will now compile an auxiliary game, the payoff matrices in which will be:

for the first player

A∗ = B + C : A∗
1 =

(
0 2
8 5

)
, A∗

2 =
(

2 2
5 4

)
;

for the second player

B∗ = A + C : B∗
1 =

(
0 8
2 5

)
, B∗

2 =
(

2 5
2 4

)
;

for the third player

C∗ = A + B : C∗
1 =

(
0 2
2 2

)
, C∗

2 =
(

8 5
5 4

)
.

The Nash equilibrium (NE) in the auxiliary game with matrices A∗, B∗, C∗

will be (dig, dig, dig), respectively, the weak Berge equilibrium (WBE) in the
original game will also be (dig, dig, dig) with payoffs (2, 2, 2).

Obviously, in this example, the WBE is more profitable for all players than
the NE.

Remark 2. In the Snowdrift game, the Berge equilibrium (BE) [15] coincides
with the WBE.

Follow to Lemma 1 and the sufficient conditions for the existence of a NE, it
is easy possible to obtain sufficient conditions for the existence of a WBE under
the usual restrictions for the game theory.
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Theorem 1. In a non-cooperative N -person game Γ with a finite set of strate-
gies, a weak Berge equilibrium strategy profile in mixed strategies exists.

Theorem 2. If in a non-cooperative N -person game Γ , the sets of strategies
Xi are convex compacts, and the payoff functions fi(x) are continuous in the
aggregate of variables, then in the game Γ a weak Berge equilibrium strategy
profile in mixed strategies exists.

3 The WBE in a Finite 3-Person Game

Let us consider a non-cooperative 3-person game.

Γ3 = 〈{1, 2, 3}, {Xi}i=1,2,3, {fi(x)}i=1,2,3〉.
The strategy profile xw = (xw

1 , xw
2 , xw

3 ) is the WBE strategy profile, if and only
if

1) the strategy xw
1 is the Pareto-optimal alternative in the two-criterial problem

〈X1, {f2(x1, x
w
2 , xw

3 ), f3(x1, x
w
2 , xw

3 )}〉;
2) the strategy xw

2 is the Pareto-optimal alternative in the two-criterial problem

〈X2, {f1(xw
1 , x2, x

w
3 ), f3(xw

1 , x2, x
w
3 )}〉;

3) the strategy xw
3 is the Pareto-optimal alternative in the two-criterial problem

〈X3, {f1(xw
1 , xw

2 , x3), f2(xw
1 , xw

2 , x3)}〉.
Let us compose an axillary game for the game Γ3

Γ̃3 = 〈{1, 2, 3}, {Xi}i=1,2,3, {gi(x)}i=1,2,3〉,
where, according to (5)

g1(x) = f2(x) + f3(x),
g2(x) = f1(x) + f3(x),
g3(x) = f1(x) + f2(x).

(9)

The NE strategy profile in Γ̃3 will be the WBE strategy profile in the original
game Γ3.

Below, a finite non-cooperative 3-person game Γ3 is defined with three sets
X, Y , Z of strategies of the first, second, and third player respectively, where
X = {x = (x1, . . . , xm)T ∈ Rm : xT em = 1, x ≥ 0m}, Y = {y = (y1, . . . , yn)T ∈
Rn : yT en = 1, y ≥ 0n}, Z = {z = (z1, . . . , zl)T ∈ Rl : zT el = 1, z ≥ 0l},
ω = (x, y, z) ∈ Rm+n+l, together with their payoff functions as follows

fx(ω) =
m∑

i=1

n∑
j=1

l∑
k=1

aijkxiyjzk,

fy(ω) =
m∑

i=1

n∑
j=1

l∑
k=1

bijkxiyjzk,

fz(ω) =
m∑

i=1

n∑
j=1

l∑
k=1

cijkxiyjzk.
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Here, one has (aijk), (bijk), (cijk)—the players’ 3-dimensional payoff tables
(without any loss of generality one can assume that all the entries of those tables
are positive real numbers); the vector ωT = (xT , yT , zT ), ω ∈ Ω = X ×Y ×Z ⊂
⊂ Rm+n+l

+ . Next, for p = m,n, l, we define the vectors 0p = (0, . . . , 0)T ∈ Rp
+,

ep = (1, . . . , 1)T ∈ Rp, as well as Rp
+—the nonnegative orthant of the Euclidean

space Rp. The symbol T denotes the operation of transposition of a vector
(matrix).

Following the algorithm in remark 1, we construct the functions (9).

gx(ω) = fy(ω) + fz(ω) =
m∑

i=1

n∑
j=1

l∑
k=1

(bijk + cijk)xiyjzk,

gy(ω) = fx(ω) + fz(ω) =
m∑

i=1

n∑
j=1

l∑
k=1

(aijk + cijk)xiyjzk,

gz(ω) = fx(ω) + fy(ω) =
m∑

i=1

n∑
j=1

l∑
k=1

(aijk + bijk)xiyjzk.

Let us introduce the Nash function G(ω) = δx(ω) + δy(ω) + δz(ω), where

δx(ω) = max
x′∈X

g(x′, y, z) − g(ω),

δy(ω) = max
y′∈Y

g(x, y′, z) − g(ω),

δz(ω) = max
z′∈Z

g(x, y, z′) − g(ω).

The function G(ω) is an analogue of the Nash function defined for the bi-matrix
games [16]. As the above–defined payoff functions are linear with respect to each
variable x, y, z(when the other two variables are fixed), the auxiliary game Γ̃3

is convex, hence the set of Nash points Ω∗ is non-empty (but not necessarily
convex).

Since G(ω) ≥ 0 for all ω ∈ Ω, and G(ω) = 0 if, and only if ω is the NE of
the game Γ̃3, one can find the Nash equilibrium strategy profile of game Γ̃3 as
the global minimum (equalling zero) of the function G(ω) on Ω.

Now we turn to the approximately numerical method for the construction of
WBE in the game Γ3. In [12] this algorithm (3LP) approximately solving finite
non-cooperative three-person games was proposed. The testing results illustrat-
ing the efficiency of the mentioned method’s application can be found in [13,14].

The 3LP-Method for Solving the Finite 3-Persons Game

We denote ãijk = bijk + cijk, b̃ijk = aijk + cijk, c̃ijk = aijk + bijk and dijk =
ãijk + b̃ijk + c̃ijk = 2(aijk + bijk + cijk).

The iteration counter is set as t = 0. As an starting strategy, one can use any
pair of the players’ pure strategies (the total number of such pairs is mn+ml+nl);
for example, fix the pair of strategies {y(0), z(0)} with the components y

(0)
1 = 1,

y
(0)
j = 0 (j = 2, . . . , n), z

(0)
1 = 1, z

(0)
k = 0 (k = 2, . . . , l), and solve successively
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(for t = 0, 1, . . .) the triple problem Px(x(t+1), y(t), z(t)), Py(x(t+1), y(t+1), z(t)),
Pz(x(t+1), y(t+1), z(t+1)), where

Px(x, y′, z′) :

m∑
i=1

(
n∑

j=1

l∑
k=1

dijky′
jz

′
k

)
xi − β − γ → max

x,β,γ
,

m∑
i=1

(
l∑

k=1

b̃ijkz′
k

)
xi − β ≤ 0, j = 1, . . . , n,

m∑
i=1

(
n∑

j=1

c̃ijky′
j

)
xi − γ ≤ 0, k = 1, . . . , l,

xT em = 1, x ≥ 0m, β, γ ∈ R1
+.

If x∗ is an optimal solution to the problem Px(x, y′, z′), then we set x′ := x∗.
Then we solve:

Py(x′, y, z′) :

n∑
j=1

(
m∑

i=1

l∑
k=1

dijkx′
iz

′
k

)
yj − α − γ → max

y,α,γ
,

n∑
j=1

(
l∑

k=1

ãijkz′
k

)
yj − α ≤ 0, i = 1, . . . , m,

n∑
j=1

(
m∑

i=1

c̃ijkx′
i

)
yj − γ ≤ 0, k = 1, . . . , l,

yT en = 1, y ≥ 0n, α, γ ∈ R1
+.

Again, if y∗ is an optimal plan for the above problem Py(x′, y, z′), then put
y′ := y∗, and continue solving:

Pz(x′, y′, z) :

l∑
k=1

(
m∑

i=1

n∑
j=1

dijkx′
iy

′
j

)
zk − α − β → max

z,α,β
,

l∑
k=1

(
m∑

i=1

b̃ijkx′
k

)
zk − α ≤ 0, j = 1, . . . , n,

l∑
k=1

(
n∑

j=1

c̃ijky′
j

)
zk − β ≤ 0, i = 1, . . . ,m,

zT el = 1, z ≥ 0l, α, β ∈ R1
+.

Now that z∗ is an optimal solution of the problem Pz(x′, y′, z), we denote z′ :=
z∗.

The optimal objective function values Gt = G(ω(t+1)) are monotone non-in-
creasing by t. The iteration process continues until the value Gt stabilizes, that
is, for some t∗, the difference Gt∗ − Gt∗+1 becomes small enough. In addition, if
Gt∗ = 0, it means that an (exact) Nash point has been found. If the value Gt∗

is positive but small enough, an approximate solution of the game is reported.
Otherwise, a new pair of the initial strategies is selected and the process starts
again (probably, having altered the order of the solved problems Px, Py, Pz).

Test Results for the 3LP-Algorithms for Finding the WBE

We tested the algorithms for finding the WBE in the finite 3-person games by
using the personal computer with the processor Intel(R) Core(TM) i5-3427U
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(CPU @ 1.80GHz 2.300 GHz, memory 4.00 GB, 4 cores). The test codes were
written in the MatLab. A series of 10 games was solved for each triple n,m, l.

We investigated 2 cases: independent matrices and mutually dependent
matrices. In the first case (independent matrices) we used a pseudo-random
counters to generate independently the elements of the tables aijk, bijk, cijk

(1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ l).
For the game with mutually dependent matrices, we first used pseudo-ran-

dom counters to generate independently the elements of the auxiliary tables a′
ijk,

b′
ijk, c′

ijk (1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ l). At the second stage, we constructed
the mutually dependent payoff tables by the formulas

aijk = a′
ijk − λ

b′
ijk+c′

ijk

2 + 1,

bijk = b′
ijk − λ

a′
ijk+c′

ijk

2 + 1,

cijk = c′
ijk − λ

a′
ijk+b′

ijk

2 + 1

for all 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ l, where 0 < λ ≤ 1
2 is a covariance

coefficient.
We solved games up to the dimension dim = m = n = k = 100. For compar-

ison, using the 3LP-algorithm, we calculated the NE for the same games.
The Table 2 presents the results of the 3LP-algorithm solving the set of

test games (5 series with 10 instances in each) with independent matrices. The
algorithm switched to the next initial pair of strategies after having made dim
iterations.

In Table 2, the following notation is used: dim = m = n = k are the game’s
sizes (dimension); NE—the number of initial (starting) point when searching
for a Nash equilibrium; WBE—the number of start points when searching for
a weak Berge equilibrium; tNE—the total amount of time to search a Nash
equilibrium for the series of 10 games (sec); tWBE—the total amount of time
to search a weak Berge equilibrium for the series of 10 games (sec).

Table 2. The results of solving 5 series of games of ten problems with independent
matrices

dim NE WBE tNE tWBE

20 327 85 745.85 129.88

40 230 59 539.28 99.34

60 169 40 404.43 88.1

80 129 28 373.14 92.03

100 159 41 904.85 162.62

In Table 3, for mutually dependent cases, the following notation is also used:
dim = m = n = k are the game’s sizes (dimension); WBE—the number of start
points when searching for a weak Berge equilibrium; tWBE—the total amount
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of time to search the WBE for the series of 10 games (sec); itn - the total number
of steps of the 3LP algorithm. The covariance coefficient λ = 0, 4 was used in
the calculation of Table 3.

For mutually dependent cases, the results are given only for the WBE, so
when calculating the NE for these problems take an unacceptable time or they
are not solved at all.

Table 3. The results of solving 5 series of games of ten problems with mutually depen-
dent matrices

dim itn WBE tWBE

20 3173 479 1106.49

40 6532 814 2101.15

60 12826 1415 5134.66

80 10306 1017 5564.54

100 16725 1527 13049.09

It is easy to notice from the reported results (see Table 2 and Table 3), the
reciprocal dependence of the payoff matrices affect much to solve a problem by
the 3LP-algorithm. The reciprocal dependence sufficiently increases the com-
plexity of problems.

It is also clear that, the search for the WBE is much faster than the search
for the NE. This is most likely due to the pure weak Berge equilibrium strategy
profile existing more often than the pure Nash equilibrium strategy profile.

4 Conclusion

In this paper, we formalize the conception of the WBE. The WBE follows the
Hippocratic oath “First do no harm!” In contrast to the NE, the WBE always
exists for every finite N -person game. As an example, we find the WBE in the
finite 3-person games using the 3LP-algorithm. In the future, the authors plan
to transfer the proposed numerical algorithm for finding WBE to finite games
of a larger (N = 4, 5) number of persons.

References

1. Nash, J.: Equilibrium points in N-person games. Proc. Nat. Acad. Sci. USA 36,
48–49 (1950)
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Abstract. We establish a theorem that equilibria in an exchange econ-
omy can be described as allocations that are stable under the possibili-
ties: (i) agents can partially and asymmetrically break current contracts,
after that (ii) a new mutually beneficial contract can be concluded in a
coalition of a size not more than 1 plus the maximum number of prod-
ucts that are not indifferent to the coalition members.

The presented result generalizes previous ones on a Pareto improve-
ment in an exchange economy with l commodities that requires the active
participation of no more than l + 1 traders. This concerned with Pareto
optimal allocations, but we also describe equilibria. Thus according to
the contractual approach to arrive at equilibrium only coalitions of con-
strained size can be applied that essentially raise the confidence of con-
tractual modeling.

Keywords: Contractual economies · Coalitions of constrained size ·
Competitive equilibrium · Fuzzy contractual allocations

1 Introduction

I started to develop the theory of formal contractual economic interaction in the
early 2000s and began to apply elaborated methods to the models of different
types: Arrow–Debreu economies, incomplete markets, an economy with public
goods, etc., see [1–4]. In the course of this activity, several specific characteriza-
tions of economic equilibria of different types were developed, but in all of them,
the key feature was the admission of contract breakings—complete or partial.
The idea of the barter exchange (contract) is by no means new in theoretical
economics and seemingly goes back to classical Edgeworth results, but it usually
appeared as an interpretation, in the form of net trades in a formal model. In the
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simplest version of the pure exchange economy, a barter contract is represented
as a vector of acceptable exchanges of commodities among economic agents. A
partial break involves the execution of the contract in an incomplete volume.
Besides, in [1] there was proposed the notion of fuzzy contractual allocation
and it became clear soon that this is the most meaningful concept among other
methods of the contractual interaction. Fuzzy contractual interaction means that
agents are able to break contracts partially and asymmetrically, i.e., it is admit-
ted different agents can break contracts in a different amount. There was stated
that under very weak assumptions in convex economy equilibria coincide with
fuzzy contractual allocations. Nevertheless, the achieved results still are not sat-
isfactory from the modeling point of view, because they assume the existence
of agreements in many unrealistic coalitions between agents living at great dis-
tances, etc. This paper aims to fill this gap.

In this paper we consider a possibility to restrict the number of participants
in the exchange transactions. We show that certain constrains of this type can be
used without prejudice to its equilibrium properties of the final allocation. The
idea goes back to [5–8], where it was found that Pareto optimal allocation can be
achieved via mutually beneficial exchanges carried out in coalitions limited by the
dimension of the commodity space, see also [9,10]. In these works, the contractual
approach itself was not developed and the possibilities of individuals to break
contracts were not considered. As a result, the obtained characterization does
not appeal to Walrasian equilibria. Doing the admission of partially breaking of
current contracts, we also take into account the fact that an agent may not be
interested in absolutely all existing products. We show that the analysis can be
reduced to an effective products’ area of lower dimensionality—by eliminating
products that are not of interest to the contracting parties. As a result, a coalition
has a specific product space which dimension can be applied to restrict the size
of coalitions. We will see that such restrictions on the size of coalitions do not
prevent so-called fuzzy contractual allocations to be Walrasian equilibria.

The paper is organized as follows. In the second section, I present a contrac-
tual economic model and formulate some preliminary results that are the basis
for the subsequent considerations. In the third one, I present the main result:
new theorems on characterization of equilibria and other contractual allocations
implemented via contracts of limited number of participants.

2 Contractual Exchange Economy

We consider a typical exchange economy in which L = R
l denotes the (finite

dimensional) space of commodities (l is a number of commodities). Let I =
{1, . . . , n} be a set of agents (traders or consumers). A consumer i ∈ I is char-
acterized by a consumption set Xi ⊂ L, an initial endowment ei ∈ L, and a
preference relation described by a point-to-set mapping Pi : Xi ⇒ Xi where
Pi(xi) denotes the set of all consumption bundles strictly preferred by the i-th
agent to the bundle xi. The notation yi �i xi is equivalent to yi ∈ Pi(xi).



246 V. Marakulin

So, the pure exchange model may be represented as a triplet

E = 〈I, L, (Xi,Pi, ei)i∈I〉.
Let us denote by e = (ei)i∈I the vector of initial endowments of all traders of
the economy. Denote X =

∏
i∈I Xi and let

A(X) = {x ∈ X |
∑

i∈I
xi =

∑

i∈I
ei }

be the set of all feasible allocations. Everywhere below we assume that the model
under study satisfies the following assumption.

(A) For each i ∈ I, Xi is a convex solid1 closed set, ei ∈ Xi and for every
xi ∈ Xi there exists an open convex Gi ⊂ L such that Pi(xi) = Gi ∩ Xi and if
Pi(xi) 	= ∅ then xi ∈ Pi(xi) \ Pi(xi).2

Notice that due to (A) preferences may be satiated, i.e., Pi(xi) = ∅ is possi-
ble for some agent i and xi ∈ Xi. However if Pi(xi) 	= ∅, then preference is
locally non-satiated at the point xi and this implies λ(Pi(xi)−xi) ⊆ Pi(xi)−xi

∀λ ∈ (0, 1]. Next I recall some standard definitions and notions.

A pair (x, p) is said to be a quasi-equilibrium of E if x ∈ A(X) and there
exists a linear functional p 	= 0 onto L such that

〈p,Pi(xi)〉 ≥ pxi = pei, ∀ i ∈ I.

A quasi-equilibrium such that x′
i ∈ Pi(xi) actually implies px′

i > pxi is a Wal-
rasian or competitive equilibrium.

An allocation x ∈ A(X) is said to be dominated (blocked) by a nonempty
coalition S ⊆ I if there exists yS ∈ ∏

i∈S Xi such that
∑

i∈S yS
i =

∑
i∈S ei and

yS
i ∈ Pi(xi) ∀ i ∈ S.

The core of E , denoted by C(E), is the set of all x ∈ A(X) that are blocked
by no (nonempty) coalition.

Weak Pareto boundary for E , denoted by PBw(E), is the set of all x ∈ A(X)
that cannot be dominated by the coalition I of all agents.

An allocation x ∈ A(X) is called individual rational if it cannot be domi-
nated by singleton coalitions. IR(E) denotes the set of all these allocations.

Let L = LI denote the space of all allocations of the economy E . In the
framework of model E , we are going to introduce and study a formal mecha-
nism of contractual interaction. This mechanism reflects the idea that any group
of agents can find and realize some (permissible) within-the-group exchanges
of commodities, referred to as contracts. The mechanism defines rules of
contracting.
1 Here “solid” is equivalent to “having nonempty interior.”
2 The symbol A denotes the closure of A and \ is set for the set-theoretical difference.
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By the formal definition, any reallocation of commodities v = (vi)i∈I ∈ L,
i.e., any vector v ∈ L satisfying

∑
i∈I vi = 0, is called a contract.

Not every kind of possible reallocation may be realized in the economy; there
are some institutional, physical, and behavioral restrictions in the economic mod-
els of different types. This is why we equip the abstract contractual economy
model with a new element, the set of permissible contracts W ⊂ L. Thus, the
contractual (exchange) economy under study may be shortly represented by the
4-tuple

Ec = 〈I, L,W, (Xi,Pi, ei)i∈I〉.
For a contractual economy we study the sets of contracts which represent

feasible allocations and introduce the operation of breaking a part of a given set
of contracts. This motivates the following definition.

A finite collection V of permissible contracts is called a web of contracts iff

xe(U) = e +
∑

v∈U

v ∈ X, ∀U ⊆ V.

So V being a web means that ∀U ⊆ V its generated allocation xe(U) is feasible
one. Clearly, this notion can be considered with respect to any another allocation
y ∈ A(X) chosen instead of e. Note that V = ∅ is a web relative to every
y ∈ A(X) (by convention

∑
v∈∅ v = 0).

Now we introduce the breaking operation of existing contracts and the signing
of new ones. For any contract v ∈ V , let us set

S(v) = supp (v) = {i ∈ I | vi 	= 0},

the support of the contract v. It is assumed that any contract v ∈ V may be
broken by any trader in S(v), since he/she may not keep his/her contractual obli-
gations. Also a non-empty group (coalition) of consumers can sign any number
of new contracts. Being applied jointly, i.e., as a simultaneous procedure, these
operations allow coalition T ⊆ I to yield new webs of contracts. The set of all
such webs is denoted by F (V, T ).

Notice also that due to the definition of a web of contracts, a coalition can
break any subset of contracts of a given web.3

Further, for the webs of contracts the notion of domination via a coalition
is introduced that allows to consider different forms of web stabilities. This
property, being written as U �

T
V (U dominates V via coalition T ), means that

(i) U ∈ F (V, T ),
(ii) xi(U)�

i
xi(V ) for all i ∈ T .

Definition 1. A web of contracts V is called stable if there is no web U and no
coalition T ⊆ I, T 	= ∅ such that U �

T
V .

An allocation x is called contractual if x = x(V ) for a stable web V .
3 Otherwise, it would occur that an allocation realized via breaking contracts is not

feasible.
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The property that a web of contracts is stable may be relaxed as well as
strengthened. The most important possibilities are described below.

Definition 2. A web of contracts V is called:

(i) lower stable if there is no web U and no coalition T ⊆ I, T 	= ∅ such that
U �

T
V and U ⊂ V ;

(ii) upper stable if there is no web U and no coalition T ⊆ I, T 	= ∅ such that
U �

T
V and V ⊂ U .

(iii) An upper and lower stable web of contracts V is called weakly stable.

An allocation x is called lower, upper, or weakly contractual if x = x(V ) for
some lower, upper, or weakly stable web V , respectively.

The next possibility to strengthen contractual stability is to allow agents
to break contracts partially. Partial breaking of the contract v = (vi)i∈I in
the amount of α ∈ [0, 1] means that contract v is replaced by the contract
(1 − α)v. System (web) of contracts is called proper if no one is interested in the
partial break off contracts: for each agent partial break (potentially different for
different contracts) does not lead to the increase of utility. Only the proper web
of contracts can be long-lived. Clearly, to admit agents apply partial breaking
we have to assume the set W is a star-shaped at zero in L, i.e.,

v ∈ W ⇒ λv ∈ W, ∀ 0 ≤ λ ≤ 1.

Allocation x(V ) = e+
∑

v∈V v, implemented by the web of contracts V is called
properly contractual if the partial breaking of contracts is allowed to dominate
and V is proper one.

One more notion is quite important in our analysis, it is the concept of fuzzy
contractual allocation. To present it in a simplest way let us assume that the
web consists on the only contract, i.e., V = {v}. So one has a feasible allocation
to which the gross contract x − e = v = (vi)i∈I (net trade) corresponds. It is
assumed that the agents of the economy can (fuzzy and asymmetrically) break
contract v = (vi)i∈I , decreasing the individual consumption (fragment) from
this contract in shares (1 − ti)i∈I , ti ∈ [0, 1] forming a tuple4

vt = (t1v1, t2v2, . . . , tnvn)

of commodity bundles, which can be used in subsequent exchange transactions
together with the initial endowments. After the conclusion of a new contract
wS = (wi)I ∈ LI ,

∑
I wi = 0 by a coalition S ⊆ I (i /∈ S ⇒ wi = 0) they yield

(possibly unfeasible!) “allocation”

ξ(t, v, w) = w + vt + e = (w1 + t1v
t
1 + e1, . . . , wn + tnvt

n + en).

4 This is not a contract, because its key property
∑

I tivi = 0 is violated.
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Definition 3. An allocation x ∈ A(X) is called fuzzy contractual if for every
t = (ti)i∈I , 0 ≤ ti ≤ 1, ∀i ∈ I and for x − e = v there is no barter contract
w = (w1, . . . , wn) ∈ LI ,

∑
I wi = 0, such that

ξi = ξi(t, v, w) = wi + tivi + ei, i ∈ I (1)

ξi �i xi ∀i : ξi 	= xi. (2)

Note that by virtue of (2) w = 0 is permissible, i.e. only partial breaking of
contracts is possible. Denying the possibility of such domination means that the
web of contracts is proper and the allocation is stable with respect to asymmetric
partial break of contracts.

Depending on the structure of permissible contracts, specified as a new ele-
ment W ⊂ LI of the model, one can describe well known economic theoretical
notions in terms of a stable web of contracts. In a standard exchange model
(every contract is permissible) they are the core (contractual allocations, only
full break off contracts), competitive equilibria (admission of partial break), the
Pareto frontier (upper contractual allocations), etc. The most interesting among
others is the presentation of competitive equilibrium as a fuzzy contractual allo-
cation, described in the following technical lemma and proposition.

The following characteristic lemma can be directly produced from Defini-
tion 3.

Lemma 1. Suppose W = LI . Then an allocation x ∈ A(X) is fuzzy contractual
if and only if 5

Pi(xi) ∩ [xi, ei] = ∅ ∀i ∈ I (3)

and
∏

I
[(Pi(xi) + [0, ei − xi]) ∪ {ei}]

⋂
{(zi)I ∈ LI |

∑

i∈I
zi =

∑

i∈I
ei} = {e}. (4)

Here condition (3) indicates that a partial break off contracts without signing
of a new one cannot be beneficial. The requirement (4) denies the existence
of a dominating coalition after the partial asymmetric break of the contract
v = (x − e). Now applying separation theorem one can easily state (see [1] for
details) the following

Proposition 1. Every equilibrium is a fuzzy contractual allocation and vice
versa: any non-satiated fuzzy contractual allocation is a nontrivial quasi-
equilibrium.

So, if the model is such that every nontrivial quasi-equilibrium is an equilibrium6

then the notion of competitive equilibrium and fuzzy contractual allocation is
equivalent. This and similar statements from [1–4] allow us to state that our
5 A linear segment with ends a, b ∈ L is the set [a, b] = conv{a, b} = {λa + (1 − λ)b |

0 ≤ λ ≤ 1}.
6 Conditions, providing this fact are well known in the literature, e.g. it can be irre-
ducibility.
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contractual approach presents a model of perfect competition (simplest among
others).

The sketch of the proof of Proposition 1. Separating sets in (4) by a (non-zero)
linear functional π = (p1, . . . , pn) ∈ LI one can conclude:

(i) pi = pj = p 	= 0 for each i, j ∈ I; this is so because π is bounded on

A(LI) = {(z1, . . . , zn) ∈ LI |
∑

i∈I
zi =

∑

i∈I
ei}.

So, one can take p as a price vector.
(ii) Due to construction and in view of preferences are locally non-satiated at

the point x ∈ A(X) the points xi and ei belong to the closure of

Pi(x) + conv{0, ei − xi}.

Therefore via separating property we have
∑

j �=i

pej + pxi ≥
∑

I
pej ⇒ pxi ≥ pei ∀i ∈ I,

that is possible only if pxi = pei ∀i ∈ I. So, we obtain budget constrains
for consumption bundles.

(iii) By separation property for each i we also have

〈p,Pi(x) + conv{0, ei − xi}〉 ≥ pei,

that by (ii) implies 〈p,Pi(x)〉 ≥ pxi = pei. So we proved that p is quasi-
equilibrium prices for allocation x = (xi)i∈I .

As a result one can see that if an economic model is such that every quasi-equi-
librium is equilibrium, then fuzzy contractual allocation is an equilibrium one.
Conditions delivering this fact are well known in literature; for example, it is the
case when an economy is irreducible. �

3 Result

In a real economy, consumers may not be interested in all existing products,
i.e., individuals may be indifferent to some products7. Excluding them from
consideration, one can reduce the dimension of the actual product space for
each agent. The exact definition is given below.

Definition 4. A commodity j is indifferent for i ∈ I if ∀x ∈ A(X)8

∀yi = ((yi)−j , y
j
i ) ∈ Pi(xi) ⇐⇒ ((yi)−j , e

j
i ) ∈ Pi((xi)−j , e

j
i ) = Pi(xi).

7 For example, an ordinary consumer on the market is not interested in all kinds of
spare parts, parts and structural elements (bolts, nuts, gears, transistors ...).

8 Here we indirectly assume that all bundles we need belong to consumption set, i.e.,
((yi)−j , e

j
i ), ((xi)−j , e

j
i ) ∈ Xi; it is a specific constraint for Xi, i ∈ I.
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Here yi = (yj
i )j=1,...,l ∈ R

l and (yi)−j = (yk
i )k �=j,k=1,...,l is a vector consisting of

all components of yi excluding yj
i .

Two properties are postulated in this definition: a product j is indifferent to
a given individual i, if in any consumption bundle yi = ((yi)−j , y

j
i ) ∈ Xi his/her

consumption can be replaced by the initial one (to nullify?), i.e., one goes to
a bundle ((yi)−j , e

j
i ) such that ((yi)−j , e

j
i ) ∈ Xi and this does not lead to the

change of consumption properties of yi ∈ L. Clearly, for preferences specified via
utility functions for indifferent commodity j we have ∀yi ∈ Xi ui((yi)−j , y

j
i ) =

ui((yi)−j , e
j
i ), i ∈ I.

Let Li ⊆ L be the space of non-indifferent commodities (interesting) for
individual i and let LS ⊆ L be a subspace of commodities that are interesting
for the members of coalition S ⊆ I:

LS =
∑

i∈S

Li.

In this section, the notation zS means the projection of the vector z ∈ L onto
the subspace LS ⊆ L. Recall that for contracts v ∈ W there is defined S(v) =
supp (v), this is the support of the contract. Given the possible indifference to
some products, as a product space for a coalition S(v), one can specify

LS(v) =
∑

i∈S(v)

Li.

Now let us consider the following restriction for the set of all permissible con-
tracts.

v = (vi)i∈I ∈ W ⇐⇒ vi ∈ LS(v), i ∈ S(v), |S(v)| ≤ dim(LS(v)) + 1. (5)

This specification restricts the size of permissible contracting coalitions.

Remark 1. In the process of manufacturing high-tech products, a huge number
of elements are used, the range of which can be counted in millions—for exam-
ple, in modern aircraft construction. However, the final user needs the resulting
product (the plane!), and not some of its components, bolts, nuts, ailerons, and
other structural elements, the existence of which he may not know at all. How-
ever, this is important for service companies, etc. Production unions enter into
contracts for the supply of the element base of the final product can be very
large, but consumer unions can be much smaller—this fact can be concluded
from Theorem 1 and Corollary 1 below. Formal examples also can be easily con-
structed. Indeed one can consider several exchange economies E1, ..., Ek having
product ranges S1, . . . , Sk ⊆ {1, 2, . . . , l}. Assume that utilities of individuals
from Eξ may depend of only commodities from Sξ. One can consider extended
commodity space L = R

l and formally extend these utilities to this space, sup-
posing that they do not depend of new variables. Now we consider the united

economy E =
k⋃

ξ=1

Eξ. The first result below describes Pareto frontier and says
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us that if coalition contains only individuals of one economy Eξ, then number of
coalition members may be restricted by card(Sξ); for coalition of two individual
kinds from Eξ1 , Eξ2 the number of its members may be not more of card(Sξ1∪Sξ2)
and so on. Similar conclusion is done for equilibria. �

Further we first discuss the concept of upper stable web and upper contrac-
tual allocation, see Definition 2. Now let us consider a slightly modified classical
concept of Pareto optimality9. We call an allocation x ∈ A(X) strictly Pareto
optimal iff

�S ⊆ I & yS ∈
∏

i∈S

Xi such that
∑

i∈S

yS
i =

∑

i∈S

xi & yS
i ∈ Pi(xi) ∀i ∈ S.

It is easy to see, that according to the definitions if there are no permissibility
constrains for contracts, the notions of upper contractual and strictly Pareto
optimal allocation are equivalent.

It is said that a vector (consumption bundle) κ ∈ L is extremely desirable if
for each xi ∈ Xi one has

xi + κ �i xi, i ∈ I.

In the literature, it is standardly assumed that cumulative initial endowments∑
i∈I ei = ē presents an extremely desirable bundle.
Recall that binary relation � is transitive iff

∀x, y, z ∈ Dom(�) x � y � z ⇒ x � z.

Theorem 1. If W obeys (5) then every upper contractual allocation is strictly
Pareto optimal. Moreover, if preferences of E are transitive and there is an
extremely desirable bundle κ ∈ L, then (5) can be weakened and one can require

v ∈ W ⇐⇒ vi ∈ LS(v), i ∈ S(v) & |S(v)| ≤ dim(LS(v)).

So, the Theorem states that the economic system can arrive at Pareto optimal
commodity allocation via a contractual process with coalitions size constrained
by (5). In further analysis, we apply the following

Theorem 2 (Carathéodory, 1907). Let A ⊂ L be a subset of a vector space
L. If dim aff(A) = d < ∞, then any element x ∈ convA can be presented as a
convex hull of not more than d + 1 elements of A.

Proof of Theorem 1. Suppose that an upper contractual allocation x ∈ A(X)
is not strictly Pareto optimal. Therefore, there exists a coalition S ⊂ I and
contract v = (vi)i∈I ∈ L = LI , supp (v) = S such that

∀i ∈ S xi + vi ∈ Pi(x). (6)

9 Under classical assumptions they are equivalent, but it is not so in general case.
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Here by Definition 4 for each member of the coalition S, the components of vi

corresponding to indifferent products can be considered as zero, i.e., vi ∈ LS(v)

∀i ∈ I. Since x is upper contractual, then v /∈ W (here vi = 0, i ∈ I \ S) and,
therefore, |S(v)| > dim(LS(v)) + 1. Now we can assume that S is a coalition
of minimal size among those having this property. We have 1

|S|
∑

i∈S vi = 0,
S = S(v). Using the Caratheodory theorem, one can find a coalition T ⊂ S such
that

∀i ∈ T ∃αi ∈ (0, 1] :
∑

i∈T

αi = 1,
∑

i∈T

αivi = 0 & |T | ≤ dim(LS) + 1.

Define wi = αivi 	= 0, and think without loss of generality that wi ∈ LT ,
i ∈ T (if necessary, one replaces some components with zeros). Now due to the
main assumption (A) one has λ(Pi(xi) − xi) ⊆ Pi(xi) − xi ∀λ ∈ (0, 1], that
implies xi + wi ∈ Pi(x), i ∈ T . Since

∑
i∈T wi = 0 and |T | < |S|, we come to

a contradiction with the choice of S as a coalition of minimal size. Therefore,
there are no such coalitions at all and x is a strictly Pareto optimal allocation.

In the second part of the statement of the Theorem, we again argue from
the contrary and find a coalition S ⊂ I of minimal size and a contract v ∈ L,
supp (v) = S, vi ∈ LS , i ∈ I satisfying (6) and such that |S| > dim LS . Let us
specify

Γ = conv{vi ∈ LS | i ∈ S}.

By construction one has 1
|S|

∑
i∈S vi = 0 ∈ Γ . Next, we take an extremely

desirable κ ∈ L, consider its projection κS onto LS and find a real λ ≥ 0 such
that −λκS belongs to the face of (bounded) polyhedron Γ . This can be done
from the condition

λ = max{λ′ | −λ′κS ∈ Γ}.

Since the dimension of any proper face is at most dimLS −1, there is a coalition
T ⊂ S such that |T | ≤ dim LS and

∀i ∈ T ∃αi ∈ (0, 1] :
∑

i∈T

αi = 1,
∑

i∈T

αivi = −λκS .

Next one defines wi = αi(vi + λκS), i ∈ T and wi = 0, i ∈ I \ T . As a result one
has:

xi ≺i xi + αivi ≺i xi + αivi + αiλκS = xi + wi, i ∈ T,
∑

i∈T

wS
i =

∑

i∈T

αiv
S
i + (

∑

i∈T

αi)λκS = 0.

These relations indicate that w = (wi)i∈I is a mutually beneficial contract, the
support of which is the coalition T , no larger than dim(LS). Thus, we again have
found the coalition that dominates the current allocation, and its size is strictly
less than |S|, which is impossible. �

Let us turn now to the characterization of fuzzy contractual allocation, which
represents the main result of the section.
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Lemma 2. Let x be a fuzzy contractual allocation and W obey (5). Then (4) is
true:

∏

i∈I
[(Pi(xi) + co{0, ei − xi}) ∪ {ei}]

⋂
A(LI) = {e}.

Now by virtue of the characterization presented in Proposition 1 we directly
conclude

Corollary 1. Let W obey (5). Then every non-satiated fuzzy contractual allo-
cation is a quasi-equilibrium one.

So, these Lemma and Corollary state that applying partial break and contracts
specified in (5), a contractual process can arrive the economy to Walrasian equi-
librium.

Proof of Lemma 2. Let x be a fuzzy contractual allocation, W obey (5) and
conclusion of the Lemma be false. Let us consider the left part of intersection
(4). Now we first show that there is no y = (yi)I 	= e such that the coalition

T (y) = {i ∈ I | yi 	= ei} 	= ∅ (7)

satisfies |T (y)| ≤ dim(LT ) + 1. Indeed, otherwise according to the construction
one can find zi ∈ Pi(xi), αi ∈ [0, 1], i ∈ T such that

yi = zi + αi(ei − xi) 	= ei, i ∈ T,
∑

T

yi =
∑

T

ei.

Applying now Definition 4, we may think that zi, xi ∈ Xi ∩ (LT + ei) (for i
and the bundle xi one has to change indifferent components with his/her initial
endowments and do not change all other). Now, specifying vi = (yi − ei) ∈ LT ,
i ∈ I, via construction and Definition 4 we obtain

zi = vi + αi(xi − ei) + ei �i xi, i ∈ T,
∑

i∈I
vi = 0 & supp (v) = T,

that contradicts Definition 3 and condition (5).
Thus, if the conclusion of the Lemma is false, then |T (y)| > dim(LT ) + 1 for

each coalition specified by (7). But in the (finite) set of all such coalitions there
is a coalition of minimal size, which we denote S ⊂ I. Again, one can think
xi ∈ Xi ∩ (LS + ei), i ∈ S. By construction there are zi ∈ Pi(xi) ∩ (LS + ei),
αi ∈ [0, 1], i ∈ S such that

yi = zi + αi(ei − xi) 	= ei, i ∈ S,
∑

S

yi =
∑

S

ei.

We have 1
|S|

∑
S(yi − ei) = 0. Since by assumption |S(y)| > dim(LS) + 1, then

using Caratheodory theorem one concludes there exists R ⊂ S and βi ∈ (0, 1],
i ∈ R such that |R| < |S| and

∑

i∈R

βi(yi − ei) = 0,
∑

i∈R

βi = 1 ⇒
∑

i∈R

(βizi + βiαi(ei − xi) − βiei) = 0.
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Since λ(Pi(xi) − xi) ⊆ Pi(xi) − xi ∀λ ∈ (0, 1], the terms on the left-hand side of
the latter equality can be rewritten in the form

βi(zi − xi) + βiαi(ei − xi) − βi(ei − xi) = ξi − xi − βi(1 − αi)(ei − xi) = vi

for some ξi �i xi, i ∈ R. By construction
∑

i∈R vi = 0 and defining y′
i = vi + ei,

i ∈ R and y′
i = ei for i ∈ I \ R one obtains

∑
i∈I y′

i =
∑

i∈I ei and

y′
i = ξi + (1 − βi(1 − αi))(ei − xi) ∈ Pi(xi) + co{0, ei − xi}, i ∈ R.

Thus, we found y′ such that under condition (7) we have T (y′) = R, where |R| <
|S|, which contradicts the minimality of S ⊂ I. This contradiction completes the
proof. �
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Abstract. The paper is devoted to the optimality conditions as deter-
mined by Pontryagin’s maximum principle for a non-cooperative differen-
tial game with continuous updating. Here it is assumed that at each time
instant players have or use information about the game structure defined
for the closed time interval with a fixed duration. The major difficulty
in such a setting is how to define players’ behavior as the time evolves.
Current time continuously evolves with an updating interval. As a solu-
tion for a non-cooperative game model, we adopt an open-loop Nash
equilibrium within a setting of continuous updating. Theoretical results
are demonstrated on an advertising game model, both initial and contin-
uous updating versions are considered. A comparison of non-cooperative
strategies and trajectories for both cases are presented.

Keywords: Differential games with continuous updating ·
Pontryagin’s maximum principle · Open-loop Nash equilibrium ·
Hamiltonian

1 Introduction

Most conflict-driven processes in real life evolve continuously in time, and their
participants continuously receive updated information and adapt accordingly.
The principal models considered in classical differential game theory are associ-
ated with problems defined for a fixed time interval (players have all the infor-
mation for a closed time interval) [10], problems defined for an infinite time
interval with discounting (players have all information specified for an infinite
time interval) [1], problems defined for a random time interval (players have
information for a given time interval, but the duration of this interval is a ran-
dom variable) [27]. One of the first works in the theory of differential games
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was devoted to a differential pursuit game (a player’s payoff depends on when
the opponent gets captured) [23]. In all the above models and approaches it
is assumed that at the onset players process all information about the game
dynamics (equations of motion) and about players’ preferences (cost functions).
However, these approaches do not take into account the fact that many real-life
conflict-controlled processes are characterized by the fact that players at the
initial time instant do not have all the information about the game. Therefore
such classical approaches for defining optimal strategies as the Nash equilib-
rium, the Hamilton-Jacobi-Bellman equation [2], or the Pontryagin maximum
principle [24], for example, cannot be directly used to construct a large range
of real game-theoretic models. Another interesting application of dynamic and
differential games is for networks, [5].

Most real conflict-driven processes continuously evolve over time, and their
participants constantly adapt. This paper presents the approach of constructing
a Nash equilibrium for game models with continuous updating using a modern-
ized version of Pontryagin’s maximum principle. In game models with continuous
updating, it is assumed that

1. at each current time t ∈ [t0,+∞), players only have or use information on the
interval [t, t + T ], where 0 < T < ∞ is the length of the information horizon,

2. as time t ∈ [t0,+∞) goes by, information related to the game continues to
update and players can receive this updated information.

In the framework of the dynamic updating approach, the following papers
were published [17], [18], [20],[21], [22], [29]. Their authors set the foundations
for further study of a class of games with dynamic updating. It is assumed that
information about motion equations and payoff functions is updated in discrete
time instants and the interval for which players know information is defined by
the value of the information horizon. A non-cooperative setting with dynamic
updating was examined along with the concept of the Nash equilibrium with
dynamic updating. Also in the papers above cooperative cases of game models
with dynamic updating were considered and the Shapely value for this setting
was constructed. However, the class of games with continuous updating provides
new theoretical results. The class of differential games with continuous updating
was considered in the papers [11], [19], here it is supposed that the updating
process evolves continuously in time. In the paper [19], the system of Hamilton-
Jacobi-Bellman equations are derived for the Nash equilibrium in a game with
continuous updating. In the paper [11] the class of linear-quadratic differential
games with continuous updating is considered and the explicit form of the Nash
equilibrium is obtained.

The approach of continuous updating has some similarities with Model Pre-
dictive Control (MPC) theory which is worked out within the framework of
numerical optimal control [6], [14], [26], [28], and which has also been used as a
human behavior model in [25]. In the MPC approach, the current control action
is achieved by solving a finite-horizon open-loop optimal control problem at each
sampling instant. For linear systems there exists a solution in explicit form [3],
[7]. However, in general, the MPC approach demands the solution of several
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optimization problems. Another related series of papers corresponds to the class
of stabilizing control [12], [13], [16], here similar approaches were considered for
the class of linear quadratic optimal control problems. But in the current paper
and in papers about the continuous updating approach, the main goal is differ-
ent: to model players’ behavior when information about the course of the game
updates continuously in time.

In this paper the optimality conditions for the Nash equilibrium in the form of
Pontryagin’s maximum principle are derived for a class of non-cooperative game
models with continuous updating. In the previous papers on this topic, [19], [11]
the optimality conditions were formulated in the form of the Hamilton-Jacobi-
Bellman equation and for the special case of a linear quadratic model. From
the authors’ point of view, formulating Pontryagin’s maximum principle for the
continuous updating case is the final step for the Nash equilibrium’s range of
optimality conditions under continuous updating. In future the authors will focus
on convex differential games with continuous updating and on the uniqueness
of the Nash equilibrium with continuous updating. The concept of the Nash
equilibrium for the class of games with continuous updating is defined in the
paper [19], and constructed here using open-loop controls and the Pontryagin
maximum principle with continuous updating. The corresponding trajectory is
also derived. The approach here presented is tested with the advertising game
model consisting of two firms. It is interesting to note that in this particular
game model the equilibrium strategies are constant functions of time t, unlike
the equilibrium strategies in the initial game model.

The paper is organized as follows. Section 2 starts by describing the initial dif-
ferential game model. Section 3 demonstrates the game model with continuous
updating and also defines a strategy for it. In Sect. 4, the classical optimality
principle Nash equilibrium is adapted for the class of games with continuous
updating. In Sect. 5, a new type of Pontryagin’s maximum principle for a class
of games with continuous updating is presented. Section 6 presents results of the
proposed modeling approach based on continuous updating, such as a logarith-
mic advertising game model. Finally, we draw conclusions in Sect. 7.

2 Initial Game Model

Consider differential n-player game with prescribed duration Γ (x0, T − t0)
defined on the interval [t0, T ].

The state variable evolves according to the dynamics:

ẋ(t) = f(t, x, u), x(t0) = x0, (1)

where x ∈ R
l denotes the state variables of the game, u = (u1, . . . , un), ui =

ui(t, x0) ∈ Ui ⊂ compRk, t ∈ [t0, T ], is the control of player i.
The payoff of player i is then defined as

Ki(x0, T − t0;u) =

T∫

t0

gi[t, x(t), u(t, x0)]dt, i ∈ N, (2)
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where gi[t, x, u], f(t, x, u) are the integrable functions, x(t) is the solution of
Cauchy problem (1) with fixed u(t, x0) = (u1(t, x0), . . . , un(t, x0)). The strategy
profile u(t, x0) = (u1(t, x0), . . . , un(t, x0)) is called admissible if the problem
(1) has a unique and continuable solution. The existence and global asymptotic
stability of the open-loop equilibrium for a game with strictly convex adjustment
costs was dealt with by Fershtman and Muller [4].

Using the initial differential game with prescribed duration of T , we construct
the corresponding differential game with continuous updating.

3 Differential Game Model with Continuous Updating

In differential games with continuous updating players do not have information
about the motion equations and payoff functions for the whole period of the
game. Instead at each moment t players get information at the interval [t, t+T ],
where 0 < T < +∞. When choosing a strategy at moment t, this is the only
information they can use. Therefore, we consider subgames Γ (x, t, t+T ) in which
players find themselves at each moment t.

Let us start with the subgame Γ (x0, t0, t0+T ) defined on the interval [t0, t0+
T ]. The initial conditions in this subgame coincide with the starting point of the
initial game.

Furthermore, assume that the evolution of the state can be described by the
ordinary differential equation:

ẋt0(s) = f(s, xt0 , ut0), xt0(t0) = x0, (3)

where xt0 ∈ R
l denotes the state variables of the game that starts from the initial

time t0, ut0 = (ut0
1 , . . . , ut0

n ), ut0
i = ut0

i (s, x0) ∈ Ui ⊂ compRk is the vector of
actions chosen by the player i at the instant time s.

The payoff function of player i is defined in the following way:

Kt0
i (x0, t0, T ;ut0) =

t0+T∫

t0

gi[s, xt0(s), ut0(s, x0)]ds, i ∈ N, (4)

where xt0(s), ut0(s, x0) are trajectory and strategies in the game Γ (x0, t0, t0+T ),
ẋt0(s) is the derivative of s.

Now let us give a description of subgame Γ (x, t, t+T ) starting at an arbitrary
time t > t0 from the situation x.

The motion equation for the subgame Γ (x, t, t + T ) has the form:

ẋt(s) = f(s, xt, ut), xt(t) = x, (5)

where ẋt(s) is the derivative of s, xt ∈ R
l is the state variables of the subgame

that starts from time t, ut = (ut
1, . . . , u

t
n), ut

i = ut
i(s, x) ∈ Ui ⊂ compRk, s ∈

[t, t + T ], denotes the control vector of the subgame that starts from time t at
the current time s.
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The payoff function of player i for the subgame Γ (x, t, t + T ) has the form:

Kt
i (x, t, T ;ut) =

t+T∫

t

gi[s, xt(s), ut(s, x)]ds, i ∈ N, (6)

where xt(s), ut(s, x) are the trajectories and strategies in the game Γ (x, t, t+T ).

A differential game with continuous updating is developed according to the
following rule:

Current time t ∈ [t0,+∞) evolves continuously and as a result players con-
tinuously obtain new information about motion equations and payoff functions
in the game Γ (x, t, t + T ).

The strategy profile u(t, x) in a differential game with continuous updating
has the form:

u(t, x) = ut(s, x)|s=t, t ∈ [t0,+∞), (7)

where ut(s, x), s ∈ [t, t + T ] are strategies in the subgame Γ (x, t, t + T ).

The trajectory x(t) in a differential game with continuous updating is deter-
mined in accordance with

ẋ(t) = f(t, x, u),
x(t0) = x0,
x ∈ R

l,
(8)

where u = u(t, x) are strategies in the game with continuous updating (7) and
ẋ(t) is the derivative of t. We suppose that the strategy with continuous updating
obtained using (7) is admissible, or that the problem (8) has a unique and
continuable solution. The conditions of existence, uniqueness and continuability
of open-loop Nash equilibrium for differential games with continuous updating
are presented as follows, for every t ∈ [t0,+∞)

1. right-hand side of motion equations f(s, xt, ut) (5) is continuous on the set
[t, t + T ] × Xt × U t

1 × · · · × U t
n

2. right-hand side of motion equations f(s, xt, ut) satisfies the Lipschitz condi-
tions for xt with the constant kt

1 > 0 uniformly regarding to ut:

||f(s, (xt)′, ut) − f(s, (xt)′′, ut)|| ≤ kt
1||(xt)′ − (xt)′′||, ∀ s ∈ [t, t + T ],

(xt)′, (xt)′′ ∈ Xt, ut ∈ U t

3. exists such a constant kt
2 that function f(s, xt, ut) satisfies the condition:

||f(s, xt, ut)|| ≤ kt
2(1 + ||x||), ∀ s ∈ [t, t + T ], xt ∈ Xt, ut ∈ U t

4. for any s ∈ [t, t + T ] and xt ∈ Xt set

G(xt) = {f(s, xt, ut)|ut ∈ U t}
is a convex compact from Rl.
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The essential difference between the game model with continuous updating
and a classic differential game with prescribed duration Γ (x0, T − t0) is that
players in the initial game are guided by the payoffs that they will eventually
obtain on the interval [t0, T ], but in the case of a game with continuous updating,
at the time instant t they orient themselves on the expected payoffs (6), which
are calculated based on the information defined for interval [t, t + T ] or the
information that they have at the instant t.

4 Nash Equilibrium in a Game with Continuous
Updating

In the framework of continuously updated information, it is important to model
players’ behavior. To do this, we use the Nash equilibrium concept in open-loop
strategies. However, for the class of differential games with continuous updating,
modeling will take the following form:

For any fixed t ∈ [t0,+∞), uNE(t, x) = (uNE
1 (t, x), ..., uNE

n (t, x)) coincides
with the Nash equilibrium in game (5), (6) defined for the interval [t, t + T ] at
instant t.

However, direct application of classical approaches for the definition of the
Nash equilibrium in open-loop strategies is not possible, consider two intervals
[t, t+T ], [t+ ε, t+T + ε], ε << T . Then according to the problem statement:

–uNE(t) at instant t coincides with the open-loop Nash equilibrium in the
game defined for interval [t, t + T ],

–uNE(t + ε) at instant t + ε coincides with the open-loop Nash equilibrium
in the game defined for interval [t + ε, t + T + ε].

In order to construct such strategies, we consider the concept of generalized
Nash equilibrium in open-loop strategies as the principle of optimality

ũNE(t, s, x) = (ũNE
1 (t, s, x), ..., ũNE

n (t, s, x)), t ∈ [t0,+∞), s ∈ [t, t + T ], (9)

which we are going to use further for construction of strategies uNE(t, x).

Definition 1. Strategy profile ũNE(t, s, x) = (ũNE
1 (t, s, x), ..., ũNE

n (t, s, x)) is a
generalized Nash equilibrium in the game with continuous updating, if for any
fixed t ∈ [t0,+∞), strategy profile ũNE(t, s, x) is the open-loop Nash equilibrium
in game Γ (x, t, t + T ).

Using a generalized open-loop Nash equilibrium, it is possible to define a
solution concept for a game model with continuous updating.
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Definition 2. Strategy profile uNE(t, x) = (uNE
1 (t, x), ..., uNE

n (t, x)) is called an
open-loop-based Nash equilibrium with continuous updating if it is defined in the
following way:

uNE(t, x) = ũNE(t, s, x)|s=t

= (ũNE
1 (t, s, x)|s=t, ..., ũ

NE
n (t, s, x)|s=t), t ∈ [t0,+∞),

(10)

where ũNE(t, s, x) is the generalized open-loop Nash equilibrium defined in
Definition 1.

Strategy profile uNE(t, x) will be used as a solution concept in a game with
continuous updating.

5 Pontryagin’s Maximum Principle with Continuous
Updating

In order to define strategy profile uNE(t, x), it is necessary to determine the
generalized Nash equilibrium in open-loop strategies ũNE(t, s, x) of a game with
continuous updating. To do this, we will use a modernized version of Pontryagin’s
maximum principle. Let us start by defining a real-valued function Ht

i by

Ht
i (τ, x

t, ut, λt) = Tgi(Tτ + t, xt, ut) + λt
iTf(Tτ + t, xt, ut). (11)

The function Ht
i , i ∈ N is called the (current-value) Hamiltonian function and

plays a prominent role in Pontryagin’s Maximum Principle. The variable λt
i is

called the (current-value) costate variable associated with the state variable xt,
or the (current-value) adjoint variable.

The following theorem is applied:

Theorem 1. Let f(s, ·, ut) be continuously differentiable on Rl, ∀s ∈ [t, t + T ]
and gi(s, ·, ut) be continuously differentiable on Rl, ∀s ∈ [t, t + T ], i ∈ N . Then,
if ũNE(t, s, x) provides generalized open-loop Nash equilibrium in a differential
game with continuous updating, and for all t ∈ [t0,+∞) x̃t(s), with s ∈ [t, t+T ],
is the corresponding state trajectory in the game Γ (x, t, t + T ), then for all t ∈
[t0,+∞) exist n costate functions λt

i(τ, x), where τ ∈ [0, 1], i ∈ N , such that the
following relations are satisfied:

1. for all τ ∈ [0, 1]

Ht
i (τ, x̃

t, ũNE(t, τ, x), λt) = max
φi

{Ht
i (τ, x̃

t, ũNE
−i (t, τ, x), λt)}, i ∈ N, (12)

where ũNE
−i = (ũNE

1 , ..., φi, ..., ũ
NE
n ),
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2. λt
i(τ, x) is a decision of the system of adjoint equations

dλt
i(τ, x)
dτ

= −∂Ht
i (τ, x̃

t(τ), ũNE(t, τ, x), λt)
∂xt

=

= −T
∂gi(Tτ + t, x̃t, ũNE)

∂xt
− λt

i(τ, x)T
∂f(Tτ + t, x̃t, ũNE)

∂xt
, i ∈ N,(13)

where the transversality conditions are

λt
i(1, x) = 0, i ∈ N (14)

3. for all t ∈ [t0,+∞)

˙̃xt(τ) = Tf(Tτ + t, x̃t, ũNE), x̃t(0) = x, τ ∈ [0, 1]. (15)

Proof: Let fix t ≥ t0 and consider game Γ (x, t, t + T ).

Using following substitution

τ =
s − t

T
, (16)

we get the motion equation (5) in the form:

ẋt(τ) = Tf(Tτ + t, xt, ut), xt(0) = x, τ ∈ [0, 1]. (17)

And payoff function of player i ∈ N has the form

Kt
i (x, t, T ;ut) =

1∫

0

Tgi[Tτ + t, xt(τ), ut(τ, x)]dτ, i ∈ N. (18)

For the optimization problem (17)–(18) Hamiltonian has the form

Ht
i (τ, x

t, ut, λt) = Tgi(Tτ +t, xt(τ), ut(τ, x))+λt
i(τ, x)Tf(Tτ +t, xt(τ), ut(τ, x)).

(19)

If ũNE(t, τ, x) – generalized open-loop Nash equilibrium in the differential game
with continuous updating, then, according to Definition 1, for every fixed t ≥ t0,
ũNE(t, τ, x) is an open-loop Nash equilibrium in the game Γ (x, t, t+T ). Therefore
for any fixed t ≥ t0 conditions 1–3 of the theorem are satisfied as necessary
conditions for Nash equilibrium in open-loop strategies (see [1]). The Theorem
is proved.

It can been mentioned also that if for every t ≥ t0 functions Ht
i are concave

in (xt, ut) for all i ∈ N , then the conditions of the theorem are sufficient for a
Nash open-loop solution [15].
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6 Differential Game of Logarithmic Advertising Game
Model with Continuous Updating

As an illustrative example, we consider a logarithmic excess-advertising model
of a duopoly proposed by Jørgensen in [8]. There are two firms operating in a
market. It is assumed that market potential is constant over time. The only mar-
keting instrument used by the firms is advertising. Advertising has diminishing
returns since it suffers from increasing marginal costs. Nash optimal open-loop
advertising strategies are determined in [8]. Here we obtain open-loop Nash equi-
librium with continuous updating by means of Theorem 1.

6.1 Initial Game Model

Consider the model investigated in [8]. Let xi(t) denote the rate of sales of firm i
at the instant time t, (i = 1, 2) and assume that x1 +x2 = M , implying that the
market potential is fully exhausted at each instant of time. The game is played
on interval [0, T ], where T is an arbitrary but fixed positive number. Because of
the assumption x1 + x2 = M , so ẋ2 = −ẋ1. The state equation is

ẋ1 = k log
u1

u2
= k(log u1 − log u2),

ẋ2 = −ẋ1 = k(log u2 − log u1),

x1(0) = x0
1, x2(0) = x0

2,

(20)

where k is a positive constant, xi(0) is a given initial rate of sales of firm i.
The state equation (20) model describes a market where buyers are perfectly
mobile and switch instantaneously to the firm which has the largest rate of
advertising expenditure, that is, advertises in excess of the other. In the model,
market share increases linearly according to the amount of excess advertising.
Performance indices are given by

Ki =
∫ T

0

(ϕixi − ui) exp{−rit}dt, i = 1, 2, (21)

where x2 = M − x1. Assume that ri > 0, i = 1, 2. The open-loop Nash
equilibrium in its explicit form was constructed in [8]:

uinitial,NE
i =

kϕi

ri
[1 − exp{−ri(T − t)}]. (22)

For the case r1 = r2, the optimal trajectories are given by

x1(t) = (k log
ϕ1

ϕ2
)t + x1(0),

x2(t) = M − (k log
ϕ1

ϕ2
)t − x1(0).

(23)
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If r1 �= r2, then trajectory x1 is the solution of

ẋ1 = k log
ϕ1r2[1 − exp{−r1(T − t)}]
ϕ2r1[1 − exp{−r2(T − t)}]

. (24)

The solution of Eq. (24) is given by

x1(t) = x1(0) + k log
ϕ1r2
ϕ2r1

t + k

∫ t

0

log
1 − exp{−r1(T − s)}
1 − exp{−r2(T − s)}ds.

6.2 Game Model with Continuous Updating

Now consider this model as a game with continuous updating. It is assumed
that information about motion equations and payoff functions is updated con-
tinuously in time. At every instant t ∈ [0,+∞), players have information only
at interval [t, t + T ].

Therefore, for every time instant t, we can get the payoff function of player
i for the interval [t, t + T ]. The payoff functions are given as follows:

Kt
i =

∫ t+T

t

(ϕix
t
i − ut

i) exp(−ris)ds, i = 1, 2.

In order to simplify the problem that we desire to solve, we can do a transfer
τ = s−t

T
. Furthermore, restate the problem to be solved:

ẋt
1(τ) = Tk log

ut
1(τ, x)

ut
2(τ, x)

= Tk(log ut
1(τ) − log ut

2(τ)), τ ∈ [0, 1],

ẋt
2(τ) = −ẋt

1(τ),

xt
1(0) = x1, xt

2(0) = x2,

Kt
i =

∫ 1

0

T (ϕix
t
i(τ) − ut

i(τ, x)) exp{−ri(Tτ + t)}dτ, i = 1, 2.

(25)

The Hamiltonian functions are given by

Ht
1(t, τ, x, ut, λt) = (ϕ1x

t
1 − ut

1)T + λt
1(τ, x)Tk(log ut

1 − log ut
2), (26)

Ht
2(t, τ, x, ut, λt) = (ϕ2x

t
2 − ut

2)T − λt
2(τ, x)Tk(log ut

1 − log ut
2). (27)

Note that the current-value Hamiltonian is simply exp(ri(Tτ + t)) times the
conventional Hamiltonian. Necessary conditions for the maximization of Ht

i , for
ut

i ∈ (0,+∞) are given by

∂Ht
1

∂ut
1

= −T + λt
1(τ, x)Tk

1
ut
1

= 0,
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∂Ht
2

∂ut
2

= −T + λt
2(τ, x)Tk

1
ut
2

= 0.

Therefore, the optimal control ut
i is given by

ut
1(τ, x) = λt

1(τ, x)k, ut
2(τ, x) = λt

2(τ, x)k. (28)

The adjoint variables λt
i(τ) should satisfy the following equations

λ̇t
1(τ, x) = −∂Ht

1

∂xt
1

+Tr1λ
t
1(τ, x) = −ϕ1T + Tr1λ

t
1(τ, x),

λ̇t
2(τ, x) = −∂Ht

2

∂xt
2

+Tr2λ
t
2(τ, x) = −ϕ2T + Tr2λ

t
2(τ, x).

(29)

Note that these equations are uncoupled. The transversality conditions are

λt
i(1, x) = 0, i = 1, 2.

By solving the above differential equations about the adjoint variables, the
solutions are given by

λt
1(τ, x) =

ϕ1

r1
[1 − exp{Tr1(τ − 1)}],

λt
2(τ, x) =

ϕ2

r2
[1 − exp{Tr2(τ − 1)}].

(30)

Substituting (30) into (28) yields

utNE
i (τ, x) =

kϕi

ri
[1 − exp{Tri(τ − 1)]}. (31)

Note that x is the initial state in the subgame Γ (x, t, t + T ). The open-loop
strategies utNE

i (τ, x) in our example in fact do not depend on initial state x.

Let us show that the solution obtained satisfies sufficiency conditions. Since
∂2Ht

i

∂xt∂xt = 0,
∂2Ht

i

∂xt∂ut
i

= 0,
∂2Ht

i

∂ut
i∂ut

i
= −λt

i(τ)Tk 1
(ut

i)
2 ≤ 0, then, according to [9],

utNE(τ, x) is indeed a Nash equilibrium in the subgame Γ (x, t, t + T ).

Finally, we convert τ to t, s. Then the generalized open-loop Nash equilibrium
strategies have the following form:

ũNE
1 (t, s, x) =

kϕ1

r1
[1 − exp{r1(s − t − T )}],

ũNE
2 (t, s, x) =

kϕ2

r2
[1 − exp{r2(s − t − T )}].

(32)
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According to Definition 2, we construct an open-loop-based Nash equilibrium
with continuous updating :

uNE
i (t, x) = ũNE

i (t, s, x)|s=t =
kϕi

ri
[1 − exp{−riT}] i = 1, 2. (33)

Note that in the example under consideration, strategies utNE
i are independent

of the initial values of the state variables of subgame Γ (x, t, t + T ), so strategies
uNE

i (t, x) in fact do not depend on x.

Consider the difference between optimal strategies in the initial game and in
a game with continuous updating:

uinitial,NE
i − uNE

i =
kϕi

ri
exp{−riT}[1 − exp{−ri(T − t − T )}]

We can see that the amounts of players’ advertising expenditure is less in a game
with continuous updating for t < T − T .

The optimal trajectories xNE
1 (t), xNE

2 (t) in a game with continuous updating
are the solutions of

ẋ1(t) = k log(
ϕ1r2
r1ϕ2

[1 − exp{−r1T}]
[1 − exp{−r2T}]

),

ẋ2(t) = −ẋ1(t),

x1(0) = x0
1,

x2(0) = x0
2,

(34)

where ri > 0, i = 1, 2. Therefore, the state dynamics of the system are given as
follows:

xNE
1 (t) = x0

1 + k log(
ϕ1r2[1 − exp{−r1T}]
r1ϕ2[1 − exp{−r2T}]

)t,

xNE
2 (t) = M − x0

1 − k log(
ϕ2r1[1 − exp{−r2T}]
r2ϕ1[1 − exp{−r1T}]

)t.
(35)

It can be noted, that if r1 = r2, then optimal trajectories in initial model and
in the game with continuous updating are the same.

Figures 1, 2 represent a comparison of results obtained in the initial model
and in the model with continuous updating for the following parameters:
ϕ1
r1 = 0.1, ϕ2

r2
= 0.5, k = 1, T = 10, T = 0.2, r1 = 5, r2 = 3, x0

1 =
8, x0

2 = 10.

We see that the rate of sales for player 1 in the game with continuous updating
is less than in the initial model.
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Fig. 1. Comparison of Nash equilibrium strategies in the initial model and in the game
with continuous updating
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7 Conclusion

A differential game model with continuous updating is presented and described.
The definition of the Nash equilibrium concept for a class of games with contin-
uous updating is given. Optimality conditions on the form of Pontryagin’s maxi-
mum principle for the class of games with continuous updating are presented for
the first time and the technique for finding the Nash equilibrium is described.
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The theory of differential games with continuous updating is demonstrated by
means of an advertising model with a logarithmic state dynamic. Ultimately, we
present a comparison of the Nash equilibrium and the corresponding trajectory
in both the initial game model as well as in the game model with continuous
updating and conclusions are drawn.
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Zenkevich, N., Birkhäuser (eds.) Frontiers of Dynamic Games, Game Theory and
Management, St. Petersburg, Basel (2018)

23. Petrosyan, L., Murzov, N.: Game-theoretic problems in mechanics. Lith. Math.
Collect. 3, 423–433 (1966)

24. Pontryagin, L.S.: On the theory of differential games. Russ. Math. Surv. 21(4),
193 (1966)

25. Ramadan, A., Choi, J., Radcliffe, C.J.: Inferring human subject motor control
intent using inverse MPC. In: 2016 American Control Conference (ACC), pp. 5791–
5796, July 2016

26. Rawlings, J., Mayne, D.: Model Predictive Control: Theory and Design. Nob Hill
Publishing, Madison (2009)

27. Shevkoplyas, E.: Optimal solutions in differential games with random duration. J.
Math. Sci. 199(6), 715–722 (2014)

28. Wang, L.: Model Predictive Control System Design and Implementation
using MATLAB. Springer, New York (2005). https://doi.org/10.1007/978-1-
84882-331-0

29. Yeung, D., Petrosian, O.: Cooperative stochastic differential games with informa-
tion adaptation. In: International Conference on Communication and Electronic
Information Engineering (2017)

https://doi.org/10.1007/978-3-030-23699-1_10
https://doi.org/10.1007/978-3-030-23699-1_10
https://doi.org/10.3390/math7121239
https://doi.org/10.3390/math7121239
https://doi.org/10.1007/978-3-030-33394-2_14
https://doi.org/10.1007/978-3-030-33394-2_14
https://doi.org/10.1007/978-1-84882-331-0
https://doi.org/10.1007/978-1-84882-331-0


Feasible Set Properties of an Optimal
Exploitation Problem for a Binary
Nonlinear Ecosystem Model with

Reducible Step Operator

Alexander I. Smirnov(B) and Vladimir D. Mazurov

Krasovskii Institute of Mathematics and Mechanics UB RAS, Ekaterinburg, Russia
asmi@imm.uran.ru, vldmazurov@gmail.com

Abstract. Previously, the authors proposed a formalization of renew-
able resources rational use problem based on the representation of con-
trolled system as a discrete dynamical system. In the particular case of
structured ecosystem described by Leslie’s binary model, despite its non-
linearity, it turned out that all optimal controls preserving this system
belong to the certain hyperplane. This paper explores the conditions
under which the positive boundary of a feasible set of problem with
so-called quasi-preserving controls also contain a part of some hyper-
plane. In the process, we used a generalization of classical concept of
map irreducibility—the concept of local irreducibility. Statements about
the influence of the irreducibility property of discrete dynamical system
step operator on the properties of an feasible set positive boundary are
proved.

Keywords: Rational exploitation of ecosystems · Binary Leslie’s
model · Concave programming · Irreducible map

1 Introduction

The renewable resources rational use problem is currently extremely acute. Cur-
rent estimates are that overfishing has impacted over 85% of the world’s fish
resources and that most fisheries are fished far beyond their sustainable capac-
ity. The depletion of forest resources is increasing; the net loss of the global forest
area (deforestation plus reforestation) in the last decade of the 20th century was
about 94 million hectares, the equivalent of 2.4% of total world forests [10].

We study here some formalization for a problem of sustainable exploita-
tion of renewable resources. The problem statement is inspired by problems of
sustainable management of fisheries, agriculture, forestry and other renewable
resources, including the problems of non-destructive exploitation of ecological
populations (through partial removal of biomass).

The first studies in this direction considered only the total population
biomass. Later, the need to take into account a structure of exploited popu-
lations led to the use of matrix models. The dynamic aspect of the problem was
c© Springer Nature Switzerland AG 2020
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not taken into account; in the vast majority of studies, the problem of exploiting
a population in a stationary state was considered. A comprehensive review of
these studies is given in monograph [4].

The first results for non-linear models of exploited populations were obtained
in pioneering papers [1,9], where a density-dependent model of the structured
population was studied.

As a basic model, in studies taking into account the structure of exploited
populations, as a rule, various generalizations of so-called Leslie’s model of the
population age structure were used (biological aspects of this model, as well as
a comprehensive description of its properties, are given in [5]). These papers
became the basis for numerous further publications (see review in [2]).

In the vast majority of studies, even if additive control is used in the initial
formulation, as a rule, the transition to the proportional removal, that is, to mul-
tiplicative control, is subsequently carried out, which simplifies the search and
analysis of optimal strategies. A typical approach is described in [4]. Although
the iterative process with additive control is considered first, then the fractions
to be withdrawn of the structural units are determined. Thus, there is a return to
the multiplicative control (typically, in an equilibrium state of the model used).
Usually, a step operator of dynamical system is multiplied by a diagonal matrix
with these fractions on the main diagonal. In this paper, we use a more natural,
in our opinion, the additive setting the problem under consideration.

This study is a continuation of our series of publications [7,11,12] on the
ecosystems exploitation problem. The results obtained in them will be presented
in the following sections as necessary; in this section, we note only a few of them.

Let us note that for a more complete acquaintance with the history and the
current state on modeling the sustainable exploitation of ecosystems, one can
also use the reviews available in our publications mentioned above.

Although the exact mathematical formulation of the problem of ecosystem
exploitation varied among different authors, there is a common characteristic
property of optimal solutions, consisting in the number of age classes to be
exploited. It was established that there is a bimodal optimal control, which
allows the exploitation (withdrawal, partially or completely) of no more than
two age (stage) classes: the partial withdrawal of one age class and the complete
withdrawal of another (older) one.

All of the above studies examined populations with a one-dimensional (age or
stage) structure. In the series of papers, we consider the problem of exploitation
for a population with a binary structure, when there is an additional criterion
for structuring the population, different from the age or stage of development.
We characterized the properties of a feasible set of the population exploitation
problem for this generalization of Leslie’s model. In particular, we obtained a gen-
eralization of the bimodality property for the binary population structure [12].

Our model of the population belongs to the class of general models that
some authors call compact or global. As emphasized in [3], such models are nec-
essary at the initial stages of ecosystem modeling, because they must be basic for
more detailed models of specific natural systems. A comprehensive study of the
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properties of global models is necessary since the basic properties of detailed con-
crete models follow from the corresponding properties of the underlying global
models.

In previous papers, we dealt with the generally accepted so-called “regular”
case when the dynamical system step operator was irreducible (the definition
and properties of the local map irreducibility can be found in [6]; the classical
irreducibility [8] here will be called as global irreducibility).

The goal of this paper is to study the features of the feasible set of the optimal
exploitation problem for the binary Leslie’s model in the absence of assumptions
about the irreducibility of the dynamical system step operator.

2 Some Definitions, Notation and Preliminary Results

Used notation: R
q
+—the nonnegative orthant of R

q; M—the closure of a set M ;
co (M)—the convex hull of M ; |M |—the number of elements of a finite set M ;
m,n = {i ∈ Z | m ≤ i ≤ n}; Z—the set of integers; I+(x) = {i ∈ 1, q | xi > 0}.
Sometimes we briefly write x = (xi) instead of x = (x1, x2, . . . , xq).

We say that x, y are in strict dominance relation or in partial dominance
relation if x < y or x � y, x �< y, respectively; x � y means x ≤ y, x �= y.

The ecosystem that is being exploited is modeled by the iterative process

xt+1 = Fu(xt), t = 0, 1, 2, . . . , (1)

where Fu(x) = F (x) − u, xt ≥ 0—the population state at time t = 0, 1, 2, . . ..
The components of xt are the biomass values of ecosystem structural units; the
components of u determine the volumes of withdrawn biomass.

It is assumed that the original system (in the absence of control), along with
the trivial equilibrium (F (0) = 0), also has a nontrivial equilibrium (i.e., its step
operator F also has a nonzero fixed point x̄F ).

In [7] we posed the problem of maximization of ecosystem exploitation effect
c(u) on the feasible set U that is the closure of preserving controls set U . The
control u is preserving if, for at least one initial state x0, the trajectory of
process (1) is separated from zero, so all structural units of the system stably
exist indefinitely.

The map F was also assumed to be concave on R
q
+ and irreducible at zero.

Under these conditions, was proved [7] the equivalence of posed optimal exploita-
tion problem to the mathematical programming problem

max{c(u) | x = F (x) − u, x ≥ 0, u ≥ 0}, (2)

where c(u)—nonnegative monotone increasing function.
We denote by Nu and N+

u the sets of nonzero and positive fixed points of
Fu, respectively. A nonempty set Nu contains the largest element x̄u, and the
map x̄(u) : u → x̄u is concave and monotone (strictly) decreasing on U [7]:

Nu �= ∅, 0 ≤ v ≤ u ⇒ Nv �= ∅, x̄v ≥ x̄u; 0 ≤ v < u ⇒ x̄v > x̄u. (3)
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The feasible control u is preserving if x̄(u) > 0. If x̄(u) � 0, but x̄(u) �> 0, then
the control u is called quasi-preserving. The feasible set U of the problem (2) is
the closure of the preserving controls set U . These sets are representable [7] as

U = {u ∈ R
q
+ | N+

u �= ∅}, U = {u ∈ R
q
+ | Nu �= ∅}. (4)

Since c(u) is monotone increasing, optimal controls of (2) belong to the set

D = {u ∈ R
q
+ | Nu �= ∅, Nv = ∅ (∀v > u)}. (5)

This set is a part of the boundary of U ; some authors call it as a positive boundary
of U . Clear that D = D′ ∪ D′′, where D′ = D ∩ U , D′′ = D \ U , so that

D′ ={u | N+
u �= ∅, Nv = ∅ (∀v > u)}, D′′ ={u ∈ R

q
+ | Nu �= ∅, N+

u = ∅}. (6)

Thus, all optimal preserving controls belong to D′; accordingly, all optimal
quasi-preserving controls belong to D′′.

In the sequel, we consider only those preserving and quasi-preserving controls
that belong to the positive boundary D = D′ ∪ D′′ of the feasible set (19).

3 The Optimal Exploitation Problem for an Ecosystem
Modeled by Nonlinear Binary Leslie Model

Let us describe our generalization of the Leslie model. The population consists
of m structural subdivisions, each of which, in turn, contains individuals of n

ages (stages). If we denote by x
(t)
i,j the number of individuals of the structural

subdivision i ∈ 1,m of age (stage) j ∈ 1, n at time t = 0, 1, 2 . . ., then the
relations of this model will take the following form:

x
(t+1)
i,1 = fi(at), x

(t+1)
i,j+1 = αi,jx

(t)
i,j (i ∈ 1,m, j ∈ 1, n − 1). (7)

Here αi,j > 0 and βi,j ≥ 0 are the survival and fertility rates in the relevant
subdivisions, at =

∑m
i=1

∑n
j=1 βi,jx

(t)
i,j—the number of newborns at time t.

The population state vector has a block form x = (x(1);x(2); . . . ;x(m)) with
the blocs x(i) = (xi,1, . . . , xi,n) (i ∈ 1,m). The step operator F (x) = (fi,j(x)) of
the iterative process (7) has the following components:

fi,1(x) = fi(a(x)), fi,j+1(x) = αi,jxi,j (i ∈ 1,m, j ∈ 1, n − 1). (8)

We assume that among the functions fi(a) there are no identically equal to
zero and they satisfy the following assumptions:

fi(0) = 0, fi(a) are concave on R+ (∀i ∈ 1,m). (9)

So, these functions are monotone increasing and positive for a > 0. Denote

σ(a) =
m∑

i=1

σ(i)fi(a), σ(i) = σ(i)
n , σ

(i)
j =

j∑

k=1

βi,k

k−1∏

�=1

αi,� (i ∈ 1,m, j ∈ 0, n). (10)
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The condition of positive equilibrium existence is the following [11]:

σ′(+∞) < 1 < σ′(+0), (11)

The irreducibility at zero of the map (8) is equivalent to the following condition:

βi,n > 0 (∀ i ∈ 1,m). (12)

The global irreducibility of the map (8) is equivalent to irreducibility only at
zero under the following requirement:

fi(a) are strictly increasing on [0,+∞) (∀ i ∈ 1,m). (13)

We introduce the following notation (here everywhere i ∈ 1,m, j, k ∈ 1, n):

π(i) = π(i)
n , π

(i)
j = p

(i)
1,j , p

(i)
j = p

(i)
j,n, p

(i)
j,k =

k−1∏

�=j

αi,�, (14)

p(i)(u) = p(i)n (u), p
(i)
j (u) =

j∑

k=1

p
(i)
k,jui,k, (15)

q(u) =
m∑

i=1

n∑

j=1

q
(i)
j ui,j , q

(i)
j = q

(i)
j,n, q

(i)
j,k =

k∑

s=j

βi,s

s−1∏

t=j

αi,t, (16)

μ(a) = σ(a) − a, μ∗ = max
a≥0

μ(a), λi(a) = π(i)fi(a). (17)

Note that q(u) = 〈q, u〉, where the symbol 〈·, ·〉 means the scalar product,

q = (q(1); q(2); . . . ; q(m)), q(i) = (q(i)1 , q
(i)
2 , . . . , q(i)n ). (18)

The feasible set U of (2) for the model (7) is given by the restrictions

xi,1 = fi(a(x))−ui,1, xi,j+1 = αi,jxi,j −ui,j+1 (i ∈ 1,m, j ∈ 1, n − 1), (19)

where x, u are nonnegative, a(x) =
∑m

i=1

∑n
j=1 βi,jxi,j .

It is easy to get explicit expressions for coordinates of the feasible vector x:

xi,j = π
(i)
j fi(a) − p

(i)
j (u) (j ∈ 1, n), xi,n = λi(a) − p(i)(u) (i ∈ 1,m), (20)

where a = a(x). We write x with coordinates (19) as x = x(a, u). The following
properties are a consequence of the Eqs. (20):

q(u) = μ(a) (a = a(x)), q(u) ≤ μ∗ (∀u ∈ U). (21)

For u ∈ U , x̄u = (x̄i,j(u)) we introduce the following indices sets:

I0(u) = {k ∈ 1,m | x̄k,n(u) = 0}, I1(u) = {k ∈ 1,m | ∃j ∈ 1, n : uk,j > 0}. (22)
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The set I0(u) shows blocks x(k) whose last age (stage) groups are completely
eliminated. The fact I1(u) = ∅ means that u = 0; otherwise, the set I1(u) shows
blocks u(k) containing positive coordinates. Clear that I0(u) ⊆ I1(u).

From (20), (21) we obtain the following representations (see [11] for details):

D′ = {u | p(i)(u) < λ∗
i (i ∈ 1,m), q(u) = μ∗, u ≥ 0}, (23)

D′′ = {u | I0(u) �= ∅, p(i)(u)
{

= λi(a), i ∈ I0(u),
< λi(a), i /∈ I0(u), q(u) = μ(a), u ≥ 0}. (24)

A remarkable property of D′ was proved in [11]: it turns out that the set of
potentially optimal preserving controls D′ is not empty and lies entirely on the
hyperplane Γ = {u | q(u) = μ∗}. Moreover,

D′ = Γ ∩ U, D′′ ∩ Γ ⊂ D′, D′ = Γ ∩ D. (25)

This property allows even before solving the problem (2) to determine whether
optimal preserving controls exist, and if they exist, simplifies their finding.

Now we give (without proof) the auxiliary proposition about the proper-
ties of the function ā(u) = a(x̄(u)). This proposition allows us, in particular, to
determine the change boundaries of the parameter a in the representation (24).

Lemma 1. Let the assumptions (9) and (11) hold. Then the following state-
ments are true:

(i) The function ā(u) is nonnegative, monotone decreasing, and concave on U.
(ii) The inequality ā(u) ≥ a∗ (∀u ∈ U) holds; more specifically,

ā(u) = a∗ (∀u ∈ D′), ā(u)
{

= a∗, u ∈ Γ ,
> a∗, u /∈ Γ (∀u ∈ D′′). (26)

As mentioned, the set of preserving controls D′ for the problem (2) in the
case of the generalization of Leslie’s model is always nonempty. To characterize
the conditions when D′′ �= ∅, we need the following notation.

We will consider ordered subsets of 1,m, 0, n, for the designation of which it is
reasonable to use variable-length row vectors: the notation I = (i1, . . . , i�) means
that there is the set I = {i1, . . . , i�} with a fixed order of elements i1, . . . , i�.

Let I = (i1, . . . , i�) ⊆ 1,m, J = (j1, . . . , j�) ⊆ 0, n, and the second of these
sets allow repetition of elements, in contrast to the first: |I| = �, |J | ∈ 1, �. We
introduce the following notation:

S̄I
J(a) = S̄i1,...,i�

j1,...,j�
(a) = SI

J(a) +
∑

i/∈I

σ(i)fi(a), (27)

where SI
J(a) = Si1,...,i�

j1,...,j�
(a) =

∑�
k=1 σ

(ik)
jk

fik
(a). In particular,

S̄
(i)
j (a) = σ

(i)
j fi(a) +

∑

k �=i

σkfk(a). (28)
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The set D′′ �= ∅ if and only if J∗ �= ∅ [12, Theorem 1], where

J∗ = {k ∈ 1,m | J∗
k �= ∅}, J∗

k = {j ∈ 1, n | S̄
(k)
j−1(a

∗) ≥ a∗} (k ∈ 1,m). (29)

We denote by a
(i)
j the solution of the equation

S̄
(i)
j−1(a) = a (i ∈ 1,m, j ∈ 1, n). (30)

This equation is solvable if and only if j ∈ J∗
i [12, Lemma 1].

We characterize now the structure of D′′. For this we consider the polyhedron

U(a) = {u | p(i)(u) ≤ λi(a) (∀i ∈ 1,m), q(u) = μ(a), u ≥ 0}. (31)

Clear that U = ∪{U(a) | a ∈ [0, āF ]}. We introduce the sets

VD′ = V (a∗) ∩ D′, VD′′(a) = V (a) ∩ D′′,

where V (a) is the set of vertex of U(a), a ∈ [a∗, āD′′ ]. For i ∈ 1,m, let us denote

Li(a) = {u ≥ 0 | p(j)(u)
{

= λj(a), j = i,
≤ λj(a), j �= i,

q(u) = μ(a)}, Li = ∪
a
Li(a). (32)

Obviously, Li(a) is the nonnegative part of (mn − 2)-dimensional affine variety.
If D(a) = U(a) ∩ D′′, then using the parameterization (31), we obtain:

D′′ = ∪
a∈[a∗,āD′′ ]

D(a), D(a) =
m∪

i=1
Li(a). (33)

For V ⊆ U we denote sup{ā(u) | u ∈ V } = āV . Note that āU = āF , āD′ = a∗;
by Lemma 1, āD = āD′′ (if D′′ �= ∅). It is easy to derive the following equalities:

Li �= ∅ ⇒ āi = āLi
= a(i)

n (∀i ∈ 1,m), āD′′ = max
i∈J∗

āi, (34)

where a
(i)
n is the solution of the Eq. (30) with j = n.

We use also the following notation (see (27); here i ∈ 1,m, j, k ∈ 0, n):

Δ̄i
j,k(I, J, a) = (S̄ i1, ... ,i�, i

j1−1,...,j�−1,j(a), S̄ i1, ... i�, i
j1−1,...,j�−1,k(a)]. (35)

For a given population state vector x = (x(1), x(2), . . . , x(m)), we collect the
positive coordinates indices of its blocs x(k) = (xk,1, . . . , xk,n) in the sets I+k (x):

I+k (x) = {j ∈ 1, n | xk,j > 0} (k ∈ 1,m).

In [12], the elements of VD′′(a) were found explicitly. If I0(u) ⊆ I ∪ {i} and
I+i (u) ⊆ {j, k}, where I = (i1, i2, . . . , i�) ⊆ 1,m \{i}, J = (j1, j2, . . . , j�) ⊆ 1, n),
j ≤ k, then positive coordinates of u ∈ VD′′(a) are determined as follows:

uir,jr
= π

(ir)
jr

fir
(a) (r ∈ 1, �), ui,j = (q(i)j,n)−1(S̄i1,...i�

j1−1,...,j�−1(a) − a). (36)
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in the case
n∑

s=j

βi,s > 0, a ∈ Δ̄i
j−1,n(I, J, a), I0(u) = I, I+i (u) = {j}, and

uir,jr
= π

(ir)
jr

fir
(a) (r ∈ 1, �),

ui,j = (q(i)j,k−1)
−1(S̄i1,...i�,i

j1−1,...,j�−1,k−1(a) − a),

ui,k = p
(i)
j,k(q(i)j,k−1)

−1(a − S̄i1,...i�,i
j1−1,...,j�−1,j−1(a)).

⎫
⎪⎪⎬

⎪⎪⎭

(37)

in the case
k−1∑

s=j

βi,s > 0, a ∈ Δ̄i
j−1,k−1(I, J, a), I0(u) = I1(u).

We denote by ui
j(I, J, a) and ui

j,k(I, J, a) the controls with coordinates (36)
and (37), respectively.

4 The Case of Irreducibility Assumption Absence

We consider here some “degenerate situations” for the feasible set (19) the prob-
lem under consideration and show that they lead to the reducibility of the maps
used. The first situation is related to the existence on the positive boundary D of
the feasible set of controls that are in partial dominance relation; the second—
with the existence of linear sections on its nonlinear part D′′.

Recall that the strict dominance relation was used in the definition (5) of D.
The following statement shows the adequacy of this approach—it turns out that
the set D may contain the elements that are in partial dominance relation.

Theorem 1. Let the assumptions (9) and (11) hold. Then D′ (resp., D′′) con-
tains u, v with u � v if and only if the condition (38) is satisfied (resp., at least
one of the conditions (38), (39) is satisfied) :

∃ i ∈ 1,m : βi,n = 0, (38)

m ≥ 2; ∃ i ∈ J∗ : fi(a) = const (∀a ∈ [af ,+∞), af ∈ [a∗, min
j∈J∗

i

a
(i)
j ) ). (39)

Proof. Necessity. If u, v ∈ D′ then, by (23), q(u) = μ∗ = q(v). Since linearity
of q(·) (see (16)), then q(w) = 0 for w = u − v. If u � v then w � 0, so
I+i0 (w) �= ∅ for some i0 ∈ 1,m. If j0 ∈ I+i0 (w), then from q(w) = 0 we get,
by (16), q

(i0)
j0,nwi0,j0 = 0, so βi0,j = 0 (∀j ∈ j0, n). Thus, (38) is satisfied.

Now let u, v ∈ D′′. It follows from D′′ �= ∅ that J∗ �= ∅ [12, Theorem 1]. If
u � v and a1 = ā(u), a2 = ā(v), then a1 ≤ a2 by Lemma 1. If i ∈ I0(v) then we
see from (3) and (22), that x̄i,n(u) ≤ x̄i,n(v) = 0, so I0(v) ⊆ I0(u).

We introduce, as above, w = u − v, and show that I = I0(v) ∩ I1(w) = ∅,
where the sets I0(v), I1(w) are defined by equalities (22).

Indeed, otherwise the equalities x̄i,n(u) = 0, x̄i,n(v) = 0 imply, by (20), the
equalities λi(a1) = p(i)(u), λi(a2) = p(i)(v) (∀i ∈ I). Since positivity of all p

(i)
j,n

(j ∈ 1, n) in definition (15) of p(i)(u), we get λi(a1) = p(i)(u) > p(i)(v) = λi(a2),
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so λi(a1) > λi(a2) (∀i ∈ I). But this inequality contradicts the condition a1 ≤ a2

due to the monotonicity of λi(a) (see (17)). Therefore, I = I0(v) ∩ I1(w) = ∅.
For m = 1, this implies that either I0(v) = ∅ or I1(w) = ∅. But both of

these equalities contradict our assumptions: in the first case we get v /∈ D′′, in
the second—w = 0, so u = v. Therefore, the inequality u � v for u, v ∈ D′′ is
possible only in the case of m ≥ 2.

If a1 = a2 = a, then, as above, from the equality q(u) = μ(a) = q(v) we get
βi,n = 0 for some i ∈ 1,m, so the condition (38) is satisfied.

Suppose now that a1 < a2. We show that then I0(v) ⊆ J∗ (see notation (29)).
Let i ∈ I0(v). Then i ∈ I0(u) and it follows from I = ∅ that i /∈ I1(w), so

that u(i) = v(i). Since u �= v this imply I0(v) �= 1,m. Next, λi(a1) = p(i)(u) =
p(i)(v) = λi(a2), i.e. λi(a1) = λi(a2) (∀i ∈ I0(u)). Then, by (17), fi(a1) = fi(a2).
For a concave monotone increasing function, this means constancy over the entire
interval [a1,+∞). In this case, since a∗ ≤ a1 (see (26)), we get:

(a∗)−1fi(a∗) ≥ (a1)−1fi(a1) > (a2)−1fi(a2). (40)

We see from (28) that S̄
(i)
n−1(a) = σ

(i)
n−1fi(a) +

∑
k �=i σ(k)fk(a). Summing up

the equalities (20) with the coefficients βi,j (taking into account xi,n = 0 for
i ∈ I0(u)), we derive the inequality S̄

(i)
n−1(a) ≥ a, where a = ā(u), u ∈ D′′. Using

this inequality with a = a2, thanks to (40) we obtain: 1 ≤ (a2)−1S̄
(i)
n−1(a2) <

(a1)−1S̄
(i)
n−1(a1) ≤ (a∗)−1S̄

(i)
n−1(a

∗), so S̄
(i)
n−1(a

∗) ≥ a∗ and, by (29), i ∈ J∗.
Thus, the inclusion I0(v) ⊆ J∗ is proved. Therefore, the Eq. (30) is solvable

for some j ∈ J∗
i [12, Lemma 1]. If a

(i)
j is its solution, then, as proved above,

(a(i)
j )−1S̄

(i)
n−1(a

(i)
j ) = 1 < (a1)−1S̄

(i)
n−1(a1), so that a1 < a

(i)
j . Since a1 belongs to

the interval of constancy of fi(a), we have af < min{a
(i)
j | i ∈ J∗, j ∈ J∗

i }. Thus,
for a1 < a2 the condition (39) is satisfied.

Sufficiency. Suppose first that v ∈ D′ and the assumption βi0,n = 0 is satisfied
for some i0 ∈ 1,m. Then, by (23), q(v) = μ∗, p(i)(v) < λ∗

i (∀i ∈ 1,m). By (16),
we have q

(i0)
n,n = 0, i.e. the coefficient of vi0,n on the L.H.S. of the equality

q(v) = μ∗ is zero. Take v0 having a single nonzero coordinate v0
i0,n, then for

u(α) = v + αv0, by (15), we have: p(i)(u(α)) = p(i)(v) < λ∗
i (∀i ∈ 1,m\{i0}).

Further, p(i0)(u(α)) = p(i0)(v) + αp(i0)(v0) = p(i0)(v) +αv0
i0,n. It follows that for

α ∈ (0, α0), where α0 = (v0
i0,n)−1(λ∗

i0
− p(i0)(v)), the condition p(i0)(u(α)) < λ∗

i0

also holds. Next, by (16) we have: q(u(α)) = q(v)+αq(v0) = q(v)+αq
(i0)
n,n v0

i0,n =
q(v) = μ∗, so that all the conditions (23) guaranteeing u(α) ∈ D′ are met
for α ∈ (0, α0). Therefore, as the vector u, we can take any vector u(α) with
α ∈ (0, α0). Thus, u, v ∈ D′ are found that satisfy the condition u � v.

Proof of the sufficiency of (38) for the existence of u, v from D′′ with u � v,
is completely analogous to the corresponding proof for the case of the set D′;
the control v in this case must be selected in accordance with the representation
(33) from the set ∪i∈1,mLi(a)\ ∩i∈1,m Li(a) (a ∈ [a∗, āD)).

Now, suppose that the assumption (39) is satisfied for some i = i0. Then it
follows from (29), due to the monotonicity of S

(i)
j (a) with respect to subscript,
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that i0 ∈ J∗, n ∈ J∗
i0

, and the Eq. (30) for i = i0, j = n has the solution a
(i0)
n . The

sufficiency in the case of (38) is proved, therefore we can assume that βi,n > 0
(∀i ∈ 1,m). We show that for m ≥ 2 there exists u ∈ D′′ from Li0(a)\∪i�=i0 Li(a)
(a = ā(u) ∈ [af , āD)) that has a positive coordinate ui1,j1 in some other block
u(i1) of u (i1 ∈ 1,m, j1 ∈ 1, n, i1 �= i0).

Since the function a−1S̄
(i0)
n−1(a) is strictly decreasing for a ∈ [a∗, a(i0)

n ), it
follows from (a(i0)

n )−1S̄
(i0)
n−1(a

(i0)
n ) = 1 the inequality a−1S̄

(i0)
n−1(a) > 1, or, equiv-

alently, S̄
(i0)
n−1(a) > a. For u = ui1

1 (I, J, a) with coordinates (36), where I = {i0},
J = {n}, we have: ui1,1 = (σ(i1))−1(S̄(i0)

n−1(a) − a), xi1,1 = (σ(i1))−1(a −
S̄i0,i1

n−1,0(a)), ui0,n = λi0(a). If a ∈ Δ̄i1
0,n(I, J, a) = (S̄i0,i1

n−1,0(a), S̄i0,i1
n−1,n(a)] =

(S̄i0,i1
n−1,0(a), S̄(i0)

n−1(a)] (see (35)) then, by (36), ui1,1 > 0, xi1,1 > 0. We saw above

that a < S̄
(i0)
n−1(a) for a ∈ [a∗, a(i0)

n ). Let us show that there are a ∈ [a∗, a(i0)
n )

such that a > S̄i0,i1
n−1,0(a).

Indeed, since βi1,n > 0, the length d of the interval Δ̄i1
0,n(I, J, a) is posi-

tive: d = S̄
(i0)
n−1(a) − S̄i0,i1

n−1,0(a) = σ(i1)fi1(a) > 0, we get Δ̄i1
0,n(I, J, a) �= ∅.

By Lemma 1, a = ā(u) ≥ a∗, so fi1(a) ≥ fi1(a
∗) and d ≥ σ(i1)fi1(a

∗). This
means that for all a ∈ (a0, a

(i0)
n ), where a0 ≥ a

(i0)
n − σ(i1)fi1(a

∗), we have
a > S̄i0,i1

n−1,0(a), hence a ∈ Δ̄i1
0,n(I, J, a). In this case xi1,n(a, u) > 0, therefore,

u = u
(i1)
1 (I, J, a) is the sought-for vector. It remains to find v ∈ D′′ with u � v.

Note that since af < a
(i0)
n , we can assume that the function fi0(a) is constant

over the entire interval (a0, a
(i0)
n ), i.e. ā(u) > af .

Only one coordinate x̄i0,n(u) of all the last coordinates x̄i,n(u) (i ∈ 1,m)
of the blocks x̄(i)(u) is zero: x̄i0,n(u) = 0, x̄i,n(u) > 0 (∀i ∈ 1,m\{i0}), so
u /∈ ∪i�=i0Li(a). Denote by u0 = (u0

i,j) a vector having a single nonzero coordinate
u0

i1,1 = 1. Let v(α) = u − αu0. We show that v(α) ∈ D′′ for sufficiently small
α > 0. To do this, it is enough to verify that the constraints (24) are met.

Indeed, v(α) is nonnegative for 0 < α < α1 = u0
i1,1. Next, using (16), we

obtain: q(v(α)) = q(u) − αq(u0) = μ(ā(u)) − αq
(i1)
1,n u0

i1,j1
= μ(ā(u)) − ασ(i1).

Since σ(i1) > 0, for μ = μ(ā(u)) − ασ(i1) we have: 0 < μ < μ(ā(u)) ≤ μ∗ for all
α ∈ (0, α2), where α2 = (σ(i1))−1μ(ā(u)).

Therefore, the equation q(v(α)) = μ(a) has a solution [11, Lemma 1] for
0 < α < α1; we denote it by a = ā. The function μ(a) is monotone decreasing
for a ≥ a∗, therefore, ā ≥ ā(u) > af . It follows that fi0(ā) = fi0(ā(u)) and
that p(i0)(v(α)) = p(i0)(u) = λi0(ā(u)) = λi0(ā). Next, we obtain from (15):
p(i1)(v(α)) = p(i1)(u) − αp(i1)(u0) = λi1(ā(u)) − απ(i1). Thus, the equalities
0 < p(i1)(v(α)) < λi1(ā) are fulfilled for 0 < α < α3 = (π(i1))−1λi1(ā(u)).

Finally, p(i)(v(α)) = p(i)(u) = λi(ā(u)) ≤ λi(ā) (∀i �= i0, i1), because of
ā(u) ≤ ā. So, all conditions for v(α) to belong to D′′ are satisfied for α ∈ (0, α0),
where α0 = min{α1, α2, α3}. Therefore, as the vector v, we can take any vector
u(α) with α ∈ (0, α0). Thus, in this case too, vectors u, v were found that satisfy
the condition u � v. All statements of Theorem are proved.
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Remembering that āi = sup{ā(u) | u ∈ Li} = a
(i)
n and given that Li(a

(i)
n )

contains a single element, we get the following criterion for |Li(a)| ≥ 1:

Li(a) �= ∅ ⇔ a∗ ≤ a ≤ āi, |Li(a)| > 1 ⇔ a∗ ≤ a < āi (i ∈ 1,m). (41)

As noted above, the set of preserving potentially optimal controls D′ is
entirely contained in the hyperplane Γ . Let us characterize situations when the
set of quasi-preserving controls D′′ contains a part of some hyperplane (when we
say that a certain set contains a part of some hyperplane, it is understood that
this set contains the convex hull of some linearly independent vectors belonging
to this hyperplane, the number of which is equal to the dimension of space).

Theorem 2. Let the assumptions (9) and (11) hold. Then the set D′′ contains
a part of some hyperplane if and only if at least one of the conditions is satisfied:

(i) Some function fi(a) (i ∈ 1,m) is constant on [a1,+∞), where a1 ∈ [a∗, āi).
(ii) All functions fi(a) (∀i ∈ 1,m) are affine on some interval [a1, a2] ⊆ [a∗, āD].

Proof. Necessity. Let the set D′′ contain a part of hyperplane Π . We show first
that there exist u1, u2 ∈ Π ∩ D′′ with a1 �= a2, where ā(u1) = a1, ā(u2) = a2.
Suppose to the contrary that ā(u) = ā for all u ∈ Π ∩ D′′. Then, denoting
μ̄ = μ(ā), in view of (24) we obtain q(u) = μ̄. This equality is the equation of
the hyperplane Π that (by (24)) is parallel to the hyperplane Γ . Note that since
the inclusion D′′ ∩Γ ⊂ D′\D′ (see (25)), the hyperplane Π cannot coincide with
Γ (whose equation is q(u) = μ∗), because the set D′′ ∩ Π contains (relatively)
internal points (unlike the set D′\D′). This means, in view of (21), that μ̄ < μ∗.

Take any vector v1 from the (relative) interior of D′′ ∩ Π and an arbitrary
vector v2 ∈ D′. Due to the convexity of U this set contains v = (1 − α)v1 + αv2
(∀α ∈ (0, 1)) together with v1, v2. Since v2 ∈ D′, by (23), x̄i,n(v2) > 0
(∀i ∈ 1,m). From the concavity of x̄i,n(v) we get: x̄i,n(v) ≥ (1 − α)x̄i,n(v1) +
αx̄i,n(v2) > 0 (∀i ∈ 1,m), so, by (19), x̄(v) > 0 and, by (4), v ∈ U .

According to our way of choosing v1, the projection u of v onto the hyper-
plane Π for a sufficiently small α > 0 belongs to D′′ ∩ Π . Since q from (18)
is the normal vector to the hyperplane Π , we have v = u + βq, where β > 0.
Therefore, v ≥ u and, by (3), x̄(u) ≥ x̄(v) > 0, so x̄(u) > 0. It follows from (4)
that u ∈ U . But this contradicts, by virtue of (6), the condition u ∈ D′′.

Thus, the presence of u1, u2 ∈ Π ∩ D′′ is proved with ā(u1) �= ā(u2). Denote

u(α) = (1 − α)u1 + αu2, a(α) = (1 − α)a1 + αa2, ā(α) = ā(u(α)).

By Lemma 1, the function ā(u) is also concave, therefore, ā(α) = ā(u(α)) ≥
(1 − α)ā(u1) + αā(u2) = (1 − α)a1 + αa2 = a(α), so ā(α) ≥ a(α).

By assumption that u1, u2 ∈ Π ∩ D′′, we have u(α) ∈ D′′ for all α ∈ [0, 1].
Let us show that u1, u2 cannot lie in different sets Li (recall the notation (32)).

Indeed, otherwise, the condition I0 = I0(u1) ∩ I0(u2) = ∅ would be satisfied
(see (22)). But then x̄i,n(u1) and x̄i,n(u2) could not be zero at the same time
(∀i ∈ 1,m). Then, as above, Then, as above, we could get the inequality

x̄i,n(u(α)) ≥ (1 − α)x̄i,n(u1) + αx̄i,n(u2) (∀i ∈ 1,m),
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so that x̄i,n(u(α)) > 0 (∀i ∈ 1,m). As we saw above, the last inequality contra-
dicts the condition u(α) ∈ D′′.

Thus, the set Π ∩ D′′ is entirely contained in each of the sets Li, i ∈ I0. In
addition, according to the last inequality above, the condition x̄i,n(u(α)) = 0
implies the equalities x̄i,n(u1) = x̄i,n(u2) = 0, so I0(u(α)) ⊆ I0(u1) ∩ I0(u2).
Let i0 ∈ I0(u(α)), then i0 ∈ I0(u1), i0 ∈ I0(u2), and, by (20), the equalities
p(i0)(u1) = λi0(a1), p(i0)(u2) = λi0(a2), p(i0)(u(α)) = λi0(ā(α)) hold.

Hence, by (15), λi0(ā(α)) = p(i0)(u(α)) = (1 − α)p(i0)(u1) + αp(i0)(u2) =
(1 − α)λi0(a1) + αλi0(a2), so λi0(ā(α)) = (1 − α)λi0(a1) + αλi0(a2). In view
the notation (17), we obtain the equivalence of this inequality to the following:
fi0(ā(α)) = (1 − α)fi0(a1) + αfi0(a2). Due to the concavity of fi0(a), we get:
fi0(ā(α)) = (1 − α)fi0(a1) + αfi0(a2) ≤ fi0(a(α)), so that fi0(ā(α)) ≤ fi0(a(α)).

On the other hand, it follows from the relation ā(α) ≥ a(α) proved above
the opposite inequality fi0(ā(α)) ≥ fi0(a(α). Therefore, fi0(a(α)) = fi0(ā(α)) =
(1 − α)fi0(a1) + αfi0(a2). Thus, the following equality holds:

fi0((1 − α)a1 + αa2) = (1 − α)fi0(a1) + αfi0(a2).

Further, it follows from equalities q(u1) = μ(a1), q(u2) = μ(a2) since linearity
of q(u) that q(u(α)) = (1 − α)q(u1) + αq(u2) = (1 − α)μ(a1) + αμ(a2). Because
of q(u(α)) = μ(ā(α)), we get μ(ā(α)) = (1 − α)μ(a1) + αμ(a2).

If ā(α) = a(α) then, using the equality σ(a) = μ(a) + a (see (17)), we
find: σ(a(α)) = σ(ā(α)) = μ(ā(α)) + ā(α) = (1 − α)μ(a1) + αμ(a2) + a(α) =
(1 − α)σ(a1) + ασ(a2), so that σ(a(α)) = (1 − α)σ(a1) + ασ(a2). This equality,
due to the concavity of σ(a) (see (10)), is possible only under the condition

fi((1 − α)a1 + αa2) = (1 − α)fi(a1) + αfi(a2) (∀i ∈ 1,m).

Thus, we proved the affinity of all functions fi(a) (∀i ∈ 1,m) on [a1, a2] in
the case ā(α) = a(α).

If ā(α) �= a(α), then ā(α) > a(α), and fi0(ā(α)) = fi0(a(α)) means, thanks
to the concavity and monotonicity of fi0(a), its constancy on [a(α),+∞).

For definiteness, let a1 < a2; then a1 < a(α) < a2 (∀α ∈ (0, 1))
and fi0(a(α)) = fi0(a2). Since i0 ∈ I0(u(α)) we get from (20): 0 =
x̄i0,n(u(α)) = λi0(a(α)) − p(i0)(u(α)) = π(i0)fi0(a(α)) − p(i0)(u(α)) =
π(i0)fi0(a2) − p(i0)(u(α)) = p(i0)(u2) − [(1 − α)p(i0)(u1) + αp(i0)(u2)] = (1 −
α)[p(i0)(u2) − p(i0)(u1)] = (1 − α)[λi0(a2) − λi0(a1)]. So, λi0(a1) = λi0(a2),
and, by (17), fi0(a1) = fi0(a2). But then fi0(a) is constant on [a1,+∞). Since
u1, u2 ∈ Li0 , by (41), a1 ∈ [a∗, āi0).

Sufficiency. (i) If fi(a) is constant on [a1,+∞) for some i then
λi(a) = π(i)fi(a) is constant on [a1,+∞) and all elements of L0

i = {u ∈ Li(a) |
a ∈ [a1, āi]} satisfy the constraint p(i)(u) = λi(a) = const from (24) that defines
the hyperplane.

(ii) Now let all the functions fi(a) (∀i ∈ 1,m) be affine on [a1, a2]. Fix the
index i0 ∈ 1,m. Let S = {u1, u2, . . . , umn−1} be an arbitrary linearly indepen-
dent system of vectors from Li0(a1) and let v be an arbitrary vector from Li0(a2).
We show that the system S′ = S ∪ {v} is linearly independent.
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Indeed, otherwise v =
∑mn−1

j=1 αjuj for some αj , where
∑mn−1

j=1 |αj | �= 0.
Denoting α =

∑mn−1
j=1 αj , since uj ∈ Li0(a1) we get from (32): λi0(a2) =

p(i0)(v) =
∑mn−1

j=1 αjp
(i0)(uj) = λi0(a1)

∑mn−1
j=1 αj = αλi0(a1), i.e. λi0(a2) =

αλi0(a1). Hence, due to the monotonicity of λi0(a) (see (17)) we get α ≥ 1.
Similarly, μ(a2) = q(v) =

∑mn−1
j=1 αjq(uj) = q(uj)

∑mn−1
j=1 αj = αμ(a1), so

μ(a2) = αμ(a1). Since μ(a) is strictly decreasing on [a∗, aD′′ ], it follows, on the
contrary, that α < 1.

This contradiction shows that the system S′ is linearly independent; there-
fore, it defines a hyperplane in Rmn. We denote it by Π .

Let u(α) = (1 − α)u + αv (α ∈ (0, 1)), where u ∈ co S. If we show that
u(α) ∈ D′′, this will mean that D′′ contains the part coS′ of the hyperplane Π .

Since the set U is convex, u(α) ∈ U ; therefore, there exists a solution x(α)
of the system (20) corresponding to u = u(α). We show that this solution is
x(α) = (1 − α)x̄(u) + αx̄(v) with a(x(α)) = a(α) = (1 − α)a1 + αa2.

Indeed, we have: xi,1(α) = (1−α)x̄i,1(u)+αx̄i,1(v) = (1−α)(fi(a1) − ui,1)+
α(fi(a2) − vi,1) = [(1 − α)fi(a1) + αfi(a1)] − [(1 − α)ui,1 + αvi,1] =
fi(a(α)) − ui,1(α). Similarly, xi,j+1(α) = αi,jxi,j(α) − ui,j(α) for j ∈ 1, n − 1
(i ∈ 1,m). Thus, x(α), u(α), a(α) satisfy the constraints (20).

Hence, in particular xi0,n(α) = (1 − α)x̄i0,n(u) + αx̄i0,n(v) = 0, so that
u(α) ∈ Li0(a(α)) and u(α) ∈ D′′. This means that u(α) belongs to the hyper-
plane Π ; therefore, its part coS′ is contained in D′′. The proof is complete.

We give now an illustrative example.

Example 1. Consider a constraint system of the form (19) with m = n = 2, so
x = (x1,1, x1,2;x2,1, x2,2), u = (u1,1, u1,2;u2,1, u2,2), α1,1 = α2,1 = 1/2, βi,j =
1 (i, j = 1, 2). As functions f1(a), f2(a) we take the following:

f1(a) =
1
4
a, f2(a) =

{√
a, 0 ≤ a ≤ af ,√
af , a > af .

Here af is a parameter, varying which, one can obtain various situations con-
sidered in the previous theorems. The functions f1(a), f2(a) are concave, all the
coefficients βi,j are positive, σ′(0) = +∞, σ′(+∞) = 3/8 < 1, so that all the
assumptions (9), (11), (12) are satisfied.

First we consider the case when f2(a) has no intervals of constancy: af = +∞,
so f2(a) =

√
a on R+. Using (10), (14)–(17), we obtain: σ

(1)
0 = σ

(2)
0 = 0, σ

(1)
1 =

σ
(2)
1 = 1, σ

(1)
2 = σ

(2)
2 = σ(1) = σ(1) = 3/2, σ(a) = 3a/8 + 3

√
a/2, μ(a) =

3
√

a/2−5a/8, a∗ = 36/25, μ∗ = 9/10, f1(a∗) = 9/25, f2(a∗) = 6/5, λ1(a) = a/8,
λ2(a) =

√
a/2, p

(1)
1 = p

(1)
2 = 1/2, p

(2)
1 = p

(2)
2 = 1,

p(1)(u) = 1
2u1,1 +u1,2, p(2)(u) = 1

2u2,1 +u2,2, q(u) = 3
2u1,1 + u1,2 + 3

2u2,1 + u2,2.
Next, by (28), S̄

(1)
0 (a) = σ(2)f2(a) = 3

√
a/2, S̄

(2)
0 (a) = σ(1)f1(a) = 3a/8.

Since S̄
(1)
0 (a∗) = 9/5 > 36/25 and S̄

(2)
0 (a∗) = 27/50 < 36/25, we see from (29)

that J∗
1 = {1, 2}, J∗

2 = {2}, J∗ = {1, 2}. Therefore [12, Theorem 1], D′′ �= ∅.
Solving the Eqs. (30) for i ∈ J∗, j ∈ J∗

i , we find: a
(1)
1 = 9/4, a

(1)
2 = 4,

a
(2)
2 = 64/25, therefore, by (34), āD = āD′′ = a

(1)
2 = 4.
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Now we consider the case af = 25/9. Then for a ≥ af we have f2(a) = 5/3,
λ2(a) = 5/6. Compared with the previous case, only the values S

(1)
0 (a) = 5/2,

S
(1)
1 (a) = a/4 + 5/2, S

(2)
1 (a) = 3a/8 + 5/3, a

(1)
2 = 10/3 are changed; so now

āD = a
(1)
2 = 10/3. Since af = 25/9 > a

(2)
2 = 64/25, the condition (39) is not

satisfied, and there are no vectors with partial dominance in D′′. This is because
L2(a) = ∅ for a ∈ [25/9,∞), since a

(2)
2 = 64/25 < af = 25/9 (see (41)).

Thus, this example shows the essentiality of the condition af < minj∈J∗
i

a
(i)
j

for the validity of the conclusion of Theorem 2. Note that the condition (39)
violates the global irreducibility condition (13) of the map (8).

Now let af = 49/25. Then for a ≥ af we have f2(a) = 7/5, λ2(a) = 7/10.
Compared with the previous case, only the following values are changed:
S
(1)
0 (a) = 21/10, S

(1)
1 (a) = a/4 + 21/10, S

(2)
1 (a) = 3a/8 + 7/5, a

(1)
1 = 21/10,

a
(1)
2 = 14/5, a

(2)
2 = 56/25. Therefore, in this case āD = āD′′ = a

(1)
2 = 14/5.

Now from (36), (37) we find all controls u ∈ VD′′ , using process of exhaustion
of all possible indices i1, j1, i, j, k their non-zero coordinates:

u1(a)=(2110− 3
4a, 1

2a− 21
20 ; 0, 0), u2(a)=(14a, 0; 7

5− 2
3a, 0), u3(a)=(14a, 0; 0, 21

10−a),
u4(a)=(0, 1

8a; 0; 7
5− 1

2a, 0), u5(a)=(0, 1
8a; 0, 21

10− 3
4a), u6(a)=(0, 0; 7

5− 5
8a, 5

16a),

u7(a) = (1415 − 5
12a, 0; 0, 7

10 ), u8(a) = (0, 7
5 − 5

8a; 0, 7
10 ).

The controls u1(a) – u5(a) belong to L1, the controls u6(a) – u8(a) belong
to L2. Note that L1(a) ∩ L2(a) = ∅ for all a ∈ [af , āD] in this case.

We turn now to Theorem 1. Since af = 49/25 < a
(2)
2 = 56/25, the condi-

tion (39) is satisfied and, therefore, there are vectors with partial dominance.
From the proof of this theorem it is clear, that such vectors must belong to
L2 since the function f2(a) has a constant part. Indeed, we see that u7(a) has
three of four identical coordinates, and therefore, the controls u7(a1), u7(a2) with
two different admissible values a1, a2 of parameter a are in partial dominance
relation: for example, u7(2) = (1/10, 0; 0, 7/10) � u7(11/5) = (1/60, 0; 0, 7/10).

This also applies, for example, to the controls u8(a) with a1 = 49/25 and
a2 = 56/25: u8(49/25) = (1/10, 0; 0, 7/10) � u8(56/25) = (1/60, 0; 0, 7/10).
Thus, the surface D′′ contains segments of lines parallel to axes u1, u2. The
reason for this fact will become clearer when we proceed to illustrate Theorem 2.

Further, consider the following controls from L2:
u6(2) = (0, 0; 3

20 , 5
8 ), u7(2) = ( 1

10 , 0; 0, 7
10 ), u8(2) = (0, 3

20 ; 0, 7
10 ), u8( 115 ) =

(0, 0, 1
40 ; 0, 7

10 ).
These vectors form a linearly independent system and, therefore, define some
hyperplane. It is easy to verify that whose equation 5u2,1 + 10u2,2 = 7 coincides
for a ∈ [49/25, 56/25] with the equation p(2)(u) = λ2(a) from (24) defining the
set L2(a). Indeed, due to the constancy of f2(a) on [49/25, 56/25], the R.H.S.
λ2(a) of this equality is independent of a.

The functions f1(a), f2(a) are affine on [49/25, 56/25], therefore, as seen from
the proof of Theorem 2, there is a hyperplane, a part of which is contained in L1.
Consider, for example, the following controls:
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u1( 145 ) = (0, 7
20 ; 0, 0), u2(2) = (12 , 0; 1

15 , 0), u3(2) = (12 , 0; 0, 1
10 ), u4(2) =

(0, 1
4 ; 2

5 , 0).
These vectors define the hyperplane 8u1,1 + 12u1,2 + 3u2,1 + 2u2,2 = 21/5. It is
easy to verify that the controls u1(a) – u5(a) for a ∈ [49/25, 56/25] belong to
this hyperplane. Thus, the convex hull of u1(a)–u5(a) is entirely contained in L1.

Note that in the case af = 49/25 the positive boundary of the feasible set
contains a nonlinear section corresponding to a change of a in [a∗, 49/25]. This
nonlinear section disappears if we take af = a∗. In this case, the feasible set is
a polyhedron, despite the presence of a nonlinear constraint. Indeed, the set D′,
as already mentioned, is part of the hyperplane Γ (see (25)), and for af = a∗

the set D′′ consist of the union of hyperplanes portions corresponding to L1, L2.

5 Conclusion

Thus, in this article, we studied the features of the feasible set for the ecologi-
cal population optimal exploitation problem in the “degenerate” case when the
dynamical system step operator is reducible, or (in some region) piecewise linear.
It turns out that in the first case, according to Theorem 1, the positive boundary
D of the feasible set contains controls that are in the partial dominance relation,
and, in the second case, by Theorem 2, the part of the positive boundary D′′

consisting of quasi-preserving controls contains a part of some hyperplane. Along
the way, we revealed a class of nonlinear models of ecological populations, for
which the feasible set of the optimal exploitation problem is a polyhedron.

Next, the results on the properties of the feasible set for the considered opti-
mal exploitation problem obtained here allow us to proceed to the development
of an algorithm for its solution, taking into account the found features of this
problem. In addition, the fact that the set of preserving controls is contained
in the hyperplane Γ (see (25)) makes it possible to obtain a criterion for the
existence of an optimal preserving control for a given objective function.

Finally, the results obtained are of methodological significance - thanks to
Theorem 1, it becomes more clear why strict dominance relation is used in
definition (5) of the positive boundary D.
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Abstract. We study the two-level interaction “producer - retailer - con-
sumer” in the monopolistic competition frame. The industry is organized
by Dixit-Stiglitz type, the retailer is the only monopolist. The utility
function is quadratic. The case of the retailer’s leadership is considered.
Two types of retailer behavior are studied, namely: with/without free
entry conditions. It turned out that the government needs to stimulate
the retailer by paying him subsidies to increase social welfare. A similar
result was obtained with respect to consumer surpluses.

Keywords: Monopolistic competition · Retailing · Equilibrium ·
Taxation · Social welfare · Consumer surplus

1 Introduction

Now, there are many works on the vertical interaction between the producer and
the retailer, which describe the impact of such interaction on the economy.

In Spengler’s early work [1], the simplest case of Stackelberg game with two
players is studied, one of the players is a leader while the other one is a follower.
In the first step, the leader sets his price. Then the follower, having analyzed the
actions of the leader, makes his move. As a result, the price increases twice by
each monopolist, respectively, which results in a decrease in social welfare.

Further, two classes of models can be singled out: spatial Hotelling models
[2] and models of Dixit-Stiglits [3] type.

A striking example of the first class of models is the Salop model [4] (a circular
city model) with one manufacturer and several retailers, located along the circle
(street) equidistant from each other. As a result, retailers and consumers interact,
so that each consumer is served, and for retailers there is no need to unite with
the manufacturer. This model was modified by Dixit [5], by introducing two-
level production (up stream and down stream industries), i.e., now the retailer
also has the means of production. In other words, the monopolist-producer sells
the intermediate goods to retailers, who then process and sell them in the form
of finished goods. In this case, the integration is justified, because it increases
social welfare by optimizing the number of retailers.
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The second class of models is based on the idea of a representative consumer
in the style of Dixit-Stiglits. In particular, Parry and Groff [6] use the CES
function and show that the integration leads to a deterioration of social welfare.
The work of Chen [7] can be considered as the next step in this direction. In
his model, the monopolist-producer is considered, who first chooses the number
of manufactured products (and, accordingly, the number of retailers). Further,
a supply contract is concluded with each retailer separately, namely, wholesale
prices per unit of goods and an initial one-time payment are established. Finally,
the retailer sets the retail price. The main result is that the number of product
names is less than “socially optimal”.

The combination of models of the type of Hotelling and Dixit-Stiglits gives
Hamilton and Richards model [8]. It considers two types of commodity varieties:
competing supermarkets and competing products within each supermarket. It
turned out that the increase in product differentiation does not necessarily lead
to an increase in the equilibrium length of product lines.

In our paper, the industry of producers is organized according to Dixit-Stiglits
type with quadratic utility [9], and the monopolist is the only retailer. The
relevance of the chosen approach is determined by modern realities. The majority
of sales today fall on well-developed supermarket chains. Selling their value to
suppliers, retailers begin to dictate tough conditions to them. In order to sell
products, manufacturers have to agree these conditions. We explored two types
of behavior of the retailer, namely, with and without the conditions of free entry
(zero-profit).

The paper is organized as follows.
In Sect. 2 we define the main assumptions of monopolistic competition, for-

mulate the model, find the condition when the free entry happens and when not,
see Proposition 1; describe the equilibrium, see Proposition 2.

In Sect. 3 we introduce the taxation of Pigouvian type and recalculate the
equilibrium, see Proposition 3.

In Sect. 4 we get the equilibrium social welfare (see Sect. 4.1, Proposition 4)
and consumer surplus (see Sect. 4.2, Proposition 5). Moreover, here we formulate
the main result of the paper: the optimal taxation is negative, i.e., the best is to
subsidize the retailer (see Sect. 4.3, Proposition 6).

We omit the proofs of Propositions 1–5 which are rather technical. Instead,
the main Proposition 6 we prove carefully, see AppendixA.

Section 6 concludes.
Note that the paper continues the authors’ research [10–12].

2 Model

Consider the monopolistic competition model with two-level interaction “man-
ufacturer - retailer - consumer”. As it is usual on monopolistic competition, we
assume the assumptions (cf. [3])

– firms produce the goods of the same nature (“product variety”), but not
absolute substitutes;
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– each firm produces only one type of product variety and chooses its price;
– the number (mass) of firms is quite large;
– the free entry (zero-profit) condition is fulfilled.

In addition to product diversity, there are other products on the market,
“numéraire”. Moreover, there are L identical consumers, each of them delivers
one unit of labor to the market.

In this paper, we consider the situation when manufacturers sell products
through a monopolist-retailer.

Consider the utility function in the case of linear demand, so-called OTT-
function, proposed by Ottaviano, Tabucci, and Tisse [9]:

U(q, N,A) = α

∫ N

0

q(i)di − β − γ

2

∫ N

0

(q(i))2 di − γ

2

(∫ N

0

q(i)di

)2

+ A, (1)

where

– α > 0, β > γ > 0 are some parameters1;
– N is a continuum of firms or the length of a product line, reflecting the range

(interval) of diversity;
– q(i) ≥ 0 is a demand function, i.e., the consumption of i-th variety, i ∈ [0, N ];
– q = (q(i))i∈[0,N ] is infinite-dimensional vector;
– A ≥ 0 is the consumption of other, aggregated products (numéraire).

Now we formulate the budget constraint. Let

– p(i) be the wholesale price of i-th product variety, i.e., the price in the case
without retailer;

– r(i) be the retailer’s premium on the i-th product variety, so p(i)+ r(i) is the
price of the i-th variety for the consumer;

– w ≡ 1 be the wage rate in the economy normalized to 1;
– PA be the price numéraire.

Then the budget constraint is

∫ N

0

(p(i) + r(i))q(i)di + PAA ≤ wL +
∫ N

0

πM(i)di + πR, (2)

1 Due to [9] (see p. 413), “... α expresses the intensity of preferences for the differen-
tiated product, whereas β > γ means that consumers are biased toward a dispersed
consumption of varieties. ... the quadratic utility function exhibits love of variety
as long as β > γ. ... for a given value of β, the parameter γ expresses the substi-
tutability between varieties: The higher γ, the closer substitutes the varieties. When
β = γ, substitutability is perfect.” Two quadratic terms ensure strict concavity in
two dimensions: definite consumer’s choice among commodities and between the two
sectors. The main feature achieved by this constructions is that this utility gener-
ates the system of linear demands for each variety and linear demand for the whole
differentiated sector.
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where πM(i) is the profit of firm i ∈ [0, N ] while πR is retailer profit. The right
side of (2) is Gross Domestic Product (GDP) by income, while the left side is
costs.

This way, the problem of the representative consumer is

U(q, N,A) → max
q,A

subject to (2), where U(q, N,A) is defined in (1).
Solving this problem, we can find the demand function for each i ∈ [0, N ]:

q(i) = a − (b + cN)(p(i) + r(i)) + cP, (3)

where coefficients a, b, c are defined as

a =
α

β + (N − 1)γ
, b =

1
β + (N − 1)γ

, c =
γ

(β − γ)(β + (N − 1)γ)
,

and P is a price index

P =
∫ N

0

(p(j) + r(j))dj.

Let

– d be marginal costs, i.e., the number of units of labor required to each firm
to produce a unit of differentiated product;

– F be fixed costs, i.e., the number of units of labor required by each firm to
produce differentiated product.

Then the problem of maximizing the profit of firm i ∈ [0, N ] is

πM(i) = (p(i) − d)q(i) − F → max
p(i)

, (4)

where q(i) is (3).
Note that problem (4) is quadratic on p(i).
Now let us formulate the problem of the retailer. Similar to the firm’s problem

(4), let

– dR be marginal costs, i.e., the number of units of labor required to retailer
to sale a unit of differentiated product of each firm;

– FR be fixed costs, i.e., the number of units of labor required to retailer to
sale the differentiated product of each firm.

This way the problem of maximizing the profit of the retailer is

πR =
∫ N

0

(r(j) − dR) q(j)dj −
∫ N

0

FRdj → max
r,N

, (5)

πM(i) ≥ 0, i ∈ [0, N ], (6)

where r = (r(i))i∈[0,N ].
Since the model is homogeneous (the firms are identical), it is possible to

show that only two cases can happen, namely,
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– in the solution of problem (5), (6), the profit of each firm i ∈ [0, N ] is positive:
πM(i) > 0 (ignoring the free entry conditions2);

– in the solution of problem (5), (6), the profit of each firm i ∈ [0, N ] is zero:
πM(i) = 0 (taking into account the free entry conditions).

In this paper, we study the Stackelberg equilibrium under the leadership of
a retailer, i.e., the retailer maximizes its profit under the best response of firms.

We call the case of the retailer’s leadership with ignoring the free entry con-
ditions as RL, while we call the case of the retailer’s leadership with taking into
account the free entry conditions as RL(I).

Let us describe these cases explicitly.

Case RL. In this case the retailer at the same time chooses trade markup r =
(r(i))i∈[0,N ] and scale of product diversity N , correctly predicting a subsequent
response from manufacturers. There are stages of solving the problem:

1. Solving the problem of a consumer, we get q = q(i, p(i), r(i), N).
2. Solving the problem of the manufacturer

πM(i) = (p(i) − d)q(i, p(i), r(i), N) − F → max
p(i)

,

we get p = p(i, r(i), N) and q = q(i, r(i), N).
3. Solve the problem of the retailer

πR =
∫ N

0

(r(i) − dR) q(r, N)di −
∫ N

0

FRdi → max
r,N

,

πM(r, N) ≥ 0.

Case RL(I). In this case the retailer first uses the free entry condition to
calculate N = N(r), given the subsequent manufacturers response and then
maximizes their profits by r:

1. Solving the problem of a consumer, we get q = q(i, p(i), r(i), N).
2. Solving the problem

πM(i) = (p(i) − d)q(i, p(i), r(i), N) − F → max
p(i)

,

we get p = p(i, r(i), N), q = q(i, r(i), N).
3. The free entry condition πM(i, r(i), N) = 0 gives N = N(r).
4. Solve the problem of the retailer

πR =
∫ N

0

(r(i) − dR) q(r)di −
∫ N

0

FRdi → max
r

.

2 Ignoring the free entry conditions means that we are somewhat expanding the tra-
ditional concept of monopolistic competition.
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The question arises: when is case RL realized, and when is case RL(I) real-
ized? It turns out the answer is uniquely determined by the value

F =
FR
2F

. (7)

Proposition 1. 1. The case RL happens if and only if F > 1.
2. The case RL(I) happens if and only if F ≤ 1.

Now we can describe the Stackelberg equilibrium when retailer is leader. Let

Δ =

√
F

β − γ
> 0, ε =

β − γ

γ
> 0, (8)

f =
√

F · (β − γ) > 0, D =
α − d − dR√
F · (β − γ)

. (9)

Proposition 2. In cases RL and RL(I), the equilibrium demand q, price p,
markup r, mass of firms N and profit of retailer πR are as in Table 1, where
F ,Δ, ε, f,D are defined in (7)–(9).

Table 1. The equilibrium

q p r N πR

RL Δ
√F d + f

√F dR +
fD

2

ε

2
·
(

D√F − 4

)
f2

4γ
·
(
D − 4

√
F

)2

RL(I) Δ d + f dR + f ·
(

D

2
+ F − 1

)
(D − 2F − 2)ε

2

f2

4γ
· (D − 2F − 2)2

3 Taxation

Let the government stimulate producers in the following way: let the retailer
pay the tax τ from each unit of the sold product. Then profit of the retailer is
modified as

πR =
∫ N

0

(r(i) − (dR + τ))q(i)di −
∫ N

0

FRdi.

The taxes collected are distributed among the producers by a one-time payment
method (of Pigouvian type). The case of negative τ means that the retailer needs
subsidies, paid from consumer taxes in the amount of τ

∫ N

0
q(i)di.

Proposition 3. With taxation τ , the equilibrium demand q, price p, markup r,
and mass of firms N are as in Table 2, where

S = − τ

2f
+

√(
τ

2f

)2

+ 1 > 0 (10)

while F ,Δ, ε, f,D are defined in (7)–(9).
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Table 2. Equilibrium with taxation

q p r N

RL Δ
√F d + f

√F dR +
fD

2
+

τ

2

ε

2
√F ·

(
D − τ

f
− 4

√
F

)

RL(I) ΔS d + fS dR +
f

2
·
(

D +
2F + 1

S
− 3S

)
ε

2S
·
(

D − 2F + 1

S
− S

)

4 Social Welfare and Consumer Surplus. Optimal
Taxation

In this section, we consider social welfare, consumer surplus and we calculate the
equilibrium social welfare and equilibrium consumer surplus in two cases: with
and without taxation. Besides, we compare two kinds of optimal taxation.

4.1 Social Welfare

Consider the function of social welfare W , a measure of the well-being of society.

W = α

∫ N

0

q(i)di − β − γ

2
·
∫ N

0

(q(i))2 di − γ

2
·
(∫ N

0

q(i)di

)2

−
∫ N

0

(d + dR)q(i)di −
∫ N

0

(F + FR)di.

In the symmetric case, it has the form:

W = (α − d − dR)Nq − β − γ

2
· q2N − γ

2
· N2q2 − (F + FR)N.

Substituting the equilibrium from Proposition 2 and Proposition 3, we get

Proposition 4. The equilibrium welfare is as in Table 3 and Table 4, where

H =
F · (β − γ)

2γ
> 0, (11)

while F , f,D, S are defined in (7), (9)–(10).

4.2 Consumer Surplus

Consumer surplus (CS) is a measure of well-being that people derive from the
consumption of goods and services. It is the difference between the maximum
price a consumer is willing to pay and the market price:

CS = α

∫ N

0

q(i)di− β − γ

2
·
∫ N

0

(q(i))2 di− γ

2
·
(∫ N

0

q(i)di

)2

−
∫ N

0

(p(i)+ r(i))q(i)di.
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Table 3. Social welfare without taxation

W

RL
(
D − 4

√F
)

·
(

3

4
· (D − 2

√
F) − 1√F

)
· H

RL(I) (D − 2F − 2) ·
(

3

4
· (D − 2F) − 1

)
· H

Table 4. Social welfare with taxation

W

RL

(
D − τ

f
− 4

√
F

)
·
(

3D +
τ

f
− 6

√
F − 4√F

)
· H

4

RL(I)

(
D − 2F + 1

S
− S

)
·
(

3D − 3 · 2F + 1

S
− S

)
· H

4

In symmetric case, it is

CS = qN ·
(

α − β − γ

2
· q − γ

2
· Nq − (p + r)

)
.

Proposition 5. The equilibrium consumer surplus is as in Table 5, where
F , f,D, S,H are defined in (7), (9)–(11).

Table 5. Consumer surplus

CS (without taxation) CS (with taxation)

RL
f2

8γ
·
(
D − 4

√
F

)
·
(
D − 2

√
F

) (
D − τ

f
− 4

√
F

)
·
(

D − 2
√F − τ

f

)
· H

4

RL(I)
f2

8γ
· (D − 2F − 2) · (D − 2F)

(
D − 2F + 1

S
− S

)
·
(

D − 2F + 1

S
+ S

)
· H

4

4.3 Optimal Taxation

We consider two concepts of optimal taxation. Namely,

– maximization of welfare W with respect to τ which leads to optimal τW , it
allows the government to determine optimal fiscal policy;

– maximization of consumer surplus CS with respect to τ , which leads to opti-
mal τCS .

It seems nature to assume that “market exists at τ = 0”, i.e., the condition

N |τ=0 ≥ 0 (12)

holds.
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It turns out that in case RL, an explicit formula for τW can be found. More-
over, in both cases, RL and RL(I), it is possible to determine the sign of τW .
As to τCS , we were not able to find τCS , but in case RL(I) we can to determine
its sign. Finally, in case RL(I) we can compare τW and τCS .

Let us summarize these findings in

Proposition 6. Let condition (12) holds.

1. In case RL, the optimal tax from social welfare point of view is

τW =
(

2 + F√F − D

)
f < 0, (13)

while the optimal tax from consumer surplus point of view is

τCS = −∞. (14)

2. In case RL(I), the optimal tax, from social welfare point of view, is negative,

τW < 0, (15)

while the optimal tax from consumer surplus point of view is

τCS < 0. (16)

3. The optimal tax from social welfare point of view is the optimal tax from
consumer surplus point of view is less than the optimal taxation from social
welfare point of view, i.e.,

τCS < τW < 0. (17)

5 Numerical Example

The example below illustrates Proposition 6. Parameters:

α = 12, β = 2, γ = 1, F = 1, d = 1, dR = 2, f = 1,D = 9, ε = 1,Δ = 1,H =
1
2
.

For the case RL: FR = 7, F =
7
2
.

For the case RL(I): FR = 1, F =
1
2
.

Figure 1 shows that (13)–(17) holds.
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Fig. 1. Example: a) RL with taxation, b) RL(I) with taxation.

6 Conclusion

Our research is based on a theoretical model, which supports several conclusions.

1. The concentration of retailing per se (or, more precisely, the increase in
bargaining power of the retailer against numerous manufacturers) generally
enhances total welfare and, under realistic cost function, consumer surplus as
well. The consumer gains operate either through lower retail prices, or through
increasing variety, or both. From this viewpoint, the undertaken restriction
of market shares looks unnecessary and even harmful.

2. The redistribution of profits to consumers in the form of Pigovian taxation
levied on the retailer (with taxes proportional to the volume of sales) has been
found inefficient. For the sake of total public welfare, the government should
rather subsidize the volume of retailing, a policy which appears politically
infeasible.

The economic forces leading to such (surprising for the Russian legislature)
conclusions are more or less familiar to economists. Any consumer-goods indus-
try produces many varieties of food, clothes, or other goods. Therefore it is
organized as a “monopolistic competition” industry: each producer behaves as a
monopolist for her brand, but entry is open. Each shop behaves monopolistically
for similar reasons. Then, monopolistic behavior in production combined with a
monopolistic retailer imply two-tier monopoly and a harmful “double marginal-
ization” effect. When an increase in bargaining power on the retailer side occurs
(the other side is too dispersed), it brings the bargaining relations closer to a
vertically integrated industry, thus reducing the deadweight loss.

Of course, our theoretical conclusions need more thorough study from dif-
ferent viewpoints of reality, in particular from re-distributional considerations:
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which groups of consumers may be affected positively or negatively by market
concentration or its regulation (we did not take into account groups so far). Nev-
ertheless, we provide several important hypotheses to be discussed in relation to
current legislation. Our results also indicate the need for further research before
imposing new market regulations3.

Further increase in the retailer’s bargaining power, in the sense of possible
entrance fees levied on manufacturers, also enhances profit, consumer surplus
and therefore total social welfare. Moreover, if the retailers were forced to pay
from the government for the right to use entrance fees. By this or another similar
redistribution tool, the additional retailer’s profit could be transferred to con-
sumers (through increasing public goods availability or decreasing taxes). Then
such a welfare-improving pricing strategy as entrance fees could become more
politically feasible. As to possible direct governmental regulation of retailing via
capping the markup (not actually practiced so far), while this measure generally
enhances total welfare and consumer surplus when the cap is tailored optimally
(in the absence of entrance fees), it does not do so as much as entrance fees
combined with transfers to consumers.

It seems interesting to extend this approach to the case of additive separable
utility, as well as nonlinear cost functions, investments in R&D [13–16].
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A Appendix. Proof of Proposition 6

A.1 Optimal Taxation: The Case RL

We first consider the case RL, i.e.,

F ≥ 1. (18)
3 It seems that further increase in the retailer’s bargaining power, in the sense of

possible entrance fees levied on manufacturers, also enhances profit, consumer sur-
plus and therefore total social welfare. Moreover, if the retailers were forced to pay
from the government for the right to use entrance fees. By this or another simi-
lar redistribution tool, the additional retailer’s profit could be transferred to con-
sumers (through increasing public goods availability or decreasing taxes). Then such
a welfare-improving pricing strategy as entrance fees could become more politically
feasible. As to possible direct governmental regulation of retailing via capping the
markup (not actually practiced so far), while this measure generally enhances total
welfare and consumer surplus when the cap is tailored optimally (in the absence of
entrance fees), it does not do so as much as entrance fees combined with transfers
to consumers.
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Let us note that in this case (12) means, see Table 1,

D ≥ 4
√

F . (19)

Recall that, see Tables 2, 4 and 5,

N = − (τ − τ1) ε

2f
√F ≥ 0 ⇐⇒ τ ≤ τ1, (20)

W = − (τ − τ1) (τ − τ2) H

4f2
, (21)

CS =
(τ − τ1) (τ − τ3) H

4f2
, (22)

where

τ1 =
(
D − 4

√
F

)
f, τ2 =

(
6F + 4√F − 3D

)
f, τ3 =

(
D − 2

√
F

)
f.

Note that, due to (18) and (19),

τ2 < 0 ≤ τ1 < τ3. (23)

Function (21) is strictly concave. Therefore, due to (20) and (23), we get

τW =
τ1 + τ2

2
=

(F + 2√F − D

)
f.

Moreover, due to (19) and (18),

τW ≤
(F + 2√F − 4

√
F

)
f =

(2 − 3F) f√F ≤ − f√F < 0.

Thus, we get (13).
Besides, function (22) is strictly convex. Therefore, due to (20) and (23), we

get (14).

A.2 Optimal Taxation: The Case RL(I)

Consider the case RL(I), i.e.,
0 ≤ F < 1. (24)

Let us note that in this case (12) means

D ≥ 2 · (F + 1) . (25)

Recall that, see Tables 2, 4 and 5,

N = − (S − S1) (S − S2) ε

2S2
≥ 0 ⇐⇒ S1 ≤ S ≤ S2, (26)
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W =
(S − S1) (S − S2) (S − S3) (S − S4) H

4S2
, (27)

CS = − (S − S1) (S − S2) (S − S5) (S − S6) H

4S2
, (28)

where S1, S2, S3, S4, S5, S6 are (real due to (25))

S1 =
D − √

D2 − 4 · (2F + 1)
2

, S2 =
D +

√
D2 − 4 · (2F + 1)

2
,

S3 =
3D − √

9D2 − 12 · (2F + 1)
2

, S4 =
3D +

√
9D2 − 12 · (2F + 1)

2
,

S5 =
−D +

√
D2 + 4 · (2F + 1)

2
, S6 =

−D − √
D2 + 4 · (2F + 1)

2

and S > 0 is defined in (10). Since
∂S

∂τ
< 0, S is monotone with respect to τ .

Therefore, it is enough to examine the behavior of the functions (27) and (28)
with respect to S. Note that, due to (24) and (25),

S6 < 0, 0 < S5 < S3 < S1 ≤ 1 < S2 < S4. (29)

One has

∂W

∂S
=

H

2S3
·
(
S4 − 2D · S3 + 3D · (2F + 1) · S − 3 · (2F + 1)2

)
, (30)

∂

∂S
(CS) = − H

2S3
·
(
S4 − (2F + 1) D · S + (2F + 1)2

)
. (31)

Due to (25), (29), and Descartes’ theorem, the number of positive roots of

the equation
∂W

∂S
= 0 is either three or one, while the number of positive roots of

the equation
∂

∂S
(CS) = 0 is either two or zero. Due to Rolle’s theorem, on each

of the intervals [S3, S1], [S1, S2], [S2, S4] there is a point at which
∂W

∂S
= 0, while

on each of the intervals [S5, S1], [S1, S2] there is a point at which
∂

∂S
(CS) = 0.

Therefore,
∂W

∂S
has three positive roots, two of which do not lie in [S1, S2],

while
∂

∂S
(CS) has two positive roots, one of which does not lie in [S1, S2].

Therefore, W has a single maximum SW on [S1, S2], while CS has a single
maximum SCS on [S1, S2]. Moreover, see (26),

∂W

∂S

{
> 0, S ∈ (S1, SW ) ,
< 0, S ∈ (SW , S2) ,

∂

∂S
(CS)

{
> 0, S ∈ (S1, SCS) ,
< 0, S ∈ (SCS , S2) .
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Due to (25),

∂W

∂S
|S=1 =

H

2
· (

(6F + 1) D − 2 · (
6F2 + 6F + 1

))

≥ H

2
· (

2 · (F + 1) (6F + 1) − 2 · (
6F2 + 6F + 1

))
= HF > 0

and

∂

∂S
(CS) |S=1 = −H

2
·
(
1 − (2F + 1) D + (2F + 1)2

)

≥ −H

2
·
(
1 − 2 (2F + 1) (F + 1) + (2F + 1)2

)
= HF > 0.

Therefore, due to (29), SW > 1 and SCS > 1. Hence, see (10),

τW = f · 1 − (SW )2

SW
< 0, τCS = f · 1 − (SCS)2

SCS
< 0.

Thus we get (15) and for the case (16).

A.3 Optimal Taxation: Comparison of τW and τC S

Now we get (17). For the case RL, (17) follows from (13) and (14).
Consider the case RL(I). As we have got in AppendixA.2, on [S1, S2], func-

tion W has a single maximum SW , while function CS has a single maximum
SCS . To get (17), it is sufficient to show that SCS > SW , i.e., that

∂W (SCS)
∂S

< 0. (32)

From (31), we get

D =
(SCS)4 + (2F + 1)2

(2F + 1)SCS
. (33)

Substituting (33) in (30), we get

∂W (SCS)
∂S

=
H

2
·
(

SCS +
3 · (2F + 1) − 2 (SCS)2

(SCS)2
· D − 3 · (2F + 1)2

(SCS)3

)

= −H ·
(
2F + 1 − (SCS)2

)2

(2F + 1) (SCS)2
< 0,

i.e., (32) holds. Thus, we get (17).
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Abstract. We consider the 2-rate (1 + λ) Evolutionary Algorithm, a
heuristic that evaluates λ search points per each iteration and keeps in
the memory only a best-so-far solution. The algorithm uses a dynamic
probability distribution from which the radius at which the λ “offspring”
are sampled. It has previously been observed that the performance of the
2-rate (1 + λ) Evolutionary Algorithm crucially depends on the thresh-
old at which the mutation rate is capped to prevent it from converging
to zero. This effect is an issue already when focusing on the simple-
structured OneMax problem, the problem of minimizing the Hamming
distance to an unknown bit string. Here, a small lower bound is prefer-
able when λ is small, whereas a larger lower bound is better for large λ.

We introduce a secondary parameter control scheme, which adjusts
the lower bound during the run. We demonstrate, by extensive exper-
imental means, that our algorithm performs decently on all OneMax
problems, independently of the offspring population size. It therefore
appropriately removes the dependency on the lower bound. We also eval-
uate our algorithm on several other benchmark problems, and show that
it works fine provided the number of offspring, λ, is not too large.

Keywords: Parameter setting · Evolutionary computation ·
Metaheuristic · Algorithm configuration · Mutation rate

1 Introduction

Evolutionary algorithms (EAs) are a class of iterative optimization heuristics
that are aimed to produce high-quality solutions for complex problems in a
reasonably short amount of time [5,9,16]. They are applied to solve optimization
problems in various areas, such as industrial design and scheduling [2], search-
based software engineering [12], bioinformatical problems (for example, protein
folding or drug design) [11], and many more.
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EAs perform black-box optimization, i.e. they learn the information about
the problem instance by querying the fitness function value of a solution can-
didate (also referred to as individual within the evolutionary computation com-
munity). The structure of an EA is inspired by the ideas of natural evolution:
mutation operators make changes to individuals, crossover operators create off-
spring from parts of the existing individuals (parents), while a selection operator
decides which individuals to keep in the memory (population) for the next iter-
ation (generation).

The performance of an EA depends on the setting of its parameters. Existing
works on choosing these parameters can be classified into two main categories:
Parameter tuning aims at fitting the parameter values to the concrete problem
at hand, typically through an iterated process to solve this meta-optimization
problem. While being very successful in practice [13], parameter tuning does
not address an important aspect of the parameter setting problem: for many
optimization problems, the optimal parameter settings are not static but change
during the optimization stages [3,10,14]. Parameter control addresses this
observation by entailing methods that adjust the parameter values during the
optimization process, so that they not only aim at identifying well-performing
settings, but to also track these while they change during the run [6].

Our work falls in the latter category. More precisely, in this work we address
a previously observed shortcoming of an otherwise successful parameter control
mechanism, and suggest ways to overcome this shortcoming. We then perform a
thorough experimental analysis in which we compare our algorithm with previ-
ously studied ones.

We continue previous work summarized in [18], where we have studied the
so-called 2-rate (1 + λ) EAr/2,2r algorithm suggested in [4]. The 2-rate (1 +
λ) EAr/2,2r is an EA of (1 + λ) EA type with self-adjusting mutation rates.
Intuitively, the mutation rate is the expected value of the search radius at which
the next solution candidates are sampled. More precisely, this radius is sampled
from a binomial distribution Bin(n, p), where n is the problem dimension and p
the mutation rate. After sampling the search radius from this distribution, the
“mutation” operator samples the next solution candidate uniformly at random
among all points at this distance around the selected parent (which, in the
context of our work, is always a best-so-far solution).

It has been proven in [4] that the 2-rate (1+λ) EAr/2,2r achieves the asymp-
totically best possible expected running time on the OneMax problem, the prob-
lem of minimizing the Hamming distance to an unknown bit string z ∈ {0, 1}n.
In evolutionary computation, as in other black-box settings, the running time
is measured by number of function evaluations performed before evaluating for
the first time an optimal solution.

The main idea of the 2-rate (1 + λ) EAr/2,2r algorithm is to divide the
offspring population in two equal subgroups and to create the offspring in each
subgroup with a group-specific mutation rate. The offspring in the first group
are generated by mutating each bit of the parent individual with probability
r/2, whereas a mutation rate of 2r is applied to the second group. At the end of
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each iteration, the mutation rate r is updated as follows: with probability 1/2, it
is updated to the rate used in the subpopulation that contains the best among
all offspring (ties broken uniformly at random), and with probability 1/2 the
mutation rate is updated to r/2 or 2r uniformly at random.

When running the 2-rate (1 + λ) EAr/2,2r, it is convenient to define a lower
bound lb for the mutation rate, to prevent it from going to zero, in which case the
algorithm would get stuck. The original algorithm in [4] uses as lower bound lb =
1/n. In our previous work [18], however, we observed that a more generous lower
bound of 1/n2 can be advantageous. In particular, we observed the following
effects on OneMax, for problem dimension n up to 105 and offspring population
size λ up to 32 · 103:
– it is more preferable to use 1/n2 as a lower bound for the mutation rate

when the population size is small (5 ≤ λ ≤ λ1 ∈ (50, 100)), while for large
population sizes (λ1 ≤ λ ≤ λ2 ∈ (800, 3200)) a lower bound of 1/n seems to
work better;

– these results hold for all considered problem dimensions.

We consider the first property as a disadvantage of the 2-rate (1+λ) EAr/2,2r

because its efficiency depends on the lower bound and for different values of λ
different lower bounds should be used. The aim of the current paper is to propose
and to test an algorithm based on the 2-rate (1 + λ) EAr/2,2r, which manages
to adapt the lower bound lb automatically.

The main idea of the 2-rate (1+λ) EAr/2,2r improvement which we propose
in this paper could be briefly described in the following way. First we start with
the higher lower bound of 1/n. Then in each population, we count the amount of
individuals that were better than the parent separately for the cases of a higher
mutation rate and for a lower one, which we call as the number of votes for a
certain mutation rate. If a certain number of total votes is reached, we check if
there are enough votes for the lower mutation rate among them, and decrease
the value of the lower bound lb in this case. Hence, the lower bound tend to
become more generous closer to the end of optimization, as it never increases
and has a chance to decrease.

The proposed algorithm is shown to be efficient on OneMax for all consid-
ered population sizes λ, which we vary from 5 to 3200. Our approach therefore
solves the disadvantageous behavior of the 2-rate (1 + λ) EAr/2,2r described
above. We also tested our modification on other benchmark problems and
observed good efficiency at least on sufficiently small population sizes, i.e. on
5 ≤ λ ≤ 20 for LeadingOnes and on 5 ≤ λ ≤ 16 for W-Model transforma-
tions of OneMax.

2 Description of the Proposed Algorithm

2.1 Preliminaries

Throughout the paper we consider the maximization of a problem that is
expressed as a “fitness function” f : {0, 1}n → R. That is, we study single-
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objective optimization of problems with n binary decision variables. Particu-
larly, we study maximization of the benchmark functions OneMax, Leading-
Ones, and some problems obtained through so-called W-Model transforma-
tions applied to OneMax. These functions will be formally introduced in
Sects. 3.1, 3.2, and 3.3, respectively.

All the considered algorithms are based on the (1 + λ) EA0→1. Just like the
2-rate (1 + λ) EAr/2,2r, the algorithm keeps in its memory only one previously
evaluated solution, the most recently evaluated one with best-so-far “fitness” (ties
among the λ points evaluated in each iteration are broken uniformly at random).
Each of the λ “offspring” is created by the shift mutation operator discussed
in [17], which – instead of sampling the search radius from the plain binomial
distribution Bin(n, p) – shifts the probability mass from 0 to 1. That is, the search
radius is sampled from the distribution Bin0→1(n, p), which assigns to each inte-
ger 0 ≤ k ≤ n the value Bin0→1(n, p)(k) = Bin(n, p)(k) for 1 < k ≤ n, but sets
Bin0→1(n, p)(0) = 0 and Bin0→1(n, p)(1) = Bin(n, p)(1) + Bin(n, p)(0). Given
a search radius k, the offspring is then sampled uniformly at random among
all the points at Hamming distance k from the parent (i.e., the point in the
memory). For each offspring, the search radius k is sampled from Bin0→1(n, p)
independently of all other decisions that have been made so far. Note that shift-
ing the probability mass from 0 to 1 can only improve (1+λ)-type algorithms, as
evaluating the same solution candidate is pointless in our static and non-noisy
optimization setting.

As mentioned previously, our main performance criterion is optimization
time, i.e., the number of evaluations needed before the algorithm evaluates an
optimal solution. In all our experiments, however, the value of λ remains fixed,
so that – for a better readability of the plots – we report parallel optimization
times instead, i.e., the number of iterations (generations) until the algorithm
finds an optimal solution. Of course, the parallel optimization time is just the
(classical, i.e., sequential) optimization time divided by λ.

2.2 General Description

Using the mentioned observations from the paper [18], we developed the 2-rate
(1+λ) EAr/2,2r with voting that is aimed to solve the issues of the conventional
2-rate (1 + λ) EAr/2,2r. The pseudocode of the proposed algorithm is shown in
Algorithm1. Let us first introduce the notation and then explain the algorithm
following its pseudocode:

– Voting - individuals from a population vote for the mutation rates. Only
individuals which are better than the parent vote. Each voting individual
votes for the mutation rate with which it was obtained;

– v - the number of individuals voted for decreasing of the mutation rate used
on the current optimization stage;

– cnt - the total number of voted individuals;
– quorum - a constant value which is calculated as described in Sect. 2.3. It

actually depends on n and λ but those are fixed during the optimization
stage;
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Algorithm 1: 2-rate (1 + λ) EAr/2,2r with voting

1 Initialization: Sample x ∈ {0, 1}n uniformly at random and evaluate f(x);
2 r ← 2/n; v ← 0; cnt ← 0; lb ← 1/n;
3 Optimization: for t = 1, 2, 3, . . . do
4 voices[r/2] ← 0; voices[2r] ← 0;
5 for i = 1, . . . , �λ/2� do
6 Sample �(i) ∼ Bin0→1(n, r/2), create y(i) ← flip�(i)(x), and evaluate

f(y(i));
7 if f(y(i)) > f(x) then voices[r/2] ← voices[r/2] + 1;

8 for i = �λ/2� + 1, . . . , λ do
9 Sample �(i) ∼ Bin0→1(n, 2r), create y(i) ← flip�(i)(x), and evaluate

f(y(i));
10 if f(y(i)) > f(x) then voices[2r] ← voices[2r] + 1;

11 v ← v + voices[r/2];
12 cnt ← cnt+ voices[r/2] + voices[2r];
13 x∗ ← argmax{f(y(1)), . . . , f(y(λ))} (ties broken u.a.r.);
14 if f(x∗) ≥ f(x) then x ← x∗;
15 Perform one of the following two actions equiprobably;
16 � replace r with the mutation rate that x∗ has been created with;
17 � replace r with either 2r or r/2 equiprobably.;
18 if r < lb then
19 if cnt ≥ quorum then
20 if v ≥ d · quorum then
21 lb ← max(k· lb, LB) ;

22 cnt ← 0; v ← 0;

23 r ← lb;

24 if r > UB then
25 r ← UB ;

– lb - the current lower bound of the mutation rate. In our algorithm, we
interpret this bound as a parameter and adjust it during the optimization.
Offspring votes are used as feedback for the adjustment;

– LB - the all-time lower bound of the mutation rate. It stays constant during
all the execution time;

– UB - the all-time upper bound of the mutation rate. Analogically with LB it
stays constant during all the execution time;

– voices - the map where we store voices;
– 0 < d < 1 - the portion of votes which is needed to decrease the current lower

bound lb;
– 0 < k < 1 - the multiplier which is used to decrease lb.

Let us explain the algorithm following the pseudocode. At the initialization
stage a current solution x is generated as a random bit string of length n and
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the mutation rate r is initialized with an initial value 2/n (we use this value
following [4]). Also we initialize the variables that are used at the optimization
stage.

The optimization stage works until we end up with the optimal solution
or until a certain budget is exhausted. In the first cycle in line 6 we perform
mutation of the first half of the current population using the mutation rate
r/2. Also we calculate the number of individuals which are better than their
parents (line 7). The next cycle in line 9 does the same for the second half of
the population using the mutation rate 2r.

After all the mutations are done we update the number of individuals v voted
for decreasing the mutation rate (line 11) and the total amount cnt of offspring
who appeared to be better than the parent (line 12). Then we pick the individual
with the best fitness function among the generated offspring as a candidate to
become a new parent (line 13). In line 14 we check if the candidate is eligible for
that by comparing its fitness f(x∗) with the fitness of the current parent f(x).
After that in lines 15–17 we perform the usual for 2-rate (1 + λ) EAr/2,2r stage
which adapts the value of the mutation rate.

Then in line 18 we check whether the adapted mutation rate r is less than
the current lower bound lb. In this case we update r in line 23 after adapting
the lower bound lb in lines 19–22.

The adaptation of the lower bound is the key contribution of our approach.
It is adapted on the basis of offspring votes. We decrease lb in line 21 if there
are enough voted individuals (cnt ≥ quorum) and a sufficient portion of them
voted for decreasing of the mutation rate (v ≥ d ·quorum). Note that at the same
time lb may not become lower than the all-time lower bound LB. If the required
number of voted individuals (cnt ≥ quorum) is reached, regardless whether lb
was changed or not, we also always start the calculation of cnt and v votes from
scratch in line 22. Finally, in lines 24, 25 we make sure that the mutation rate
does not exceed the all-time upper bound UB.

Let us notice that the described approach is not restricted to be applied only
in the 2-rate (1+ λ) EAr/2,2r algorithm, but in principle may also be applied in
other parameter control algorithms with simple update rules, such as one-fifth
rule, to control lower bounds of the adapted parameters.

2.3 Selection of quorum

The quorum value used in Algorithm1 is calculated as quorum(n, λ) = A(n, λ) ·
B(λ), where A(n, λ) = (8n/9000 + 10/9)λ and B(λ) = (1 + (−0.5)/(1 +
(λ/100)2)2). Below we describe how this dependency was figured out.

In general the formula for quorum consists of two parts: A(n, λ) and B(λ)
which were obtained experimentally. Part A(n, λ) is linear in n and λ, while part
B(λ) depends on 1/λ4.

In early experiments on OneMax only the A(n, λ) part was used. Let us
describe how we obtained it. We observed n = 100, n = 1000, n = 10000 and
run experiments on OneMax with various values of λ and different values of
quorum. For every tested pair (n, λ) we gained the quorum that gave the best
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runtime and plotted the dependency quorum(λ) for a fixed n. We noticed that
this dependency was close to linear. One of such dependencies is shown in Fig. 1
with blue points (which were acquired during experiments). We also plotted the
dependency quorum(n) for constant λ and noticed that it was close to linear as
well. That gave us the target formula for A(n, λ).

However, it turned out that quorum(n, λ) = A(n, λ) is not very efficient on the
LeadingOnes problem. Multiplying A(n, λ) by B(λ) allows the formula to work
on small λ on both LeadingOnes and OneMax problems. At the same time,
on large values of λ, B(λ) part does not affect A(n, λ) because B(λ) approaches
its limit which is 1. Both of these parts were chosen during the experiments
but B(λ) was chosen later on to make our method work on LeadingOnes at
least for small values of λ and to not mess anything up on OneMax. The final
approximation is shown with the black line in Fig. 1.

3 Empirical Analysis

In this section we present the results of empirical analysis of the proposed algo-
rithm on OneMax, LeadingOnes, and some W-Model benchmark problems.

In all the experiments, the same parameter setting is used. The all-time
bounds are LB = 1/n2 and UB = 1/2. The parameters used for the lower bound
adaptation are d = k = 0.7, they were determined in a preliminary experiment.
We use quorum = (8n/9000+10/9)λ · (1+ (−0.5)/(1+ (λ/100)2)2), as described
in Sect. 2.3. All the reported results are averaged over 100 runs.

3.1 Benchmarking on OneMax

The classical OneMax problem is that of counting the number of ones in the
string, i.e., Om(x) =

∑n
i=1 x[i]. The algorithms studied in our work are “unbi-

ased” in the sense introduced in [15], i.e., their performance is invariant with
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Fig. 2. Average parallel optimization time and its standard deviation for the different
(1 + λ) EA variants to find the optimal solution on OneMax problem. The averages
are for 100 independent runs each.

respect to all Hamming automorphisms of the hypercube {0, 1}n. From the point
of view of the algorithms, the OneMax problem is therefore identical to that of
minimizing the Hamming distance H(·, z) : {0, 1}n → R, x �→ |{i | x[i] = z[i]}|
– we only need to express the latter as the maximization problem n − H(·, z).
Since the algorithms treat all these problems indistinguishably, we will in the
following focus on Om only. All results, however, hold for any OneMax instance
n − H(·, z).

Comparison with the Existing Methods. We compare the proposed 2-
rate (1 + λ) EAr/2,2r with voting, 2-rate (1 + λ) EAr/2,2r with two different
fixed lower bounds, and the conventional (1 + λ) EA0→1 with no mutation rate
adaptation. All the algorithms run on OneMax using the same population sizes
as in [18]. The corresponding results are presented in Fig. 2 for n = 10,000 (left)
and 100,000 (right) problem sizes. The plots show average number of generations,
or parallel optimization time, needed to find the optimum for each population
size λ. An algorithm is more efficient if it has a lower parallel optimization time
and hence if its plot is lower.

Let us first compare the previously known algorithms: the (1+λ) EA0→1 with
a fixed mutation rate 1/n, the 2-rate (1 + λ) EAr/2,2r which adjusts mutation
rate with respect to the 1/n lower bound and its 2-rate (1 + λ) EAr/2,2r(1/n2)
version which uses a more generous 1/n2 lower bound. For both considered
problem sizes, a similar pattern is observed:

– for 5 ≤ λ ≤ 50 the 2-rate (1 + λ) EAr/2,2r performed the best;
– then for 50 < λ ≤ 400 the (1 + λ) EA0→1 became the best performing

algorithm;
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Fig. 3. Changing of mutation rate and number of flipped bits for λ = 50 and n = 10,000

– for 400 < λ ≤ 3200 the previous winner gave way to the 2-rate (1 +
λ) EAr/2,2r(1/n2).

These observations confirm the results from [18], i.e. efficiency of the considered
methods are strongly dependent on λ.

Let us now consider the results obtained with the proposed 2-rate (1 +
λ) EAr/2,2r with voting. For both problem sizes and each considered value of
λ the proposed algorithm is at least as good as the previous leader observed in
the corresponding area of λ values. Hence, it is quite efficient regardless the value
of λ. Particularly, for λ = 50, 100, 200 and n = 10,000 (Fig. 2, left) the proposed
algorithm is substantially better than the (1 + λ) EA0→1, which was the previ-
ous best performing algorithm in this area. And the proposed algorithm is never
worse than both 2-rate (1+ λ) EAr/2,2r and 2-rate (1+ λ) EAr/2,2r(1/n2) in all
the considered cases.

According to these observations, the proposed algorithm seem to be quite
promising. In the next sections, we analyze its behavior in more deep on One-
Max and then test it on other benchmark problems.

Analysis of Bound Switching. Let us analyze the mutation rate dependency
on the current best offspring to get deeper understanding of how the switch-
ing between the lower bounds really happens. Let us observe Fig. 3, where the
average mutation rates chosen during the optimization process (a) and the cor-
responding average number of flipped bits (b) are shown.

In the beginning of optimization, the mutation rate obtained using the 2-rate
(1 + λ) EAr/2,2r with voting is the same as in the 2-rate (1 + λ) EAr/2,2r (see
Fig. 3(a)) and so the amount of flipped bits is the same approximately until the
point 7 · 103 on the horizontal axis (Fig. 3(b)). When more and more offspring
generated with rate r/2 are better than the parent, algorithm detects this and
relaxes the lower bound to allow lower mutation rates. The switching process
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Fig. 4. Any-time performance on OneMax

is shown between points 7 · 103 and 9 · 103 on the horizontal axes. You can see
how mutation rate is changing during this in Fig. 3(a). This leads to decrease of
number of flipped bits (which is shown in Fig. 3(b)) and consequently switching
to the 2-rate (1 + λ) EAr/2,2r(1/n2). Voting algorithm finally starts to flip the
same amount of bits as the 2-rate (1 + λ) EAr/2,2r(1/n2) after the point 9 · 103.

Note that while mutation rates obtained with 2-rate (1 + λ) EAr/2,2r with
voting and 2-rate (1 + λ) EAr/2,2r(1/n2) in the end of optimization process are
still different, the number of flipped bits tends to be the same for both algo-
rithms, namely, one bit. This is explained by the fact that after reaching a suffi-
ciently small mutation rate, both algorithms enter the regime of flipping exactly
one randomly chosen bit according to the shift mutation operator described in
Sect. 2.1. In this regime actual mutation rate values do not influence the resulting
performance, so 2-rate (1 + λ) EAr/2,2r(1/n2) does not get sufficient informa-
tion to control the rate. Thus the rates are chosen randomly and the devia-
tion of the mutation rate increases. This may explain the excess of the 2-rate
(1 + λ) EAr/2,2r(1/n2) plot in Fig. 3(a) at the end of optimization process.

Any-Time Performance Analysis. To further investigate how the optimiza-
tion process goes, let us observe the number of fitness function evaluations which
an algorithm needs to perform in order to reach a particular fitness value. We
refer to this point of view as any-time performance, as shown in Fig. 4 for the
2-rate (1+λ) EAr/2,2r, 2-rate (1+λ) EAr/2,2r(1/n2) and 2-rate (1+λ) EAr/2,2r

with voting.
Let us first observe the Fig. 4(b) which corresponds to a medium pop-

ulation size λ = 50. One can see that starting at some point the 2-rate
(1 + λ) EAr/2,2r(1/n2) works better than the 2-rate (1 + λ) EAr/2,2r, and the
proposed 2-rate (1 + λ) EAr/2,2r with voting detects this and tries to act like
the best algorithm on each segment.

The any-time performance on a small population size λ = 10 is shown in
Fig. 4(a). One can see that the segment of the 2-rate (1+λ) EAr/2,2r leadership
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Fig. 5. Any-time performance on LeadingOnes

is quite small, hence most of the time 2-rate (1 + λ) EAr/2,2r with voting keeps
2-rate (1 + λ) EAr/2,2r(1/n2) and so the final runtime of the proposed adaptive
algorithm is close to the 2-rate (1 + λ) EAr/2,2r(1/n2) here.

Finally, we consider the performance on large population sizes on the example
of λ = 800 in Fig. 4(c). The larger λ is the shorter becomes the segment of 2-
rate (1 + λ) EAr/2,2r(1/n2) efficiency. Hence 2-rate (1 + λ) EAr/2,2r(1/n2) does
not converge to the optimum faster than the 2-rate (1 + λ) EAr/2,2r at any
segment except probably the final mutation stage. The 2-rate (1 + λ) EAr/2,2r

with voting detects this and never switches to the 2-rate (1+λ) EAr/2,2r(1/n2) so
the runtime is close to the 2-rate (1+λ) EAr/2,2r. To conclude, the observations
of this section illustrate how 2-rate (1+ λ) EAr/2,2r with voting turns out to be
never worse than 2-rate (1 + λ) EAr/2,2r and 2-rate (1 + λ) EAr/2,2r(1/n2) for
different population sizes, as was previously seen in Fig. 2.

3.2 Benchmarking on LeadingOnes

LeadingOnes is another set of benchmark functions that is often used in the-
oretical analysis of evolutionary algorithms [5]. The classical LeadingOnes
function assigns to each bit string x ∈ {0, 1}n the function value Lo(x) :=
max {i | ∀j ≤ i : x[j] = 1}. As mentioned in Sect. 3.1, the algorithms studied
in our work are invariant with respect to Hamming automorphisms. Their
performance is hence identical on all functions Loz,σ : {0, 1}n → R, x �→
max {i | ∀j ≤ i : x[σ(j)] = z[σ(j)]}. This problem has also been called “the hid-
den permutation problem” in [1].

Unlike OneMax, the LeadingOnes problem is not separable; the decision
variables essentially have to be optimized one by one. Most standard EAs have a
quadratic running time on this problem, and the best possible query complexity
is Θ(n log log n) [1].

We have analyzed the adaptation process with parameters λ = 10 and n =
1500. The results of any-time performance are shown in Fig. 5. We see that
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the adaptation works nice here as well and 2-rate (1 + λ) EAr/2,2r with voting
achieves the best any-time performance.

In order to make sure that such positive results are invariant to λ and
n we tested 2-rate (1 + λ) EAr/2,2r with voting on λ = 5, 10, 20 and n =
500, 1500, 2000. On every pair of these parameters we gained the similar results.
Example for corner cases are shown in Fig. 5(b). Nevertheless, the adaptation
with the same quorum formula does not work for larger values of λ. Actually,
it appeared that quorum grows much slower when optimizing LeadingOnes
because in this case much less offspring vote.

To sum up, for small values of λ up to 20, the proposed adaptation works
well on both OneMax and LeadingOnes. However, for greater values of λ the
quorum formula has to be tuned to work well on LeadingOnes.

3.3 Benchmarking on W-Model Problems

Problem Description. W-Model problems were proposed in [19] as a possi-
ble step towards a benchmark set which is both accessible for theoretical analysis
and also captures features of real-world problems. These features are:

– Neutrality. This feature means that different offspring may have the same
fitness and be unrecognizable for EA. In our experiments, the corresponding
function is implemented by excluding from the fitness calculation 10% of
randomly chosen bits.

– Epistasis. In the corresponding problems the fitness contribution of a gene
depends on other genes. In the implementation of the fitness function the off-
spring string is perturbed. The string is divided in the blocks of subsequent
bits and special function is applied to each block to perform this perturba-
tions. A more detailed description is given in [8].

– Ruggedness and deceptiveness. The problem is rugged when small
changes of offspring lead to large changes of fitness. Deceptiveness means
that gradient information might not show the right direction to the opti-
mum. We used ruggedness function r2 from [8], which maps the values of the
initial fitness function f(x) to r2(f(x)) := f(x) + 1 if f(x) ≡ n mod 2 and
i < n, r2(f(x)) := max{f(x) − 1, 0} for f(x) ≡ n + 1 mod 2 and i < n, and
r2(n) := n.

These properties are supported in the IOHprofiler [7] and we benchmarked
our algorithms with help of this tool. Details about each function implementa-
tion are described in [19]. We used IOHprofiler for our experiments, and all the
parameter values are the same as described in [8]. The F5, F7 and F9 functions
from the IOHprofiler were used, which means that the described W-Model
transformations were applied to the OneMax function.

Results. We have analyzed problem dimensions n = 500, .., 2000 with step 500
and population sizes λ = 5, .., 20. In Figs. 6, 7 we show our results on the example
of λ = 10, similar results hold for all 5 ≤ λ ≤ 16. For λ > 16 the results of the
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Fig. 6. Fixed budget results for the Epistasis (a) and the Ruggedness (b) functions,
λ = 10, n = 1000

proposed algorithm get worse, we probably again need to additionally tune the
quorum formula, as it was observed for LeadingOnes.

Due to the high complexity of Epistasis and Ruggedness, 2-rate (1 +
λ) EAr/2,2r takes too long to find the optimal solution, so we analyzed its per-
formance from the fixed budget perspective. In the fixed budget approach, we do
not pursue the goal to find the optimal solution, but we only limit the amount
of fitness function evaluations and observe the best fitness values which can be
reached within the specified budget. In the current work, we considered budget
equal to the squared dimension size.

According to the fixed budget perspective, we had to use transposed axes
compared to the previous plots in the paper, as shown for the Epistasis and
Ruggedness functions in Fig. 6(a), (b) correspondingly. In this case, a higher
plot corresponds to a better performing algorithm. The considered functions
appeared to be too hard for 2-rate (1 + λ) EAr/2,2r(1/n2), so we did not find
any segment, where 2-rate (1 + λ) EAr/2,2r(1/n2) appeared to be better than
2-rate (1+λ) EAr/2,2r. Hence, for this situation results are positive when 2-rate
(1 + λ) EAr/2,2r with voting does not make 2-rate (1 + λ) EAr/2,2r worse. And
this is true for our case.

Finally, let us look at the Neutrality problem (see Fig. 7). This problem was
easier to solve in a reasonable time, so we were able to use the usual stopping
criterion of reaching the optimal solution, and the order of axes here is the same
as in the rest of the paper. The Neutrality problem appeared to be not so hard
for the 2-rate (1 + λ) EAr/2,2r(1/n2), so the 2-rate (1 + λ) EAr/2,2r with vot-
ing used its advantages and worked well. Unlike for the two above problems,
the promising behavior of 2-rate (1 + λ) EAr/2,2r with voting was observed for
λ > 16 as well, which may be explained by the fact that the considered Neu-
trality transformation does not change the complexity of the OneMax function
drastically.
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4 Conclusion

We proposed a new mutation rate control algorithm based on the 2-rate (1 +
λ) EAr/2,2r. It automatically adapts the lower bound of the mutation rate and
demonstrates an efficient behavior on the OneMax problem for all considered
population sizes 5 ≤ λ ≤ 3200, while the efficiency of the initial 2-rate (1 +
λ) EAr/2,2r algorithm with a fixed lower bound strongly depends on λ.

We have also applied the proposed algorithm to the LeadingOnes problem
and noticed that adaptation of the lower bound worked there as well for 5 ≤
λ ≤ 20. Finally, we tested the proposed algorithm on the W-Model problems
with different fitness landscape features and observed that it behaves similarly
to the best algorithm mostly on sufficiently small values of the population size
5 ≤ λ ≤ 16.

Our next important goal is to further improve the efficiency of our algorithm
for large population sizes λ. In the long term, we are particularly interested in
efficient techniques for controlling two and more algorithm parameters. Despite
some progress in recent years, the majority of works still focus on controlling a
single parameter [3,14].
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Abstract. We study the influence of the particular choice of operators
on the running time of the recently proposed (1 + (λ, λ)) genetic algo-
rithm. In particular, we consider three choices for the mutation operator,
six choices of the crossover operator, three strategies for sampling pop-
ulation sizes based on non-integer parameter values, and four choices of
what to do when the best mutant is better than the parent.

We test all these 216 configurations on four optimization problems and
in three adjustment flavours: the fixed λ, the unlimited self-adjustment
of λ and the logarithmically capped one. For each of these configurations,
we consider both the default values of the hyperparameters and the ones
produced by the irace parameter tuning tool.

The result of our experimental analysis showed that there exists a
configuration that is robust on linear functions and is roughly two times
faster compared to the initially proposed one and 12% faster on the
OneMax problem compared to one of the similar previous studies. An
even more robust configuration exists, which has a slightly worse perfor-
mance on OneMax but is better on satisfiability problems. Such con-
figurations can be the default choices for the practical evaluation of the
(1 + (λ, λ)) GA.

Keywords: (1 + (λ, λ)) genetic algorithm · Algorithm configuration ·
Parameter tuning

1 Introduction

The (1+(λ, λ)) genetic algorithm (GA), proposed in [6], is a crossover-based evo-
lutionary algorithm with several remarkable properties. First of all, it achieves
the expected running time of o(n log n) on a simple toy problem called OneMax
(a family of optimization problems of the form fz(x) = |{i | xi = zi}|), which
is provably impossible for unbiased mutation-based algorithms whatever muta-
tion operators they use [7]. Second, it solves this problem in time ω(n) for any
parameter choice that is fixed for the entire run (but may depend on the problem
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size n), however, it takes only O(n) time to do it with a simple self-adjustment
of the parameter λ using the 1/5-th rule [5,6].

This algorithm seems to be quite efficient in settings closer to practice. For
instance, it was found to be competitive in solving maximum satisfiability prob-
lems [9], taking the second place after the algorithm proposed by the authors
of [9]. This efficiency was also supported theoretically in [2], however, for an eas-
ier version of the maximum satisfiability problem. However, in both these papers
a few changes were introduced to the algorithm. In [9], for instance, the authors,
in certain contexts, never sample individuals that are equal to their parents,
which is a good concern in noise-free settings, and also restart the algorithm
when it appears to be stuck in a local optimum. On the other hand, in [2] an
additional threshold for the adjusted parameter λ was introduced, which pre-
vents the algorithm from the performance degradation. A similar degradation
observed in different contexts motivated further research in that direction [1].

The (1+(λ, λ)) GA apparently features a single parameter λ, however, there
are more quantities inside the algorithm which are tied to that parameter. For
instance, the intermediate population sizes are typically equal to λ, the bit flip
probability during the mutation is taken as λ/n, and the crossover exchanges the
bits with the probability of 1/λ. It was proven in [5] that any super-constant devi-
ation from these values is harmful already for OneMax. However, the technique
employed to prove this cannot be used to give statements about the optimal
constant factors, which can be treated as hyperparameters. For this reason, a
separate research was done in [4] to investigate how the performance depends
on these constant factors. They have shown that a speed-up of roughly 15% is
possible due to the appropriate choice of the constant factors. The tuning was
done in the five-dimensional hyperparameter space using the irace tool [11].

However, the improvements can come not only from the tuning of hyperpa-
rameters, but also from the appropriate choices of distributions that define the
variation operators (namely, mutation and crossover). The paper [3] advocates
to use, whenever appropriate, mutation operators that never sample offspring
identical to its parent, such as the so-called shift mutation that forces the small-
est change to be made in any case, and the resampling mutation that repeats the
sampling procedure whenever a copy of the parent is to be sampled. We shall note
that the paper [4] also deals not with the original version of the (1+ (λ, λ)) GA,
but with the one which uses the resampling mutation, and which also ignores
evaluation of crossover offspring that are identical to parents. This is also done in
some of the earlier-mentioned papers [1,9], however, a systematical study of the
influence of these choices on the running time of the (1 + (λ, λ)) GA, including
a study of the robustness of such a choice regarding different problems to be
solved, was so far missing.

In this paper, we make a first contribution of this sort. We consider three
choices for the mutation operator and six choices of the crossover operator, but
also three strategies for sampling population sizes based on non-integer parame-
ter values, and four choices of what to do when the best mutant is better than the
parent. This amounts to 216 different choices, which we further augment with
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three different self-adjustment strategies for the parameter λ and to four dif-
ferent pseudo-Boolean problems. Furthermore, following the proposal of [4], we
treat the constant factors as hyperparameters and consider their default values
as well as the values produced by irace.

2 The (1 + (λ, λ)) GA and Its Modifications

The (1+(λ, λ)) GA is outlined in Algorithm1. An iteration of the (1+(λ, λ)) GA
consists of two phases, namely, the mutation phase and the crossover phase.
On the mutation phase, a number of mutants is sampled with the higher-than-
usual mutation rate, and, additionally, all the mutants have the same Hamming
distance to their parent. The best of the mutants, together with the parent, enter
the crossover phase, when they also produce a number of crossover offspring. The
crossover is asymmetrical, however, as the bits are taken from the best mutant
with a much smaller probability. The best of the crossover offspring competes
directly with the parent, which completes the iteration.

The logic above is controlled by the parameter λ as follows: the mutation rate
is proportional to λ/n, the population sizes for both phases are proportional to
λ, and the probability to take a mutant’s bit in the crossover, called the crossover
bias in many papers, is proportional to 1/λ. Following the suggestions from [4],
we use the following notation for the proportionality quotients:

– α: the mutation probability quotient; the mutation probability is αλ/n;
– β: the crossover population size quotient: the population size in the crossover

phase is derived from βλ;
– γ: the crossover probability quotient: the crossover bias is γ/λ.

Note that the population size in the mutation phase is still bound to λ directly
without quotients, as in [4]. This makes sense, otherwise all the quotients could
have been multiplied by the same factor while λ is divided by the same factor.
The default values of these hyperparameters are α = β = γ = 1. The paper [4]
also introduces two parameters, A and b, that control the self-adjustment of λ
when the latter takes place. More precisely, when the best individual is updated
to a strictly better one, λ ← bλ, otherwise λ ← Aλ. The default values from the
one-fifth rule are b = 1/C and A = C1/4 for some C ∈ (1; 2).

Additional to these five hyperparameters, we suggest to consider a few more
options. First of all, there can be different distributions that control the Ham-
ming distance � during the mutation phase. We consider three of them, two of
which have been introduced in [3]:

– “standard”: the binomial distribution B(n, p), where p is the mutation prob-
ability as above;

– “shift”: max{1,B(n, p)}, that is, whenever the binomial distribution samples
zero, the value of one is forced;

– “resampling”: this can be written as � ∼ B(n, p) | � > 0, meaning that
whenever the binomial distribution samples zero, sampling is repeated.
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Algorithm 1. The (1 + (λ, λ)) GA with modifications
Hyperparameters:
– DM (n, p): distribution of the number of flipped bits in mutation
– DC(n, m, p): distribution of the number of flipped bits in crossover
– ρ(n): the rounding distribution to determine population size
– α: the mutation probability quotient
– β: the crossover population size quotient
– γ: the crossover probability quotient
– A, b: the self-adjustment parameters (if applicable)
– ξ ∈ {I, S, C, M}: the strategy to handle mutants that are better than parents
Algorithm:
n ← the problem size, f ← the function on {0, 1}n to maximize
λ ← λ0 (in self-adjusting versions, λ0 = 1, otherwise an algorithm-wise constant)
x ← sample a bit string uniformly; evaluate f(x)
while true do

sM ← ρ(λ) � The mutation population size
	 ∼ DM (n, αλ/n) � The number of bits to flip in mutation
for i ∈ 1, 2, . . . , sM do � Mutation phase

x(i) ← x with 	 random different bits flipped � Sample an offspring
Evaluate f(x(i))

end for
x′ ← best from {x(1), x(2), . . . , x(sM )} chosen uniformly
if ξ = S and f(x′) > f(x) then

x ← x′, adjust λ � If best mutant is better than parent. . .
continue � . . . and ξ is “skip crossover”, skip it

end if
sC ← ρ(βλ) � The crossover population size
for i ∈ 1, 2, . . . , sC do � Crossover phase

δ ← DC(λ, 	, γ/λ) � Number of bit exchanges in crossover
if δ = 	 then � x′ is to be sampled again

switch ξ:
case M: i ← i − 1 � ξ is “do not sample identical to mutant”, rollback
case C: do nothing � ξ is “do not count identical to mutant”, ignore
case I, S: evaluate f(x′) again

end switch
else

y(i) ← crossover of x and x′ with δ differing bits taken from x′

Evaluate f(y(i))
end if

end for
Y = {y(1), y(2), . . . , y(sC)}
if ξ = C or ξ = M then

Y ← Y ∪ {x′} � Take the best mutant to the comparison
end if
x ← best from x and Y , adjust λ

end while



324 A. Bassin and M. Buzdalov

Second, the same ideas can be applied to the crossover. More precisely, the
corresponding distribution would tell how many bits that are different in the
parent and in the best mutant would be taken from the mutant. It is clear that
this number cannot be greater than �, so the first argument in the binomial
distribution will be �. However, the second argument (the success probability)
can be derived from either � or from λ. Although, when introduced as such,
the first choice is more natural, only the second one was actually used in all
the previous research. For this reason, we consider six versions of the crossover
distribution:

{standard, shift, resampling} × {from �, from λ}.

Third, the population sizes are derived from, generally, real values, and
choices are possible. The original paper [6] suggested rounding towards the larger
value, while some other papers used a different way. We use three options:

– always round down;
– always round up;
– round probabilistically as follows: if the real value x is not integral, we sample

�x� with probability (�x� − x) and we sample �x� with probability (x − �x�).
This way, the smaller x, the larger the probability to round it down.

Finally, the algorithm may encounter that the best mutant is already better
than the parent. This may happen with a decent probability when λ is small and
in easier parts of the fitness landscape. The original algorithm does not treat this
case in a special way, however, in [9] the author decided to skip the crossover
phase altogether once this happens. We introduce a few other options in the
hope that crossing over such a mutant with the parent may potentially produce
an even better individual. In total, we have the following options:

– “ignore” (letter I): similar to the original algorithm, do nothing special;
– “skip crossover” (letter S): similar to [9], skip the crossover once the best

mutant is better than the parent;
– “do not count identical to mutant” (letter C): add the best mutant to the

comparison with the parent, which follows the crossover phase, and skip the
crossover offspring which are sampled identically to the best mutant;

– “do not sample identical to mutant” (letter M): same as above, but also do not
increment the number of already sampled crossover offspring, so that there
will always be the required number of crossover offspring different from the
best mutant (and from the parent if required).

The latter option is, in fact, quite tricky. There can be the cases when the
crossover distribution will always sample the maximum possible difference, of
which the most obvious case is when � = 1 and the distribution cannot sample
zeros because it is either “shift” or “resampling”. In these cases, which can
fortunately be detected without querying individuals, the entire crossover phase
is skipped as well, and the parent is updated only if the best mutant is not worse
than the parent. This case is not illustrated in Algorithm1 for brevity.
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With all these options, most of the flavours of the (1 + (λ, λ)) GA from the
literature can be expressed as Algorithm 1 with certain values of the hyperpa-
rameters. In the following, we evaluate all the 216 combinations of the qualitative
hyperparameters on several benchmark problems. The five quantitative param-
eters, on the other hand, come in two variants: the default ones and the ones
produced by the tool called irace [11].

3 Experiments

We perform experiments with the following benchmark problems: OneMax,
linear pseudo-Boolean functions with random weights from [1;wmax], where
wmax = 2 and wmax = 5, and the easy maximum satisfiability problems. For
each of the problem, the details will be given in the corresponding subsection.

The complete output of experiments is available on Zenodo1.

3.1 General Methodology

For each problem, we choose two reasonably large problem sizes, which are
noticeably different and which still allow the intended volume of experimen-
tation. For example, these two sizes are n = 213 = 8192 and n = 216 = 65536 for
OneMax. For each problem size, we consider three adjustment strategies for λ:

– a constant λ = 8;
– a self-adjusting λ with the lower limit of 1 and the upper limit of n, controlled

by hyperparameters A and b;
– the same with the upper limit of 2 ln(n + 1).

Next, for each of the 216 configurations we perform 100 independent runs
with the default real-valued hyperparameters (namely, α = β = γ = 1, b = 2/3
and A = (3/2)1/4) and collect the statistics. We report medians and quartiles
instead of means and standard deviations for the following reasons:

– the running times of evolutionary algorithms are typically quite far away from
being normally distributed;

– the running times of the (1 + (λ, λ)) GA, at least on simple problems, are
very well concentrated, and as a result means and medians nearly coincide;

– order statistics are more robust to outliers.

These quantities are presented visually as specified on Fig. 1. This figure also
introduces the short five-letter notation that we use to describe the hyperparam-
eter choices: for instance, the originally proposed version of the (1 + (λ, λ)) GA
is denoted as SSLIU for standard binomial distributions for crossover and muta-
tion, the base for the crossover probably being λ as opposite to �, the ignorant
good mutant strategy and population sizes rounded up.

1 Location: https://zenodo.org/record/3871043, DOI: 10.5281/zenodo.3871043.

https://zenodo.org/record/3871043
https://doi.org/10.5281/zenodo.3871043
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Fig. 1. The explanation of the column elements in the results of experiments

We also run irace to determine the near-best values for the real-valued
hyperparameters. The hyperparameter ranges are [0; 3] for α, β and γ, while
b ∈ [0; 1] and A ∈ [1; 3]. We use a budget of 1000 tested hyperparameter vectors
for each configuration, and average the performance of the algorithm over 25
independent runs before reporting it to irace. The training instances feature a
smaller problem size, and we also limit the number of evaluations (the particular
values will be given in problem descriptions). Once irace presents the results,
we take the best one and run it in the same way as the configuration with the
default parameters.

The results are presented, side by side, in large one-page pictures, where each
column corresponds to a particular combination of the problem size, the self-
adjustment strategy and the property of being tuned by irace. The elements of
each column are sorted from the best to the worst result. The matching elements
in otherwise identical columns with different sizes, as well as the default and
tuned maximum-sized columns, are connected by gray lines. This is a visual
indicator of the stability of the order: few intersections mean a better stability,
while a lot of intersections means that the order changes significantly. One can
also spot the groups of configurations which are similar inside the group but are
different from all other configurations. Note that because of the huge quantity of
configurations to be tuned, the quality of each tuning produced by irace may
be inferior to what could be possible with only a few configurations and a larger
budget. We leave further investigations in this direction to the future work.

3.2 Experimental Results: OneMax

This section describes the results of the experiments on OneMax, which is a
family of pseudo-Boolean functions defined as follows:

OneMaxf : {0, 1}n → R; x 
→
n∑

i=1

[xi = fi],

where f is a hidden bit string representing the optimum, and [.] is the Iverson
bracket which gives 1 for logical truth and 0 otherwise. We use f = 1n without
loss of generality. The experiment parameters are as follows:
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Fig. 2. Overview of results on OneMax
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– small problem size: 213 = 8192;
– large problem size: 216 = 65536;
– training problem size for irace: 1000;
– evaluation limit for irace: 20000.

The results are presented in Fig. 2 with the stripe span of 15.
From these data we can do the first few observations. First of all, the configu-

ration corresponding to the original version of the algorithm, SSLIU, is one of the
worst: in 7 out of 12 columns it is the worst, in two more it is the second worst,
and it is in the 10 worst configurations on all other cases. Second, we see that
irace generally helps, except for a few worst configurations where its tuning is
worse than the default one. Furthermore, irace heavily influences the order of
the configurations, typically much more than the problem size. Regarding the
problem size, the self-adjusting version of λ ≤ n is very stable, λ ≤ log n comes
second, and λ = 8 is much less stable, although the sets of top 18 default configu-
rations and roughly top 30 irace configurations are both similar in performance
and do not change much.

We also see that the most significant impact comes from the crossover dis-
tribution, where the use of the standard choice introduces a visible penalty in
λ = 8 and in the irace version of λ ≤ log n. Finally, in λ ≤ n, the best irace
configuration (with runtime of roughly 5.22n on n = 216) is twice as fast as the
worst default configuration, which is the above mentioned SSLIU.

3.3 Experimental Results: Random Linear Functions

This section describes the results of the experiments on linear pseudo-Boolean
functions with random weights defined as follows:

Linf,w : {0, 1}n → R; x 
→
n∑

i=1

wi · [xi = fi],

where f is a hidden bit string representing the optimum, and w is the weight
vector. Similar to OneMax, we use f = 1n without loss of generality. The
elements of w are sampled uniformly from [1;wmax], where wmax is the problem’s
parameter. We consider wmax = 2 and wmax = 5. Note that [1] used random
integer weights, which generally results in harder problems for the same weight
limits, and [6] used the same technique as we do here for wmax = 2 only.

We used experiment parameters similar to OneMax, except that the training
problem size was set to 500, and evaluation limits were 20000 for wmax = 2 and
40000 for wmax = 5. Furthermore, we do not present the results for λ ≤ n and
large problem size n = 216, because this self-adjustment technique diverges for
the same reasons as explained in [1], which leads to much worse running times
(the quotient typically exceeds 30 for wmax = 2, n = 216), and to even worse
wall-clock running times. The results are presented in Fig. 3 for wmax = 2 and
in Fig. 4 for wmax = 5 with stripe spans of 25 and 50 correspondingly.

In these data, we also observe a few trends which were already noticed for
OneMax. First of all, the standard crossover distribution (the second letter



An Experimental Study of Operator Choices in the (1 + (λ, λ)) GA 329

Fig. 3. Overview of results on linear functions with wmax = 2
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Fig. 4. Overview of results on linear functions with wmax = 5
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S in the configuration descriptions) is the worst choice in nearly all columns:
this trend is very strict for λ = 8 and, additionally, in the non-tuned λ ≤ n,
and only slightly less so in all other columns. Second, the configuration SSLIU
that describes the original version of the algorithm is again one of the worst
configurations. Third, the best irace configuration, compared to the worst non-
tuned configuration, is more than twice as fast, especially in the more promising
λ ≤ log n self-adjustment mode.

One of the things different to OneMax is that the interquartile ranges for λ ≤
n are now much wider. This can be explained by the fact that the divergence of
the self-adjusting strategy happens at random times and for poorly concentrated
periods, which introduces a lot of noise to the running time. This seems to be
detrimental to irace, which fails to find a good configuration even compared to
the default one for a slightly larger portion of runs.

3.4 Experimental Results: Easy Maximum Satisfiability Problems

This section describes the results of the experiments on easy maximum satisfia-
bility problems. These problems were investigated in the context of evolutionary
computation in [2,8,12] theoretically and also experimentally in a number of
papers [9]. A satisfiability problem in a conjunctive normal form is written as
follows for a vector x of n Boolean variables:

CNF(x) = ∧m
i=1(vi1 ∨ vi2 ∨ . . . ∨ vici ),

where vj is either xj or its negation. This problem is NP-complete, and even the
problem where all ci = 3, the so-called 3CNF problem, is also NP-complete. The
maximization version of this problem, which is often called MAX-SAT and is of
course NP-hard, aims at maximizing the number of clauses:

MAX-SAT(x) =
m∑

i=1

[vi1 ∨ vi2 ∨ . . . ∨ vici ].

Following [2,8,12], we consider the easy instances of the MAX-SAT prob-
lem with all ci = 3. First, the clauses are sampled uniformly at random from
the clauses on three variables that satisfy some pre-defined planted assignment
(which is all ones without loss of generality). Second, the number of clauses, m,
is chosen to be 4n ln n, which amounts to the logarithmic density of clauses, as
opposed to the well-known hard random instances with the density of 4.27 [10].
These choices make the problem quite similar to OneMax, although not exactly
the same, which poses a moderate difficulty to the (1 + (λ, λ)) GA when it
attempts applying high mutation rates.

We use the following experiment parameters:

– small problem size: 210 = 1024;
– large problem size: 213 = 8192;
– training problem size for irace: 128;
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Fig. 5. Overview of results on easy maximum satisfiability problems
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– evaluation limit for irace: 5000.

The chosen problem sizes are much smaller than for linear functions, because
incremental fitness evaluation, which we employ to speed-up our experiments,
introduces an additional factor of Θ(log n) to the wall-clock running times. The
results are presented in Fig. 5 with the stripe span of 25. The overall trends seem
to be roughly the same as in the case of linear functions, with the exception that
the performance of the self-adjusting configurations tuned by irace appears to
be even less stable regarding the problem size. Furthermore, the set of the best
irace configurations for λ ≤ log n seems to be noticeably different from the
similar set produced for linear functions.

Table 1. Summary of analysis of robustness

Non-tuned irace

Rank Ratio to best Rank Ratio to best

Avg Max Avg max Avg Max Avg Max

HHDCU 0.20 HHDCU 1 HHDCU 1.000 HHDCU 1.002 HHDMD 19.00 HHDMD 35 HHLCU 1.046 HHDMD 1.075

HHDMU 1.20 HHDMU 2 HHDMU 1.007 HHDMU 1.019 HHDCP 23.00 RHDMU 43 HHDMD 1.053 RHLCP 1.079

HHDCP 3.00 HHDCP 5 HHDCP 1.020 HHDCP 1.038 RHLMU 24.80 RHLMU 48 RHLCP 1.058 HHLCU 1.089

HHDMD 4.20 HHDMD 6 HHDMD 1.023 HHDMD 1.043 RHLCP 24.80 HRLMD 53 HHDCP 1.061 RRLMP 1.118

RHDCU 5.40 RHDMU 7 RHDCU 1.026 RHDMU 1.045 HHLCU 26.40 HHDCP 56 RHLMU 1.062 RHLMU 1.123

Table 2. Best self-adjusting configurations

Config Median on
OneMax

α β γ A b Comment

HHDMD 5.945n 0.3577 0.5273 0.3991 1.2220 0.5297 Robust on all
tested functions

HHLCP 5.242n 1.1083 1.1601 0.0290 1.2803 0.5605 Robust on tested
linear functions

3.5 Analysis of Robustness

To understand which configuration is generally better, we conducted a simple
analysis of robustness. We chose the following pairs of a problem and a self-
adjusting technique, which are representatives of approaches that work well: λ ≤
n on OneMax and λ ≤ log n on all the problems (again including OneMax).
For each such pair we take the maximum available problem size and evaluate the
configurations, taking non-tuned and irace configurations separately. For each
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configuration we evaluate its rank, as well as the ratio of the median running
time to the minimum observed median. Then we compute the average and the
maximum values of these quantities across all problem-technique pairs. Five best
configurations for each quantity are presented in Table 1.

The table reveals that for the non-tuned configurations the ultimate choice
is the configuration called HHDCU, which wins in all nominations. For the irace
configurations, there is more diversity, but the configuration HHDMD can also be
seen as a winner, arriving second only for the average median ratio. The latter,
however, does not yield the best running times on OneMax, finishing only 26th
and running in approximately 5.95n median time. When considering only linear
functions, however, another configuration HHLCP is stable enough in producing
good results and finishes only second on OneMax with median time of 5.24n.
Table 2 presents their irace tunings for OneMax.

4 Conclusion

We presented an experimental study of 216 different configurations of the
recently proposed (1 + (λ, λ)) GA, where each configuration represents a choice
of a particular set of distributions that tell the mutation and crossover opera-
tors what to do, as well as a strategy of coping with a best mutant that can
be better than its parent and a strategy of rounding the population sizes. We
also compared the default hyperparameter choices and the choices tuned by the
irace tool. Our findings can be shortly summarized as follows:

1) The choice of the crossover distribution has the largest impact on the per-
formance. While the “shift” and “resampling” strategies perform almost the
same, the default choice is definitely worse. This means that the original
(1+ (λ, λ)) GA spends too much time in creating crossover offspring that are
identical to the parent, and the best single improving move is to avoid this.

2) The default configuration, which corresponds to the original version of the
algorithm as in [6], is always among the worst ones, and the best configura-
tions are typically at least twice as fast.

3) There exists a configuration which is 12% more efficient than the tuning found
in [4]. We also presented an even more robust configuration which performs
well both on linear functions and on easy satisfiability problems.

4) The irace tool is noticeably good at finding good tunings for good configura-
tions, however, for the few worst configurations it fails to find even the tuning
which is as good as the default one, which we attribute to budget limitations.
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Abstract. Let an oil and gas field consists of clusters in each of which an
investor can launch at most one project. During the implementation of
a particular project, all characteristics are known, including annual pro-
duction volumes, necessary investment volumes, and profit. The total
amount of investments that the investor spends on developing the field
during the entire planning period we know. It is required to determine
which projects to implement in each cluster so that, within the total
amount of investments, the profit for the entire planning period is max-
imum.

The problem under consideration is NP-hard. However, it is solved
by dynamic programming with pseudopolynomial time complexity. Nev-
ertheless, in practice, there are additional constraints that do not allow
solving the problem with acceptable accuracy at a reasonable time. Such
restrictions, in particular, are annual production volumes. In this paper,
we considered only the upper constraints that are dictated by the pipeline
capacity. For the investment optimization problem with such additional
restrictions, we obtain qualitative results, propose an approximate algo-
rithm, and investigate its properties. Based on the results of a numerical
experiment, we conclude that the developed algorithm builds a solution
close (in terms of the objective function) to the optimal one.

Keywords: Investment portfolio optimization · Production limits

1 Introduction

The founder of the mathematical theory of portfolio optimization is G.
Markowitz, who, in 1952, published an article [16] with the basic definitions
and approaches for evaluating investment activity. He developed a methodology
for the formation of an investment portfolio, aimed at the optimal choice of
assets, based on a given ratio of profitability/risk. The ideas formulated by him
form the basis of modern portfolio theory [8,16,17].
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The author of [21] gave a review of portfolio selection methods and described
the prospects of some open areas. At first, the author described the classical
Markowitz model. Then comes the “intertemporal portfolio choice” developed
by Merton [18,19], the fundamental concept of dynamic hedging and martingale
methods. Pliska [21], Karatzas [11], as well as Cox and Huang [6] made the main
contribution to the development of this direction. The authors of [7] and [20]
proposed the formulas for the optimal portfolio for some private productions.
These formulas have the form of conditional expectation from random variables.

In most well-known studies, the problem of optimal investment is solved
numerically [3,4], which does not allow us to identify the contribution of portfolio
components to the optimal solution. In [2], a new approach is proposed for
dynamic portfolio selection, which is not more complicated than the Markowitz
model. The idea is to expand the asset space by including simple, manageable
portfolios and calculate the optimal static portfolio in this extended space. It is
intuitively assumed that a static choice among managed portfolios is equivalent
to a dynamic strategy.

If we consider investing in specific production projects, then each of them
is either implemented or not. In contrast to the classical Markowitz’s problem,
a discrete statement, arises, and the mathematical apparatus developed for the
continuous case is not applicable. In [15], the authors examined a two-criterion
problem of maximizing profit and minimizing risk. The characteristics of each
project, mutual influence, and the capital available to the investor are known.
For the Boolean formulation of the problem, the authors proved NP-hardness
and found special cases when the problem is solved with pseudopolynomial time
complexity.

The portfolio optimization problems described above relate to the stock mar-
ket. For companies operating in the oil and gas sector, optimization problems are
relevant. In these problems it is necessary to maximize total profit and minimize
risks for a given period, taking into account additional restrictions, for example,
on production volume, as well as problems in which it is necessary to maximize
production (or profit) for a given amount of funding. In [1], the author presented
an approach aimed at improving the efficiency of the management of the oil and
gas production association. Two control loops are distinguished: macroeconomic,
which is responsible for optimizing policies at the aggregated level (industry and
regional), and microeconomic, which is responsible for optimizing the organiza-
tional and functional structure of the company. The first circuit implemented
using the author developed computable models of general economic equilibrium
and integrated matrices of financial flows. The second circuit performed using
an approach based on simulation of the business processes of an enterprise.

The author of [9] considers the problem of forming a portfolio of invest-
ment projects, which required to obtain maximum income under given assump-
tions regarding risks. A method is proposed based on a comprehensive multidi-
mensional analysis of an investment project. The authors of [10,12] consider a
problem of minimizing the deposit costs with restrictions on the volume of the
production. They propose an algorithm for building an approximate solution by
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dynamic programming. The accuracy of the algorithm depends on the discretiza-
tion step of the investment volume. The authors of [10] formulate the problem of
minimizing various costs associated with servicing wells, with limitations related
to the amount of oil produced, as a linear programming problem, and find the
optimal solution using the simplex method.

For the decision-maker, the main concern is how to allocate limited resources
to the most profitable projects. Recently, a new management philosophy, Beyond
NPV (Net Present Value), has attracted more and more international attention.
Improved portfolio optimization model presented in [23]. It is an original method,
in addition to NPV, for budgeting investments. In the proposed model, oil com-
pany executives can compromise between profitability and risk concerning their
acceptable level of risk. They can also use the “operating bonus” to distinguish
their ability to improve the performance of major projects. To compare optimized
utility with non-optimized utility, the article conducted a simulation study based
on 19 foreign upstream assets owned by a large oil company in China. The sim-
ulation results showed that the optimization model, including the “operating
bonus”, is more in line with the rational demand of investors.

The purpose of the paper [5] is to offer a tool that might support the strate-
gic decision-making process for companies operating in the oil industry. Their
model uses Markowitz’s portfolio selection theory to construct an efficient fron-
tier for currently producing fields and a set of investment projects. These relate
to oil and gas exploration projects and projects aimed at enhancing current
production. The net present value obtained for each project under a set of user-
supplied scenarios. For the base-case scenario, the authors also model oil prices
through Monte Carlo simulation. They run the model for a combination of port-
folio items, which include both currently producing assets and new exploration
projects, using data characteristics of a mature region with a high number of
low-production fields. The objective is to find the vector of weights (equity stake
in each project), which minimizes portfolio risk, given a set of expected portfolio
returns.

Due to the suddenness, uncertainty, and colossal loss of political risks in
overseas projects, the paper [14] considers the time dimension and the success
rate of project exploitation for the goal of optimizing the allocation of multiple
objectives, such as output, investment, efficiency, and risk. A linear portfolio
risk decision model proposed for multiple indicators, such as the uncertainty
of project survey results, the inconsistency of project investment time, and the
number of projects in unstable political regions. Numerical examples and the
results test the model and show that the model can effectively maximize the
portfolio income within the risk tolerance range under the premise of ensuring
the rational allocation of resources.

This paper discusses the problem of optimal investment of oil and gas field
development consisting of subfields – clusters. For each cluster, there are sev-
eral possibilities for its development, which we call the projects. Each project
characterized by cost, lead time, resource intensity, annual production volumes,
and profit from its implementation. Also, there are restrictions on the annual
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production volumes of the entire field. This requirement leads to the need for
a later launch of some projects so that the annual production volume does not
exceed the allowable volumes. Assuming that a project launched later is another
project, we proposed a statement of the problem in the form of a Boolean linear
programming (BLP) problem. We estimated the maximum dimension at which
CPLEX solves the BLP in a reasonable time. For a large-dimensional problem,
we developed a method that constructs an approximate solution in two stages. At
the first stage, the problem is solved without limitation on the volume of annual
production. This problem remains NP-hard, but it is solvable by a pseudopoly-
nomial dynamic programming algorithm. As a result, one project is selected for
each cluster. The project is characterized, in particular, by the year of launch
and production volumes in each subsequent year. If we start the project later,
the annual production volumes shift. In the second stage, the problem of deter-
mining the start moments of the projects selected at the first stage is solved,
taking into account the restrictions on annual production volumes, and the profit
is maximal. We developed a local search algorithm for partial enumeration of
permutations of the order in which projects are launched. At the same time, for
each permutation, the algorithm of tight packing of production profiles devel-
oped by us (we call it a greedy algorithm), which builds a feasible solution, is
applied. A numerical experiment compared our method and CPLEX.

The rest of the paper has the following organization. In Sect. 2, we state
the problem as a BLP. In Sect. 3, the problem without restrictions on the vol-
ume of production reduced to a nonlinear distribution problem, which is solved
by dynamic programming. As a result, a “best” project found for each clus-
ter. Section 4 describes the method for constructing an approximate solution by
searching for the start times for the “best” projects. The next section presents
the results of a numerical experiment. We identify the maximum dimension of
the problem, which is solved by the CPLEX package in a reasonable time, and
compare the accuracy of the developed approximate algorithms. Section 6 con-
tains the main conclusions and describes the directions for further research.

2 Formulation of the Problem

For the mathematical formulation of the problem, we introduce the following
notation for the parameters:

– [1, T ] is the planning period;
– C is the total amount of investment;
– K is the set of clusters (|K| = n);
– Pk is the set of projects for the development of the cluster k ∈ K (max

k
|Pk| =

p) taking into account the shift at the beginning of each project;
– dik(t) is the volume of production in the cluster k ∈ K per year t = 1, . . . , T ,

if the project i ∈ Pk is implemented there;
– qik is the profit for the entire planning period from the implementation of

project i in cluster k;
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– cik is the cost of implementing project i in cluster k;
– D(t) is the maximum allowable production per year t;

and for the variables:

xi
k =

{
1, if project i is selected for cluster k;
0, else.

Then the problem under consideration can be written as follows.
∑
k∈K

∑
i∈Pk

qikx
i
k → max

xi
k∈{0,1}

; (1)

∑
k∈K

∑
i∈Pk

cikx
i
k ≤ C; (2)

∑
i∈Pk

xi
k ≤ 1, k ∈ K; (3)

∑
k∈K

∑
i∈Pk

dik(t)x
i
k ≤ D(t), t ∈ [1, T ]. (4)

Remark 1. Each project has various parameters, among which the annual pro-
duction volumes. If we start the project later, then the graphic of annual pro-
duction will shift entirely. Suppose dik(t) is the volume production per year t if
the project i is implemented in the cluster k. If this project is launched τ years
later, the annual production during year t will be dik(t − τ). So, each project in
the set Pk is characterized, in particular, by its beginning.

However, not all characteristics retain their values at a later launch of the
project. Profit from project implementation depends on the year of its launch, as
money depreciates over the years. One way to account for depreciation is to use
a discount factor. The value of money decreases with each year by multiplying
by a discount factor that is less than 1. In this regard, at the stage of preliminary
calculations, we recount values associated with investment and profit.

As a result, the set Pk consists of the initial projects, and the shifted projects
for different years as well. So, having solved the problem (1)–(4), we will choose
for each cluster not only the best project but also the time of its start.

Problem (1)–(4) is an NP-hard BLP. For the dimension which we define in
Sect. 5, a software package, for example, CPLEX, can be used to solve it. In
order to solve the problem of a large dimension, it is advisable to develop an
approximate algorithm. To do this, in the next section we consider the problem
(1)–(3).

3 The Problem Without Restrictions on Production
Volumes

If there are no restrictions on production volumes, then instead of the variables
xi
k, we can use the variables ck, which are equal to the amount of the investment
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allocated for the development of the cluster k. To do this, for each cluster k, we
introduce a new profit function qk(ck), which does not depends on the selected
project but depends on the amount of investment. For each k, the function qk(ck)
is obviously non-decreasing piecewise constant. Moreover, if we know the value
ck, then one project is uniquely will be used to develop the cluster k, and all its
characteristics will be known. Indeed, the more money is required to implement
the project, the more efficient it is (more profitable). If this is not a case, then a
less effective but more expensive project can be excluded. Obviously, the values
of all functions qk(ck), ck ∈ [0, C], k ∈ K, are not difficult to calculate in advance.
The complexity of this procedure does not exceed O(KpC).

Given the previous, we state the problem of maximizing profit without restric-
tions on production volumes, assuming that all projects start without delay, in
the following form. ∑

k∈K

qk(ck) → max
ck∈[0,C]

; (5)

∑
k∈K

ck ≤ C. (6)

Although problem (5)–(6) become easier than the problem (1)–(4), it remains
NP-hard. However, it is a distribution problem, for the solution of which we
apply the dynamic programming method, the complexity of which is O(n(C/δ)2),
where δ is the step of changing the variable ck. Solving the problem (5)–(6), we
choose the “best” project for each cluster. If it turns out that at the same time,
all the restrictions (4) fulfilled, then this solution is optimal for the original
problem (1)–(4). If at least one inequality (4) violated, then we will construct a
feasible solution in the manner described in the next section.

4 Consideration of Restrictions on Production Volumes

We will not change the projects selected for each cluster as a result of solv-
ing the problem (5)–(6). We will try to determine the moments of launching
these projects so that inequalities (4) fulfill, and profit takes maximal value.
The project selected for the cluster k is characterized by the production vol-
umes dk(t) in each year t ∈ [1, T ]. It is necessary to shift the beginning of some
projects to a later time so that in each year t ∈ [1, T ] the total production is at
most D(t): ∑

k∈K

dk(t) ≤ D(t).

Assume that the cluster k development project, whose beginning is shifted by
i ∈ [0, tk] years, is another project. Then for each cluster, there is a set of projects,
which we denote as before by Pk (|Pk| = tk + 1). As a result, to determine the
shift in the start of the project launch for each cluster, it is enough to solve the
problem (1)–(4) without restriction (2), in which the Boolean variable xi

k = 1
if and only if the start of the cluster project k is shifted by i years. Then the
solution to the small-dimension problem can be found using a CPLEX. However,
for a large-sized problem, it is necessary to use an approximate algorithm.
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4.1 Greedy Algorithm

Suppose we order the projects according to the years of their launch. A shift
in the start of projects changes this order. The order in which projects start
uniquely determined by the permutation π of the cluster numbers {1, 2, . . . , n}.
For a given permutation, we describe informally a greedy algorithm that con-
structs a feasible solution to the problem.

Denote by P (π) the list of ordered projects. The first project starts without
delay (with zero shift). We exclude it from the set P (π). For the first project
of the updated set P (π), we determine its earliest start time, which is no less
than the start time of a previous project, to comply with the production order
and restrictions (4) in each year and exclude this project from the set P (π). We
continue the process until the start year of the last project, π(n) is found.

The greedy algorithm will construct a feasible solution for the given permuta-
tion π, if it exists, with the time complexity of O(nT ). In the oil and gas industry,
profiles (graphs) of annual production volumes have a log-normal distribution
[22], which is characterized by a rapid increase, and then a slight decrease. This
observation and the following lemma, to some extent, justify why we use the
greedy algorithm.

Proposition 1. If the order of launching the projects is known, the annual pro-
duction schedules for all projects are not-increasing, and D(t) = D = const,
t ∈ [1, T ], then the greedy algorithm determines the optimal start years for all
projects.

Proof. In the problem under consideration, time is discrete (measured in years).
Therefore, the value of production in each cluster is a certain real number that
does not change for one year. A greedy algorithm for a given order of projects
determines the earliest start time for each project, which is not less than the
start time of the previous project. Suppose that in all optimal solutions, there
is at least one project that begins later than the year determined by the greedy
algorithm. Consider some optimal solution and let k be the first project that we
can start earlier (Fig. 1a). Since the project k can start earlier, then move it
as much as possible to the left to maintain validity (Fig. 1b). Notice that it is
enough to check the value of production d1k only in the first year of the project
k because it is not less than production in subsequent years (dtk ≤ d1k, t > 1).
The solution obtained after shifting the project k to the left is no worse (and
taking into account the discount coefficient, even better), but the project k starts
earlier, which contradicts the assumption. The proof is over.

So, with a particular order of projects, a greedy algorithm builds a solution
close to optimal with O(nT ) time complexity. A complete enumeration of per-
mutations requires O(n!) operations. However, it is reasonable to develop a local
search algorithm in which, at each step, the best permutation is searched in the
vicinity of the current permutation. In order to obtain a solution for a given
permutation, a greedy algorithm is used. The higher the profit in a particular
order of projects, the better the permutation. In the next subsection, we develop
a local search algorithm.
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Fig. 1. Illustration to the Lemma 1 proof (Bars of the same color belong to the same
project, and the height of the bar is the volume of production in the corresponding
year). a) Project k (yellow) may start earlier; b) After shifting the project k to the left.
(Color figure online)

4.2 Local Search

Using the greedy algorithm described in the previous subsection, one can con-
struct a solution for each permutation of the cluster numbers. Therefore, it is
essential to find a permutation where the solution constructed in such a way is
near-optimal. For this reason, we suggest a local search procedure for permuta-
tions starting from some promising one.

In order to obtain the first permutation for the local search procedure we
perform the following greedy algorithm. At the first step we choose such cluster
that yields maximum value of income if its development is started at the first
year. The number of this cluster becomes the first value of the permutation.
Then, at each step of the algorithm, we choose among the unprocessed clusters
such cluster, that if its development is started at the earliest year (taking into
account the per-year production bound and already chosen clusters), then the
total income increment will be maximum. After such cluster is found, we assign
the corresponding shift for it and set its number to the next permutation value.
The permutation obtained by the described greedy procedure becomes the first
permutation of the local search algorithm.

For each permutation in the local search procedure, we construct a solution
using the greedy algorithm, that is described in previous subsection, with time
complexity O(nT ). As a movement operation of the local search procedure, we
perform the best possible exchange of two different elements of a permutation.
Then the cardinality of the neighborhood of the current permutation is O(n2),
and the time complexity of the searching the best solution is this neighborhood
is O(n3T ).

5 Simulation

The proposed algorithms have been implemented in the C++ programming lan-
guage and launched on the randomly generated test instances. We also used the
IBM ILOG CPLEX package (version 12.10) in order to obtain optimal or near-
optimal solutions together with guaranteed upper bounds for the comparison.
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The numerical experiment performed on an Intel Core i5-4460 (3.2GHz) 8Gb
machine.

For the generation of the test data, we supposed that the distribution function
of production volumes by the planned period is log-normal [22]. The parameters
of the distribution density μ and σ were chosen randomly with uniform distribu-
tion on the intervals [1, 2] and [1, 1.4] correspondingly. We defined the maximum
value of the production volume for each project at random with uniform distri-
bution on the interval [30, 200] (in thousands of tons) and then multiplied each
per-year volume by the corresponding scaling factor.

We assumed that the profit is proportional to the production volume. For
each project, in order to generate the profit per each year, we, at first, took the
random coefficient (the cost of one ton in millions of rubles) uniformly distributed
on the interval [4, 6]. This value may vary depending on the differences in the
condition of the production, overhead costs, remoteness of the cluster. After
that, we multiplied the per-year production volumes by this coefficient. We also
added the noise to the generated values multiplying them by the random values
uniformly distributed on the interval [0.95, 1.05].

Like the investments, we generated random values uniformly distributed on
the interval [250, 1500] (in millions of rubles). We assumed that the obtained
amount of money spent in the first year of the project exploitation. In about 10%
of the cases, other investments made in the second year of the project exploita-
tion. The second investment is taken as a random part of the first investment
from 10 to 50%. As the upper bounds of investments and per-year production
volumes, we took the one-third part of the sum by clusters of the maximum
values per project and per year. That is,

C = 1/3
∑
k∈K

max
i∈Pk

cik,

and
D = 1/3

∑
k∈K

max
i∈Pk,t∈[1,T ]

dik(t),D(t) = D ∀t ∈ [1, T ].

For solving the problem (5)–(6) we set δ equal ten thousands of rubles, because,
according to our preliminary experiments, further decrease of δ does not improve
the solution significantly.

We generated instances for four different variants of the number of clusters:
n = 10, 25, 50, and 100. For each value of n, we generated four instances with
different maximum and a minimum number of projects per cluster: 1) from 1
to 10; 2) from 10 to 25; 3) from 25 to 50, and 4) from 50 to 100. We launched
our algorithm and CPLEX on each instance. The results presented in Table 1. In
this table, CPLEX stands for the results obtained by CPLEX launched on the
problem (1)–(4). CPLEXfp stands for the results obtained by CPLEX launched
on the restricted problem with the fixed project per each cluster found by the
dynamic programming method described in Sect. 3. Notations obj, ub, and gap
stand for, correspondingly, the objective function of the incumbent, the upper
bound of the value of objective function, and the relative difference between obj



Optimal Investment in the Development of Oil and Gas Field 345

T
a
b
le

1
.
C

o
m

p
a
ri

so
n

o
f
th

e
p
ro

p
o
se

d
a
lg

o
ri

th
m

A
w

it
h

C
P

L
E

X

n
p
m

in
p
m

a
x

C
P
L
E
X

C
P
L
E
X

f
p

A

O
b
j

U
b

G
a
p

O
b
j

U
b

G
a
p

D
e
c
li
n
e
(%

)
O
b
j

r
1

r
2

T
im

e
(s
e
c
.)

1
0

1
1
0

1
2
8
5
1
.9
3

1
2
8
5
1
.9
3

0
1
2
0
7
2

1
2
0
7
2

0
6
.0
7

1
2
0
7
2

0
.9
4

1
0
.0
0
6

1
0

2
5

1
6
4
6
0
.9
5

1
6
4
6
0
.9
5

0
1
5
5
0
2
.2
3

1
5
5
0
2
.2
3

0
5
.8
2

1
4
7
1
0
.6

0
.8
9

0
.9
5

0
.0
0
5

2
5

5
0

1
6
9
8
8
.5
3

1
6
9
8
8
.5
3

0
1
4
8
6
2
.2
8

1
4
8
6
2
.2
8

0
1
2
.5
1

1
4
7
6
4
.3

0
.8
7

0
.9
9

0
.0
0
4

5
0

1
0
0

1
7
1
4
0
.3
6

1
7
1
4
0
.3
6

0
1
5
6
0
7
.9
2

1
5
6
0
7
.9
2

0
8
.9
4

1
5
3
7
4
.1

0
.9

0
.9
9

0
.0
0
3

2
5

1
1
0

3
0
4
6
5
.2
6

3
0
4
6
5
.2
6

0
2
9
8
4
9
.9

2
9
8
4
9
.9

0
2
.0
2

2
9
5
7
1
.9

0
.9
7

0
.9
9

0
.0
8
2

1
0

2
5

4
2
5
0
1
.5
7

4
2
5
0
1
.5
7

0
3
9
7
2
8
.9
4

3
9
7
2
8
.9
4

0
6
.5
2

3
8
9
3
0
.6

0
.9
2

0
.9
8

0
.0
7
7

2
5

5
0

4
6
5
0
8
.1
5

4
6
8
4
9
.9
4

0
.0
0
7

4
3
6
4
6
.4
8

4
3
6
4
6
.4
8

0
6
.1
5

4
2
4
0
7
.4

0
.9

0
.9
7

0
.0
5
6

5
0

1
0
0

4
7
4
3
2
.0
9

4
7
9
0
6
.7
2

0
.0
1

4
4
3
0
7
.4
7

4
4
3
0
7
.4
7

0
6
.5
9

4
3
3
2
4

0
.9

0
.9
8

0
.0
2
3

5
0

1
1
0

7
0
5
6
8
.9
9

7
0
5
6
8
.9
9

0
6
9
6
0
9
.1
8

6
9
6
0
9
.1
8

0
1
.3
6

6
6
3
2
8
.2

0
.9
4

0
.9
5

0
.7
5
2

1
0

2
5

8
6
5
2
9
.1
9

8
6
6
5
9
.9
2

0
.0
0
2

8
0
6
1
6
.3
1

8
0
7
7
8
.5
1

0
.0
0
2

6
.8
3

7
6
8
4
5
.5

0
.8
9

0
.9
5

0
.6
2
7

2
5

5
0

9
3
9
2
8
.2
8

9
4
2
9
0
.3
2

0
.0
0
3

8
8
4
1
5
.0
5

8
8
4
1
5
.0
5

0
5
.8
7

8
6
8
6
1
.8

0
.9
2

0
.9
8

0
.6
1
2

5
0

1
0
0

9
5
2
0
1
.4
8

9
5
6
2
1
.9
3

0
.0
0
4

8
8
5
3
2
.8
6

8
8
6
6
1
.5
6

0
.0
0
1

7
8
6
3
8
0
.7

0
.9

0
.9
7

0
.3
9

1
0
0

1
1
0

1
3
9
9
2
8
.3
4

1
4
0
0
2
3
.1
1

0
.0
0
0
7

1
3
6
4
2
0
.2
4

1
3
6
5
8
6
.1
2

0
.0
0
1

2
.5
1

1
2
8
6
7
9

0
.9
2

0
.9
4

5
.2
2

1
0

2
5

1
7
3
8
9
8
.6
1

1
7
4
0
6
5
.7
7

0
.0
0
1

1
6
3
8
3
3
.5
4

1
6
3
9
3
2
.0
6

0
.0
0
0
6

5
.7
9

1
5
4
4
5
2

0
.8
9

0
.9
4

5
.3
5

2
5

5
0

1
8
9
7
2
2
.3

1
9
0
0
0
0
.7
9

0
.0
0
1

1
7
7
0
6
4
.1
2

1
7
7
1
3
8
.3

0
.0
0
0
4

6
.6
7

1
7
1
4
3
1

0
.9

0
.9
7

5
.8
4

5
0

1
0
0

1
9
5
2
2
3
.2
1

1
9
5
6
8
6
.3
9

0
.0
0
2
3

1
8
0
3
7
5
.6
6

1
8
0
4
7
6
.5
8

0
.0
0
0
5

7
.6
1

1
7
6
8
3
0

0
.9

0
.9
8

9
.4
4

2
5
0

2
5
0

5
0
0

—
—

—
5
1
5
5
2
5
.8

5
1
6
0
0
3
.7

0
.0
0
0
9

—
4
9
5
3
6
6

—
0
.9
6

3
6
6
.4



346 A. Erzin et al.

and ub. decline stands for the decline (in percents) of the objective function
value of the incumbent of the problem with the fixed set of projects concerning
the objective function of the incumbent of the entire problem. The last four
columns represent the results obtained by our algorithm, which is named A in
the table. r1 denotes the ratio obj(A)/ub(CPLEX), and r2 denotes the ratio
obj(A)/ub(CPLEXfp). The last column stands for the total running time of
our algorithm. The running time of CPLEX was limited by 60 s for all the cases
except the last one of the largest size,—in the last case CPLEX was given for 1
hour. It also should be noted that CPLEX was parallelized on four threads.

As it follows from the table, in the cases of small and moderate size CPLEX
solves the problem rather precisely within 60 s. In these cases it always constructs
a solution on which the value of the objective function differs from the optimal
one by at most 1%. Algorithm A constructs a less accurate solution. As it is seen
at the column r1, in the worst case, the objective value of the obtained solution
differs from the optimal by 13%, in the best case — by 3%, and on average,
this difference does not exceed 9%. As one can see at the column decline, the
choice of the projects obtained by solution of the problem without restriction on
the production volumes deteriorates the solution of the entire problem by up to
12.5%. On average, this decline is about 6%. The quality of our local search
procedure applied to the solution obtained by the greedy heuristic is estimated
in the column r2. On average, the ratio does not exceed 3%. In a case of large
size, when the number of clusters is 250 and the number of projects in each
cluster varies from 250 to 500, CPLEX failed to construct any feasible solution
within 1 hour, but the algorithm A constructed an approximate solution within
about 6 min. When we set the projects found by algorithm A to CPLEX for
this instance, it successfully found the solution with rather small value of gap
(less than 0.1%) within 1 hour. In this case, the local search procedure found a
solution that differs from the optimal one by not more than 4%.

6 Conclusion

In this paper, we studied the NP-hard problem of maximizing profit by choosing
long-term cluster development projects within the oil and gas field, with restric-
tions on the total investment and maximum annual production. We proposed a
statement of the problem in the form of Boolean linear programming and set
ourselves three goals. First, to investigate the effectiveness of application soft-
ware packages, such as CPLEX, for solving the BLP problem. Secondly, develop
a fast approximate algorithm. Thirdly, compare the effectiveness of the CPLEX
package and the approximate algorithm.

The approximate algorithm consists of two stages, which are partially dic-
tated by the specifics of the problem. At the first stage, profit is maximized by
selecting one project for each cluster without taking into account the restrictions
on the volume of annual production. The distribution problem arising, in this
case, is solved by the dynamic programming algorithm with acceptable running
time. Projects selected at the first stage can be launched later (with a delay).
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Therefore, at the second stage, the moments of the start of the selected projects
are determined in such a way that the annual production volumes do not exceed
the set values, and the profit is maximum. The problem of the second stage
also formulated in the form of the BLP. It makes sense without the first stage
because, in practice, development projects for each cluster often known, and it
is only necessary to determine the moments of their launch.

Production profiles have a characteristic shape, which is determined by the
log-normal distribution law and has the form of a graph that first overgrows,
reaches its maximum value, and then slowly decreases [22]. With a certain degree
of assumption, we assumed that the profiles are non-increasing. We proved that
in the case of non-increasing production profiles and for a given order of project
start (which is determined by the permutation of cluster numbers), the greedy
algorithm constructs the optimal solution. The algorithm of permutations sort-
ing is justified, and the greedy algorithm used for each permutation. Iterating
over all permutations is time-consuming, and for large dimensions, it is just not
applicable, so we used a relatively simple local search algorithm.

The results of the numerical experiment on randomly generated examples
surprised us (see Table 1). For 25 ≤ n ≤ 100, the CPLEX package was not
able to build an optimal solution, but it turned out that CPLEX within one
minute builds a feasible solution quite close to the optimal one. The approximate
algorithm that we developed also builds a solution close to optimal, but CPLEX
turned out to be more efficient for such dimension. Thus, we conclude that for the
considered problem when n ≤ 100, it is advisable to use a package of application
programs CPLEX instead of our algorithm. In a case of large size, for example
when n ≥ 250, CPLEX failed to construct any feasible solution within 1 hour,
but the algorithm A constructed an approximate solution within 6 min. When we
set the projects found by solving the problem (5)–(6) with n = 250 to CPLEX,
it successfully found the solution with gap less than 0.1% within 1 hour.

Perhaps the situation will change if we consider some additional restrictions.
In practice, it is necessary to produce annually at least a given volume and
no more than a predetermined quantity. Moreover, there are restrictions on the
size of annual investments. Furthermore, annual production volumes are random
variables, so the need to take into account the probabilistic nature of the source
data can ruin the problem so that the use of CPLEX will become inappropriate.

In future research, we plan to take into account the additional restrictions
and specifics, as well as to develop a more efficient approximate algorithm based
on a genetic algorithm in which an effective local search, for example, VNS [13],
will be used at the mutation stage.
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Abstract. Progress in the development of automatic grouping (clus-
tering) methods, based on solving the p-median and similar problems,
is mainly aimed at increasing the computational efficiency of the algo-
rithms, their applicability to larger problems, accuracy, and stability of
their results. The researchers’ efforts are focused on the development of
compromise heuristic algorithms that provide a fairly quick solution with
minimal error. The Genetic Algorithms (GAs) with greedy agglomerative
crossover procedure and other special GAs for the considered problems
demonstrate the best values of the objective function (sum of squared
distances) for many practically important problems. Usually, such algo-
rithms do not use any mutation operator, which is common for other
GAs.

We propose new GAs for the k-means problem, which use the same
procedures as both the crossover and mutation operators. We compared
a simple GA for the k-means problem with one-point crossover and its
modifications with the uniform random mutation and our new crossover-
like mutation. In addition, we compared the GAs with greedy heuristic
crossover procedures to their modifications which include the crossover-
like mutation. The comparison results show that the idea of our new
mutation operator is able to improve significantly the results of the sim-
plest GA as well as the genetic algorithms with greedy agglomerative
crossover operator.

Keywords: Clustering · k-Means · Genetic algorithm · Greedy
agglomerative procedure

1 Introduction and Problem Statement

The k-means problem [1] can be described as finding a set of k cluster centroids
X1, ...Xk in a d-dimensional space with the minimal sum of squared distances
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from them to the given N points (vectors) Ai (SSE, sum of squared errors):

arg min
X1,...,Xk∈IRd

F (X1, ...,Xk) =
N∑

i=1

min
j∈{1,k}

‖Xj − Ai‖2 . (1)

In the continuous p-median problem, a sum of distances (instead of squared
distances) is calculated, and the searched points are called centers or medians. If
a sum of Manhattan (L1, rectilinear) distances is used as the minimized function,
the problem is referred to as the k-means problem [2].

An algorithm of the same name (Algorithm 1) [3,4], also known known as
Lloyd algorithm, sequentially improves a known solution, looking for a local
minimum of (1). This local search algorithm (LSA) is simple, fast, and applicable
to the widest class of problems. The algorithm has a limitation: the number of
groups (clusters) k must be known. The result is highly dependent on the initial
solution chosen at random.

Algorithm 1. k-Means (Lloyd, ALA: Alternating Location-Allocation)
Require: data vectors A1...AN , k initial cluster centers (centroids) X1, ..., Xk.

repeat
Step 1: For each of centers Xi, compose clusters Ci of data vectors so that each
of the data vectors is assigned to the nearest center.
Step 2: Calculate new center Xi for each of the clusters.

until Steps 1,2 result in no modifications.

Both Steps 1 and 2 improve the objective function (1) value.
In this research, we try to improve the accuracy of the k-means problem

result (1) and its stability within a fixed, limited run time. By the accuracy
of the algorithm, we mean the achieved value of (1). We do not consider other
important issues in the fields of cluster analysis such as adequacy of the model
(1) and correspondence of the algorithm result to the actual partition [5].

The idea of Genetic Algorithms (GAs) is based on a recombination of ele-
ments of some candidate solutions set called “population”. Each candidate solu-
tion is called an “individual” encoded by a “chromosome” represented by a vector
of bits, integers or real numbers depending on the algorithm. In the modern liter-
ature, there is practically no systematization of the approaches used (see [6–8]),
for algorithms with the real-number (centroid-based) chromosome encoding.

The first GA for the discrete p-median problem was proposed by Hosage
and Goodchild [9]. Algorithm presented in [10] gave more precise results with
a very slow convergence. In [11], the authors proposed a faster algorithm with
a special “greedy” heuristic crossover operator which is also precise. All these
algorithms solve discrete problems (p-median problem on a network) and use
a simple binary chromosome encoding (1 for the network nodes selected as the
medians and 0 for those not selected).

The mutation operator is devoted to guarantee the GA population diver-
sity [12]. Usually, for the k-means and similar problems, the mutation randomly
changes one or many chromosomes, replacing some centroids [12–14] or assign-
ment of an object. For example, in [13] authors proposed the distance-based
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mutation which changes an allele value (an allele is a part of a chromosome that
encodes the assignment an object to a cluster) depending on the distances of
the cluster centroids from the corresponding data point. Each allele corresponds
to a data point and its value represents the corresponding cluster number. The
mutation operator is defined such that the probability of changing an allele value
to a cluster number is higher if the corresponding centroid is closer to the data
vector. To apply the mutation operator to the allele sW (i) corresponding to cen-
troid Xi, let us denote dj = ‖Xi − Aj‖ where Aj is a data vector. Then, the
allele is replaced with a value chosen randomly from the following distribution:
pj = Pr{sW (i) = j} = (cmdmax − dj)/(

∑K
i=1(cmdmax − di)) where cm is a

constant usually ≤1 and dmax = max{dj}. In the case of a partition with one
or more than one singleton clusters, the above mutation may result in the for-
mation of empty clusters with a non-zero probability. It may be noted that the
smaller the number of clusters, the larger is the SSE measure; so empty clusters
must be avoided [13].

If the cluster centroids are searched in a continuous space, some GAs still
use the binary encoding [15–17]. In Algorithm 1, the initial solutions are usu-
ally subsets of the data vectors set. Thus, in the chromosome code, 1 means
that the corresponding data vector must be used as the initial centroid, and 0
for those not selected. In this case, some LSA (Algorithm 1 or similar) is used
at each iteration of the GA. In the GAs for the k-means and analogous prob-
lems, which use the traditional binary chromosome encoding, many mutation
techniques can be used. For example, in [18], the authors use binarization and
represent the chromosome with binary strings composed of binary-encoded fea-
tures (coordinates) of the centroids. The mutation operator arbitrarily alters one
or more components (binary substrings) of a selected chromosome. In [19,20],
authors call their algorithms “Evolutionary k-Means.” However, they actually
solve an alternative problem related to the k-Means problem aimed to increase
clustering stability. This algorithm operates with the binary consensus matrices
and uses two types of the mutation operators: cluster split (dissociative) and
cluster merge (agglomerative) mutation. In [21], the chromosomes are strings of
integers representing the cluster number for each of clustered objects, and the
authors solve the k-means problem with simultaneous determining the number
of clusters based on the silhouette [22] and David-Bouldin criteria [23] (similar
approach is used in a much simpler algorithm X-Means [24]) which are used as
the fitness functions. Thus, in [21], authors solve a problem with the mathemati-
cal statement other than (1) and use cluster recalculating in accordance with (1)
as the mutation operator. Similar encoding is used in [13] where authors propose
a mutation operator, which changes the assignment of individual data objects
to clusters.

In [14], the authors encode the solutions (chromosomes) in their GA as sets
of centroids represented by their coordinates (vectors of real numbers) in a d-
dimensional space. The same principle of centroid-based chromosome represen-
tation is used in the GAs of the Greedy Heuristic Method [25]. In [14], the
mutation procedure is as follows. Randomly generate a number from 0 to 1. If
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the number is less than mutation probability μ, the chromosome will mutate.
The number b ∈ (0, 1] is randomly generated with the uniform distribution. If
the position of a centroid is v, the mutation is as follows:

v ←
{

v ± 2 × b × v, v �= 0,

v = v ± 2 × b, v = 0.
(2)

Signs “+” and “−” have the same probability here [18].
In (2), coordinates of a centroid are shifted randomly. A similar shifting

technique with an “amplification factor” was used in [26,27]. However, the local
minima distribution among the search space is not uniform [12]: new local min-
ima of (1) can be found with higher probability in some neighborhood of a given
local minimum than in a neighborhood of a randomly chosen point (here, we do
not mean an ε-neighborhood). Thus, mixing the centroids from two local minima
must usually outperform the random shift of centroid coordinates. The idea of
combining local minima is the basic idea of the GAs with the greedy agglom-
erative heuristic crossover procedures [25] and other algorithms [28] which use
no mutation operator. Such algorithms are able to demonstrate more accurate
results in comparison with many other algorithms for many practical problems.
However, one of the most important problems of the GAs is the convergence of
the entire population into some narrow area (population degeneration) around
some local minimum.

The Variable Neighborhood Search algorithms with the greedy agglomerative
heuristic procedures proposed in [29,30] demonstrate better results than simi-
lar GAs. New randomly generated solutions (local minima) are used to form a
randomized neighborhood around the best-achieved solution. This randomized
approach provides some neighborhood variety.

The idea of this research is to use GAs with greedy agglomerative and other
crossover operators in combination with the new mutation procedures which
apply the same algorithm as the crossover procedure to the mutated solution
and a randomly generated solution, and thus provide the population diversity.

2 New Crossover-Like Mutation Operator in a One-Point
Crossover Genetic Algorithm

The GA in [14] uses the roulette wheel selection without any elitism (i.e., equal
probabilities of selecting each of the individuals) and a simple one-point crossover
procedure for the chromosomes. This algorithm uses the mutation procedure
based on (2) with mutation probability 0.01. In our experiments below, we
replaced this mutation procedure with the following algorithm:
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Algorithm 2. k-Crossover-like mutation procedure with a one-point crossover
Step 1: Generating a random initial solution S = {X1, ..., Xk};
Step 2: Application of Algorithm 1 to S for obtaining local optimum S;
Step 3: Applying the simple one-point crossover procedure to the mutated individual
S′ from the population and S for obtaining the new solution S′′;
Step 4: Application of Algorithm 1 to S′′ for obtaining local optimum S′′;
Step 5: If F (S′′) < F (S′) then S′ ← S′′.

This new procedure is used with probability equal to 1 after each crossover
operator. In our experiments, the population size NPOP = 20. The results of
running the original algorithm described in [14] and its version with Algorithm 2
as the mutation operator are shown in Table 1 and Fig. 1. Our experiments show
that the new mutation procedure is faster and more effective.

Table 1. Computational results for Mopsi-Joensuu data set [31] (6014 two-dimensional
data vectors), 300 clusters, time limitation 180 s.

GA generations Result with the
original mutation (2)

Result with the
mutation
(Algorithm 2)

Ordinary k-means in a
multi-start mode

10 1697.29 1667.95 1859.06

20 1682.37 1664.78

50 1679.58 1664.78

150 1664.81 1664.78

200 1664.78 1664.78

Fig. 1. Two mutation strategies in a one-point crossover GA
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3 Known Clustering Algorithms of the Greedy Heuristic
Method

The greedy agglomerative heuristic procedure for location problems can be
described as an algorithm with two steps. The first step is combining two known
(“parent”) solutions (individuals) into one invalid intermediate solution with an
excessive number of centroids. At the second step, the algorithm eliminates cen-
troids in each iteration so that the removal of the centroid gives us the least
significant increase in the value of the objective function (1) [11,16]:

Algorithm 3. Basic Greedy Agglomerative Heuristic Procedure
Require: needed number of clusters k, initial solution S = {X1, ..., XK}, |S| = K, k < K.

Step 1: Improve S with Algorithm 1 or other LSA.
while K > k

for all i′ ∈ {1,K}
Step 2: Assign S′ ← S \ {X′

i}. Calculate F ′
i′ ← F (S′) where F (.) is the objective

function value, (1) for the k-means problem.
end for
Step 3: Select a subset Selim of nelim centers, Selim ⊂ S, |Selim| = nelim, with the
minimal values of corresponding variables F ′

i′ . Here, nelim = max{1, 0.2(|S| − k)}.
Step 4: Obtain new solution S ← S \ Selim; K ← K − 1, and run an LSA.

end while

Algorithms 4–5 are known heuristic procedures [11,29,32], which modify some
given solution based on the second known solution (see Algorithm 3).

Algorithm 4. Greedy Procedure #1
Require: Two solutions (sets of centroids) S′ = {X ′

1, ..., X
′
k} and S′′ =

{X ′′
1, ..., X

′′
k}.

for all i′ ∈ {1, k}
Step 1: Merge S′ and one item of the set S′′: S ← S ∪ {X ′′

i′}.
Step 2: Run Algorithm 3 with the initial solution S and save the obtained result .

end for
Return the best of the solutions obtained on Step 2.

A simpler algorithm below combines the full “parent” solutions.

Algorithm 5. Greedy Procedure #2
Combine sets S ← S′ ∪ S′′, and run Algorithm 3 with the initial solution S.

These algorithms can be used in various global search strategies as their parts.
Sets of solutions derived (“children”) from the solution S′ formed by combining
its items with the items of some solution S′′ and running Algorithm 1 are used
as the neighborhoods in which a solution is searched. Thus, the second solution
S′′ is a parameter of the neighborhood selected randomly (randomized) [32].
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4 GAs with Greedy Agglomerative Heuristic Procedures
for the p-Median and k-Means Problems

The basic genetic algorithm for the k-means problem [7,26] can be described as
follows:

Algorithm 6. GA with real-number alphabet for the k-means problem [18,25]
Require: Initial population size NPOP .

Step 1: Select NPOP initial solutions S1, ..., SNPOP where |Si| = k, and
{S1, ..., SNPOP } is a randomly chosen subset of the data vectors set. Improve each
initial solution with Algorithm 1 and save corresponding obtained values of the
objective function (1) as variables fk ← F (Sk), k = 1, NPOP .
loop

Step 2: If the STOP condition is satisfied then STOP; return solution Si∗ , i∗ ∈
{1, NPOP } with minimal value of fi∗ .
Step 3: Randomly choose the two indexes k1, k2 ∈ {1, NPOP }, k1 �= k2.
Step 4: run the crossover operator : SC ← Crossover(Sk1 , Sk2).
Step 5: run the mutation operator : SC ← Mutation(SC).
Step 6: Run a selection procedure to change the population set.

end loop

We used such a tournament selection on Step 6:

Algorithm 7. Tournament selection
Randomly choose two indexes k4, k5 ∈ {1, NPOP }, k4 �= k5; if fk4 > fk5 then
Sk4 ← SC , fk4 ← F (SC) else Sk5 ← SC , fk5 ← F (SC).

Other selection methods do not significantly improve the result [11,16,21].
GAs with greedy agglomerative crossover can be described as follows [16,21]:

Algorithm 8. GA with greedy heuristic for the p-median problem and k-means
problem (modifications GA-FULL, GA-ONE, and GA-MIX)

Step 1. Assign Niter ← 0; select a set of the initial solutions {S1, ..., SNPOP
} ⊂ {Ai|i =

1, N}, |Si| = k. Improve each initial solution with Algorithm 1 and save the obtained values
of the objective function (1) as variables fk ← F (Sk), k = 1, NPOP . We used initial
populations with NPOP = 5.
loop

Step 2: If STOP condition is satisfied then STOP; return solution Si∗ , i∗ ∈ {1, NPOP }
with minimal value of fi∗ else adjust the population size : Niter ← Niter + 1; NPOP ←
max{NPOP , �√1 +Niter�}; if NPOP has changed, then initialize the new individual
SNPOP

as described in Step 1.
Step 3: Randomly choose two indexes k1, k2 ∈ {1, NPOP }.
Step 4: Run Algorithm 4 (for GA-ONE modification) or Algorithm 5 (for GA-FULL mod-
ification) with “parent” solutions Sk1 and Sk2 . For the GA-MIX modification, Algorithms
4 or 5 are chosen randomly with equal probabilities. Obtain new solution SC .
Step 5: SC ← Mutation(SC). By default, no mutation procedure is used.
Step 6: Run Algorithm 7.

end loop
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This algorithm uses a dynamically growing population [16,17]. In our new
version of Step 5, the Crossover-like mutation operator is as follows.

Algorithm 9. Crossover-like mutation operator (Step 5 of Algorithm 8, its
modifications GA-FULL-MUT, GA-ONE-MUT, and GA-MIX-MUT)

Run the ALA algorithm (Algorithm 1) for a randomly chosen initial solution to get
solution S′.
Run Algorithm 4 (for GA-ONE modification) or Algorithm 5 (for GA-FULL modi-
fication) with “parent” solutions Sc and S′′. Obtain new solution S′

C .
If F (S′

C) < F (SC), then SC ← S′
C .

Our computational experiments (the next Section) show that new GAs with
Algorithm 9 as the mutation operator are able to outperform both the origi-
nal GAs with greedy agglomerative crossover operator (Algorithm 8) and the
Variable Neighborhood Search with randomized neighborhoods (k-GH-VNS1 k-
GH-VNS2, k-GH-VNS2) in some practically important problems.

5 Computational Experiments

We used data sets from the UCI (Machine Learning Repository) and the Cluster-
ing Basic Benchmark repositories [31,33] and the results of the non-destructive
tests of prefabricated production batches of electronic radio components con-
ducted in a specialized test center of JSC “TTC - NPO PM” used for the space-
craft equipment manufacturing [34]. The problem here is to divide a given mixed
lot of radio components into clusters of similar devices manufactured from the
same raw materials as a single homogeneous production batch. The test system
consisted of Intel Core 2 Duo E8400CPU, 16 GB RAM. For all data sets, 30
attempts were made to run each of the algorithms. The j-means and k-means
algorithms were launched in a multi-start mode [29,32].

Our new modifications (GA-xxx-MUT, Algorithm 8) of three GAs (Tables 2, 3)
were compared to other knownalgorithms, suchas correspondingknownGAswith-
out mutation (GA-FULL, GA-ONE, GA-MIX, see [25,30]). Variable Neighbor-
hood Search with randomized neighborhoods (k-GH-VNS1, k-GH-VNS2, k-GH-
VNS2, see [29,32]), their combinations with the j-means algorithm (j-means-GH-
VNSx, see [29]), known GAs with the greedy agglomerative crossover procedures
(GA-FULL, GA-ONE, GA-MIX modifications, see Algorithm 8), and other known
algorithms (j-means and k-means, see [29,32]) in a multi-start mode.

The best-achieved values of the objective function (1) (its minimum value,
mean value, and standard deviation) are underlined; the best values of new
algorithms are given in a bold font, the best values of the known algorithms are
given in italic. The results of the best of new algorithms (a sample of 30 results)
were compared with the best of known tested algorithms (also 30 results) to prove
the statistical significance of the advantage or disadvantage of new algorithms.
We used the Mann-Whitney U-test and the t-test (significance level 0.01 for both
tests).
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Table 2. Computational experiment results for various data sets

Algorithm Objective function (1) value

Min Max Average Std.Dev

Europe data set (169309 data vectors of dimensionality 2) 30 clusters, 4 h

j-means 7.51477E + 12 7.60536E + 12 7.56092E + 12 29.764E + 9

k-means 7.54811E + 12 7.57894E + 12 7.56331E + 12 13.560E + 9

k-GH-VNS1 7.49180E + 12 7.49201E + 12 7.49185E + 12 0.073E + 9

k-GH-VNS2 7.49488E + 12 7.52282E + 12 7.50082E + 12 9.989E + 9

k-GH-VNS3 7.49180E + 12 7.51326E + 12 7.49976E + 12 9.459E + 9

j-means-GH-

VNS1

7.49180E + 12 7.49211E + 12 7.49185E + 12 0.112E + 9

j-means-GH-

VNS2

7.49187E + 12 7.51455E + 12 7.4962E + 12 8.213E + 9

GA-FULL-

MUT*

7.49293E + 12 7.49528E + 12 7.49417E + 12 0.934E + 9

GA-MIX-MUT* 7.49177E + 12 7.49211E + 12 7.49186E + 12 0.117E + 9

GA-ONE-

MUT*↑⇑
7.49177E + 12 7.49188E + 12 7.49182E + 12 0.042E + 9

Testing results of the integrated circuits 5514BC1T2-9A5 (91 data vectors of dimensionality

173), grouping into 10 homogeneous batches (clusters), 2min

j-means 7 060.45 7 085.67 7 073.55 8.5951

k-means 7 046.33 7 070.83 7 060.11 8.8727

k-GH-VNS1 7 001.12 7 009.53 7 004.48 4.3453

k-GH-VNS2 7 001.12 7 010.59 7 002.26 2.9880

k-GH-VNS3 7 001.12 7 009.53 7 003.01 3.1694

j-means-GH-

VNS1

7 001.12 7 001.12 7 001.12 0.0000

j-means-GH-

VNS2

7 001.12 7 011.94 7 003.88 4.4990

GA-FULL-

MUT*

7 001.12 7 001.27 7 001.24 0.0559

GA-MIX-

MUT*��
7 001.12 7 001.12 7 001.12 0.0000

GA-ONE-

MUT*��
7 001.12 7 001.12 7 001.12 0.0000

Ionosphere data set (351 data vectors of dimensionality 35, 10 clusters,1min, Mahalanobis

distance metric [35]

k-means 9 253.2467 9 304.2923 9 275.3296 13.5569

k-GH-VNS1 9 083.6662 9 153.0192 9 121.0728 20.6875

k-GH-VNS2 9 085.8065 9 144.3779 9 112.2959 14.6803

k-GH-VNS3 9 090.5465 9 128.4111 9 109.8492 10.2740

GA-FULL 9 117.5695 9 175.1517 9 142.8457 15.3522

GA-FULL-

MUT*

9 098.8748 9 157.0265 9 136.6556 16.1343

GA-MIX 9 095.1540 9 141.6417 9 114.1280 13.0638

GA-MIX-MUT* 9 102.8695 9 138.2243 9 113.4571 8.6361

GA-ONE 9 078.6460 9 115.9342 9 099.7687 10.1104

GA-ONE-

MUT*��
9 073.1919 9 120.1842 9 101.6286 12.8542

Note: “*”: new algorithm; “↑”, “⇑”: the advantage of the best of new algorithms over known

algorithms is statistically significant (“↑” for t-test and “⇑” for Mann–Whitney U test), “↓”, “⇓”:

the disadvantage of the best of new algorithms over known algorithms is statistically significant;

“�”, “�”: the advantage or disadvantage is statistically insignificant.
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Table 3. Computational experiment results for various data sets

Algorithm Objective function (1) value

Min Max Average Std.Dev

Results of testing the integrated circuits 5514BC1T2-9A5 (91 data vectors
of dimensionality 173), grouping into 10 homogeneous batches (clusters),
2 min, Mahalanobis distance [35]

k-means 7 289.7935 7 289.8545 7 289.8296 0.0153

k-GH-VNS1 7 289.7366 7 289.8024 7 289.7648 0.0147

k-GH-VNS2 7 289.7472 7 289.8021 7 289.7792 0.0153

GA-FULL 7 289.7474 7 289.8134 7 289.7742 0.0175

GA-FULL-MUT* 7 289.7062 7 289.7754 7 289.7508 0.0181

GA-MIX 7 289.7319 7 289.7771 7 289.7501 0.0133

GA-MIX-MUT* 7 289.7227 7 289.7772 7 289.7496 0.0149

GA-ONE 7 289.7228 7 289.7796 7 289.7494 0.0159

GA-ONE-MUT*�� 7 289.7147 7 289.7752 7 289.7466 0.0165

Results of testing the integrated circuits 5514BC1T2-9A5 (1234 data
vectors of dimensionality 157), grouping into 10 homogeneous batches
(clusters), 2 min

j-means 43 841.97 43 843.51 43 842.59 0.4487

k-means 43 842.10 43 844.66 43 843.38 0.8346

k-GH-VNS1 43 841.97 43 844.18 43 842.34 0.9000

k-GH-VNS2 43 841.97 43 844.18 43 843.46 1.0817

k-GH-VNS3 43 841.97 43 842.10 43 841.99 0.0424

j-means-GH-VNS1 43 841.97 43 841.97 43 841.97 0.0000

j-means-GH-VNS2 43 841.97 43 844.18 43 842.19 0.6971

GA-FULL-MUT* 43 841.97 45 009.09 44 620.29 569.14

GA-MIX-MUT* 43 841.97 45 009.09 44 542.31 591.74

GA-ONE-MUT*↓⇓ 43 841.97 45 009.09 44 363.83 583.63

6 Conclusion

We proposed a new approach to the design of Genetic Algorithms for the k-means
problem with real-number (centroid-based) chromosome encoding, where the
same procedure is used as both crossover and the mutation operators. Our exper-
iments show that the GAs with one-point and greedy agglomerative crossover
operators built in accordance with this idea outperform the algorithms with-
out any mutation procedure and algorithms with the uniform random muta-
tion by the obtained objective function value (SSE). In further research, our
new approach can be applied to other problems such as p-median with various
distance measures, k-medoids, mix probability distribution separation, etc. The
efficiency of the GAs with greedy agglomerative crossover operators and Variable
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Neighborhood Search algorithms with the randomized neighborhoods formed by
greedy agglomerative procedures give us a reasonable hope for the successful
application of our new idea for such problems.
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Abstract. In this paper we study the inversion of discrete functions
associated with some hard combinatorial problems. Inversion of such a
function is considered in the form of a special variant of the well-known
MaxSAT problem. To solve the latter we apply the previously developed
local search method based on the Merging Variables Principle (MVP).
The main novelty is that we combine MVP with evolutionary strategies
to leave local extrema generated by Merging Variables Hill Climbing algo-
rithm. The results of computational experiments show the effectiveness
of the proposed technique in application to inversion of several crypto-
graphic hash functions and to one problem of combinatorial optimization,
which is a variant of the Facility Location Problem.

Keywords: Pseudo-boolean optimization · SAT · MaxSAT · Local
search · Evolutionary algorithms · Cryptographic hash functions ·
Branch Location Problem

1 Introduction

In the present paper we study one particular class of the well-known MaxSAT
problem [7]. The main feature of this class is that the combinatorial dimension
of the considered problem can be significantly less than the number of variables
that occur in a Boolean formula corresponding to this problem. Using this fact
we describe a special strategy for solving MaxSAT from the mentioned class,
which is built on the so-called Merging Variables Principle (MVP) proposed in
[40]. The main goal of the present paper is to demonstrate the applicability of
MVP to MaxSAT when the ratio between the combinatorial dimension of the
considered problem and the number of variables in the corresponding Boolean
formula is small.

In the next section we provide general information necessary for understand-
ing the main results of the paper. Section 3 contains the main theoretical con-
tribution of this paper. Namely, we introduce here a special class of MaxSAT
problem, which is associated with the problems of finding preimages of quickly
computable discrete functions. Essentially, we provide the theoretical basis that
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allows us to apply MVP to the specified class of MaxSAT. Section 4 contains
a short description of Merging Variables Principle as well as a description of
several strategies used to exit from strong local extrema points. In Sect. 5 we
present the main experimental contribution of the paper. We consider two fam-
ilies of MaxSAT benchmarks which can be attributed to the class introduced in
Sect. 3. We demonstrate that our algorithms (based on MVP) outperform some
of the best solvers that are usually applied to such problems. In Sect. 6 we briefly
summarize the main results and talk about our future work.

2 Preliminaries

The variables that take values from the set {0, 1} are called Boolean. A Boolean
formula (or a propositional formula) is an expression constructed according to
special pre-defined rules over the alphabet that includes Boolean variables and
special symbols called Boolean connectives (according to [29]). For an arbitrary
k ∈ N let us denote by {0, 1}k the set of all binary words (Boolean vectors) of
length k. We refer to {0, 1}k as to a Boolean hypercube or a Boolean cube.

Let X = {x1, . . . , xk} be a set of Boolean variables. Then we can consider
an arbitrary Boolean vector α ∈ {0, 1}k as an assignment of variables from X
(assuming that there is a fixed mapping between the coordinates of α and the
variables from X). Now let F be a Boolean formula over the set of Boolean vari-
ables X = {x1, . . . , xk} and α ∈ {0, 1}k be an arbitrary assignment of variables
from X. We can define in a standard manner (according to [10]) a substitution
of α into F . Boolean Satisfiability Problem (SAT) is formulated as the follow-
ing question: if there exists such an α ∈ {0, 1}k, the substitution of which to
F results in true. Below we will refer to it as F (α) = 1. If such an α exists,
then F is called satisfiable, otherwise – unsatisfiable. It is commonly known that
SAT for any Boolean formula F can be reduced in polynomial time to SAT for
formula in Conjunctive Normal Form (CNF) using Tseitin transformations [41].

SAT is a classical NP-complete problem [11]. It is often the case in practice
that one not only needs to determine the satisfiability of CNF C, but also to
find its satisfying assignment if C is satisfiable. In this formulation SAT is an
NP-hard problem [17]. Despite being so hard in the worst-case scenario, SAT
can be solved quite effectively for a wide class of application.

MaxSAT is the optimization variant of SAT. Traditionally, this problem is
formulated as follows. Given a CNF C over a set of Boolean variables X =
{x1, . . . , xk} to find as assignment α ∈ {0, 1}k of variables from X such that the
number of clauses satisfied by α in C is maximal. It is clear that α is a satisfying
assignment of C if and only if it satisfies all clauses in C. Thus, MaxSAT is
NP-hard. During the last 10 years there have been published a huge number
of papers that study different aspects of MaxSAT. One of the main strategies
for solving MaxSAT consists in iteratively invoking a SAT solver as an oracle
[2,12,16,20–22,32,35], etc. Usually, a SAT solver based on a CDCL algorithm
[28] is used for this purpose.

In the present paper we describe the algorithms for solving MaxSAT that are
based on a completely different foundation. In particular, we consider MaxSAT
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as a maximization problem for a pseudo-Boolean functions of a special kind and
solve it using a variant of local search methodology. Note that the basic idea
of the corresponding approach is far from being novel: in this context we would
like to cite an extensive review [19] and the related citations. The novelty of the
approach proposed in the present paper is formed by the following components:

1. We work with a class of CNFs for which it is possible to significantly reduce
the search space over which the local search operates when solving MaxSAT.

2. We combine the well-known Hill Climbing algorithm, as a basic local search
scheme, with Merging Variables technique described in [40].

Hereinafter, consider the maximization problem for a pseudo-Boolean func-
tion, i.e. a function of the following kind [8]

f : {0, 1}n → R. (1)

There is a large number of problems, in which little to nothing is known about
the analytical properties of a function f . Below we assume that the only thing
we know for sure about f is that for an arbitrary α ∈ {0, 1}n we can effectively
compute the value f(α). In other words, we suppose that for each α ∈ {0, 1}n

the value f(α) is produced by an oracle Of . In these conditions, the search for
a maximum of function (1) transforms into a problem of traversal of {0, 1}n in
accordance with some rational scenario. Usually, one of the most used scenario
of such kind is the local search. To use local search it is necessary to specify a
neighborhood function [9]

ℵ : {0, 1}n → 2{0,1}n

, (2)

which defines some neighborhood structure on {0, 1}n. For an arbitrary α ∈
{0, 1}n the value of (2) for this α is denoted by ℵ(α) and is called the neighbor-
hood of α.

The simplest example of the strategy for maximization of (1) that is based on
the local search scenario can be given by the algorithm, which is often referred
to as Hill Climbing (HC) [37]. Below we present the pseudocode of HC.

Input: an arbitrary point α ∈ {0, 1}n, a value f(α);
1. α is a current point;
2. traverse the points from ℵ(α)\{α}, computing for each point α′ from this

set a value f(α′) (using the oracle Of ). If there is such a point α′ that
f(α′) > f(α), then go to step 3, otherwise go to step 4;

3. α ← α′, f(α) ← f(α′), go to step 1;
4. α∗ ← α′; (α∗, f(α∗)) is a local maximum of (1) on {0, 1}n;

Output: (α∗, f(α∗)).

The neighborhoods in {0, 1}n (or in any other search space) can be defined
using different methods. One of the simplest is to use the Hamming neighbor-
hoods in {0, 1}n: for an arbitrary α ∈ {0, 1}n its Hamming neighborhood of
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radius R is the following set ℵR(α) = {α′|dH(α, α′) ≤ R}, where by dH(α, α′)
we mean the Hamming distance between vectors α and α′ [27].

Now let us consider an arbitrary CNF C over a set of Boolean variables X =
{x1, . . . , xk}. Recall, that C is a formula of the following kind: C = D1∧. . .∧Dm,
where Dj , j ∈ {1, . . . , m} are the Boolean formulas called clauses. For example,
the CNF (x1 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3) is defined over the
set X = {x1, x2, x3} and contains 3 clauses. With an arbitrary CNF C over
X = {x1, . . . , xk}, which consists of m clauses let us associate the following
function of the kind (1):

fC : {0, 1}k → {0, 1, . . . ,m} (3)

For an arbitrary α ∈ {0, 1}k the value fC(α) is the number of clauses satisfied by
the assignment α. Thus, an arbitrary C is satisfiable if and only if max{0,1}kfC =
m. The MaxSAT problem consists in the following: for an arbitrary CNF C over
the set of Boolean variables X, |X| = k to maximize the function of the kind
(3) over a Boolean hypercube {0, 1}k.

3 On One Special Case of MaxSAT Problem

In this section we introduce such a subclass of CNFs for which it is possible
to effectively move from the maximization problem for (3) over {0, 1}k to the
maximization problem for a special function

gC : {0, 1}q → {0, 1, . . . ,m} (4)

over {0, 1}q, where q << k. To better describe the proposed approach, we will
require some additional comments.

As we noted above, both SAT and MaxSAT are NP-hard problems. It means
that a wide spectrum of combinatorial problems can be reduced to them. When
constructing such a reduction it is often necessary to introduce a large number
of new variables that play an auxiliary role and are not directly connected to
an original combinatorial problem. Below we describe in more detail one class
of CNFs related to mentioned situation.

Consider an arbitrary algorithm that transforms binary words of length q into
binary words of length u. Such an algorithm specifies (or computes) a discrete
function of the kind

h : {0, 1}q → {0, 1}u. (5)

Given an arbitrary γ ∈ Range h ⊆ {0, 1}u the problem of inversion of h is
to find such β ∈ {0, 1}q, that h(β) = γ. Many cryptanalysis problems can be
viewed as inversion problems of functions that are specified by corresponding
cryptographic algorithms.

The corollary of the well known Cook-Levin theorem [11,18] is the fact that
for an algorithm Ah defining h of the kind (5) it is possible to effectively con-
struct CNF Ch, that contains all the information about how Ah works on arbi-
trary inputs from {0, 1}q. The technique used to construct CNFs of the kind Ch
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contains two stages: on the first stage a Boolean circuit Sh over an arbitrary
complete basis is constructed (usually a {∧,¬}-basis is used). Then for circuit
Sh a CNF Ch is constructed using the so-called Tseitin transformations [41].
In the process of these transformations, the inputs, outputs and inner nodes of
circuit Sh are associated with Boolean variables. In particular, with the input of
Sh the Boolean variables forming the set Xin = {x1, . . . , xq} are associated. The
remaining variables are auxiliary. The set of auxiliary variables contains the set
Y = {y1, . . . , yu} formed by the variables corresponding to the outputs of circuit
Sh. For an arbitrary γ ∈ {0, 1}u let us denote by Ch(γ) the CNF, formed from
Ch as a result of substituting γ into Ch (as an assignment of variables from Y ).

Below we will use the notion of Strong Backdoor Set first introduced in [43]
in the context of Constraint Satisfaction Problem (CSP). Let us provide the
definition of this notion in relation to SAT which is a special case of CSP.

Let C be an arbitrary CNF over the set of Boolean variables X and let
B be an arbitrary subset of X. Suppose that β is an arbitrary assignment of
variables from B and let us denote this fact as β ∈ {0, 1}|B|. Denote by C[β/B]
the CNF obtained from C as a result of substituting a Boolean vector β into C
(as an assignment of variables from B) and performing all possible elementary
transformations.

Definition 1 (see [43]). Let C be an arbitrary CNF formula over a set of
variables X, and let A be a polynomial-time algorithm. A non-empty set B, B ⊆
X, is a Strong Backdoor Set for C w.r.t. algorithm A if for each β ∈ {0, 1}|B|

algorithm A results an answer for SAT of the CNF C[β/B].

Note that the trivial SAT solving algorithm for an arbitrary CNF C over
X consists in traversing all possible vectors from {0, 1}|X|, substituting them
into C and computing the value of a Boolean function defined by C. Let us call
such an algorithm a brute force algorithm. It is easy to see that its complexity is
2|X|·p(|C|), where p(·) is a polynomial and |C| is the length of CNF C description.
Due to the Definition 1, if B is a Strong Backdoor Set B: |B| << |X|, then there
exists an algorithm for solving SAT for C with the complexity of 2|B| · q(|C|),
where q(·) is some polynomial. In this algorithm for each assignment β ∈ {0, 1}|B|

of variables from B the polynomial algorithm A is invoked in application to CNF
C[β/B]. The complexity of the resulting algorithm may be significantly lower
than the complexity of the brute force algorithm.

The important fact related to arbitrary CNFs of the kind Ch(γ) consists in
that the set Xin is the Strong Backdoor Set w.r.t a simple algorithm called the
Unit Propagation rule (UP) [14,28].

Recall that an arbitrary literal over X is a formula of the kind lλ(x), x ∈ X,
λ ∈ {0, 1}, where:

lλ(x) =
{¬x, λ = 0

x, λ = 1

The Unit Propagation rule in application to an arbitrary CNF C over X and
a set of literals L = {lλ1(x

′
1), . . . , lλs

(x′
s)}, {x′

1, . . . , x
′
s} ⊆ X works as follows.
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Consider a CNF
lλ1(x

′
1) ∧ . . . ∧ lλs

(x′
s) ∧ C,

for an arbitrary j ∈ {1, . . . , s} first all clauses in C that contain lλj
(x′

j) are
removed, and from each clause containing the literal ¬lλj

(x′
j) this literal is

removed. Note that as a result of UP application it is possible to derive new
unit clauses, i.e. the clauses that contain a single literal. Then one can apply
the Unit Propagation rule to these newly derived literals, etc. In [14] there was
proposed the algorithm implementing UP that has a linear complexity in the
size of description of C. Below we employ the following important fact.

Lemma 1. Let Ch be a CNF over a set of Boolean variables X, constructed
according to the method outlined above based on the algorithm specifying func-
tion h of the kind (5). Let β = (β1, . . . , βq) be an arbitrary assignment of vari-
ables from Xin = {x1, . . . , xq}. Then the result of application of only the Unit
Propagation rule to CNF

lβ1(x1) ∧ . . . ∧ lβq
(xq) ∧ Ch (6)

is the derivation of the values of all variables from X\Xin including an assign-
ment of variables from Y = {y1, . . . , yu} such that y1 = γ1, . . . , yu = γu and
h(β) = γ, γ = (γ1, . . . , γu).

Definition 2. Assume that all conditions of Lemma 1 are satisfied and α is an
assignment of variables from X, which was derived as the result of application
of UP to CNF (6). Then we will say that α is induced by β.

The statements that are close to the Lemma 1 in spirit have been indepen-
dently proven in several papers [5,38]. The direct corrolary of Lemma 1 is the
fact that for an arbitrary CNF of the kind Ch(γ) constructed for an algorithm
defining a function h : {0, 1}q → {0, 1}u, the set Xin is a Strong Backdoor Set
w.r.t. Unit Propagation rule. Any set of this kind is referred to as Strong Unit
Propagation Backdoor Set (SUPBS).

Once again, let Ch be a CNF over a set of Boolean variables X constructed
for the algorithm defining a function of the kind (5). Fix an arbitrary γ ∈ {0, 1}u

and consider CNF C = Ch(γ). Assume that the number of clauses in C is m.
Let us introduce the following function

gC : {0, 1}q → {0, 1, . . . ,m} (7)

defined as follows. For an arbitrary β ∈ {0, 1}q, β = (β1, . . . , βq), consider it as
an assignment for variables from Xin = {x1, . . . , xq} and construct a CNF (6).
Then apply to this CNF the Unit Propagation rule. Let α be an assignment of
all variables from X, that is induced by β. Then we define gC(β) as the number
of clauses in C that are satisfied by vector α. The following fact holds.

Theorem 1. Consider an arbitrary function h of the kind (5) and CNF Ch con-
structed using the algorithm specifying h. Let us fix an arbitrary γ ∈ Range h ⊆
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{0, 1}u and consider CNF C = Ch(γ). Assume that X : |X| = k is the set of vari-
ables occurring in C. Consider two problems: in the first one we need to maximize
the function fC of the kind (3) over {0, 1}k. In the second the goal is to maximize
function gC of the kind (7) over {0, 1}q. Let β∗ = argmax{0,1}qgC and α∗ be an
assignment of variables from X induced by β∗. Then α∗ = argmax{0,1}kfC .

Proof (Sketch proof). The key aspect of the proof consists in the fact that γ
is chosen from the range of the function h. In this case it follows from the
Cook-Levin theorem and the properties of Tseitin transformations that CNF
C = Ch(γ) is satisfiable. The detailed description of this fact can be found in
[39]. Thus, in the considered case there exists an assignment that satisfies C and,
therefore, max{0,1}kfC = m. Again, using the technique described in [39] it is
possible to show that each assignment α that satisfies C corresponds to exactly
one Boolean vector β ∈ {0, 1}q that induces α in the sense of Definition 2. This
fact means that the Theorem 1 holds.

As a conclusion of this section, we would like to note that in the context
of the proposed approach we can view the problem of inversion of an arbitrary
function (5) as a special variant of the MaxSAT problem. Essentially, we max-
imize the number of satisfied clauses in a CNF Ch(γ), but thanks to the above
it is possible to work only with the vectors from the Boolean hypercube {0, 1}q,
considering them as assignments of variables from SUPBS Xin. Note that in
the cases that are interesting from the practical point of view, Xin may contain
tens or hundreds of variables while set X over which CNF Ch(γ) is defined may
consist of tens of thousand variables.

4 Merging Variables Principle

Merging Variables Principle (MVP) was proposed in the paper [40], though
closely related approaches appeared in much earlier works [1,3]. MVP is aimed
at pseudo-Boolean optimization. It is based on a very simple idea: as it was
shown in [40], one can effectively construct a one-to-one correspondence between
{0, 1}n and a special metric space, which is denoted as Dμ. Let us connect with
{0, 1}n the set of Boolean variables X = {x1, . . . , xn}, and let the set of variables
Y = {y1, . . . , yr}, 1 ≤ r < n be connected with Dμ. Additionally, we assume
that some surjection mapping μ : X → Y (merging mapping) is specified. Then

Dμ = D1 × . . . × Dr

where Dj , j ∈ {1, . . . , r} are domains for variables from Y . Let us establish a
one-to-one correspondence

τμ : Dμ → {0, 1}n

between Dμ and {0, 1}n. Finally, let us move from maximization of pseudo-
Boolean function f : {0, 1}n → R to maximization of μ-conjugated function
Ff,μ : Dμ → R (see [40]). We can define the Hamming metric over space Dμ and
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specify a neighborhood structure formed by neighborhoods of radius 1. Actu-
ally for an arbitrary μ the corresponding neighborhood structure in Dμ gener-
ates special neighborhood structure in {0, 1}n and the latter is formed by the
neighborhoods which are, generally speaking, not Hamming neighborhoods. It
is easy to construct examples when f reaches a local maximum in α ∈ {0, 1}n,
but τ−1

μ (α) is not local maximum of Ff,μ in Dμ. However, the following holds:
max{0,1}nf = maxDµFf,μ. In [40] we described the Hill Climbing algorithm aug-
mented with Merging Variables strategy, to which we further refer as Merging
Variables Hill Climbing (MVHC). Also, in [40] it was noted that we can view
MVP as a special variant of the well known Variable Neighborhood Search strat-
egy [31]. Using MVP we can effectively generate many different neighborhood
structures in {0, 1}n.

An arbitrary merging mapping μ can be constructed as an example of classic
distribution of particles to boxes. In all computational experiments we use the
so-called uniform merging mapping ([40], definition 7). In this case for a fixed
r we pursue the goal to obtain r boxes which are filled by particles almost
uniformly. We achieve this by filling the boxes one-by-one: the first box on the
first step, the second box on the second step, and so on. As a result we have the
situation when the number of variables in each box is either 
n/r� or 
n/r� + 1.
Each box represents the set of preimages (w.r.t μ) of a corresponding variable
from Y . Let us denote the maximum number of preimages for variables from
Y as l. As it was noted in [40], MVHC with uniform merging mapping can
be naturally implemented in form of multi-thread application: distinct threads
process distinct neighborhood fragments which correspond to domains of specific
merged variables. In this case all the threads will perform almost equal amount
of work because all the domains have almost equal power.

Definition 3. Assume that MVHC found such an α∗ ∈ {0, 1}n that each βi =
τ−1
μi

(α∗), i ∈ {1, . . . , t} is a local maximum of Ff,μi
in Dμi . Let us refer to such

an α∗ as strong local maximum of f w.r.t. mappings μi, i ∈ {1, . . . , t}.
In the experiments presented in the next section we use several evolutionary

strategies to escape strong local maxima to which MVHC falls in. Let us give a
short description of these algorithms. The most simple example of such strategy
is the (1 + 1)-Evolutionary Algorithm ((1 + 1)-EA) [33]. This is a simple algo-
rithm based on the concept of a random mutation. In the case of (1 + 1)-EA
a single random mutation of an arbitrary α ∈ {0, 1}n consists in a series of n
independent Bernoulli trials with probability p = 1

n . If i, i ∈ {1, . . . , n} is the
number of successful trial, then the bit number i in α is flipped (changed from 0
to 1 or from 1 to 0). (1 + 1)-EA is extremely ineffective in theory [15], but often
shows quite good performance in practice. As it was noted in [42], this can be
attributed to the fact that on average (1 + 1)-EA acts in a fashion similar to Hill
Climbing (because the expected value of the number of flipped bit after a single
random mutation is 1). At the same time, unlike Hill Climbing, (1 + 1)-EA can
move from α to any other point from {0, 1}n with a non-zero probability.

There are several techniques that make it possible to reduce the worst-case
estimation of (1 + 1)-EA effectiveness (in the context of the complexity measure
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introduced in [15]) by changing the mutation rate in its base schema. One of
such algorithms is the (1+1)−FEAβ described in [13]. This algorithm is based
on the idea of employing the heavy-tailed mutation operator: such an operator
flips an arbitrary bit in α with probability λ

n instead of 1
n in case of the standard

(1 + 1)-EA. Here, λ is a value of random variable that has the so-called Power-
law distribution Dβ

n
2

with the parameter β [13]. The worst case estimation of
this algorithm is O(nβ · 2n) for any pseudo-Boolean function instead of nn in
case of the standard (1 + 1)-EA. In our computational experiments we used
the (1 + 1) − FEAβ variant with β = 3 to exit local extrema since in this
case (according to [13]) the expected value of the number of flipped bits in one
random mutation is b → 1.3685 . . . when n → ∞ (for β ≤ 2 this value grows to
infinity with the increase of n).

We also performed the generation of a new starting point based on several
strong local maxima, using a special variant of a genetic algorithm described in
[36]. In this algorithm a population is the set of different strong local maxima
constructed by MVHC during its work. Denote a current population by Pcurrent

and a new population by Pnext. Hereinafter, |Pcurrent| = |Pnext| = N for some
fixed N . Assume that Pcurrent = {I1, . . . , IN}. Let us associate with Pcurrent

the distribution Dcurrent = {p1, . . . , pN}, where pi = f(Ii)∑N
i=1 f(Ii)

, i ∈ {1, . . . , N},
where f is our objective function. A new population Pnext is formed as a result
of several actions. First, choose from Pcurrent E individuals with maximal weight
(the value of f) and add them to Pnext (it corresponds to the so-called elitism
concept [26]). At the second step, choose from Pcurrent H individuals in accor-
dance with the distribution Dcurrent and apply to each of them the standard
(1 + 1)-random mutation by flipping each bit with probability 1

n . The resulting
individuals are added to Pnext. Finally, choose individuals from Pcurrent accord-
ing to the fixed distribution and perform standard two-point crossover to them
[26]. The G individuals formed that way are also added to Pnext. It is necessary
that E + H + G = N .

The decision to generate a new starting point is made when we have s strong
local maxima w.r.t t uniform merging mappings μ1, . . . , μt. The parameters s
and t are tuned in the course of testing. Assume that using one of the methods
outlined above we generated a new point α′. Then, in accordance to the ideas
from [40] the point α′ is checked to see if it is located at the Hamming distance
≥ l + 1 from the current set of strong local maximums. If this condition is held,
then α′ is taken as a new starting point, otherwise the process of generation α′

is repeated.

5 Computational Experiments

In our computational experiments we considered two classes of tests. The first
class is related to problems of finding preimages of several known cryptographic
hash functions. In particular, we studied the MD-5, SHA-1 and SHA-256 hash
functions. According to [30] a cryptographic hash function is a function of the
kind χ : {0, 1}∗ → {0, 1}c, where {0, 1}∗ is a Kleene star over the set {0, 1}
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and c is a constant. Preimage attacks for χ implies finding a preimage of some
hash value from {0, 1}c. Usually, one searches for a preimage of a fixed length
which as a rule of thumb coincides with the size of a single block of an input
message. For the MD5, SHA-1 and SHA-256 hash functions this size is equal
to 512 bits, and c is 128 for MD5, 160 for SHA-1 and 256 for SHA-256. For all
considered functions there are no known algorithms that could find a preimage
(e.g. a 512-bit input block) for a given hash image in realistic time. We can
consider the problem of finding a 512-bit input the hash value of that contains
a particular number of first zero bits. In this case the hardness of the resulting
problems depends on the number of the zero bits. This very argumentation is
used to justify the resistance of the majority of today’s cryptocurrency protocols
[34]. The problems of finding 512-bit inputs, the hash images of which contain
K first zero bits, formed the first class of considered tests. Therefore, the name
of the test is name of function K launch number (for example: MD5 20 3).

In Table 1 column named msl-MV corresponds to regular MVHC with param-
eter l (the maximum number of preimages for variables from Y ); msl-FEA cor-
responds to MVHC, complemented by strategies for exiting from strong local
maxima, based on (1 + 1)-Fast Evolutionary Algorithm; msl-GA corresponds to
the MVHC variant, which uses the Genetic Algorithm described above to exit
strong local maxima.

We compared the efficiency of algorithms based on MVP with two multi-
threaded SAT solvers Plingeling [6] and Painless [24] (Pling and Painl in
Table 1 respectively). For a more detailed presentation of the results, we built
cactus plots in the style which is commonly used in the SAT Race and SAT
Competition competitions. To build cactus plots we used the mkplot tool1.

It should be noted that some tests have not been solved in a time limit,
which was equal to 5000 s as standard value (to each such a fact in Table 1
corresponds an empty cell). In the construction of cactuses, we take this into
account by applying the PAR scoring system 2 used in the SAT Race and SAT
Competition2: i.e. for an instance, which has not been resolved in the time limit,
a decision time was chosen as a double time limit. Also the results of this series
of experiments we demonstrate in Fig. 1. To plot the lines we take all runtimes
of the corresponding algorithm on the considered instances that are below the
time limit, order them in accordance with the increasing value (individually for
each line) and plot the corresponding graph. It is commonly referred to as cactus
plot.

As a final remark, we would like to note that the best results on the consid-
ered class of tests in accordance with the described form of presentation showed
MVHC, complemented by strategies for exiting from strong local maxima, based
on (1 + 1)-Fast Evolutionary Algorithm (1+1)−FEAβ with β = 3. Each of the
tested algorithms was launched in parallel mode on one node of the computing
cluster of “Academician V.M. Matrosov”3, where each node is equipped with

1 https://github.com/alexeyignatiev/mkplot.
2 http://sat-race-2019.ciirc.cvut.cz/.
3 http://hpc.icc.ru.

https://github.com/alexeyignatiev/mkplot
http://sat-race-2019.ciirc.cvut.cz/
http://hpc.icc.ru
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Table 1. Results of solving inversion problems of cryptographic hash functions

Test ms8-MV ms8-GA ms8-FEA ms10-MV ms10-GA ms10-FEA Pling Painl

MD5 18 1 349 219 1380 803 524 164 - 905

MD5 18 2 215 57 384 269 49 87 2108 294

MD5 18 3 122 86 52 238 92 69 765 3036

MD5 20 1 40 1407 2093 1226 1521 175 3479 –

MD5 20 2 757 46 585 233 777 512 – –

MD5 20 3 603 121 1782 450 670 1772 – –

MD5 22 1 555 1143 611 940 – – – –

MD5 22 2 1278 4998 – 651 4743 2662 – –

MD5 22 3 2563 478 – 2079 3888 389 3425 –

SHA-1 18 1 117 200 267 95 497 585 190 1407

SHA-1 18 2 123 765 730 703 136 199 1061 3080

SHA-1 18 3 327 128 78 450 503 279 855 3077

SHA-1 20 1 273 2949 282 1930 538 779 537 288

SHA-1 20 2 69 1032 2488 511 2139 267 1007 1124

SHA-1 20 3 76 2004 4390 826 70 1595 2602 483

SHA-1 22 1 1204 – 1304 – 1654 925 2950 –

SHA-1 22 2 – – – – 1150 4119 – –

SHA-1 22 3 – 2973 2720 – – 3629 – 1954

SHA-2 18 1 89 2396 330 26 26 26 44 3253

SHA-2 18 2 94 696 112 26 26 26 204 1994

SHA-2 18 3 220 201 233 26 26 26 763 2750

SHA-2 20 1 729 518 890 – 217 481 3637 –

SHA-2 20 2 125 1903 3101 105 720 4386 3211 –

SHA-2 20 3 751 124 1239 838 2913 1267 2147 414

SHA-2 22 1 – 497 3881 335 – 2039 – –

SHA-2 22 2 – – – 4168 642 2400 – –

SHA-2 22 3 4042 – – 4487 – 2662 2290 –

two 18-core Intel Xeon E5-2695 CPUs. The results of experiments show that
the best multithreaded solvers based on the CDCL algorithm (Plingeling and
Painless), on the considered class of tests, significantly lost against all variants
of Merging Variables Hill Climbing.

The second class of tests for which computational experiments were carried
out was formed by MaxSAT variants of the Branch Location Problem (BLP),
which can be considered as a special case of the Facility Location Problem [23].
The original formulation of the BLP uses weighted undirected complete bipartite
graph G(U, V,E,w), where U is a set of customers, V is a set of facilities, E =
U×V is a set of edges. Function w : E → R≥0 defines edge weights for this graph.
The number of facilities, that should be deleted is denoted by k, k ≤ |V |. Also
the parameter Δ, Δ ≥ 0 is introduced. This parameter is a threshold by which
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Fig. 1. Comparison of different algorithms efficiency on the inversion hash functions
problems

the minimum edge weight of each customer can be increased when we delete
some facilities vertices. The BLP PΔ is formulated in the following manner [44].

Definition 4. (Definition 1 from [44]). Given a tuple PΔ = (G(U, V,E,w), k,Δ)
to find a subset V ′, V ′ ⊆ V , |V ′| = k such that if V ′ is deleted from V , the number
of customers (from U), whose minimum edge weight is increased by more than Δ,
is minimal.

In [44] this problem was reduced to MaxSAT formulated by using so-called
hard and soft clauses (see [25]). In such formulations, the set of clauses of the
considered CNF is divided into two subsets: clauses, marked as ‘hard’ and ‘soft’.
Hard clauses must be satisfied and it is required to maximize the number of
satisfied soft clauses under these conditions (or, which is the same thing, to
minimize the number of unsatisfied soft clauses).

In our computational experiments we used the MaxSAT tests constructed in
[44]. The peculiarity of this class of tests is that for each specific CNF formed
by hard clauses a corresponding SUPBS X̃ is known. Thus, we can run Merging
Variables Hill Climbing on this SUPBS. In addition, we took into account that
the substitution of values of variables from X̃ can lead to a conflict on the set of
hard clauses: in each such case, we determined the value of the objective function
equal to the number of satisfied hard clauses.

For each assignment of variables from X̃ that satisfies all hard clauses, the
value of the objective function was determined as the number of unsatisfied soft
clauses and this value was minimized: this is a common form of representing
results of testing MaxSAT solvers.
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Algorithms for solving MaxSAT problems with hard and soft clause using the
Merging Variables Principle are incomplete, unlike algorithms based on CDCL.
These two classes of algorithms w.r.t. this variant of MaxSAT work according
to completely different schemes, thus it is incorrect to compare them with each
other directly. That is why we compared our algorithms for solving these cases of
MaxSAT with incomplete SAT solver Loandra [4], which won the competition
MaxSAT Evaluation 20194 among incomplete algorithms. In this series of exper-
iments we used a personal computer of the following configuration: Intel Core
i7-6700 CPU 3.40 GHz, 16 Gb RAM. It should be noted that several complete
MaxSAT solvers which we used in our experiments weren’t able to cope with
the tests from the considered class for k > 10.

Table 2. Results of solving Branch Location Problem as MaxSAT

Test ms8-GA Loandra Test ms8-GA Loandra Test ms8-GA Loandra

k10 d100 8538 9826 k16 d300 14538 21830 k22 d500 22373 36099

k10 d200 6779 7197 k16 d400 12012 15653 k24 d100 45613 82174

k10 d300 5287 5287 k16 d500 10144 14325 k24 d200 39759 64742

k10 d400 4189 4189 k18 d100 25963 46157 k24 d300 34061 54062

k10 d500 3368 3368 k18 d200 21937 36753 k24 d400 30573 49746

k12 d100 11961 22247 k18 d300 18799 28302 k24 d500 27280 43962

k12 d200 9593 10474 k18 d400 15995 27131 k26 d100 53902 89965

k12 d300 7702 7845 k18 d500 13946 16530 k26 d200 47102 73874

k12 d400 6124 7301 k20 d100 31722 53121 k26 d300 40802 64648

k12 d500 5074 5074 k20 d200 27376 44737 k26 d400 36620 64986

k14 d100 15866 28993 k20 d300 23357 36773 k26 d500 32801 57051

k14 d200 12908 22168 k20 d400 20254 25355 k28 d100 62303 110191

k14 d300 10647 11344 k20 d500 18021 31686 k28 d200 55116 84828

k14 d400 8685 11286 k22 d100 38083 64766 k28 d300 48291 74623

k14 d500 7311 7556 k22 d200 33293 51940 k28 d400 43205 68754

k16 d100 20642 40328 k22 d300 28400 42631 k28 d500 38815 68217

k16 d200 17024 26589 k22 d400 25194 40265

In Table 2 we present the results of experiments for the second class of
tests (related to BLB). In all these problems |V | = 58. The test name kN dM
corresponds to the problem for k = N and Δ = M. For these experiments (based
on preliminary testing), we chosen the MVP variant with l = 8 and the procedure
for exiting local maxima based on the Genetic Algorithm. Both MVHC and
Loandra were launched with a time limit of 1000 s. Each Best Known Value,
presented in Table 2, is the smallest value of the objective function, which is
equal to the number of unsatisfied soft clauses, found in time limit (the smaller
this value, the better the found point). From Table 2 it can be seen that on
4 https://maxsat-evaluations.github.io/2019/.

https://maxsat-evaluations.github.io/2019/
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the considered test class the used MVHC variant always finds a point at which
the value of the objective function is no worse than at the point found by the
Loandra solver. For most tests, the value of the objective function found by
MVHC is better (sometimes quite significant).

6 Conclusion and Future Work

In this paper we presented the results of application of the Merging Variables
Principle (MVP) metaheuristic strategy to one special class of MaxSAT problem
that consists in the maximization of number of satisfied clauses in an arbitrary
Conjunctive Normal Form (CNF). We showed that for a considered subclass of
MaxSAT the dimension of the search space is significantly less than the number
of variables in CNF. We used a maximization strategy based on MVP on such
a reduced space. To exit strong local maxima (this concept was introduced in
[40]) we applied two evolutionary strategies, namely, (1 + 1) − FEAβ described
in [13] and one variant of Genetic Algorithm presented in [36]. As test sets we
considered the preimage finding problems of cryptographic hash functions (so-
called preimage attacks) and MaxSAT variants of the Branch Location Problem,
which is a special case of the Facility Location Problem. On the considered
classes of tests algorithms that are based on MVP showed higher efficiency in
comparison with the algorithms that won the SAT competitions, SAT Races and
MaxSAT Evaluation competitions in recent years. In the nearest future we plan
to investigate the possibility of applying MVP-based computational schemes to
the search problems of some combinatorial designs.

Acknowledgements. We express our deep gratitude to Dr. Oleg Zaikin for his valu-
able advice and help. The research was funded by Russian Science Foundation (project
No. 16-11-10046).
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Abstract. In this paper we propose an efficient heuristic for the Vehicle
Routing Problem on Trees (TVRP). An initial solution is constructed
with a greedy algorithm based on the Depth-First Search (DFS) app-
roach. To optimize initial solutions obtained by our DFS heuristic, Ruin-
and-Recreate (RR) method is then applied. For diversification purposes
a randomization mechanism is added to the construction of initial solu-
tions and DFS+RR algorithm is executed multiple times until the best
found solution stops changing. The results of our approach are compared
with the solutions obtained by the exact model of Chandran & Raghavan
(2008). The computational experiments show that the suggested heuris-
tic is fast and finds solutions which differ from optimal ones less than by
1% in average.

Keywords: Vehicle Routing Problem on Trees · Depth-First Search ·
Ruin-and-Recreate · Large neighbourhood search

1 Introduction

In this paper we consider the Vehicle Routing Problem on Trees (TVRP), which
arises in transportation logistics when roads represent a graph with a tree struc-
ture. For example, it can be rail and water routes, long roads between cities and
towns, and other cases which have a high cost of new road construction.

Vehicle Routing Problems are very popular in literature due to the vast
variety of applications in real practice [9,10]. Many algorithms are developed
for such problems including exact approaches and heuristics [6]. The Vehicle
Routing Problem on Trees (TVRP) was proposed by Labbe, Laporte and Mer-
cure in 1991 [4]. They developed a branch-and-bound algorithm for the TVRP.
An initial solution was obtained by a linear-time heuristic and lower bounds
were based on solving of the Bin Packing Problem (BPP). The authors also
proved the NP-hardness of the problem by reduction from the BPP as well as
the APX-hardness by showing that the suggested heuristic is a 2-approximation
algorithm. Mbaraga et al. extended this branch-and-bound algorithm in 1999 to
the TVRP with an additional constraint on a route duration [5]. These authors
c© Springer Nature Switzerland AG 2020
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also suggested a column generation approach which showed a better performance
on tightly constrained instances, difficult for the branch-and-bound method. In
2008 Chandran & Raghavan proposed an efficient integer programming model
for the TVRP which showed high performance [2].

In 1995 Rennie developed a sequential greedy heuristic which was more flex-
ible and had better results than Labbe’s linear heuristic [7]. Basnet et al. sug-
gested two heuristics for the TVRP in 1999 [1]. They considered the TVRP for
transportation of milk in New Zealand, where due to mountainous terrain con-
struction of a new road is costly. The first heuristic H1 was based on Clarke
and Wright algorithm [3]. It built separate routes, one for each customer, and
then sequentially combined them minimizing the sum of route lengths on every
step. The second heuristic H2 started with one big route and then divided it into
small ones to satisfy capacity constraints. H1 was slower than other heuristics,
but provided better results.

In this paper we develop a fast heuristic algorithm combined of a greedy
randomized heuristic based on the Depth-First Search (DFS) method and a
large neighbourhood search heuristic based on the Ruin-and-Recreate (RR) app-
roach. We provide computational results for DFS, DFS+RR, and Randomized
DFS+RR (RDFS+RR) combinations comparing the obtained solutions with
the exact ones found by Chandran & Raghavan model [2]. DFS and DFS+RR
are deterministic algorithms which computational time on all instances is never
greater than 1 s. RDFS+RR algorithm performs many iterations before the best
found solution stops changing and its computational times reach 45 s on the
largest instances. At the same time RDFS+RR provides high-quality solutions
which differ from optimal ones less than by 1% in average.

2 Mathematical Model

The following model is based on the model proposed by Chandran & Raghavan
[2]. We assume that the number of vehicles is not limited. So a vehicle index k
can have any value from 1 to K, where K is the maximum possible number of
vehicles. We consider the symmetric case in which distance dij is equal to dji.
So in this model we take into account only down-arcs going from a parent to
a child, because for each down-arc (i, j) in a route there should be a returning
up-arc (j, i) with the same distance dij . Thus up-arcs only double the value of
the objective function and could be skipped.

Parameters:
dij – the travel distance of arc (i, j)
qi – the demand of customer i
p(i) – the parent of vertex i in the road tree
V – the set of customer vertices {1, ..., n} (the depot vertex has index 0)
Q – the capacity of each vehicle
A – the set of down-arcs (from parents to children) including the depot arcs
K – the maximal possible number of vehicles
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Decision Variables:
xijk = 1, if arc (i, j) belongs to the route of vehicle k, otherwise 0
yik = 1, if vehicle k serves customer i, otherwise 0

Objective function:

K∑

k=1

∑

(i,j)∈A

dijxijk → min (1)

Constraints:

xp(i)ik ≥ xijk ∀k = 1, ...,K, ∀(i, j) ∈ A, i �= 0 (2)

xp(i)ik ≥ yik ∀k = 1, ...,K, ∀i ∈ V (3)
∑

i∈V

qiyik ≤ Q ∀k = 1, ...,K (4)

K∑

k=1

yik = 1 ∀i ∈ V (5)

yik, xijk ∈ {0, 1} ∀k = 1, ...,K, ∀(i, j) ∈ A (6)

The objective is to minimize the total travelled distance of all vehicles. Con-
straints (2) guarantee that if a vehicle has arc (i, j) in its route, then this route
must also contain the arc from the parent of i to i. The next constraint (3) states
that if a vehicle serves customer i, then it should come to i from his parent p(i).
Constraint (4) prevents an overload of a vehicle. The last constraint (5) requires
every customer to be served by one vehicle. The maximal possible number of
vehicles K is taken equal to the upper bound K =

⌈
2
∑

i∈V qi/Q
⌉

[2].

3 Initial Heuristic Based on DFS

The main idea for our initial heuristic is to apply the DFS approach. In the DFS
we can traverse vertices in different order: first children, then parent; first parent,
then children; first one child, then parent, then another child, then parent and
so on. Our experiments show that for the TVRP it is more efficient to use the
third variant in our heuristic. We traverse vertices in the described order and
add a vertex to the first route in which the remaining capacity of the vehicle
allows it. If no route can take the current vertex, then we start a new route with
this vertex.

To explain our heuristic in detail we provide a small TVRP example in Fig. 1.
We assume for simplicity that all edges have distance 1 and all vehicles can carry
20 units. Bold numbers show demands and numbers in circles – the index of the
vertex in our DFS order. According to our algorithm we put vertices 1, 2, 3, 4
to the first route with the total load equal to 3+8+5+4 = 20. Then vertices 5,
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0

12 7

8 1

4 4

2 8

1 3 3 5

7 5

6 2

5 1

11 8

10 3

9 5

15 5

14 4

13 3

21 6

20 4

19 7

17 2

16 3 18 6

Fig. 1. TVRP example

6, 7, 8, 9, 10 will go to route 2 giving the total load of 1+2+5+1+5+3 = 17.
Vertices 11 and 12 cannot be added to route 2 because of the capacity limit 20.
So we add them to a new route 3, and vertex 13 with demand 3 completes route
2: {5, 6, 7, 8, 9, 10, 13}. Route 3 is then completed with vertex 14: {11, 12, 14} and
the total load of 8 + 7 + 4 = 19. Customers 15, 16, 17, 18 with the total load of
16 go to a new route 4. Customer 19 has to start a new route 5, and customer 20
completes route 4: {15, 16, 17, 18, 20}. Finally the last route 5 becomes {19, 21}.
The constructed routes have distances, computed only by down-arcs, equal to 6,
12, 5, 8, and 3 correspondingly. The total travelled distance by down-arcs is 34.

For computational experiments we randomly generated 5 trees for each num-
ber of vertices: 10, 20, 30, 50, 100, and set the time limit for CPLEX solver to
300 s. All exact solutions have been obtained by CPLEX only for trees with 10,
20, and 30 vertices. And our greedy algorithm was able to find exact solutions
only for all trees with 10 and 20 vertices (see Table 1).
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Table 1. Computational results for exact model and DFS heuristic

Number of
nodes

CPLEX average
time (sec)

Number of
exact solutions

DFS heuristic
average time
(sec)

Number of
exact solutions

10 0.1 5 0.01 5

20 0.9 5 0.01 5

30 2.0 5 0.04 3

50 184.7 4 0.16 2

100 300.0 0 2.15 0

4 Ruin-and-Recreate Algorithm

Ruin-and-Recreate is a well-known approach from the family of large neighbour-
hood search methods [8]. In our algorithm we suggest the following Ruin-and-
Recreate procedures for improvement of initial solutions:

– Ruin: At every crossroad we divide a route into parts, based on the number
of children the node has. The main part will still have all its customers and
other parts will be cut from it into separate routes.

– Recreate: For every two routes we calculate the difference their merge will
make in the objective function. At each step we look at every possible merge
and apply the best one based on the objective function decrease.

Due to the deterministic ruin procedure dividing all routes at crossroads and
the recreate procedure that chooses the best combination of two routes on each
step, the Ruin-and-Recreate algorithm is executed only once.

After the ruin algorithm applied to the initial solution from Fig. 1, our recre-
ate algorithm will create the following 6 routes:

– Route 1 {1, 2, 3, 4}: we merge parts {1, 2, 4} and {3}.
– Route 2 {5, 6, 7}: this part {5, 6, 7} remains the same after the ruin stage and

is not merged with any other part during the recreate stage.
– Route 3 {8, 9, 10, 11}: parts {9, 10}, {11}, and {8} are merged into this route.
– Route 4 {12, 13, 14, 15}: this route is combined from parts {13}, {14}, {15},

and {12}.
– Route 5 {16, 17, 18, 19}: we join parts {16, 17}, {18}, and {19}.
– Route 6 {20, 21}: parts {20} and {21} form this route.

This solution has a 15% smaller total travelled distance – 29 instead of 34.
Due to the greediness in construction of an initial solution, there are cases

in which Ruin-and-Recreate approach could not construct an optimal solution
starting from a bad initial one. To provide diversification during solution search
and obtain better results we have added a randomization mechanism to our
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initial DFS heuristic. When going to each next child after the parent vertex we
now skip this road for the current route with probability 1/2. This randomization
technique allows generating many different initial solutions and leads to a final
solution of higher quality.

5 Computational Results

Chandran & Raghavan tested their exact model on randomly generated test
instances with the following parameters:

– Number of nodes: 20, 40, 60, 80, and 100.
– For each number of nodes customer demands are generated from different

intervals with uniform distribution: [1, 10], [1, 30], [1, 50], [1, 100], [10, 10],
[10, 90], [20, 20], [20, 80], [30, 30], [30, 70].

– For each number of nodes and each demand interval 10 different input trees
are generated having from 1 to 5 children in each node with probability 1/5.

– The travel distance of each edge is generated uniformly from [1].
– The capacity of vehicles is taken equal to 100.

We compared the solutions obtained by the exact Chandran & Raghavan
model on such instances with the results of our three algorithms: DFS heuris-
tic (DFS), DFS heuristic followed by Ruin-and-Recreate algorithm (DFS+RR),
and multi-start Randomized DFS heuristic plus Ruin-and-Recreate algorithm
(RDFS+RR). RDFS+RR for each input instance is run 10 times and average
results are calculated. CPLEX time limit is set to 300 s, so not all of the results
obtained by CPLEX are exact. Most of the solutions for large trees are the best
results that CPLEX computed within this time limit. That is why our algorithms
sometimes have better solutions, and the reported deviation from CPLEX solu-
tion is negative. The source code of our algorithm and instances generator can
be found at https://nnov.hse.ru/en/latna/benchmarks.

As it is shown in Table 2 our solutions differ from optimal ones not more
than by 5%. CPLEX has found optimal solutions for all instances only with 20
and 40 nodes. On these instances the average error of RDFS+RR algorithm is
0.765%. Average computational times are provided in Table 3. DFS needs only
several milliseconds, DFS+RR times reach one second, and RDFS+RR spends
not more than a minute on each instance.

Funding. The paper is prepared within the framework of the Basic Research Program
at the National Research University Higher School of Economics (NRU HSE).

https://nnov.hse.ru/en/latna/benchmarks
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Table 2. Deviation in percent from CPLEX solutions

Number of nodes Demand intervals DFS DFS+RR RDFS+RR

20 1–10 0.0 0.0 0.0

20 1–30 2.3 2.3 1.1

20 1–50 1.8 1.8 1.2

20 1–100 1.5 1.5 0.3

20 10–10 0.0 0.0 0.0

20 10–90 2.7 2.4 0.7

20 20–20 0.0 0.0 0.0

20 20–80 2.1 2.1 0.3

20 30–30 0.0 0.0 0.0

20 30–70 2.3 1.9 0.6

40 1–10 0.0 0.0 0.0

40 1–30 1.3 1.0 0.7

40 1–50 5.4 4.6 2.8

40 1–100 1.7 1.5 1.2

40 10–10 0.0 0.0 0.0

40 10–90 2.7 2.7 1.4

40 20–20 1.8 1.8 0.4

40 20–80 5.1 5.1 2.9

40 30–30 0.0 0.0 0.0

40 30–70 3.8 3.7 2.0

60 1–10 0.0 0.0 0.0

60 1–30 2.3 2.3 1.6

60 1–50 5.1 4.8 4.3

60 1–100 3.4 3.4 1.7

60 10–10 0.0 0.0 0.0

60 10–90 2.9 2.9 1.5

60 20–20 0.0 0.0 −8.8∗

60 20–80 3.6 3.6 2.8

60 30–30 0.0 0.0 0.0

60 30–70 3.9 3.9 2.8

80 1–10 0.3 0.3 0.0

80 1–30 2.1 1.8 1.2

80 1–50 1.3 1.3 1.1

80 1–100 1.7 1.7 0.6

80 10–10 0.0 0.0 0.0

80 10–90 2.6 2.6 1.2

80 20–20 0.0 0.0 0.0

80 20–80 2.3 2.3 1.0

80 30–30 −0.4∗ −0.4∗ −0.4∗

80 30–70 2.3 2.3 1.1

100 1–10 0.5 0.5 0.4

100 1–30 1.2 1.2 1.1

100 1–50 −0.4∗ −0.4∗ −0.7∗

100 1–100 0.2 0.2 −0.6∗

100 10–10 0.6 0.6 0.2

100 10–90 −1.8∗ −1.8∗ −2.5∗

100 20–20 −0.7∗ −0.7∗ −0.8∗

100 20–80 −2.2∗ −2.2∗ −3.8∗

100 30–30 −3.1∗ −3.1∗ −3.3∗

100 30–70 −0.9∗ −0.9∗ −1.4∗

∗ On most instances starting from 60 nodes CPLEX did not find

optimal solutions
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Table 3. Average computational time in seconds

Number of nodes CPLEX average time (sec) DFS (sec) DFS+RR (sec) RDFS+RR (sec)

20 0.9 0.002 0.01 0.3

40 134.9 0.005 0.08 2.5

60 202.8 0.008 0.18 7.8

80 240.5 0.013 0.57 25.1

100 300.0 0.018 1.05 44.2
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Abstract. The interpretation of the biological mechanisms through the
systems biology approach involves the representation of the molecular
components in an integrated system, namely a network, where the inter-
actions among them are much more informative than the single com-
ponents. The definition of the dissimilarity between complex biological
networks is fundamental to understand differences between conditions,
states, and treatments. It is, therefore, challenging to identify the most
suitable distance measures for this kind of analysis. In this work, we aim
at testing several measures to define the distance among sample- and
condition-specific metabolic networks. The networks are represented as
directed, weighted graphs, due to the nature of the metabolic reactions.
We used four different case studies and exploited Support Vector Machine
classification to define the performance of each measure.

Keywords: Metabolic networks · Network simplification · Network
distances

1 Introduction

When analysing multivariate data, network models can capture complex rela-
tions existing among variables. In cellular biological modeling of molecules and
their interactions, networks play a central role. Indeed, the multitude of com-
plex interactions taking place within a single cell, and among cells, can only be
captured with network-based modeling.

The abundance and accessibility of real experimental data, together with
metadata describing the biological experiments and conditions, as well as the
availability of analytical models and prior knowledge in form of ontologies, have
attracted the interest of data scientists in developing novel methodologies might
overcome the limits in existing data analysis techniques. The interpretation of
complex biological networks through the comparison of different states and the
understanding of similar/dissimilar characteristics as well as modules and pat-
terns, is an ongoing area of research, not only in biology [12,20]. The increasing
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size of biological data, due to the continuous development of omics science tech-
nologies, makes the network approach indispensable. Unfortunately, this huge
amount of omics data does not correspond to the availability of datasets com-
posed of biological networks. Indeed, these datasets are rarely available compared
to social, economics, finance networks, which are widely used by researchers to
test new algorithms and approaches [26,27]. The imbalance is mainly due to
the fact that the general problem of comparing two networks is supposed to be
NP-complete. In biological applications, the networks edges and nodes have a
biological meaning, and therefore any pair of networks representing the same
phenomenon in two different conditions are already aligned, and the similarity
of networks can be computed in polynomial time. Indeed, different representa-
tions of the networks and measures might highlight different aspects. For this
reason, it becomes crucial to understand which are the available options and how
they can be used to understand a specific problem at hand. Thus, all subsequent
data analysis tasks will be based on the network representation and choices of
similarity measures.

Many measures for analyzing differences or similarities between graphs have
been adopted in the literature, as surveyed in [11,12,14,31,34], and most of them
have been evaluated on different types of biological networks, including protein-
protein interaction [2,34], biochemical [34], transcriptional regulation [34], signal
transduction [34], co-methylation [37], and metabolic networks [31,34,39].

We focus our attention on metabolic networks, as the metabolic mechanisms
and their alteration are subject of great attention in the context of systems
biology and precision medicine. Indeed, the metabolism takes part to all the
physiological and pathological processes and suffers a big impairment in cancer
[19,30], although the cause-effect relationship has not been completely clarified.
We build these networks by integrating transcriptomic data of cancer patients
with publicly available metabolic models. The similarity measures are therefore
performed on directed, weighted, and structurally similar networks.

In [18], we presented a survey on network distances in the context of directed,
weighted, and structurally similar biological networks. We summarized the
underlying mechanisms and features exploited by distances adopted in the litera-
ture, which help to bring out the differences or similarities between networks. For
comparing these distances, we deliberately exploited an extremely easy dataset,
consisting of four tumor metabolic networks, belonging to two very different
breast tumor sub-classes, in order to carefully analyze their distance matrices.

The main contribution of the present research is an extensive comparison
of distances suited for evaluating similarities/dissimilarities among weighted
digraphs sharing the same set of nodes. A subjective evaluation based on the
visual inspection of their distance matrices is coupled with an objective evalua-
tion based on the performance of classification results that they allow to obtain.

The rest of this article is organized as follows. A brief description of the
distances adopted for assessing dissimilarity of weighted digraphs is provided in
Sect. 2, subdividing them according to the use of the distance between nodes, to
clustering properties of the nodes, and to distance of distributions extracted from
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the networks. The results of those measures on metabolic networks for different
kinds of cancer are reported and thoroughly compared in Sect. 3. Section 4 draws
conclusions and highlights future research directions.

2 Network Distances

Many measurements for graphs are based on parameters describing them in
terms of the distances between their nodes [11,14,22,25,28,34], in terms of their
clustering coefficients [6,15,32,34,38], or in terms of distances of their proba-
bility distributions [2,9,14,16,29,39]. Here, after introducing some basic nota-
tions and definitions, we summarize some of the network distances tailored for
weighted digraphs extensively described in [18] and adopted for our experiments
(see Sect. 3). The distance computations were implemented using the R packages
in [5,8,23,41].

2.1 Basic Notations and Definitions

A weighted directed graph (digraph) G can be defined as a triplet (V,E,W ),
where V is a set of vertices representing the graph nodes, E ⊆ V × V is the set
of edges representing the connections between the nodes, consisting of ordered
pairs of elements of V , and W is a set of real numbers, called weights, such
that for each e ∈ E there exists a w(e) ∈ W . The graph will be denoted as
G(V,E,W ).

A walk from node i to node j of a graph G(V,E,W ) is a sequence p =<
v0, v1, . . . , vk > of nodes such that i = v0, j = vk, vi ∈ V, (vi−1, vi) ∈ E, i =
1, . . . , k [7]. A path is a walk where all nodes and edges along it are distinct.
A path p from i to j will be denoted as i

p� j. The weight of a path p =<
v0, v1, . . . , vk > is given by the sum of the weights of its edges [7]

weight(p) =
k∑

i=1

w(evi−1,vi
). (1)

Given a weighted digraph G(V,E,W ), the distance of its nodes i and j ∈ V
can be defined as the weight of the shortest path p from i to j; if no such path
exists, then it is set to ∞

δ(i, j) =
{

min{weight(p) : i
p� j} if p exists

∞ otherwise
(2)

2.2 Network Distances Based on Distances Between Nodes

Let Gp and Gq be two weighted digraphs on the same set of nodes V , with
weights W p and W q, respectively. Several network distances of Gp and Gq can
be defined based on the distances δ(i, j) between their nodes i and j defined
in Eq. (2), some of which are summarized in Table 1. These network distances
provide a local measure of dissimilarity between networks, considering edges as
independent entities, while disregarding the overall structure [11,25].
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Table 1. Network distances of graphs Gp and Gq based on distances between nodes.

Name Definition Reference

Average
path length
difference

dAvgPL(Gp,Gq) =

∣
∣
∣
∣
∣
∣

∑

i,j∈Gp

δ(i, j) −
∑

i,j∈Gq

δ(i, j)

∣
∣
∣
∣
∣
∣

|V |(|V | − 1)
[14,34]

Global
efficiency
difference

dGE(Gp,Gq) =

∣
∣
∣
∣
∣
∣

∑

i,j∈Gp

1

δ(i, j)
−

∑

i,j∈Gq

1

δ(i, j)

∣
∣
∣
∣
∣
∣

|V |(|V | − 1)
[14,28]

Difference of
harmonic
means of
geodesic
distances

dhGE(Gp,Gq) =
|V |(|V | − 1)

∣
∣
∣
∣
∣
∣

∑

i,j∈Gp

1

δ(i, j)
−

∑

i,j∈Gq

1

δ(i, j)

∣
∣
∣
∣
∣
∣

[14]

Hamming

dHam(Gp,Gq) =

∑

i,j

|wp
i,j − wq

i,j |

|V |(|V | − 1)
[11]

Jaccard

dJ (Gp,Gq) = 1 −

∑

i,j

min(wp
i,j , w

q
i,j)

∑

i,j

max(wp
i,j , w

q
i,j)

[11]

Normalized
edge
difference dnEDD(Gp,Gq) =

√
√
√
√

∑

i,j

(wp
i,j − wq

i,j)
2

∑

i,j

max(wp
i,j , w

q
i,j)

[18,42]

Table 2. Network distance of graphs Gp and Gq based on the clustering coefficients Ci

defined in Eq. (3).

Name Definition Reference

Clustering coefficient difference dCC(Gp,Gq) =

∣
∣
∣
∣
∣

∑

i

Ci(Gp) −
∑

i

Ci(Gq)

∣
∣
∣
∣
∣

[6]

2.3 Network Distance Based on Clustering Coefficients

Clustering coefficients show the tendency of a graph to form tightly connected
neighborhoods [15], i.e., to be divided into clusters, intended as subsets of ver-
tices that contain many edges connecting these vertices to each other [34]. The
considered network distance summarized in Table 2 is based on the local clus-
tering coefficient Ci for node i of a weighted digraph G introduced in [6]

Ci(G) = α1C
in
i (G) + α2C

out
i (G) + α3C

cyc
i (G) + α4C

mid
i (G). (3)
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It is the weighted average of four different components that separately consider
different link patterns of triangles (closed triplets of nodes, centred on one node)
that node i can be part of. Cin

i (G) deals with triangles where there are two
edges incoming into node i; Cout

i (G) with triangles where there are two edges
coming out of node i; Ccyc

i (G) with triangles where all the edges have the same
direction; Cmid

i (G) deals with remaining triangles. Coefficients α1, . . . , α4 are
defined in terms of in- and out- strengths and degrees of node i (see [6] for the
complete definition).

2.4 Network Distances Based on Probability Distributions

Other distances between networks can be obtained by describing them through
probability distributions and adopting different distances of probability distri-
butions for evaluating their dissimilarity [2,9,14,16,29,39].

Network Probability Distributions. Several probability distributions have
been considered for describing local and global topological properties of each
node of a graph.

Node Distance Distribution (NDD). The NDD N r
i of node i in graph Gr has

as its generic element N r
i (h) the fraction of nodes in Gr having distance h from

node i [2,16]

N r
i (h) =

|{j ∈ V : δ(i, j) ∈ [h, h + 1)}|
|V | − 1

, h = 0, 1, . . . , �diam�,

where diam indicates the diameter (i.e., the longest shortest path) of Gr. The
set of all NDDs {N r

1 , . . . ,N r
|V |} contains information about the global topology

of the graph Gr.

Transition Matrices (TMs). The TM T r(s) of order s for graph Gr has as its
generic element T r

i,j(s) the probability for node i of reaching node j by a random
walker in s steps [2,16]. The TMs T r(1) and T r(2) contain local information
about the connectivity of the graph Gr.

Clustering Coefficient Distribution (CCD). Based on local clustering coefficients
of Eq. (3), the generic element PCC

i of the CCD PCC is computed as the clus-
tering coefficient probability for node i of a graph Gr, defined as

PCC
i =

Ci(Gr)
|V |∑

j=1

Cj(Gr)

, i = 1, . . . , |V |. (4)

Distance Measures Between Probability Distributions. Several dis-
tance measures are adopted in the literature for comparing two probabil-
ity distributions [3]. Given two discrete distributions P = {P1, . . . , Pd} and
Q = {Q1, . . . , Qd}, we consider the distribution distances summarized in Table 3.
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Table 3. Distances between probability distributions P = {P1, . . . , Pd} and Q =
{Q1, . . . , Qd}.

Name Definition Reference

Euclidean dEuc(P,Q) =
√∑d

i=1(Pi −Qi)2

Jaccard dJac(P,Q) =

d∑
i=1

(Pi −Qi)
2

d∑
i=1

P 2
i +

d∑
i=1

Q2
i −

d∑
i=1

PiQi

[24]

Hellinger dHel(P,Q) =

√√√√1 −
d∑

i=1

√
PiQi [10]

Jensen-Shannon dJS(P,Q) =
√J (P,Q) [13]

J (P,Q) = Jensen-Shannon divergence of P and Q

Distribution-Based Network Distances. Given two weighted digraphs Gp

and Gq, for each of the described network probability distributions P1,r
i =

N r
i ,P2,r

i = T r
i (1), and P3,r

i = T r
i (2) for node i in graph Gr, r = p, q, and

for each of the distribution distances dl, l ∈ {Euc, Jac,Hel, JS} described in
Table 3, we consider the network distance

Mk
l (Gp,Gq) =

1
|V |

|V |∑

i=1

dl(Pk,p
i ,Pk,q

i ), (5)

obtained by averaging over all the |V | nodes the distances of the probability
distributions of their nodes. Moreover, we also consider two further network
distances, given as combinations of the above ones [16]

Dk
l (Gp,Gq) =

1
k

k∑

i=1

Mk
l (Gp,Gq), k = 2, 3. (6)

Finally, using the CCD defined in Eq. (4) and any of the distribution distances
dl, l ∈ {Euc, Jac,Hel, JS}, we evaluate the distance of two graphs Gp and Gq in
terms of the distributions PCC . This network distance will be denoted as

MCC
l (Gp,Gq) = dl(PCC,p,PCC,q), (7)

for l ∈ {Euc, Jac,Hel, JS}, where PCC,p and PCC,q indicate the probability
distribution PCC for graphs Gp and Gq, respectively.

3 Experimental Results

3.1 Data

In our experiments, we consider sets of weighted digraphs representing metabolic
networks, constructed and simplified as described in [17]. Given samples of gene
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expression data from patients affected by different types of cancer and avail-
able correspondent metabolic models, the resulting weighted digraphs consist of
nodes representing the involved metabolites; the directed edges connect reagent
and product metabolites and their weights are obtained by combinations of
expression values of the enzymes catalyzing the reactions in which the couple of
metabolites is involved.

RNA sequencing data of breast (Project TCGA-BRCA), lung (Projects
TCGA-LUSC and TCGA-LUAD), kidney (Projects TCGA-KIRC and TCGA-
KIRP), and brain cancers (Projects TCGA-GBM and TCGA-LGG) collected
into the Genomic Data Commons data portal (https://portal.gdc.cancer.gov)
were downloaded in the form of FPKM (fragments per kilobase per million reads
mapped) normalized read counts. The specific metabolic models for each tumor
type were downloaded from the Metabolic Atlas (https://metabolicatlas.org):
INIT cancer model for breast cancer data, tissue specific models for kidney,
lung, and brain cancer data.

Table 4. Number of samples (#) per class for all the datasets.

Class 1 # Class 2 # Total

Kidney ccRCC 159 PRCC 90 249

Lung Adenocarcinoma 159 Squamous carcinoma 150 309

Breast Basal-like 175 Luminal A 542 717

Brain GBM 161 LGG 511 672

As summarized in Table 4, for each dataset we considered only two classes.
For the Kidney dataset, we only considered samples from clear cell Renal Cell
Carcinoma (ccRCC or KIRC) and Papillary Renal Cell Carcinoma (PRCC or
KIRP), excluding the solid tissue normal control samples. Indeed, control sam-
ples have features strongly different from those of cancerous samples, thus sim-
plifying too much the classification task for this class. Analogous reasoning lead
us to exclude the solid tissue normal control samples from the Lung dataset,
taking into account only the Adenocarcinoma and Squamous carcinoma sam-
ples. In the case of the Breast dataset, we considered only the two most different
intrinsic molecular subtypes based on PAM50 classification [33] (Basal-like and
Luminal A), so as to reduce in our analysis the influence of uncertainty in the
ground truth data. Indeed, Bartlet et al. [1] investigated the classification of
breast cancer into intrinsic molecular subtypes, showing that the classifications
obtained using different tests were discordant in 40.7% of the studied cases.
For the Brain dataset, we considered the two available classes of GlioBlastoma
Multiforme (GBM) and Low-Grade Glioma (LGG).

For each dataset, we considered two network simplifications based on eigen-
centrality, as we have shown [17] strongly reduced execution times at the price
of slightly reduced classification accuracy. Simplification 1 is obtained by retain-
ing 9.2% of the nodes chosen among the eigen-top nodes, together with their

https://portal.gdc.cancer.gov
https://metabolicatlas.org
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neighbours; this percentage of eigen-top nodes leads to an only mild decrease in
classification accuracy for the reduced problem [17]. Simplification 2 is obtained
by retaining only the nodes having eigen-centrality higher than 0.1, together
with their neighbours; it leads to oversimplified networks, at the price of further
reduction in classification accuracy. Figure 1 shows an example network and the
nodes selected to give rise to the two subsequent simplifications. The number of
nodes in the original networks and in the simplified networks for all the datasets
are reported in Table 5.

3.2 Evaluation

Fig. 1. Representation of the Breast network through Cytoscape v3.6.1 application and
its clusterMaker plugin: A) whole network (green nodes), B) Simplification 1 (yellow
nodes), C) Simplification 2 (yellow nodes). (Color figure online)

Table 5. Number of nodes in the whole and simplified networks for all the datasets.

Whole network Simplification 1 Simplification 2

Kidney 4022 1034 441

Lung 3959 1017 312

Breast 3380 733 58

Brain 3911 989 305

To analyze the role of the network distances described in Sect. 2 and their ability
to highlight differences between networks, for any of them we compute the dis-
tance matrix, i.e., the symmetric square matrix containing the distances, taken
pairwise, between the networks of a given dataset. Specifically, given a dataset
consisting of n weighted digraphs G1, . . . ,Gn, the (i, j)-th element of the distance
matrix for a network distance d is given by d(Gi,Gj), i, j = 1, . . . , n. The obtained
distance matrices can be represented through heatmaps, such as those in Fig. 2
reporting the distances of the Simplification 1 of the Kidney dataset. Samples are
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ordered by class, i.e., top left and bottom right matrix blocks include distances
of samples belonging to the same class (light blue values indicate low distances,
while dark blue values indicate high distances). Therefore, visually inspecting
the heatmaps, it is expected that a good network distance produces heatmaps
with two light blue diagonal blocks, indicating a low inter-class distance and a
good intra-class closeness, respectively. For example, from Fig. 2 we can observe
that network distances dJ , M2

l and M3
l for any l appear to be quite accurate,

while the suitability of the remaining network distances needs to be ascertained.
To provide an objective means for comparing the network measures, we con-

sider a graph classification problem, that consists in building a model to predict
the class label of a whole graph (as opposed to the label propagation task, that
consists in predicting the class labels of the nodes in a graph) [40] and in its
general setting can be formalized as follows. Let (Gi, yi), i = 1, . . . , n, be the set
of n weighted digraphs over a common set of nodes in G , each associated with
a class label yi ∈ K = {1, . . . , k}. Let f : G −→ K, be a function such that
f(Gi) ∼ yi, for f ∈ H, the hypothesis space, and let d(f(G), y) be a metric for
evaluating the difference between the predicted value f(G) and the actual value
y. The aim of graph classification is to find the function f ∈ H that minimizes
the empirical risk:

I [f ] =
1
n

n∑

i=1

d(f(Gi), yi). (8)

In the experiments, each network in the dataset is represented by the vector
containing the distances from all other elements (i.e., the corresponding row
of the distance matrix) and the classification is obtained using the sequential
minimal optimization (SMO) [35] implementation of Support Vector Machine
present in the Weka software [21]. The statistical validation is obtained using a
ten-fold cross validation to ensure that the results are not biased to a specific
training set. Average accuracy results computed using the Weka Experiment
Environment are obtained over ten iterations of ten-fold cross validation:

Acc =
1
10

10∑

i=1

Acci =
1
10

10∑

i=1

#of correct predictions at iteration i

total#of predictions
. (9)

In Tables 6(a) and (b) we report average accuracy results obtained by all the
network distances described in the previous section on the Simplification 1 of
the Kidney dataset. Here, we can observe that high accuracy values correspond
to visually correct heatmaps in Fig. 2.

Due to low accuracy values obtained for the Kidney dataset, in the following
we will disregard dAvgPL, dGE , dhGE , dnEDD, and dCC network distances, con-
centrating on the remaining distances. In Fig. 3(a), we plot performance results
obtained using the selected subset of network distances over Simplification 1
of all datasets. Overall, we observe that lower average accuracy is generally
obtained by the network distances based on node distances dHam and dJ , as
well as by the distribution-based network distances MCC

l and M1
l for any dis-

tribution distance l. Higher accuracy is obtained by network distances M3 and
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Fig. 2. Heatmaps of the distance matrices obtained by all the network distances for
Simplification 1 of the Kidney dataset. (Color figure online)
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Table 6. Average accuracy (%) on Simplification 1 of Kidney dataset: (a) network
distances based on node distances and on clustering coefficients; (b) distribution-based
network distances, varying the probability distribution (along the rows) and the dis-
tance distribution (along the columns).

(a)

dAvgPL dGE dhGE dHam dJ dnEDD dCC

60.59 62.61 63.45 91.49 91.53 81.69 70.55

(b)

JSD Euc Hel Jac

M1
l 91.73 90.56 91.49 89.16

M2
l 92.73 93.53 92.69 92.97

M3
l 94.94 94.74 94.98 94.94

D2
l 92.93 93.74 93.09 92.25

D3
l 93.85 93.90 94.05 93.78

MCC
l 92.33 89.20 92.09 89.96

D3 for Kidney dataset (around 94%), M2, D2, and D3 for Lung dataset (around
95%), M2, M3, D2, and D3 for Brain dataset (around 96%), as well as by most
of the network distances for Breast dataset (around 99%). Analogous results
reported in Fig. 3(b) for Simplification 2 show that, despite the overall slight
performance decrease due to the extreme simplification of network data, high
accuracy is obtained by network distances M3, D2, and D3 for Kidney dataset
(around 93%), M2, M3, and D3 for Lung dataset (around 93%), M2, M3, D2,
and D3 for Breast dataset (around 96%), and M2, D2, and D3 for Brain dataset
(around 96%). Detailed numerical results for both simplifications are reported
in the Appendix.

To learn more about the role of the distribution distance adopted for com-
puting distribution-based network distances, in Table 7(a) we rearrange average
accuracy results obtained over Simplification 1 of all datasets. For a fixed net-
work distance (i.e., fixing a table row), we observe only slight accuracy variations
using different distribution distances; the ones leading to highest average accu-
racy are almost always JS, Euclidean, or Hellinger for all datasets. Table 7(b)
reports analogous results based on Simplification 2 of the four datasets. Here,
similar conclusions can be drawn, even though the Jaccard distribution distance
is more often (five times instead of just one) the one leading to highest accu-
racy for fixed network distances, while the Hellinger distance is only three times
(instead of seven) the one that leads to highest accuracy.

In order to analyze the performance of the distribution-based distances in
terms of total time and memory allocation, we focused on the Kidney dataset.
We have limited the experiments to the M1, M2, M3 and MCC distribution
distances based on JS, as D2 and D3 are derived from M1, M2 and M3. All the
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Fig. 3. Average accuracy (%) on (a) Simplification 1 and (b) Simplification 2 of all
datasets, varying the distance distribution.

experiments were performed on an Intel i7 quad core 4 GHz CPU, 32 GB RAM,
and a 64 bit platform. The implementations of the distance measures were run
in R (version 3.6.3) from the RStudio (version 1.2.5033) terminal [36] and the
Rprof profiler and profvis R package [4] were used for time and memory profiling
at a sampling interval of 10 ms.

We report the total run-time and maximum memory allocation at a sam-
pling instance in Tables 8(a) and (b), respectively. In case of the M1 and MCC

measures, we observe that there is a decrease in runtime of more than ten times
when the number of nodes is reduced from 1034 (Simplification 1) to 441 (Sim-
plification 2). We obtain a three times reduction in run-time with the M2 and
M3 distances.

The distribution-based distances involve two components: computation of
the network probability distributions followed by the measurement of pairwise
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distances between them. In Fig. 4, we show the run-time and memory allocated
separately for these two stages. Here, we observe that for the MCC distance,
computation time is higher during distribution calculation than during distance
matrix computation, whereas it is lower in the case of the M2 and M3 distances.

The distance matrices for the M1, M2 and M3 distances are built by running
four parallel processes. This results in a reduction of total run-time, but increases
the memory footprint.

Fig. 4. Total time and maximum memory allocation for computing the distribution
(Left panel) and distance components (Right panel) of the distribution-based distance
calculation with the JS distance for the Kidney dataset.

Overall, from the above evaluation of the considered network distances, we
can conclude that generally
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Table 7. Average accuracy (%) on the two simplifications of all datasets, varying
the probability distribution (along the rows) and the distance distribution (along the
columns). Highest Acc among the four different distribution distances for each network
distance are boldface.

(a) Simplification 1

JS Euc Hel Jac JS Euc Hel Jac

Kidney Lung

M1
l 91.73 90.56 91.49 89.16 93.98 93.63 94.08 93.66

M2
l 92.73 93.53 92.69 92.97 95.21 95.31 95.18 95.22

M3
l 94.94 94.74 94.98 94.94 93.85 93.43 93.85 95.05

D2
l 92.93 93.74 93.09 92.25 95.18 95.67 95.09 94.96

D3
l 93.85 93.90 94.05 93.78 95.02 95.47 95.05 94.76

MCC
l 92.33 89.20 92.09 89.96 90.13 89.71 89.58 88.41

Breast Brain

M1
l 99.20 98.58 99.22 98.45 93.66 93.36 93.72 93.36

M2
l 99.68 99.79 99.57 99.57 95.98 95.82 95.68 95.08

M3
l 99.43 99.29 99.43 99.25 95.97 95.92 95.95 94.72

D2
l 99.47 99.51 99.47 99.48 95.69 95.65 95.66 95.64

D3
l 99.53 99.46 99.54 99.48 95.70 95.95 95.65 95.55

MCC
l 96.94 95.69 96.48 94.36 93.39 93.27 93.38 92.38

(b) Simplification 2

JS Euc Hel Jac JS Euc Hel Jac

Kidney Lung

M1
l 92.62 92.57 92.29 91.93 91.07 90.33 91.14 89.78

M2
l 91.45 91.81 91.41 91.29 92.65 92.30 92.59 92.78

M3
l 93.13 92.78 93.17 93.18 92.85 92.88 92.85 92.82

D2
l 92.93 93.01 93.01 93.50 92.43 92.63 92.18 91.71

D3
l 93.62 93.50 93.66 93.94 93.40 92.82 93.31 92.10

MCC
l 90.40 90.12 90.20 89.95 87.38 88.75 87.00 85.25

Breast Brain

M1
l 93.12 91.12 93.08 90.68 94.53 94.23 94.69 93.71

M2
l 96.25 96.23 96.27 96.29 95.71 95.89 95.65 94.76

M3
l 97.02 96.64 97.02 96.01 95.05 95.15 94.97 93.90

D2
l 96.36 95.97 96.08 93.61 96.26 96.16 96.16 95.89

D3
l 96.60 96.79 96.39 94.64 96.49 96.09 96.44 96.17

MCC
l 90.39 91.16 90.14 89.23 89.70 90.64 89.55 88.39
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Table 8. Total time and maximum memory allocation for the distribution-based dis-
tances for the Kidney dataset.

(a) Total time (seconds)

Simplification 1 Simplification 2

M1
JSD 1343.25 130.42

M2
JSD 3666.21 1187.36

M3
JSD 4151.21 1153.62

MCC
JSD 3026.81 181.96

(b) Maximum Memory Allocation (MB)

Simplification 1 Simplification 2

M1
JSD 676.17 299.55

M2
JSD 586.75 320.55

M3
JSD 663.54 367.69

MCC
JSD 6131.83 1078.65

– network distances based on probability distributions are to be preferred, as
they succeed in taking into account the contribution of each single node.
A clear example is given by the MCC distance based on distributions of
clustering coefficients defined in Eq. (7), that achieves much higher accuracy
than the clustering coefficient-based dCC distance defined in Table 2, as shown
by the results of Tables 6(a) and (b);

– among distribution-based network distances, distances M2, M3, D2, and D3

lead to higher classification accuracy, for both simplified and over-simplified
networks, as shown by the plots of Fig. 3;

– only slight accuracy variations can be observed varying the adopted distance
between probability distributions (JS, Euclidean, Hellinger, or Jaccard), as
shown by the results of Table 7;

– the simplification of the network structure leads to extreme reduction in terms
of both execution times and memory allocation, at the price of slight reduction
in classification performance.

4 Conclusions

We have presented an extensive comparison of distances suited for evaluat-
ing similarities/dissimilarities among weighted digraphs sharing the same set of
nodes. A subjective evaluation based on the visual inspection of their distance
matrices is coupled with an objective evaluation based on the performance of
classification results that they allow to obtain. The analysis, carried out on four
datasets of tumor metabolic networks, has shown that some network distances
based on probability distributions describing them generally lead to more accu-
rate results, showing only slight variations based on the adopted distribution



404 I. Granata et al.

distance. Due to the limited availability of datasets of weighted directed net-
works, as well as for the sake of reproducibility of our results, we are planning
to provide the network scientific community with datasets of this specific type,
extracted from publicly available data for various diseases.

5 Availability and Implementation

We have provided R packages to construct the metabolic networks used in
this study in https://github.com/cds-group/MetabolitesGraphs and to com-
pute the distribution based graph distances in https://github.com/cds-group/
GraphDistances.

Acknowledgments. The work was carried out also within the activities of the authors
as members of the INdAM Research group GNCS.

Appendix

In Tables 9 and 10, we report detailed numerical performance results obtained
using the considered network distances over Simplifications 1 and 2 of all
datasets, plotted in Figs. 3(a) and (b), respectively. To provide deeper insight into
the performance with respect to each class c, besides Accuracy (Acc) as defined
in Eq. (9), we further consider Sensitivity (Se) and Specificity (Sp), defined as

Se =
TPc

TPc + FNc
, Sp =

TNc

TNc + FPc
.

Here, TPc and FNc indicate the number of samples belonging to class c that
are correctly classified in class c and those that are misclassified, respectively;
TNc and FPc indicate the number of samples that do not belong to class c that
are correctly classified as not belonging to it and those that are misclassified as
belonging to it, respectively. Having considered binary classification problems,
Se for Class 1 coincides with Sp for Class 2; likewise, Sp for Class 1 coincides
with Se for Class 2.

Table 9. Average accuracy (Acc), Sensitivity (Se) and Specificity (Sp) for Class 1 of
all datasets (Simplification 1). Highest Acc for each dataset in bold.

Kidney Lung Breast Brain

Network
distance

Acc Se Sp Acc Se Sp Acc Se Sp Acc Se Sp

dHam 91.49 93.97 87.11 92.36 92.57 92.13 99.68 98.80 99.96 93.81 87.73 95.73

dJ 91.53 94.03 87.11 92.30 91.57 93.07 99.67 98.74 99.96 94.09 88.11 95.99

M1
JS 91.73 94.46 86.89 93.98 94.35 93.60 99.20 98.00 99.59 93.66 88.97 95.15

M1
Euc 90.56 95.02 82.67 93.63 94.04 93.20 98.58 97.43 98.95 93.36 90.38 94.30

(continued)

https://github.com/cds-group/MetabolitesGraphs
https://github.com/cds-group/GraphDistances
https://github.com/cds-group/GraphDistances
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Table 9. (continued)

Kidney Lung Breast Brain

Network

distance

Acc Se Sp Acc Se Sp Acc Se Sp Acc Se Sp

M1
Hel 91.49 94.39 86.33 94.08 94.35 93.80 99.22 97.94 99.63 93.72 88.72 95.30

M1
Jac 89.16 94.14 80.33 93.66 94.60 92.67 98.45 96.80 98.99 93.36 90.13 94.38

M2
JS 92.73 93.64 91.11 95.21 96.55 93.80 99.68 99.37 99.78 95.98 94.52 96.44

M2
Euc 93.53 94.20 92.33 95.31 96.42 94.13 99.79 99.48 99.89 95.82 93.79 96.46

M2
Hel 92.69 93.58 91.11 95.18 96.61 93.67 99.57 99.37 99.63 95.68 94.15 96.16

M2
Jac 92.97 93.14 92.67 95.22 97.05 93.27 99.57 99.31 99.65 95.08 92.30 95.95

M3
JS 94.94 95.03 94.78 93.85 94.40 93.27 99.43 98.74 99.65 95.97 89.76 97.93

M3
Euc 94.74 94.77 94.67 93.43 93.90 92.93 99.29 98.57 99.52 95.92 89.95 97.81

M3
Hel 94.98 95.03 94.89 93.85 94.40 93.27 99.43 98.74 99.65 95.95 89.76 97.91

M3
Jac 94.94 95.66 93.67 95.05 96.22 93.80 99.25 98.07 99.63 94.72 87.28 97.07

D2
JS 92.93 94.59 90.00 95.18 96.55 93.73 99.47 98.86 99.67 95.69 91.70 96.95

D2
Euc 93.74 94.91 91.67 95.67 97.87 93.33 99.51 98.80 99.74 95.65 92.31 96.71

D2
Hel 93.09 95.02 89.67 95.09 96.30 93.80 99.47 98.80 99.69 95.66 91.88 96.85

D2
Jac 92.25 94.14 88.89 94.96 96.05 93.80 99.48 98.75 99.72 95.64 92.55 96.61

D3
JS 93.85 94.65 92.44 95.02 96.80 93.13 99.53 98.86 99.74 95.70 90.70 97.28

D3
Euc 93.90 94.41 93.00 95.47 97.61 93.20 99.46 98.86 99.65 95.95 91.82 97.26

D3
Hel 94.05 95.09 92.22 95.05 96.55 93.47 99.54 98.92 99.74 95.65 90.95 97.14

D3
Jac 93.78 95.41 90.89 94.76 96.54 92.87 99.48 98.57 99.78 95.55 91.76 96.75

MCC
JS 92.33 93.08 91.00 90.13 93.32 86.73 96.94 93.13 98.17 93.39 86.04 95.71

MCC
Euc 89.20 91.26 85.56 89.71 93.07 86.13 95.69 89.26 97.77 93.27 85.85 95.62

MCC
Hel 92.09 93.02 90.44 89.58 92.69 86.27 96.48 91.94 97.95 93.38 85.79 95.77

MCC
Jac 89.96 94.47 82.00 88.41 90.67 86.00 94.36 85.81 97.12 92.38 82.26 95.58

Table 10. Average accuracy (Acc), Sensitivity (Se) and Specificity (Sp) for Class 1 of
all datasets (Simplification 2). Highest Acc for each dataset in bold.

Kidney Lung Breast Brain

Network
distance

Acc Se Sp Acc Se Sp Acc Se Sp Acc Se Sp

dHam 90.88 93.96 85.44 87.35 87.98 86.67 94.34 87.43 96.57 92.66 86.43 94.64

dJ 91.26 95.29 84.11 87.35 86.91 87.80 94.32 86.39 96.88 92.72 86.36 94.74

M1
JSD 92.62 95.66 87.22 91.07 91.21 90.93 93.12 85.26 95.66 94.53 90.32 95.85

M1
Euc 92.57 96.03 86.44 90.33 91.33 89.27 91.12 77.70 95.46 94.23 90.80 95.30

M1
Hel 92.29 95.41 86.78 91.14 90.95 91.33 93.08 84.87 95.74 94.69 89.76 96.24

M1
Jac 91.93 94.52 87.33 89.78 90.14 89.40 90.68 74.36 95.96 93.71 88.96 95.21

M2
JSD 91.45 92.95 88.78 92.65 91.11 94.27 96.25 91.48 97.78 95.71 93.23 96.50

M2
Euc 91.81 93.57 88.67 92.30 91.25 93.40 96.23 90.48 98.10 95.89 93.43 96.67

M2
Hel 91.41 93.20 88.22 92.59 90.99 94.27 96.27 91.48 97.82 95.65 93.17 96.44

(continued)



406 I. Granata et al.

Table 10. (continued)

Kidney Lung Breast Brain

Network

distance

Acc Se Sp Acc Se Sp Acc Se Sp Acc Se Sp

M2
Jac 91.29 92.82 88.56 92.78 92.26 93.33 96.29 91.49 97.84 94.76 92.99 95.32

M3
JSD 93.13 93.46 92.56 92.85 93.08 92.60 97.02 93.65 98.10 95.05 87.90 97.30

M3
Euc 92.78 93.72 91.11 92.88 92.96 92.80 96.64 93.13 97.76 95.15 89.39 96.97

M3
Hel 93.17 93.59 92.44 92.85 93.08 92.60 97.02 93.65 98.10 94.97 87.83 97.22

M3
Jac 93.18 94.09 91.56 92.82 92.71 92.93 96.01 91.42 97.49 93.90 87.52 95.91

D2
JSD 92.93 95.72 88.00 92.43 92.72 92.13 96.36 92.81 97.51 96.26 95.59 96.48

D2
Euc 93.01 95.60 88.44 92.63 94.42 90.73 95.97 90.38 97.79 96.16 95.39 96.40

D2
Hel 93.01 95.72 88.22 92.18 92.09 92.27 96.08 92.30 97.30 96.16 95.84 96.26

D2
Jac 93.50 95.85 89.33 91.71 92.57 90.80 93.61 82.53 97.20 95.89 95.46 96.03

D3
JSD 93.62 95.60 90.11 93.40 93.46 93.33 96.60 94.34 97.32 96.49 95.10 96.93

D3
Euc 93.50 95.53 89.89 92.82 92.71 92.93 96.79 93.23 97.95 96.09 94.46 96.60

D3
Hel 93.66 95.65 90.11 93.31 93.33 93.27 96.39 94.00 97.16 96.44 95.84 96.63

D3
Jac 93.94 95.97 90.33 92.10 93.71 90.40 94.64 86.19 97.38 96.17 94.71 96.63

MCC
JSD 90.40 89.18 92.56 87.38 89.44 85.20 90.39 76.16 94.98 89.70 81.73 92.23

MCC
Euc 90.12 89.06 92.00 88.75 92.34 84.93 91.16 81.00 94.43 90.64 80.17 93.95

MCC
Hel 90.20 89.06 92.22 87.00 89.13 84.73 90.14 75.42 94.89 89.55 80.49 92.43

MCC
Jac 89.95 89.37 91.00 85.25 87.37 83.00 89.23 72.95 94.48 88.39 68.27 94.75
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Abstract. Well-known and widely applied k-means clustering heuristic
is used for solving Minimum Sum-of-Square Clustering problem. In solv-
ing large size problems, there are two major drawbacks of this technique:
(i) since it has to process the large input dataset, it has heavy compu-
tational costs and (ii) it has a tendency to converge to one of the local
minima of poor quality. In order to reduce the computational complex-
ity, we propose a clustering technique that works on subsets of the entire
dataset in a stream like fashion. Using different heuristics the algorithm
transforms the Big Data into Small Data, clusters it and uses obtained
centroids to initialize the original Big Data. It is especially sensitive for
Big Data as the better initialization gives the faster convergence. This
approach allows effective parallelization. The proposed technique eval-
uates dynamically parameters of clusters from sequential data portions
(windows) by aggregating corresponding criteria estimates. With fixed
clustering time our approach makes progress through a number of partial
solutions and aggregates them in a better one. This is done in comparing
to a single solution which can be obtained by regular k-means-type clus-
tering on the whole dataset in the same time limits. Promising results
are reported on instances from the literature and synthetically generated
data with several millions of entities.

Keywords: k-means · Parallel · Clustering · Big Data · MSSC ·
Dataset · Decomposition · Aggregation

1 Introduction

Recently, clustering methods have attracted much attention as effective tools in
theoretical and applied problems of machine learning that allows to detect pat-
terns in raw/poorly structured data. Another motivation is the need to process
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large data sets to obtain a natural grouping of data. Therefore, one of the main
aspects for clustering methods is their scalability [9,15].

There are a number of studies aimed at improving clustering quality using
methods with high cost and time complexity [15–17,19]. This type of meth-
ods usually has a significant drawback: it is practically intractable to cluster
medium and large data sets (approximately 105–107 objects or more). These
methods cannot work with huge databases, because the computational complex-
ity in time/space (memory) growths (polynomially) very rapidly. Therefore, it
has a sense to look for algorithms with reasonable trade-offs between effective
scalability and the quality of clustering [7,8,10,11].

One of the known methods of data clustering is the k-means algorithm, which
is widely used due to its simplicity and good characteristics [18,20]. A number
of algorithms and technologies have improved this method by clustering input
data objects in portions. There are algorithms that use the data stream clustering
or decomposition approach, for example, mini-batch k-means [3,8,13]. It has a
weighted version of k-means algorithm with many applications [10].

Meta-heuristics can be of great help when the exact solution is difficult or
expensive in terms of used computation time and space. Some heuristics for
k-means that accelerate calculations have been developed and implemented:
part of the heuristics is devoted to accelerating the convergence of the method,
another discards redundant or insignificant intermediate calculations. The fol-
lowing meta-heuristics have shown their effectiveness in clustering big data:

– deletion at each iteration of data patterns that are unlikely to change their
membership in a particular cluster, as in [11,12];

– using the triangle inequality in [14];
– combinations of various techniques [1,4].

For many machine learning algorithms, processing of big data is problematic
and severely limits functionality usage. Our approach is directed to make an
advantage out of this drawback, i.e., the more data is given, the better estimates
can be obtained. The k-means is one of the fastest algorithms, so we use it as
the underlying basis in our approach. In this paper, we use the k-means++
modification to build an algorithmic meta-heuristic that uses some subsets from
the entire dataset at each step. We note that ++ version of the k-means has a
special initialization of centroids [6].

Formally, given a set of objects X = {x1, ..., xN} in Euclidean space to be
clustered and a set of corresponding weights {w1, ..., wN}, for wl ∈ R+, l ∈
1, ..., N . Then {C1, ..., Ck} is a partition of X in k clusters if it satisfies (i)
Ci �= ∅, (ii) Ci ∩ Cj = ∅, i �= j, i, j = 1, 2, ..., k, and (iii)

⋃
Ci = X. Then,

minimum sum-of-squared clustering problem is defined as following:

MSSD = min
C1,...,Ck

N∑

l=1

wl min
j=1,...,k

||xl − cj ||2,
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where centroids cj =
∑

l∈arg(Cj)
wlxl/

∑
l∈arg(Cj)

wl. Correspondingly, SSD cri-
teria gives an estimate on a particular clustering partition:

SSD(C1, ..., Ck) =
N∑

l=1

wl min
j=1,...,k

||xl − cj ||2.

In case the weights of objects are not specified, then wl = 1 for l ∈ 1, ..., N.
Decomposing the dataset can be technically realized by a stream like meth-

ods. Streaming to process a window may be considered as searching dependencies
between the obtained essential information and the one gathered previously by
the computational model. The principal goal of the study is to investigate meth-
ods of dataset decomposition in a stream-like fashion for computing k-means
centroid initialization of clustering that produces convincing results regarding
MSSD criteria (Minimum Sum-of-Squared Distance) [5]. Shortly, methods for
finding close to optimal k-means initialization, while having fast computational
speed.

The idea of merging clusters obtained by partial clusterings is known in the
literature: there are formal approximations that guarantee certain estimates on
performance, and quality [9]. Known clustering algorithm STREAM with k-
median l1-metric in [13] weights each center by the number of points assigned to
it. The stream clustering usually assumes processing the input data in sequential
order. Unlike this we use decomposition that may use essential the parallelization
of the clustering of the input dataset portions. In our algorithm we add additional
heuristic SSD estimates to the weighting. This algorithm can be used in cases
the dataset is replenished dynamically, on fly, and possibly in real time. The
clustering of additional portions clarifies the clustering structure.

The goal of this work is to create a decomposition method for the k-means
algorithm on large-scale datasets to initialize centroids in order to obtain qual-
itative results with respect to the MSSD criteria. In other words, we use the
method of finding the initialization of k-means so that it is close to optimal
while having a high calculation speed. Different types of meta-heuristics are
used in the task of clustering k-means by processing the obtained data in a sec-
ondary (high-level) clustering procedure. Another goal of this work is to study
the influence of meta-parameters to the algorithm behaviour with glance to the
time and the SSD (Sum-of-Squared Distance) criterion minimization. Another
purpose of our research is to define the bounds of such algorithm efficiency and
its behaviour regarding meta-parameters.

2 Algorithm

The idea of the algorithm is to make a partition of the dataset into smaller
portions, then find the corresponding clustering structure and replace them by
single centroid points. On this stage we obtain compact representation of initial
dataset that preserves its most essential structural information. Then aggregate
and clusterize these centroids in different possible ways getting new heuristic for
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generalized centroids. Shortly, transform the Big Data into Small Data, cluster
them and use obtained centroids to initialize the original Big Data.

More formally, by this approach, first, we decompose the entire dataset entries
shuffled randomly on subsets of fixed size (taking either all, or representative
portion of elements). Next step is to do k-means clustering of some of these
subsets (batches/windows). We use the term ‘window’ (along the term ‘batch’
from the literature) to stress that the data subsets are taken in sizes proportional
to the entire dataset.

(Meta-) parameters of the algorithm:

– k is the number of required clusters.
– N is the number of objects in the entire data set.
– d is the window size (number of objects in one window). The sizes of the

windows are chosen in proportion to the entire dataset. E.g., taking 5 wins
decomposition means taking the size of the windows equal to [N/5].

– n is the number of windows used for independent initialization of k-means
during Phase 1, see next section.

– m(≥ n) is the total number of windows used for the clustering. The union of
m windows may or may not cover the entire dataset.

By using SSD estimates on their corresponding clusterings we make heuristics
for better initialization of the algorithm on the entire dataset.

We considered the following two modes for the windows (wins) generation:
1. Segmentation of the entire data set on windows, then a random permutation
of objects in the data set is created. The data set is segmented into successive
windows of size d. We refer to this as uniform window decomposition mode. 2. For
each window, d random objects are selected from the entire set. By repeating this,
the required number of windows is generated (objects may be picked repeatedly
in different wins). We refer to this mode as random window generation mode.

In order to simplify description we distinguish centroids according to algo-
rithmic steps at which they appear:

– centroids that results from k-means++ on separate windows and used for
subsequent initializations we call local centroids;

– set of generalized centroids is obtained by gathering (uniting) resulted local
centroids from clusterings on windows;

– basis centroids are obtained by k-means++ clusterings of the set of general-
ized centroids (considered as a small dataset of higher level representation of
windows);

– final centroids are obtained by computing k-means on the entire datasest,
initialized by basis centroids.

2.1 Phase 1: Aggregation of Centroids

An independent application of k-means++ algorithm on a fixed number n of win-
dows in order to obtain local centroids with following aggregation to generalized
set of centroids. The scheme for the algorithms is shown in Fig. 1. This centroids
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are considered as higher level representation of clustered windows. Each object
of generalized set of centroids is assigned to the weight corresponding to the
normalized SSD value for the window in which it is calculated as centroid. The
weight of i-th object is calculated as follows:

wi = 1 − (SSDi − SSDmin)/(SSDmax − SSDmin), (1)

where SSDi is the SSD value for such window from which the i-th centroid is
taken as an object. Then, using k-means, the new dataset of generalized centroids
is divided into k-clusters, taking into account the weights wi of the objects. In
the case of degeneration, k-means is reinitialized. The resulting (basis) centroids
are used for:

1. initialization of k-means on the Input Dataset in order to obtain final cen-
troids;

2. evaluation of the SSD on the Input Dataset;
3. initialization Phase 2 of the algorithm described in the following sections.

Alternatively, during processing subsequent windows n + 1, n + 2, ..., m we
have considered the following options in Phase 2: parallel option, straightforward
option, and sequential option.

2.2 Phase 2: Parallel Option

The centroids obtained in the previous Phase 1 are used to initialize k-means
on each subsequent window n + 1, n + 2, ..., m. The resulting (local) centroids
and SSD estimates are stored if there is no centroid degeneration. The stopping
condition is the specified limit either on the computation time or on the number
of windows being processed. Similar to Phase 1 we do the clustering on the
generalized set of centroids. Subsequent use of its results is similar to clauses 1.1
and 1.2 of Phase 1. Both Phase 1. and parallel option of the Phase 2 are unified
in Fig. 1.

2.3 Phase 2: Straightforward Option

An alternative heuristic of splitting the entire dataset and an alternative way of
choosing centroids for the clustering initialization is used (see Fig. 2).

The idea of this heuristics is to evaluate and to use the best centroids regard-
ing SSD criteria for initialization of k-means on the subsequent window. While
each window is clustered the best obtained centroids are accumulated to process
them for final clustering, like in Phase 1.

Algorithm Sketch:

1. Make dataset decomposition on subsets win0, win1, ..., winl, ... of equal size.
2. Obtain list of initial centroids cent0 either by k-means++ on the first window

win0 or by Phase 1. Assign AC ← [cent0], c ← cent0, BestSSD ← SSD0,
l = 1.
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Fig. 1. Scheme for the decomposition/aggregation clustering method. In Phase 1 k-
means++ initialization is performed independently on windows 1, ..., n. Resulted final
centroids are used for initialization during Phase 2 on windows n + 1, ...,m.

Fig. 2. Direct subsequent use of the best obtained SSD

3. (Start iteration) Use centroids c to initialize k-means with the next window
winl. Calculate centl and SSDl.
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4. If degeneracy in the clustering is presented (i.e., the number of obtained non-
trivial clusters less then k, |centl| < k) then withdraw winl and continue from
step 3 for the next l ← l + 1.

5. If its clustering SSD is within the previously obtained or best SSD then
AC ← AC ∪ centl.

6. If its clustering SSD gives better score then mark it as the best and use for
the following initializations, i.e., BestSSD ← SSDl, c ← centl.

7. Repeat from step 3 until all windows have been processed or, time bounding
condition is satisfied.

8. The accumulated centroids AC are considered as elements for additional clus-
tering, while their SSD values are used to calculate corresponding weights like
in Phase 1.

9. The obtained centroids AC are used for the clustering (like in the previous
part) and its final SSD value has been compared with SSD of k-means++ on
the entire dataset.

2.4 Phase 2: Sequential Option

The following is the sequential version of the algorithm. It is schematically rep-
resented in Fig. 3.

Algorithm Sketch:

1. l = 1, init ← centroids from Phase 1, m is the fixed parameter
2. k-means clustering on the window m + l with initialization init.
3. If there is no degeneration during clustering then memorize the resulting

(local) centroids and the corresponding SSD values.
4. In order to obtain new centroids, we carry out clustering with weights on the

united set of centroids (similarly to Phase 1).
5. If the time limit has not been exhausted then init ← centroids obtained in

step 4, l = l + 1 and go to step 2, otherwise step 6.
6. Subsequent usage of obtained centroids is similar to clauses 1 and 2 of Phase 1.

3 Computational Experiments

In this section we show the testing results of our algorithm from Sect. 2.4 on
three datasets. We only present the results of computation by the sequential
version described in Phase 2, with the initial centroids precomputed (sequen-
tially) according to Phase 1. We do not include parallel version of Phase 2 as it
distinguishes in the way windows are clustered and it requires additionally efforts
in order to compare computational times (taking into account parallelism). The
straightforward case can be seen as a particular case of the window aggregation.

Table 1 summarizes clustering estimates of used datasets. Results of com-
putations on various meta-parameter sets from Table 2 are compared regarding
SSD/time estimates to the ones obtained by k-means++ and summarized in
Table 3. Each line of Table 3 corresponds to unique meta-parameter’s set and
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Fig. 3. Sequential aggregation (accumulation) of the heuristically optimal SSD and
centroids

includes two SSD estimates, average time per clustering an proportion between
computation time of proposed decomposition algorithm and k-means++. The
first SSD estimate is obtained as following: we cluster corresponding entire
dataset by k-means++ with corresponding parameters and consider obtained
SSD criteria as a baseline value. Then, we do independent clusterings by our
algorithms on ranges of experiments to calculate basis centroids and compare
whether obtained SSD (on the basis centroids) values improves baseline values.
The rates are presented for the cases our algorithm finds better solution. We
present it in order to show what approximation our algorithm gives if the entire
dataset have not been involved. We note that in order to obtain basis centroids we
only need to process separate windows. The second SSD estimate is calculated in
the same way with addition of one more step. Specifically, k-means is processed
on the entire dataset while initialized by the basis centroids. Comparing these
two columns of SSD estimates in Table 3 on various parameters and datasets
allows us to consider obtained basis centroids as reasonable approximation to
MSSD on the entire dataset.

Datasets Description:
We used three datasets DS1, DS2, DS3 of real numbers.
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Table 1. SSDs and computation times for datasets DS1, DS2, DS3. The k-means++
is performed with default parameters from the programming library sklearn [1], i.e.,
10 separate initializations are executed, the result of the best is presented.

Dataset Num SSD Time (sec) SSD

Clusters k-means++ k-means++ Ours

DS1 5 3.0625 × 108 389.69 3.0622 × 108

DS1 10 2.7270 × 108 617.70 2.7209 × 108

DS1 20 2.2960 × 108 836.44 2.2740 × 108

DS1 30 1.9482 × 108 677.52 1.9449 × 108

DS2 5 1.5947 × 108 118.23 1.5947 × 108

DS2 10 1.1111 × 108 198.92 1.1106 × 108

DS2 20 7.5041 × 107 627.57 7.4883 × 107

DS2 30 7.3088 × 107 3312.62 7.3080 × 107

DS3 5 1.5734 × 106 312.77 1.5734 × 106

DS3 10 1.2657 × 106 776.62 1.2657 × 106

DS3 20 1.0151 × 106 1279.21 1.0151 × 106

DS3 30 9.1251 × 105 2785.85 9.1173 × 105

Table 2. Meta-parameters of experiments from Table 3. Window sizes
are taken in the ranges (N/20, N/25, ..., N/100), (N/100, N/110, ..., N/250) and
(N/10, N/20, ..., N/150). ‘Allow repeats in windows’ refers to the mode how win-
dows are generated. Random window generation mode allows repeats in data objects
(TRUE), while uniform window decomposition does not allow it (FALSE).

Param id Window sizes (×N) Allow
repeats
in
windows

Number of clusters Time limit (sec)

1 1/20, ..., 1/100; step 1/5 FALSE 5 30

2 1/20, ..., 1/100; step 1/5 FALSE 10 30

3 1/20, ..., 1/100; step 1/5 FALSE 20 30

4 1/20, ..., 1/100; step 1/5 FALSE 30 30

5 1/100, ..., 1/250; step 1/10 FALSE 5 45

6 1/100, ..., 1/250; step 1/10 FALSE 10 45

7 1/100, ..., 1/250; step 1/10 FALSE 20 45

8 1/100, ..., 1/250; step 1/10 FALSE 30 45

9 1/10, ..., 1/150; step 1/10 TRUE 5 60

10 1/10, ..., 1/150; step 1/10 TRUE 10 60

11 1/10, ..., 1/150; step 1/10 TRUE 20 60

12 1/10, ..., 1/150; step 1/10 TRUE 30 60
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Table 3. Experiments on different parameter sets from Table 2. SSD criteria and
computation times are presented. Two SSD estimates are considered: 1. the rates our
algorithm improves* computed SSD in regards to k-means++ (baseline), where cen-
troids are resulted from aggregation step, i.e., the criteria is estimated on basis cen-
troids; 2. the rate our algorithm improves** the baseline with final centroids, i.e., after
additional step with k-means initialized by basis centroids. The improvement rates are
given regarding k-means++ on windows from Table 1. Average times per clustering
procedure are given.

Dataset Param id Improves SSD rate % Avg. time in seconds
time(ours)

time(kmeans++)

*direct **global step

DS1 1 11.8 52.9 42.0 0.108

DS1 2 58.8 100.0 54.8 0.089

DS1 3 41.2 88.2 56.1 0.067

DS1 4 0.0 2 3.5 54.9 0.081

DS2 1 0.0 58.8 21.2 0.179

DS2 2 11.8 64.7 29.0 0.146

DS2 3 76.5 100.0 45.2 0.072

DS2 4 0.0 5.9 458.2 0.138

DS3 1 0.0 17.6 28.7 0.092

DS3 2 0.0 29.4 56.9 0.073

DS3 3 0.0 23.5 69.8 0.055

DS3 4 5.9 41.2 196.3 0.070

DS1 5 0.0 68.8 39.7 0.102

DS1 6 0.0 87.5 56.0 0.091

DS1 7 0.0 93.8 61.0 0.073

DS1 8 0.0 68.8 49.2 0.073

DS2 5 0.0 43.8 21.2 0.179

DS2 6 0.0 68.8 26.1 0.131

DS2 7 87.5 93.8 39.9 0.064

DS2 8 0.0 25.0 445.2 0.134

DS3 5 0.0 6.2 27.9 0.089

DS3 6 0.0 37.5 60.8 0.078

DS3 7 0.0 25.0 53.8 0.042

DS3 8 0.0 18.8 200.4 0.072

DS1 9 6.7 66.7 53.7 0.138

DS1 10 26.7 93.3 76.8 0.124

DS1 11 20.0 100.0 82.0 0.098

DS1 12 0.0 26.7 72.1 0.106

DS2 9 0.0 46.7 26.9 0.227

DS2 10 0.0 66.7 35.7 0.179

DS2 11 80.0 86.7 55.8 0.089

DS2 12 0.0 6.7 519.2 0.157

DS3 9 0.0 6.7 39.4 0.126

DS3 10 0.0 26.7 72.1 0.093

DS3 11 0.0 26.7 85.6 0.067

DS3 12 6.7 60.0 229.6 0.082
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– DS1 contains 4 × 106 objects and number of attributes (features) is 25. The
structure of the data: 50 synthetic blobs having Gaussian distribution, each
having the same number of elements and the same standard deviation value.
There is no overlaps in separate blobs.

– DS2 contains 4 × 106 objects and number of attributes (features) is 20. The
structure of the data: 20 synthetic blobs having Gaussian distribution, each
blob has variable number of objects (from 104 to 40 × 104) and variable
standard deviation values (distributed randomly in the range from 0.5 to
1.5).

– DS3 is SUSY dataset from open UCI database [2]. The number of attributes
is 18 and the number of objects is 5 × 106. In our study we do not take into
account the true labelling provided by the database, i.e., the given predictions
for two known classes. The purpose of using such dataset is to search for
internal structure in the data. This dataset is preprocessed by normalization
prior the clustering.

4 Conclusions

In this approach we show that it is possible to achieve better results in the mean-
ing of SSD criteria by applying iteratively the clustering procedure on subsets
of the dataset. Obtained centroids are processed again by (meta-) clustering,
resulting to the final solution.

Some observations:

– One promising result is that centroids calculated by shown method on large
datasets provide reasonable good quality SSD values even without clustering
on the whole dataset. Step 6 in Part 2.2 and step 9 in Part 2.3 in many cases
may be omitted giving essential advantage in computational speed.

– It is observed there is no sense in splitting the dataset for a huge number of
windows as the number of degenerated clusters growths as well.

– Slight improvement is detected on normalized data and small number of clus-
ters.

– Our experiments mostly support the idea that quality and precision of clus-
tering results are highly dependant on the dataset-size and its internal data
structure, while it does not strongly depend on the clustering window/batch
size, as far as the majority of windows represents the clustering structure of
the entire dataset.
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Abstract. We propose an optimization model of automatic grouping
(clustering) based on the k-means model with the Mahalanobis distance
measure. This model uses training (parameterization) procedure for the
Mahalanobis distance measure by calculating the averaged estimation of
the covariance matrix for a training sample. In this work, we investigate
the application of the k-means algorithm for the problem of automatic
grouping of devices, each of which is described by a large number of
measured parameters, with various distance measures: Euclidean, Man-
hattan, Mahalanobis. If we have a sample with the composition known
in advance, we use it as a training (parameterizing) sample from which
we can calculate the averaged estimation of the covariance matrix of
homogeneous production batches using the Mahalanobis distance. We
propose a new clustering model based on the k-means algorithm with
the Mahalanobis distance with the averaged (weighted average) estima-
tion of the covariance matrix. We used various optimization models based
on the k-means model in our computational experiments for the auto-
matic grouping (clustering) of electronic radio components based on data
from their non-destructive testing results. As a result, our new model of
automatic grouping allows us to reach the highest accuracy by the Rand
index.

Keywords: K-means · Electronic radio components · Clustering

1 Introduction

The increasing complexity of modern technology leads to an increase in the
requirements for the quality, of industrial products reliability and durability.
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Determination of product quality is carried out by production tests. The quality
of products within a single production batch is determined by the stability of the
product parameters. Moreover, an increase in the stability of product parame-
ters in manufactured batches can be achieved by increasing the stability of the
technological process.

In order to exclude the possibility of potentially unreliable electronic and
radio components (ERC) intended to be installed in the onboard equipment of a
spacecraft with a long period of active existence, the entire electronic component
base passes through specialized technical test centers [1,2]. These centers carry
out operations of the total input control of the ERC, total additional screening
tests, total diagnostic non-destructive testing and the selective destructive phys-
ical analysis (DPA). To expand the results of the DPA to the entire batch of
products obtained, we must be sure that the products are manufactured from a
single batch of raw materials. Therefore, the identification of the original homo-
geneous ERC production batches from the shipped lots of the ERC is one of the
most important steps during testing [1].

The k-means model in this problem is well established [1,3–10]. Its appli-
cation allows us to achieve a sufficiently high accuracy of splitting the shipped
lots into homogeneous production batches. The problem is solved as a k-means
problem [11]. The aim is to find k points (centers or centroids) X1, . . . , Xk in
a d-dimensional space, such that the sum of the squared distances from known
points (data vectors) A1, . . . , AN to the nearest of the required points reaches
its minimum (1):

argminF (X1, . . . , Xk) =
N∑

i=1

minj∈{1,k}‖ Xj − Aj ‖2. (1)

Factor analysis methods do not significantly reduce the dimension of the space
without loss of accuracy in solving problems [12]. However, in some cases, the
accuracy of partitioning into homogeneous batches (the proportion of objects
correctly assigned to “their” cluster representing a homogeneous batch of prod-
ucts) can be significantly improved, especially for samples containing more than 2
or 3 homogeneous batches. In addition, the methods of factor analysis, although
they do not significantly reduce the dimension of the search space, show the
presence of linear statistical dependencies (correlations) between the parameters
of the ERC in a homogeneous batch.

A slight increase in accuracy is achieved by using an ensemble of mod-
els [3]. We also applied some other clustering models, such as the Expectation-
Maximization (EM) model and Self-organized Cohonen Maps (COM) [12].

Distance measure used in practical tasks of automatic objects grouping in
real space depends on the features of space. Changing distance measures can
improve the accuracy of automatic ERC grouping.

The idea of this work is to use the Mahalanobis distance measure in the k-
means problem and study the accuracy of clustering results. We proposed a new
algorithm, based on k-means model using the Mahalanobis distance measure
with an averaged estimation of the covariance matrix.
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2 Mahalanobis Distance

In k-means, k-median [13–15] and k-medoid [16–18] models, various distance
measures may be applied [19,20]. The use of correlation dependencies can be
involved by moving from a search in space with a Euclidean or rectangular
distance to a search in space with a Mahalanobis distance [21–24]. The square
of the Mahalanobis distance DM defined as follows (2):

DM (X) =
n∑

i=1

(X − µ)TC−1(X − µ), (2)

where X is vector of values of measured parameters, µ is vector of coordinate
values of the cluster center point (or cluster center), C is the covariance matrix.

Experiments on automatic ERC grouping with the k-medoid and k-median
models using the Mahalanobis distance show a slight increase in the clustering
accuracy in simple cases (with 2–4 clusters) [25].

3 Data and Preprocessing

In this study, we used data of test results performed in the testing center for the
batches of integrated circuits (microchips) [26]. The source data is a set of some
ERC parameters measured during the mandatory tests. The sample (mixed lot)
was originally composed of data on products belonging to different homogeneous
batches (in accordance with the manufacturer’s markup). The total amount of
ERC is 3987 devices. Batch 1 contains 71 device, 116 devices for Batch 2, 1867 for
Batch 3, 1250 for Batch 4, 146 for batch 5, 113 for Batch 6, 424 for Batch 7. The
items (devices) in each batch are described by 205 input measured parameters.

Computationally, the k-means problem, in which the sum of squared dis-
tances acts as the minimized objective function, is more convenient than the
k-median model using the sum of distances, because when using the sum of the
squared distances, the center point of the cluster (the centroid) coincides with
the average coordinate value of all objects in the cluster. When passing to the
sum of squared Mahalanobis distances, this property is preserved.

Nevertheless, the use of the Mahalanobis distance in the problem of automatic
ERC grouping in many cases leads to accuracy decrease in comparison with the
results achieved with the Euclidean distance due to the loss of the advantage of
the special data normalization approach (Table 1, hit percentage computed as
the sum of hits of algorithm (True Positives) in every batch divided by number
of products in the mixed lot).

The assumption that the statistical dependences of the parameter values
appear in different batches of ERC in a similar way has experimental grounds.
As can be seen from Fig. 1, the span and variance of the parameters of different
batches vary significantly. Even if the difference in the magnitude of the span
and variance of any parameters is insignificant among separate batches, they
differ significantly from the span and variance of the entire mixed lot (Fig. 2).
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Table 1. Comparison of the clustering results with different measures of distance,
number of exact hits (proportion of hits)

Batches Squared
Euclidean
distance

Squared
Mahalanobis
distance

Rectangular
(Manhattan)
distance

Cosine
distance

Correlation
distance

Four-batch mixed lot (n = 446)

Batch 1 (n = 71) 70 (0.99) 47 (0.66) 71 (1.00) 70 (0.99) 70 (0.99)

Batch 2 (n = 116) 78 (0.67) 83 (0.72) 64 (0.55) 78 (0.67) 84 (0.72)

Batch 5 (n = 146) 96 (0.66) 88 (0.60) 105 (0.72) 96 (0.66) 104 (0.71)

Batch 6 (n = 113) 44 (0.39) 91 (0.81) 50 (0.44) 44 (0.39) 38 (0.37)

Average 0.65 0.69 0.65 0.65 0.66

Sum of distances 473.174 26146.350 401.4 0.0012 0.0011

Full mixed lot (n = 3987)

Batch 1 (n = 71) 67 (0.94) 70 (0.99) 68 (0.96) 67 (0.94) 71 (1.00)

Batch 2 (n = 116) 4 (0.03) 4 (0.03) 4 (0.03) 4 (0.03) 78 (0.67)

Batch 3 (n = 1867) 578 (0.31) 223 (0.12) 558 (0.30) 578 (0.31) 0 (0.00)

Batch 4 (n = 1250) 403 (0.32) 127 (0.11) 446 (0.36) 406 (0.33) 227 (0.18)

Batch 5 (n = 146) 66 (0.45) 81(0.55) 63 (0.43) 64 (0.44) 78 (0.53)

Batch 6 (n = 113) 88 (0.78) 113 (1.00) 82 (0.73) 88 (0.78) 32 (0.28)

Batch 7 (n = 424) 311 (0.73) 404 (0.95) 303 (0.72) 311 (0.73) 314 (0.74)

Average 0.38 0.26 0.38 0.38 0.20

Sum of distances 5008.127 248808.6 1755.8 0.007 0.004

Fig. 1. Statistical dependence of the ERC parameters 57, 58

Thus, it is erroneous to take the variance and covariance coefficients in each
of the homogeneous batches equal to the variance and covariance coefficients
for the whole sample. Experiments with the automatic grouping model based
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Fig. 2. Statistical dependence of the ERC parameters 23, 24

on a mixture of Gaussian distributions by maximizing the likelihood function
by the EM algorithm [27] show a relatively high model adequacy only when
using diagonal covariance matrices (i.e. uncorrelated distributions), moreover,
equal for all distributions. Apparent correlations between the parameters are
not taken into account.

Mahalanobis distance is scale invariant [28]. Due to this property, data nor-
malization does not matter if this distance is applied. At the same time, binding
of the boundaries of the parameters to the boundaries, determined by their
physical nature, sets a scale proportional to the permissible fluctuations of these
parameters under operating conditions, without reference to the span and vari-
ance of these values in a particular production batch. The solution to the prob-
lem of preserving the scale could be to use the Mahalanobis distance with the
correlation matrix R instead of the covariance matrix C (3):

DM (X) =
n∑

i=1

(X − µ)TR−1(X − µ). (3)

Each element of the matrix R is calculated as follows (4):

rXY =
∑N

i=1(Xi − X)(Yi − Y )
(N − 1)SXSY

, (4)

where SX and SY are standard deviations of parameters X and Y , X and Y are
their average values.

As shown by experiments, the results of which are given below, this approach
does not show advantages compared to other methods.
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4 The K-Means Model with Supervised Mahalanobis
Distance Measure

The clustering problem is a classical example of the unsupervised learning app-
roach. However, in some cases, when solving the problem of automatic grouping,
we have a sample of a known composition. This sample can serve as a train-
ing (parameterizing) sample. In this case, a unique covariance matrix C (see
(2)) is calculated on this training sample and then used on other data. We call
the Mahalanobis distance (2) with the covariance matrix C pre-calculated on a
training sample the supervised (or parameterized) Mahalanobis distance.

If there is no training sample, well-known cluster analysis models can be
used to isolate presumably homogeneous batches with some accuracy. With this
approach, a presumably heterogeneous batch can be divided into the number of
presumably homogeneous batches, determined by the silhouette criterion [29–
31]. At the same time, a mixed lot can be divided into a larger number of
homogeneous batches than it actually is: smaller clusters are more likely to
contain data of the same class, i.e. the probability of false assignment of objects
of different classes to one cluster reduces. The proportion of objects of the same
class, falsely assigned to different classes, is not so important for assessing the
statistical characteristics of homogeneous groups of objects.

In the next experiment, there were training sample contains 6 batches: Batch
1 (71 device), Batch 2 (116 devices), Batch 4 (1250 devices), Batch 5 (146
devices), Batch 6 (113 devices), Batch 7 (424 devices). Using covariance matrix
C, datasets contain 2 batches in all combinations were clustered with the use of
various distance measure. The result was compared with the traditional k-means
clustering method with the squared Mahalanobis distance (unsupervised squared
Mahalanobis distance, Tables 2, 3, 4 proportion of hits computed as the sum of
hits of algorithm in every batch divided by number of products in the batch),
and with Euclidean and rectangular distances. For each model, we performed 5
experiments. Average clustering results are shown in Tables 2, 3, 4.

Table 2. Comparison of the clustering results with different measures of distance,
number of exact hits (proportion of hits) (Part 1)

Batches Supervised
squared
Mahalanobis
distance

Unsupervised
squared
Mahalanobis
distance

Squared
Euclidean
distance

Rectangular
(Manhattan)
distance

Batch 4 (n = 1250) 850 (0.68) 685 (0.55) 741 (0.59) 895 (0.72)

Batch 7 (n = 424) 390 (0.92) 256 (0.60) 228 (0.54) 423 (1.00)

Average 0.74 0.56 0.58 0.79

Avg. total squared distance 94467 100898 7119 12272

Batch 7 (n = 424) 253 (0.60) Singular 416 (0.98) 415 (0.98)

Batch 1 (n = 71) 71 (1.00) Matrix 71 (1.00) 71 (1.00)

Average 0.65 - 0.98 0.98

Avg. total squared distance 17551 - 1233 2795
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The experiment showed that the results of solving the k-means problem with
a supervised Mahalanobis distance measure are higher in comparison with the
results of a model with unsupervised Mahalanobis distance, however, it is still
lower than in case of Euclidean and rectangular distances.

5 The K-Means Model with Supervised Mahalanobis
Distance Measure Based on Averaged Estimation of
the Covariance Matrix

Since the original covariance matrices are of the same dimension, we are able to
calculate the average estimation of the covariance matrix among all homogeneous
batches of products in the training (parameterizing) sample:

C =
1
n

k∑

j=1

Cjnj , (5)

where nj is number of objects (components) in jth production batch, n is
total sample size, Cj are covariance matrices calculated on separate production
batches, each of which can be calculated by (6):

Cj = E[(X − EX)(E − EY )T ]. (6)

We propose the k-means algorithm using the Mahalanobis distance measure
with averaged estimation of the covariance matrix. Convergence of the k-means
algorithm using a Mahalanobis distance reviewed in [32]. Optimal k value was
found by silhouette criterion [30]:

Algorithm 1

Step 1. Divide randomly initial sample into k clusters.
Step 2. Calculate for each cluster a centroid µi. A centroid is defined as the

arithmetic mean of all points in a cluster (7):

µi =
1
m

m∑

j=1

Xji (7)

where m is number of points, Xj is vector of measured parameter values (j =
1..m), i = 1..n (n is a number of parameters).

Step 3. Calculate the averaged estimation of the covariance matrix (5). If
the averaged estimation of the covariance matrix is singular, then proceed to
Step 4, else proceed to step 5.

Step 4. Increase the number of clusters by (k + 1) and repeat steps 1 and 2.
Form new clusters with squared Euclidean distance measure (8):

D(Xj , µi) =
n∑

i=1

(Xji − µi)
2 (8)
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where n is a number of parameters.
Return to step 3 with new training sample.
Step 5. Assign each point to the nearest centroid using the squared Maha-

lanobis distance with averaged estimation of the covariance matrix to form new
clusters.

Step 6. Repeat algorithm from step 2 until clusters do not change.

Table 3. Comparison of the clustering results with different measures of distance,
number of exact hits (proportion of hits) (Part 2)

Batches Supervised

squared

Mahalanobis

distance

Unsupervised

squared

Mahalanobis

distance

Squared

Euclidean

distance

Rectangular

(Manhattan)

distance

Batch 7 (n = 424) 223 (0.53) Singular 244 (0.58) 282 (0.67)

Batch 6 (n = 113) 113 (1.00) Matrix 92 (0.81) 84 (0.75)

Average 0.63 - 0.63 0.68

Avg. total squared distance 18190 - 1396 3300

Batch 7 (n = 424) 216 (0.51) Singular 217 (0.51) 274 (0.65)

Batch 2 (n = 116) 116 (1.00) Matrix 95 (0.82) 97 (0.84)

Average 0.62 - 0.58 0.69

Avg. total squared distance 18190 - 1123 3090

Batch 7 (n = 424) 424 (1.00) 218 (0.51) 380 (0.90) 385 (0.91)

Batch 5 (n = 146) 136 (0.93) 85 (0.58) 146 (1.00) 146 (1.00)

Average 0.98 0.53 0.92 0.93

Avg. total squared distance 34385 34282 1250 3202

Batch 1 (n = 71) 71 (1.00) 47 (0.66) 71 (1.00) 71 (1.00)

Batch 4 (n = 1250) 471 (0.38) 653 (0.52) 772 (0.62) 642 (0.51)

Average 0.41 0.53 0.64 0.54

Avg. total squared distance 82458 79599 7237 11120

Batch 4 (n = 1250) 410 (0.33) 648 (0.52) 735 (0.59) 570 (0.46)

Batch 6 (n = 113) 102 (0.90) 59 (0.52) 67 (0.59) 85 (0.75)

Average 0.38 0.52 0.59 0.48

Avg. total squared distance 82649 82054 5452 10014

Batch 4 (n = 1250) 412 (0.33) 622 (0.50) 769 (0.62) 485 (0.39)

Batch 2 (n = 116) 98 (0.85) 69 (0.59) 76 (0.66) 96 (0.82)

Average 0.37 0.51 0.62 0.43

Avg. total squared distance 82693 82318 5410 9996

Batch 4 (n = 1250) 953 (0.76) 772 (0.62) 772 (0.62) 873 (0.70)

Batch 5 (n = 146) 91 (0.62) 91 (0.62) 146 (1.00) 146 (1.00)

Average 0.75 0.62 0.66 0.73

Avg. total squared distance 99605 83963 6689 11619

Batch 1 (n = 71) 71 (1.00) Singular 71 (1.00) 71 (1.00)

Batch 6 (n = 113) 111 (0.98) Matrix 113 (1.00) 113 (1.00)

Average 0.99 - 1.00 1.00

Avg. total squared distance 6500 - 354 797

(continued)
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Table 3. (continued)

Batches Supervised

squared

Mahalanobis

distance

Unsupervised

squared

Mahalanobis

distance

Squared

Euclidean

distance

Rectangular

(Manhattan)

distance

Batch 1 (n = 71) 71 (1.00) Singular 71 (1.00) 71 (1.00)

Batch 2 (n = 116) 116 (1.00) Matrix 112 (0.97) 114 (0.98)

Average 1.00 - 0.98 0.99

Avg. total squared distance 6481 - 325 747

Batch 1 (n = 71) 71 (1.00) 39 (0.56) 70 (0.99) 71 (1.00)

Batch 5 (n = 146) 84 (0.58) 80 (0.55) 99 (0.68) 108 (0.74)

Average 0.71 0.55 0.78 0.83

Avg. total squared distance 22199 13004 223 841

Batch 2 (n = 116) 91 (0.78) Singular 89 (0.77) 70 (0.60)

Batch 6 (n = 113) 87 (0.77) Matrix 37 (0.33) 48 (0.42)

Average 0.78 - 0.55 0.52

Avg. total squared distance 7319 - 282 903

Table 4. Comparison of the clustering results with different measures of distance,
number of exact hits (proportion of hits) (Part 3)

Batches Supervised
squared
Mahalanobis
distance

Unsupervised
squared
Mahalanobis
distance

Squared
Euclidean
distance

Rectangular
(Manhattan)
distance

Batch 5 (n = 146) 96 (0.66) 81 (0.55) 146 (1.00) 146 (1.00)

Batch 6 (n = 113) 113 (1.00) 66 (0.59) 105 (0.93) 109 (0.75)

Average 0.81 0.57 0.97 0.99

Avg. total squared distance 23172 6564 512 1246

Batch 2 (n = 116) 116 (1.00) 67 (0.57) 108 (0.93) 109 (0.94)

Batch 5 (n = 146) 78 (0.54) 80 (0.55) 146 (1.00) 146 (1.00)

Average 0.74 0.56 0.97 0.97

Avg. total squared distance 23070 15710 458 1175

6 Computational Experiments

A series of experiments was carried out on the data set described above. This
mixed lot is convenient due to its composition is known in advance, which allows
us to evaluate the accuracy of the applied clustering models. Moreover, this data
set is difficult for grouping by well-known models: some homogeneous batches
in its composition are practically indistinguishable from each other, and the
accuracy of known clustering models on this sample is low [12,33].

As a measure of the clustering accuracy, we use the Rand Index (RI) [34],
which determines the proportion of objects for which the reference and resulting
cluster splitting are similar.
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To train the model with the averaged Mahalanobis distance measure from
the components of the mixed lot, new combinations of batches were compiled
containing devices belonging to different homogeneous batches. New combina-
tions consists of 2–7 homogeneous batches. Training sample include the entire
data from each batch.

Experiments conducted with 5 different clustering models:

Model DM1: K-means with the Mahalanobis distance measure, the estimation
of the covariance matrix calculates for the entire training sample. The objective
function defines as the sum of the squared distances.

Model DC: K-means with a distance measure similar to the Mahalanobis dis-
tance, but using a correlation matrix instead of a covariance matrix (3). The
objective function defines as the sum of the squared distances.

Model DM2: K-means algorithm with Mahalanobis distance measure based on
averaged estimation of the covariance matrix (4). The objective function defines
as the sum of the squared distances.

Model DR: K-means with Manhattan distance measure. The objective function
defines as the sum of the distances.

Model DE: K-means with Euclidean distance measure. The objective function
defines as the sum of the squared distances.

This paper presents the results of three groups of experiments. In each of
the groups of experiments, for each working sample, the k-means algorithm was
run 30 times with each of the five studied clustering models. In these groups
of experiments the highest RI value was shown by K-means algorithm with
Mahalanobis distance measure based on averaged estimation of the covariance
matrix.

First Group. The training set corresponds to the working sample for which clus-
tering was carried out. Five series of experiments were carried out. In each series
of experiments, the sample is composed of a combination of products belonging
to 2–7 homogeneous batches. Table 5 presents the maximum, minimum, mean

Table 5. An experiment of the 1st group

Rand index Objective function

DM1 DC DM2 DR DE DM1 DC DM2 DR DE

Max 0.755 0.66 0.822 0.739 0.745 255921 3843 2645 18902 6008

Min 0.560 0.64 0.732 0.702 0.704 250558 3706 2600 17785 5010

Mean 0.627 0.65 0.771 0.716 0.721 253041 372289 261582 18225 5298

σ 0.051 0.00 0.024 0.010 0.009 1178 261.01 989.3 433.12 290.276

V 0.466 0.701 0.378 2.377 5.479

R 5363 1369 4517 1117 998
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value and standard deviation for the Rand index and objective function for the 7-
batches sample. For objective function also calculated the coefficient of variation
(V) and span factor (R, where R = Max − Min).

Second Group. Training and work samples do not match. In practice, the test
center can use retrospective data from the supply and testing of products of
the same type as a training sample. In this series of experiments, no more than
seven homogeneous batches are presented in the training set. The working sample
is represented by a new combination of products belonging to different homo-
geneous batches. In Table 6 represented results for 5-batches working set and
7-batches training set.

Table 6. An experiment of the 2nd group

Rand index Objective function

DM1 DC DM2 DR DE DM1 DC DM2 DR DE

Max 0.7490 0.645 0.8524 0.7337 0.73567 254822 38704 263405 20509 9194.61

Min 0.4312 0.631 0.7470 0.6955 0.68932 249355 37856 257534 19408 6554.1

Mean 0.5660 0.636 0.8117 0.7079 0.71919 251694 37982 259689 19674 7119.85

σ 0.0519 0.003 0.0324 0.0153 0.01002 1462.8 203.55 1502.09 289.63 571.119

V 0.581 0.536 0.578 1.472 8.022

R 5467 848 5871 1102 2641

Third Group. The training and working samples also do not match, but the
results of the automatic product grouping were used as the training sample
(k-means in multistart mode with Euclidean distance measure). In each series
of experiments, the training set consists of 10 batches, which in turn are the
result of applying the k-means algorithm to the training set containing the entire
sample. The working sample is represented by a new combination of products
belonging to different homogeneous batches. In Table 7 showed results for 7-
batches working set.

Table 7. An experiment of the 3rd group

Rand index Objective function

DM1 DC DM2 DR DE DM1 DC DM2 DR DE

Max 0.7672 0.6579 0.7489 0.73969 0.73456 255886 379167 281265 18897 6495

Min 0.5618 0.6453 0.6958 0.70286 0.70466 250839 36997 274506 17785 5009

Mean 0.6317 0.6499 0.7246 0.71359 0.71935 252877 37178 277892 18240 5250

σ 0.0468 0.0032 0.0160 0.0081 0.0063 1164.5 152.84 2358.92 452.73 367.5

V 0.461 0.411 0.849 2.482 6.981

R 5047 920 6759 1112 1485
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In most cases, the coefficient of variation of the objective function values is
highest for the DE model, where the Euclidean distance measure used. The span
factor of the objective function, in the opposite, has most high values for the DM2
model, where the Mahalanobis distance measure with the average estimation of
the covariance matrix used. Therefore, obtaining consistently good values of the
objective function requires multiple attempts to run the k-means algorithm, or
using other algorithms based on the k-means model, such as j-means [35] or
greedy heuristic algorithms [36] or others.

According to Rand index, DM2 model shows the best accuracy among the
presented models (Fig. 3(a)–3(c)) in almost all series of experiments. And in
all cases, the DM2 model surpasses the traditional DE model, where Euclidean
distance measure used (Fig. 3(b), 3(c)).

Experiments showed that there is no correlation between the values of the
objective function and the Rand index in series of experiments with model DM1
in any combinations of training and working samples (Fig. 4(a)). In other mod-
els with an increase the volume of training and working samples (nt and nw,
respectively), the clustering accuracy becomes constant (Fig. 4(b)). For DM2
model there is an inverse correlation between the achieved value of the objective
function and the clustering accuracy RI on a small sample (Fig. 5(a)).

Fig. 3. The mean value of the Rand index for a) 1st group; b) 2nd group; c) 3rd group

In addition, the fact deserves attention that when applying the Euclidean
distance measure, the best (smaller) values of the objective function do not
correspond to the best (large) accuracy values. (Fig. 5(b)). This fact shows that
the model with the Euclidean distance measure is not quite adequate: the most
compact clusters do not exactly correspond to homogeneous batches.
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Fig. 4. Dependence of the Rand index on the value of the objective function for a)
DM1 model (nt = 3987, nw = 2054); b) DM2 model (nt = 3987, nw = 3987)

Fig. 5. Dependence of the Rand index on the value of the objective function for a)
DM2 model (nt = 187, nw = 187); b) DE model (nt = 187, nw = 187)

7 Conclusion

The proposed clustering model and algorithm which uses the k-means model
with Mahalanobis distance and an averaged (weighted average) estimation of the
covariance matrix was compared with the k-means model with the Euclidean and
rectangular distances in solving the problem of automatic grouping of industrial
products by homogeneous production batches.
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Taking into account the higher average Rand Index value, the proposed opti-
mization model and algorithm applied for the electronic radio components clus-
tering by homogeneous production batches has an advantage over the models
with traditionally used Euclidean and rectangular (Manhattan) metrics.

Acknowledgement. Results were obtained within the framework of the State Task
FEFE-2020-0013 of the Ministry of Science and Higher Education of the Russian
Federation.
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