)

Check for
updates

Dynamic Process Synchronization Using BPMN
2.0 to Support Buffering and (Un)Bundling
in Manufacturing

Konstantinos Traganos' @, Dillan Spijkers', Paul Grefen!, and Irene Vanderfeesten!-

! Eindhoven University of Technology, Eindhoven, The Netherlands
{k.traganos,p.w.p.j.grefen,i.t.p.vanderfeesten}@tue.nl,
dillanspijkers@gmail.com
2 Open University of the Netherlands, Heerlen, The Netherlands
irene.vanderfeesten@ou.nl

Abstract. The complexity of manufacturing processes is increasing due to the
production variety implied by mass customization of products. In this context,
manufacturers strive to achieve flexibility in their operational processes. Business
Process Management (BPM) can help integration, orchestration and automation
of these manufacturing operations to reach this flexibility. BPMN is a promising
notation for modeling and supporting the enactment of manufacturing processes.
However, processes in the manufacturing domain include the flow of physical
objects (materials and products) apart from information flow. Buffering, bundling
and unbundling of physical objects are three commonly encountered patterns in
manufacturing processes, which require fine-grained synchronization in the enact-
ment of multiple process instances. Unfortunately, BPMN lacks strong support for
this kind of dynamic synchronization as process instances are modeled and exe-
cuted from a single, isolated point of view. This paper presents a mechanism based
on BPMN 2.0 that enables process modelers to define synchronization points
by using the concept of recipes. The recipe system uses a dynamic correlation
scheme to control many-to-many interactions among process instances to imple-
ment required inter-instance synchronizations. We formally describe the involved
BPMN patterns, implement and evaluate them in a manufacturing scenario in the
high-tech media printing domain.

Keywords: BPMN patterns - Dynamic process instances synchronization -
Manufacturing - Buffering - (Un)bundling

1 Introduction

In discrete manufacturing, processes get more complex and organizations strive to man-
age and orchestrate their operations. Activities on a factory shop floor should also be
integrated with business functions for a seamless, end-to-end process management [1].
Business Process Management (BPM) is a paradigm that is often employed to help with
process orchestration and improve cross-functional integration. While BPM has proven

© Springer Nature Switzerland AG 2020
D. Fahland et al. (Eds.): BPM Forum 2020, LNBIP 392, pp. 18-34, 2020.
https://doi.org/10.1007/978-3-030-58638-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58638-6_2&domain=pdf
https://doi.org/10.1007/978-3-030-58638-6_2

Dynamic Process Synchronization Using BPMN 2.0 19

its strength in business sectors where information processing is dominant, e.g. finance
[2], it has also been extensively applied in healthcare [3] and transportation [4], where
physical entities are included as well. Without surprise, the application of BPM in manu-
facturing has increasingly gained attention [5], especially in the Industry 4.0 era, where
many advanced robots and automated guided vehicles (AGV) have been introduced.
That is because the need for orchestration of the activities of all the versatile actors is
more imperative.

Modelling and supporting the execution of processes, is a core part in applying BPM
concepts. BPMN, as the de-facto standard for business process modelling [6], is widely
used for business processes [7]. Its interdisciplinary understandability [8, 9] and the
expressiveness with respect to integration to execution [10], together with the need of
integration of business processes and manufacturing operations [1, 11, 12], make it a
promising candidate for use in the discrete manufacturing domain. Various extensions
of BPMN for manufacturing processes have already been proposed [13, 14] and the
comparison to other languages [15] shows the language’s strengths.

Despite its maturity and the recent interest of applying the notation in manufacturing,
BPMN has inherent limitations. One of these is the fact that process models in BPMN
are designed from a single, isolated process instance perspective, disregarding possible
interactions among instances during execution [16, 17]. Often, process instances need
to interact and collaborate based on information that is outside of the scope of one single
instance. This collaboration is more important in manufacturing processes, where phys-
ical objects, and not only data information, are under consideration. Think of example
of buffering points, where inventory is kept at an intermediate stage of a process, or the
situation of bundling or batching products (multiple entities) for further processing as
single entity (e.g. placing a number of items in a box for transporting). There should be
hence, synchronization points where a process instance, representing the flow of activi-
ties of entities, waits or sends information regarding the state from or to other instances,
commonly from different process definitions. BPMN provides basic synchronization
with elements such as Signals or Messages. But the former is a broadcast message with-
out any payload while the latter sends a payload message (with e.g. process instance
identifiers or process definition keys) to only one instance. There is a lack of dynamic
synchronization expressibility and functionality in the sense that the synchronization of
the control flow of process instances cannot currently be decided based upon runtime
state and content information of other process instances.

Buffering of entities and (un)bundling of entities and activities are constructs fre-
quently encountered in the physical world of manufacturing processes. Using BPMN for
manufacturing processes, entails explicit support for these constructs. Thus, we present
in this paper an approach, called recipe system, to address the dynamic synchroniza-
tion issue described in the previous paragraph. The approach uses standard BPMN
2.0 elements to form a dynamic controller that works as a correlation mechanism for
synchronization points amongst independent process instances.

In Sect. 2 we discuss related work of the synchronization shortcoming of BPMN.
In Sect. 3, we discuss the characteristics of the manufacturing concepts that we aim to
support in terms of modeling and execution. In Sect. 4, the correlation mechanism is
described and formalized. The implementation of the mechanism, its application and
evaluation are discussed in Sect. 5. Finally, we conclude and reflect on the presented
work in Sect. 6.

20 K. Traganos et al.

2 Background and Related Work

In the introduction, we briefly discussed the increasing interest of applying BPMN in
manufacturing. More studies make it prominent [18-22]. The fact though that BPMN
originates from the service industry, indicates that the notation cannot fully support
concepts occurring in the physical, manufacturing world and consequently in the man-
ufacturing sector. Various extensions have been proposed to capture the specific manu-
facturing characteristics, e.g. manufacturing activities, resource containers and material
gateways [13], sensory event definitions, data sensor representations and specific smart
manufacturing task types [23], sensing and actuating tasks [24], assets, properties and
relationships among these entities [25].

However, all the aforementioned studies do not touch the synchronization prob-
lem that BPMN lacks to support. This shortcoming of the language has already been
studied, but rather as a general problem, not targeting at the physical and manufactur-
ing world. In general, we see two different paradigms; activity-centric ones (e.g. what
BPMN follows) focusing on describing the ordering of activities, and artifact-centric
ones focusing on describing the objects that are manipulated by activities [26—30]. From
a BPMN perspective, artifact-centric modeling support is limited, though extension ele-
ments to support the artifact-centric paradigm have been defined [31]. Fahland et al.
[32] approach the process synchronization from a dualistic point of view, both from
the activity-centric and the artifact-centric paradigm perspectives. The study argues that
processes are active elements that have agents, actors that execute activities. These actors
drive the processes forward. Artifacts, on the other hands, are passive elements that are
object to the activities. The activities are performed on these objects. While Petri nets
are used as a means of process specification, Fahland argues that locality of transitions,
which synchronize by “passing” tokens, are at the core of industrial process modeling
languages, just like BPMN. Steinau et al. [33] also consider many-to-many process inter-
actions in their study, proposing a relational process structure, realizing many-to-many
relationship support in run-time and design-time. Earlier work on process interactions by
van der Aalst et al. [34] (e.g. proclets), allowed for undesired behavior in many-to-many
relations [35]. Pufahl et al. [36] put forward the notion of a “batch activity”, which is an
activity that is batched over multiple process instances of the same process definition.
The batch is activated upon the triggering of an activation rule. The concept is similar
to the approach presented in this paper, but our study includes a strong focus on the
correlation of process instances of different process definitions, that typically contain
different activities. Finally, Marengo et al. [37] study the interplay of process instances
and propose a formal language, inspired by Declare [38], for process modeling in the
construction domain.

The importance of BPMN and the still ongoing research on the issue of multi-instance
synchronization, is the motivation of our work on supporting frequent manufacturing
patterns with this specific language. Our presented approach enriches BPMN and allows
practitioners to use the notation for modeling and enactment of their manufacturing
processes. In the next section, we first discuss the characteristics of the manufacturing
constructs that this paper aims to support with BPMN, namely buffering, bundling and
unbundling.

Dynamic Process Synchronization Using BPMN 2.0 21

3 Characteristics and Limitations of Manufacturing Constructs

This section introduces the buffering, bundling and unbundling constructs. Due to their
similar but inverse relationship, the bundling and unbundling constructs are jointly
discussed. Limitations of BPMN to express them is also discussed.

3.1 Manufacturing Constructs Characteristics

Buffering

From an operations management perspective, buffering is considered as maintaining
excess resources to cover variation or fluctuation in supply or demand [39]. The concept is
also referred to as decoupling inventory between process steps, as these can be performed
independently from each other [40]. Buffering, as an operations type of storage, is
covered by the manufacturing operations taxonomy, under the Inventory operations
category [41]. From [42], we can define buffering as “a form of (temporary) storage
with the intention to synchronize flow material between work centers or production
steps that may have unequal throughput”. From the five types of inventory from [43],
we focus on the decoupling inventory/buffers in this study.

In the BPM field, van der Aalst [44] had already argued that places in Petri nets
correlate to physical storage locations, in his effort to use high-level Petri nets to describe
business processes. Thus, from a process management perspective the notion of a buffer
can be explained as follows. An instance enters the buffer and is kept in a holding state.
Once a condition is met (e.g. capacity becomes available in the downstream production
step), one or more entities are released. The selection of which entity to be released can
be based on multiple queuing policies, e.g. the First-In-First-Out (FIFO) policy. Once
an entity is released, control flow continues as normal.

The above explanation though, considers the buffering from a single process instance
perspective, leading to the process instance isolation issue we described in the previous
sections. There is a need to approach the construct from a process control perspective,
as such that buffer-level attributes and information from many process instances are
captured and managed, as illustrated in Fig. 1.

Bundling and Unbundling

Manufacturing operations literature recognizes operations that bundle, merge, unitize
and package entities, as well as their inverse counterparts, but to the best of our knowledge
no literature exists that describes how these entities are selected during operations. This
is assumed to be described by the modelers in another part of the models or in different
models. In this paper we define bundling as “the synchronization of instances that are
grouped in some way, either physically or virtually, whose control flow shall continue
or terminate simultaneously as a group”. Note this is a process-oriented definition and
caution should be taken for generalization.

Examples of bundling are commonly encountered when physical entities need to be
grouped into some sorts of a container. Imagine for instance products being produced
and put in a packaging box. Once the capacity of the box is reached, the box can be
transported as a single entity. Upon arrival of the box to a distribution center, entities are

22 K. Traganos et al.

Buffer -

[Tame 1)

| iapes
| manages

! Buffer 5) Process
controller - ’ — control
) ., perspective

. \
registers 1releases

;
;
Process
instance
perspective

Production step 1 Production step 2

Buffer

Instance 1

Fig. 1. Buffering construct from both process control and process instance perspective.

unbundled again. We use the term bundling, as a more generic term than batching, since
the latter normally refers to putting together entities of the same type, while in bundling
we can merge entities of different types. Bundling is often encountered together with
buffering, as quite often, (sub-)entities are buffered before the bundling operation can
take place, to ensure all (sub-)entities are present.

3.2 BPMN Limitations

A buffering point between two activities (or process fragments), as shown with the
triangle element in Process Instance 1 in Fig. 1, could be naively modeled in BPMN
2.0 with the use of conditional or (intermediate) message catching events. These ele-
ments can offer the “holding” state of the control flow. However, none approach is
suitable. Conditional events use local-instance variables, ignoring information of other
process instances. Message events are targeted to a specific, pre-defined instance, missing
dynamic correlation information.

Bundling and unbundling constructs can be probably modeled with AND-gateways.
But these gateways (un)merge control flows that can be modelled on the same defini-
tion, which is not always possible. In many scenarios, different processes have to be
correlated and gateways cannot perform this. Erasmus et al. [41] discuss also the use of
multi-instance activities (among the other BPMN patterns proposed for modeling man-
ufacturing processes) for unitizing, as they call it, entities. The spawning of repeated
instances can serve (un)bundling functionality. However, the isolation problem appears
here as well. Each child process instance is unaware of the information of the rest child
1nstances.

4 Concept and Functionality of a Recipe System

In this section we first present the approach to overcome the synchronization issues. The
approach is later formalized.

Dynamic Process Synchronization Using BPMN 2.0 23

4.1 The Recipe Controller

Having provided the definitions of the constructs under consideration, along with their
attributes, and discussed the BPMN limitations to support them (in Sect. 3), we present
here the solution of a recipe control system. The work of Spijkers [45] discusses also a
list of functional and non-functional requirements for designing such a system.

Recipe

The central notion of the system is the recipe. It corresponds to a synchronization (or
integration) point, where (previously uncorrelated) control flows in independent process
instances may be synchronized. It consists of a set of input rules and output rules. A
recipe is fulfilled once all input rules are satisfied. We link two important concepts in a
recipe. The instance type and the selector attribute. The first is used to group process
instances of the same type in a pool. Think for example a car assembly process. It requires
anumber of wheels, anumber of doors and a chassis. Each of these elements are produced
independently according to their process models. Thus, we can have three pools, one
with “CarWheel” instance type, one with “CarDoor” type and one with “CarChassis”
type. The selector attribute is used for discriminating instances that are of the same type,
yet of a different variant. For example, the “CarDoor” instance type can have the color
(e.g. blue/red) as attribute. A pool is a virtual “container” to keep homogenous process
instances; homogeneous from an instance type perspective, as these can have different
attributes. All the concepts are illustrated in Fig. 2. Process instances are denoted as
shape figures.

PR
mE-.

".. “1=I= A A

Pool P, Pool P, Pool P;
instance type == “CarWheel” instancetype == “CarDoor” instance type == “CarChassis”
4 x (any) CarWheel
t y
illlpeus 2 x (red) CarDoor
1 x (red) CarChassis
Recipe R
Output
1x C
les (red) Car
rel)
instance type == “Car”

Fig. 2. Illustration of the recipe concepts with an example (Color figure online)

The configuration of each pool plays a crucial role for the fulfillment of a recipe.
The following options are considered:

e Genericity. A pool can be either generic or specific. In the first case, the pool does
not consider the selector attribute of the buffered process instances (e.g. in Pool P;

24 K. Traganos et al.

of Fig. 2). In the latter case, recipe fulfillment candidates are nominated based on the
selector attribute (e.g. on the color in pools P, and P3 of Fig. 2).

e Availability mask. Pools can represent physical buffers but as such should account
for physical availability, i.e. how instances/objects are accessed. This paper considers
three availability masks:

— ALL: All instances are available (e.g. in a virtual or physical pool that we do not care
about the physical layout).

— FIRST: The instance that was first placed in the pool is considered as available.
Subsequent instances are marked as available if and only if they share the selector
attribute value of the first instance, in one sustained sequence.

— LAST: The instance that was placed last in the pool is considered as available. Subse-
quent instances are marked as available if and only if they share the selector attribute
value of the last instance, in one sustained sequence.

e Release policy. The release policy ranks instances for recipe fulfillment (and thus

“release” from the pool). This paper considers three policies:

FIFO: instances that have been in the pool the longest are released first.

LIFO: instances that have been in the pool the shortest are released first.

— ATTR: instances are released based on a selector attribute value.

Fulfillment Cardinality. The fulfillment cardinality determines how many instances of
a pool are needed to lead to recipe fulfillment. It can be a single value, i.e. all instances
are nominated for fulfillment or it can take a minimum () and a maximum (m) value,
i.e. the pools needs at least n and less than m.

With the configuration options described above, the recipe can be specified with
the following notation, shown in Fig. 3 (same example as in Fig. 2). Upon a recipe
fulfilment, a process may continue its flow after the respective synchronization points
or a new process instance (mainly from a different process definition) can start.

Recipe name: Final car assembly
Selector attribute: ordernumber

Input instance type min max gen relpol mask rel
CarWheel 4 4 e FIF0 LAST o
CarDoor 4 4 o LIFO ALL o
CarChassis 1 1 o LIFO ALL e

num Start process definition key (output)

1 Final_Car_Assembly_Process

Fig. 3. Specification of a recipe (proposed notation)

4.2 Formalization

Recipes (R) are treated as sequences that contain Pools (P) that are treated as sequences
that contain instances. The notation |P| is used to denote the number of instances cur-
rently in pool P. The notation P (i), with i € {1, ..., |P]}, refers to the i-th instance in

Dynamic Process Synchronization Using BPMN 2.0 25

the pool. Not to be confused with the powerset notation P (A), referring to the powerset
of set A. Note that this instance indexing is based on the time at which an instance was
added to the pool. In other words, from a mathematical perspective, a pool is an array
of instances that is sorted on arrival timestamp. In general, the symbol i is used to either
denote an array index (like in the P (i) notation) or a process instance, like i € P. The
latter should be read as instance i in pool P. The mathematical model, which extends
the content presented in the previous section, uses the following symbols:

‘R a recipe.

‘P a pool. Is a member of a recipe, i.e. P € R.

S the (abstract) set of possible selector attributes.

sp the selector attribute for pool P.

Vs the (abstract) set of possible selector attribute values for selector attribute s € S.
y; the selector attribute value for instance i € P.

¢ the minimum fulfillment cardinality for pool P.

c%g the maximum fulfillment cardinality for pool P.

ap (i) availability mask function for pool P. ap (i) € {0, 1}|Vi € P.

pp (i) release policy ranking function for pool P. pp(i) € {1, ..., |P|}|IVi e P.
gp boolean whether pool P is generic (1) or specific (0). gp € {0, 1}.

S(P) the set of selector attribute values for which at least cz instances exist in pool P.

Formally defined as
SPy={vel{v:pePl:|{v:pePrv,=v}=cp} (1)

Note that, by definition, S(P) C Vs, holds.
m(P) a map that maps an attribute value to a sequence of fulfillment candidate
instances (of the same attribute value) in pool P.

mP):v—>1 2)

with v € S(P) and set of instances I C P.
Later in the discussion, Fig. 4 introduces an example of such a mapping.

Availability Mask Functions

Auvailability masking uses a boolean mask to indicate whether an instance is available
for recipe fulfillment. The mask «p (i) equals to 1 if and only if the instance argument
i is available for recipe fulfillment (otherwise 0). Consequently, an instance may only
be nominated for a fulfillment if op (i) = 1 holds for instance i € P. There are three
flavors of availability masks. First, there is the ALL mask, which means that all instances
are available. Alternatively, there is the FIRST mask, which marks the first element
as available. Subsequent instances are available if and only if they share the selector
attribute value of the first instance, in one sustained sequence (as is often the case in
physical stacks only accessible from the stacking direction). Somewhat inversely, there
is the LAST mask. As the name suggests, this mask marks the last element as available.
Preceding instances are available if and only if they share the selector attribute of the

26 K. Traganos et al.

m:v =1 i‘ /.T"
— green

Pool P
instance type == “CarDoor”

5(P) = { "red"
"blue" € S(P) * Im(P)("b

Fig. 4. Map generation m(P) example

last instance, in one sustained sequence. All three masks are defined with the following
equations:

af L (P() =1, Viell,...,|P]} 3)
«FIRST (p(iyy = Lifi =1V (vpg) = vpi-1) = --- = vp@)) Viell,...,|Pll4)
P 0 otherwise B
WAST(piyy = | LIFE=1PIV (vPa) = vParn = =VP(P)) y; o (... IPIG)
P 0 otherwise U

Release Policy Functions

Release policies use a ranking function to prioritize instances for fulfillment. A lower
rank means the instance is preferred. First off, there is the First-In-First-Out (FIFO)
release policy, which orders instances based on the timestamp ¢ at which they were
added to the recipe pool.

i1 <ip &ty <ty Y(i,i)ePxP (6)

Instance i; is preferred over iy for release, if and only if the time added to the pool
of i1, t;, is smaller than or equal to that of i, #;,. In other words: the instances are ranked
such that their timestamps are non-decreasing. The ranking function, ngO is therefore

defined simply as the instance index of the time-sorted sequence of instances in a pool:
PRO(PG) =i, Yiell,..., [P} (7

Secondly, there is the inverse of FIFO, Last-In-First-Out (LIFO), again based on
timestamp ?.

i1 <&t >t,, Y(i,i)ePxP ®)

Notice that Eq. (8) results in the reverse ranking of Eq. (6). The resulting ranking

function, ,071511:0 is therefore the inverse ranking of Eq. (7):

p%)lFO(p(i)) =14+|P|—i, Viell,...,|P} ©)

Dynamic Process Synchronization Using BPMN 2.0 27

Lastly, there is the attribute based policy (ATTR), which sorts instances based on
some attribute, denoted by #. As an example instantiation of this policy, one could think
of a priority based policy.

i1 < &#, >#, Y(i,h)ePxP (10)

To define the ATTR release policy ranking function, we first define the sequence
sortt (4, #) C A to be the result of sorting sequence A on some attribute # in descending
order (i.e. the result is nonincreasing). Furthermore, we define index (i, A) € {1, ..., |A[}
to return the index at which element i occurs in sequence A. Using these intermediate
definitions, we can arrive at the final definition:

PATTR(P(i)) = index (P(i), sorth ({P, #})), Vie{l,...,|P]} (11)

where # refers to the priority attribute to be sorted.
Given the properties of these functions, the discussion above can be generalized to

i1 <ip & pp(i1) < ppi2) V(1 i2) € P xP (12)

This generalized form is used in the subsequent implementation. The function def-
inition denoted by pp is to be replaced with an appropriate release policy function
variant.

Note that, since output rules are released instantaneously once a recipe is fulfilled,
the effect of these release policies is only observable if there is a choice which instances
should remain in the pool. This choice is only there if there are more instances in the pool
than the maximum fulfillment cardinality, i.e. |m(v € S(P))| > c;;. Otherwise, exactly
min(c;;, IPI) instances are selected in the fulfillment and the ordering is irrelevant, as
becomes apparent in the following algorithmic discussion.

The Pool Algorithm
As mentioned before, a pool can produce a mapping m: v € S(P) — I C P upon
request. This mapping maps an attribute value v to a sequence of fulfillment candidate
instances /. A visual example that explains how that mapping works, can be found in
Fig. 4. In this figure, the “CarDoor” pool from Fig. 2 is used as an example.

The pool’s mapping algorithm is listed in Fig. 5.

The Recipe Algorithm

The recipe algorithm collects and analyzes pool maps to determine fulfillment feasibility.
If a fulfillment can be achieved for a particular selector attribute value, the algorithm
releases the appropriate instances from the pools and returns them in a list. The algorithm
is listed in Fig. 6.

5 Prototype Implementation, Demonstration and Evaluation

This section discusses the technical implementation of the proposed synchronization
approach, as it was prototyped, demonstrated and evaluated in a real use case.

28 K. Traganos et al.

Algorithm: Pool’s mapping algorithm, i.e. m(P).
Input: Pool P.
Output: Mapping of attribute values to sequence of fulfillment candidate
instances, m: v € S(P) - I CP.
/* Map generation phase. */
m1+ ({} = {}); /* Initialize empty map mq. */
foreachi € {i € P:ap(i) =1} do /* For every available instance ¢ in the pool. */
if m1(v;) = @ then /* If value v; not in map my yet. */
| my(v;) + {}; /* Add new value v; to map my. */
end
my (v;) ¢ mq(v;) U {i}; /* Add instance i to map my. */
end
/* Map pruning phase. */
ma + ({} = {}); /* Initialize empty map ma. */
foreach v € m; do /* For every key value in map my. */
if [m(v)| > ¢ then /* At least ¢, instances exist for value v. */
my(v) « sortT(m(U), PP); /* Rank instances based on release policy. */
L+ {} /* Initialize empty candidate list. */
Z ¢ min (|P|, C;); /* Determine how many instances to nominate. */
for (i+ 1;i<z;i+i+1) do /* For every nominated instance. */
| 1+ 1u{mi(v)(i)}; /* Add instance my(v)(3) to list of candidates. */
end
ma(v) « [/* Place list of candidates in pruned map ma. */
end
end
return mo; /* Return the pruned map mo. */

Fig. 5. Pool’s mapping algorithm

5.1 Technical Implementation

The aforementioned mathematical model and algorithms are implemented in a digital
artifact using the Java programming language. The classes of the model are also rep-
resented by a technical data model. The Java code interacts with the process engine
of a BPM System that executes the process models. The code is embedded in a typi-
cal process model definition, which offers the functionality of the recipe controller. The
high-level internal implementation of the controller in BPMN 2.0 is shown in the bottom
part of Fig. 7. It receives Submit (or Cancel) messages from specific synchronization
points from the main process definitions (e.g. after Production task Al of Production
Process A and at the end of Production Process B), evaluates the recipes based on the
messages’ content and releases (via Release messages) the continuation of control flow
once recipes are fulfilled.

5.2 Demonstration and Evaluation

The implemented recipe system was demonstrated in a real-world use case in the man-
ufacturing printing domain, within the European EIT OEDIPUS! project. The scenario
consisted of several printers, binding and trimming machines, and a robotic arm mounted
on an AGV to grasp and transport paper and books between the devices and storage
places. Activities performed by all these agents were modelled and enacted by a BPMS.

1 https://www.eitdigital.eu/innovation-factory/digital-industry/oedipus/.

https://www.eitdigital.eu/innovation-factory/digital-industry/oedipus/

Dynamic Process Synchronization Using BPMN 2.0 29

Algorithm: Recipe’s fulfillment algorithm.
Output: Sequence of buffered instances that are part of the fulfillment. Empty
sequence if recipe cannot be fulfilled.
/* Map analysis phase. */
v O /* Initialize sequence of potential fulfillment values. */
foreach p € R do /* For each pool in recipe. */
myp + m(p); /* Query and store the pool’s map. */
if |keys(m,,)| =0A iy # 0 then /* If this pool cannot be fulfilled. */
vV T /* A global fulfillment is infeasible. */
break;
end
if v = @ then /* If this is the first pool to analyze. */
/* Take the first pool’s potential fulfillment values as starting point. */
if c; =0 then
I v+ {@} /* Add generic null value as potential fulfillment value. */
else
[v + keys(my); /* Add potential fulfillment values to sequence. */
end
end
ifgp=0Ac, #0A|p|#0 then /* If this pool should be accounted for in
fulfillment feasibility. */
if v = {@} then /* If the previous pool was a generic pool (or was a satisfied
pool with 0 candidates), but this pool is not. */
I v « keys(my); /* Overwrite potential fulfillment values. */
else
I v + v N keys(my); /* Prune potential fulfillment values. */
end
end
end
/* Fulfillment feasibility analysis phase. */
ifv =2 V|v| =0 then /* If no fulfillment is feasible. */
| return {}; /* Return empty sequence. */
end
fev(l); /* Pick the or a fulfillment value and store it in f. */
r« {} /* Initialize sequence of released instances. */
/* Note: f = @ can hold true by design, in case of a generic fulfillment. */
/* Data restructure phase. */
foreach p € R do /* For each pool. */
if =(c; = 0 A |m(p)| = 0) then /* Skip empty optional pools. */
foreach i € m(p)(f) do /* For every to-be-released instance. */
release(p, i); /* Release instance from pool. */
r+ruU{i}; /* Add instance i to sequence of released. */
end
end
end
return r; /* Return sequence of released instances. */

Fig. 6. Recipe’s fulfillment algorithm

Various synchronization points existed in the scenario, mapping to the buffering and
un(bundling) constructs described in this paper. Recipes, using the notation of Fig. 3,
were described and configured for supporting these points. The points were modeled in
the process models as well. One such point was the output tray of a printer. There, sequen-
tially produced books were placed and were ready for transportation to a binder. The cor-
responding recipe took care to synchronize the activities for bundling (and unbundling)
of the books from the tray, onto the AGV, and then into the binder. For the sake of brevity,
the complete process models are not presented here. Figure 8 shows a simpler example
of independent process models interacting with the Recipe controller.

The recipe controller system was primarily evaluated on its functionality to support
the modeling in BPMN 2.0 of physical manufacturing constructs (i.e., buffering and
(un)bundling). It was also evaluated in terms of usability by asking practitioners, through

30 K. Traganos et al.
< @
]]
g Submit Release 4 Submit
= Production = Production
£ task A1 £ task B1
E] Q E] Q
3 Start of End of 3 Start of
& Peocess A | | Process A & Peocess B |
1 1 1
v S v
Arecipe was.
- Kill all other running recipe conlroller instances fulfilled Releasing
- Connect to database, load and verify all recipes. instances from a
- Initialize runtime variables recipe may
. result in another
fulfillment
Itz X @ Evaluatorocipes XS Recre,
Start controller l 3 Evaluate recipes
5
s No recipe fulfilled
€
5
o
3
-3
H
Handle Submit P Handle Cancel
message W= mossago
Cancel Evaluale recipes
List of recipe ids Buffering
database H
Fig. 7. The recipe controller (BPMN 2.0 process model)
Recipe "Laser bundle”
g -
| Ol e @ sz =0 °
-1 I i o [o0
H . =
Pool AGV Pool Book
Intancetype + Mo instamcetype » “aosk®
resserontey + FIK0 retemioroiey = 1110
A ot
i : vt
&
HIN® Hove o i |—{(2) Move o Laser O
| = = e e
F| vonsponaion phase
g

[—

Fig. 8. Interaction of recipe controller with manufacturing processes

a structured survey, to define recipes and model synchronization points. In general, they
find the approach useful.

6 Conclusion

This paper presents a solution for realizing dynamic process synchronization and corre-
lation through a structured use of BPMN messages, with the goal to support manufac-
turing constructs, more specifically, buffering, bundling and unbundling. The solution is
a novel approach to address the general dynamic synchronization issue, stemming from
the process instance isolation, that the language fails to support. The recipe system that

Dynamic Process Synchronization Using BPMN 2.0 31

we propose is formally described, implemented and demonstrated in a real-world case
study at a large, international firm in the printing industry. While this work does not
claim complete suitability of the solution to all cases, the demonstration of the solution
proves its feasibility. The usability was also evaluated by practitioners, engineers and
researchers that modeled processes with the recipe system approach, who perceived it
as useful.

However, there are limitations in the current work that are opportunities for further
research. Assumptions in the definition of the models, such as that pools have infinite
capacity or their cardinality is only expressed in units of process instances, may need
to be relaxed. Workaround solutions exist, such as using an external knapsack problem
solving engine, which passes group information to the recipe system in the form of
selector attribute values, so that the recipe system can perform the appropriate bundling
operations. Similarly, the assumption that a selector attribute is shared across all pools
should be addressed by giving unique object identifiers to each pool. Furthermore, to
make the system more dynamic and flexible, the recipes should be (re)configured during
runtime and the fulfillment conditions should be variable instead of static. Not forget
to mention that new BPMN elements can be crafted as extension to the notation for
representing buffer and synchronization points.

References

1. Erasmus, J., Vanderfeesten, 1., Traganos, K., Grefen, P.: The case for unified process
management in smart manufacturing. In: IEEE Computer Society Digital Library (2018)

2. Brahe, S.: BPM on top of SOA: experiences from the financial industry. In: Alonso, G., Dadam,
P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 96—111. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-75183-0_8

3. Reichert, M.: What BPM technology can do for healthcare process support. In: Peleg, M.,
Lavra¢, N., Combi, C. (eds.) AIME 2011. LNCS (LNAI), vol. 6747, pp. 2-13. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22218-4_2

4. Baumgral3, A., Dijkman, R., Grefen, P., Pourmirza, S., Volzer, H., Weske, M.: A software
architecture for transportation planning and monitoring in a collaborative network. In: C-
Matos, L.M., Bénaben, E., Picard, W. (eds.) PRO-VE 2015. TIAICT, vol. 463, pp. 277-284.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24141-8_25

5. Janiesch, C., et al.: The Internet-of-Things meets business process management: MutualBen-
efits and challenges. arXiv:1709.03628 (2017)

6. Decker, G., Barros, A.: Interaction modeling using BPMN. In: ter Hofstede, A., Benatallah,
B., Paik, H.-Y. (eds.) BPM 2007. LNCS, vol. 4928, pp. 208-219. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-78238-4_22

7. Wohed, P., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M., Russell, N.: On the
Suitability of BPMN for Business Process Modelling. In: Dustdar, S., Fiadeiro, J.L., Sheth,
A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 161-176. Springer, Heidelberg (2006). https://
doi.org/10.1007/11841760_12

8. Rosa, M., ter Hofstede, A., Wohed, P., Reijers, H., Mendling, J., van der Aalst, W.: Managing
process model complexity via concrete syntax modifications. IEEE Trans. Ind. Inform. 7(2),
255-265 (2011). https://doi.org/10.1109/TI1.2011.2124467

9. Witsch, M., Vogel-Heuser, B.: Towards a formal specification framework for manufacturing
execution systems. IEEE Trans. Ind. Inform. 8(2), 311-320 (2012). https://doi.org/10.1109/
TII.2012.2186585

https://doi.org/10.1007/978-3-540-75183-0_8
https://doi.org/10.1007/978-3-642-22218-4_2
https://doi.org/10.1007/978-3-319-24141-8_25
http://arxiv.org/abs/1709.03628
https://doi.org/10.1007/978-3-540-78238-4_22
https://doi.org/10.1007/11841760_12
https://doi.org/10.1109/TII.2011.2124467
https://doi.org/10.1109/TII.2012.2186585

32

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

K. Traganos et al.

Ko, R., Lee, S., Wah Lee, E.: Business process management (BPM) standards: a survey. Bus.
Process Manag. J. 15(5), 744-791 (2009)

Pauker, F., Mangler, J., Rinderle-Ma, S., Pollak, C.: Centurio.work - modular secure manufac-
turing orchestration. In: Proceedings of the Dissertation Award, Demonstration, and Indus-
trial Track of the 16th International Conference on Business Process Management (BPM),
CEUR-WS.org, Sydney, Australia (2018)

Prades, L., Romero, F., Estruch, A., Garcia-Dominguez, A., Serrano, J.: Defining a method-
ology to design and implement business process models in BPMN according to the standard
ANSI/ISA-95 in a manufacturing enterprise. Procedia Eng. 63, 115-122 (2013). https://doi.
org/10.1016/j.proeng.2013.08.283

Zor, S., Schumm, D., Leymann, F.: A proposal of BPMN extensions for the manufactur-
ing domain. In: Proceedings of the 44th CIRP International Conference on Manufacturing
Systems (2011)

Abouzid, L., Saidi, R.: Proposal of BPMN extensions for modelling manufacturing processes.
In: 2019 5th International Conference on Optimization and Applications (ICOA), Kenitra,
Morocco, pp. 1-6 (2019). https://doi.org/10.1109/icoa.2019.8727651

Garcfa-Dominguez, A., Marcos, M., Medina, I.: A comparison of BPMN 2.0 with other
notations for manufacturing processes. In: AIP Conference Proceedings, Cadiz, vol. 1431,
pp- 593-600 (2012). https://doi.org/10.1063/1.4707613

Van der Aalst, W., Artale, A., Montali, M., Tritini, S.: Object-centric behavioral constraints:
integrating data and declarative process modelling. In: Description Logics (2017)

Leitner, M., Mangler, J., R-M, S.: Definition and enactment of instance-spanning process
constraints. In: Wang, X.S., Cruz, L., Delis, A., Huang, G. (eds.) WISE 2012. LNCS, vol.
7651, pp. 652—658. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35063-
449

Kim, B.H., Park, S.B., Lee, G.B., Chung, S.Y.: Framework of integrated system for the
innovation of mold manufacturing through process integration and collaboration. In: Gervasi,
0., Gavrilova, M.L. (eds.) ICCSA 2007. LNCS, vol. 4707, pp. 1-10. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-74484-9_1

Cadavid, J., Alférez, M., Gérard, S., Tessier, P.: Conceiving the model-driven smart factory.
In: ACM International Conference Proceeding Series, August 2015, vol. 24-26, pp. 72-76.
Association for Computing Machinery (2015). https://doi.org/10.1145/2785592.2785602
Jasiulewicz-Kaczmarek, M., Waszkowski, R., Piechowski, M., Wyczétkowski, R.: Imple-
menting BPMN in maintenance process modeling. In: Swiatek, J., Borzemski, L., Wil-
imowska, Z. (eds.) ISAT 2017. AISC, vol. 656, pp. 300-309. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-67229-8_27

Kavka, C., Campagna, D., Milleri, M., Segatto, A., Belouettar, S., Laurini, E.: Business
decisions modelling in a multi-scale composite material selection framework. In: 4th IEEE
International Symposium on Systems Engineering (2018). https://doi.org/10.1109/syseng.
2018.8544386

Knoch, S., et al.: Enhancing process data in manual assembly workflows. In: Daniel, F., Sheng,
Q.Z., Motahari, H. (eds.) BPM 2018. LNBIP, vol. 342, pp. 269-280. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-11641-5_21

Yousfi, A., Bauer, C., Saidi, R., Dey, A.K.: uBPMN: A BPMN extension for modeling ubiq-
uitous business processes. Inf. Softw. Technol. 74, 55-68 (2016). https://doi.org/10.1016/.
infsof.2016.02.002

Petrasch, R., Hentschke, R.: Process modeling for industry 4.0 applications: towards an indus-
try 4.0 process modeling language and method. In: 13th International Joint Conference on
Computer Science and Software Engineering, JCSSE (2016)

https://doi.org/10.1016/j.proeng.2013.08.283
https://doi.org/10.1109/icoa.2019.8727651
https://doi.org/10.1063/1.4707613
https://doi.org/10.1007/978-3-642-35063-4_49
https://doi.org/10.1007/978-3-540-74484-9_1
https://doi.org/10.1145/2785592.2785602
https://doi.org/10.1007/978-3-319-67229-8_27
https://doi.org/10.1109/syseng.2018.8544386
https://doi.org/10.1007/978-3-030-11641-5_21
https://doi.org/10.1016/j.infsof.2016.02.002

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Dynamic Process Synchronization Using BPMN 2.0 33

Lindorfer, R., Froschauer, R., Schwarz, G.: ADAPT - a decision model-based approach for
modeling collaborative assembly and manufacturing tasks. In: Proceedings of the IEEE 16th
International Conference on Industrial Informatics, INDIN, pp. 559-564 (2018)

Cohn, D., Hull, R.: Business artifacts: a data-centric approach to modeling business operations
and processes. IEEE Data Eng. Bull. 32, 3-9 (2009)

Lohmann, N., Wolf, K.: Artifact-centric choreographies. In: Maglio, P.P., Weske, M., Yang, J.,
Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 32—46. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-17358-5_3

Meyer, A., et al.: Data perspective in process choreographies: modeling and execution. Techn.
Ber. BPM Center Report BPM-13-29. BPMcenter. org. (2013)

Meyer, A., et al.: Automating data exchange in process choreographies. In: Jarke, M., et al.
(eds.) CAISE 2014. LNCS, vol. 8484, pp. 316-331. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-07881-6_22

Meyer, A., Weske, M.: Activity-centric and artifact-centric process model roundtrip. In:
Lohmann, N., Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 167-181. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-06257-0_14

Lohmann, N., Nyolt, M.: Artifact-centric modeling using BPMN. In: Pallis, G., et al. (eds.)
ICSOC 2011. LNCS, vol. 7221, pp. 54-65. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-31875-7_7

Fahland, D.: Describing behavior of processes with many-to-many interactions. In: Donatelli,
S., Haar, S. (eds.) PETRI NETS 2019. LNCS, vol. 11522, pp. 3-24. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-21571-2_1

Steinau, S., Andrews, K., Reichert, M.: The relational process structure. In: Krogstie, J.,
Reijers, H.A. (eds.) CAiSE 2018. LNCS, vol. 10816, pp. 53—67. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-91563-0_4

Van der Aalst, W., Barthelmess, P., Ellis, C., Wainer, J.: Proclets: a framework for lightweight
interacting workflow processes. Int. J. Coop. Inf. Syst. 10, 443—481 (2001). https://doi.org/
10.1142/S0218843001000412

Fahland, D., De Leoni, M., Van Dongen, B., Van der Aalst, W.: Many to-many: some
observations on interactions in artifact choreographies. ZEUS 705, 9-15 (2011)

Pufahl, L., Weske, M.: Batch activity: enhancing business process modeling and enactment
with batch processing. Computing 101(12), 1909-1933 (2019). https://doi.org/10.1007/s00
607-019-00717-4

Marengo, E., Nutt, W., Perktold, M.: Construction process modeling: representing activities,
items and their interplay. In: Weske, M., Montali, M., Weber, 1., vom Brocke, J. (eds.) BPM
2018. LNCS, vol. 11080, pp. 48—65. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-98648-7_4

Pesic, M., Schonenberg, H., Van der Aalst, W.: DECLARE: full support for loosely-structured
processes. In: Proceedings of the 11th IEEE International Enterprise Distributed Object
Computing Conference, pp. 287-300. IEEE (2007)

Nahmias, S., Olsen, T.: Production and Operations Analysis, 7th edn. Waveland Press, Long
Grove, 111 (2015). (OCLC: 935795578)

Cachon, G., Terwiesch, C.: Matching Supply with Demand: An Introduction to Operations
Management. McGraw-Hill/Irwin, Boston (2009). (OCLC: ocn191732546)

Erasmus, J., Vanderfeesten, 1., Traganos, K., Grefen, P.: Using business process models for
the specification of manufacturing operations. In: Computers in Industry (to appear)
Defense Acquisition University: Integrated Product Support (IPS) Element Guidebook.
Defense Acquisition University, Fort Belvoir (2011)

De Groote, X.: Inventory theory: a road map. teaching note. Department of Decision Sciences,
The Whanon School (1989)

https://doi.org/10.1007/978-3-642-17358-5_3
https://doi.org/10.1007/978-3-319-07881-6_22
https://doi.org/10.1007/978-3-319-06257-0_14
https://doi.org/10.1007/978-3-642-31875-7_7
https://doi.org/10.1007/978-3-030-21571-2_1
https://doi.org/10.1007/978-3-319-91563-0_4
https://doi.org/10.1142/S0218843001000412
https://doi.org/10.1007/s00607-019-00717-4
https://doi.org/10.1007/978-3-319-98648-7_4

34 K. Traganos et al.

44. Van der Aalst, W.: Putting high-level Petri nets to work in industry. Comput. Ind. 25(1), 45-54
(1994). https://doi.org/10.1016/0166-3615(94)90031-0

45. Spijkers, D.: Expressing and supporting buffering and (un)bundling in the manufacturing
domain using BPMN 2.0. Master’s thesis, Eindhoven University of Technology, Eindhoven
(2019)

https://doi.org/10.1016/0166-3615(94)90031-0

	Dynamic Process Synchronization Using BPMN 2.0 to Support Buffering and (Un)Bundling in Manufacturing
	1 Introduction
	2 Background and Related Work
	3 Characteristics and Limitations of Manufacturing Constructs
	3.1 Manufacturing Constructs Characteristics
	3.2 BPMN Limitations

	4 Concept and Functionality of a Recipe System
	4.1 The Recipe Controller
	4.2 Formalization

	5 Prototype Implementation, Demonstration and Evaluation
	5.1 Technical Implementation
	5.2 Demonstration and Evaluation

	6 Conclusion
	References

