
A Container-Driven Approach for
Resource Provisioning in Edge-Fog Cloud

Hamid Mohammadi Fard1(B), Radu Prodan2, and Felix Wolf1

1 Department of Computer Science, Technical University of Darmstadt,
Darmstadt, Germany

{fard,wolf}@cs.tu-darmstadt.de
2 Alpen Adria-Universität Klagenfurt, Klagenfurt, Austria

radu@itec.aau.at

Abstract. With the emerging Internet of Things (IoT), distributed sys-
tems enter a new era. While pervasive and ubiquitous computing already
became reality with the use of the cloud, IoT networks present new
challenges because the ever growing number of IoT devices increases
the latency of transferring data to central cloud data centers. Edge
and fog computing represent practical solutions to counter the huge
communication needs between IoT devices and the cloud. Considering
the complexity and heterogeneity of edge and fog computing, however,
resource provisioning remains the Achilles heel of efficiency for IoT appli-
cations. According to the importance of operating-system virtualization
(so-called containerization), we propose an application-aware container
scheduler that helps to orchestrate dynamic heterogeneous resources
of edge and fog architectures. By considering available computational
capacity, the proximity of computational resources to data producers
and consumers, and the dynamic system status, our proposed schedul-
ing mechanism selects the most adequate host to achieve the minimum
response time for a given IoT service. We show how a hybrid use of con-
tainers and serverless microservices improves the performance of running
IoT applications in fog-edge clouds and lowers usage fees. Moreover, our
approach outperforms the scheduling mechanisms of Docker Swarm.

Keywords: Edge computing · Fog computing · Cloud computing ·
Resource provisioning · Containerization · Microservice ·
Orchestration · Scheduling

1 Introduction

The Internet of Things (IoT) has emerged by the rising number of connected
smart technologies, which will remarkably affect the daily life of human beings
in the near future. According to Cisco, 75 billion devices are expected to be
connected to the Internet by 20251 in the future smart world. Nowadays, there

1 https://www.cisco.com/c/en/us/solutions/internet-of-things/future-of-iot.html.

c© Springer Nature Switzerland AG 2020
I. Brandic et al. (Eds.): ALGOCLOUD 2019, LNCS 12041, pp. 59–76, 2020.
https://doi.org/10.1007/978-3-030-58628-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58628-7_5&domain=pdf
https://www.cisco.com/c/en/us/solutions/internet-of-things/future-of-iot.html
https://doi.org/10.1007/978-3-030-58628-7_5


60 H. M. Fard et al.

are countless IoT endpoints offloading their big data on the high performance
resources of central clouds. In this traditional architecture, the raw data gener-
ated by IoT sensors are transferred to the cloud, which is in charge of filtering,
processing, analyzing and persistently storing these data. After refining the data,
the final results are transferred back to the IoT actuators to complete the cycle.
The explosive amount of data produced by IoT sensors and the high compu-
tation demand for storing, transferring and analyzing these data are the new
challenges of using centralized clouds that become a network and computational
bottleneck.

A proposed solution to cover these challenges is a combination of edge, fog
and cloud computing paradigms [4,11]. As shown in Fig. 1, the goal of this
model, which we call it edge-fog cloud is to process and store data close to
the producers and consumers instead of sending the entire traffic to the cloud
resources. Therefore, the computation capacity for data analysis and application
services will stay close to the end users, resulting in lower latency that is critically
important for many types of real-time applications, such as augmented reality. As
edge and fog computing are highly dynamic and increasingly complex distributed
system paradigms with a high degree of heterogeneity [16], resource provisioning
is one of the significant challenges in managing these architectures. Although
edge and fog computing were suggested to deal with the response time and data
latency of IoT applications, the edge and fog nodes are often not as strong as the
cloud resources. Table 1 summarizes the main differences between edge, fog and
cloud models by considering the features variations moving between the models.

Fig. 1. Cloud vs. Edge-fog cloud: compared to the edge-fog cloud, execution of IoT
applications in the cloud only causes much longer data transfer time.

In this paper, we discuss and analyze the efficiency of combining containers
and serverless microservices compared to hardware virtualization for resource
provisioning in an edge-fog cloud. We present that despite the limited resource
capacity of edge and fog layers, the proximity of IoT nodes and computation
resources in edge and fog computing reduces the communication cost of services
and plays a remarkable role for achieving effective latency. By considering the
available computation capacity, the proximity of these computation resources to
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Table 1. Comparison of edge, fog and cloud models. Moving from cloud to IoT layer,
node, network and data specications change considerably

Specification Change

Nodes Number Increasing

Heterogeneity Increasing

Reliability Decreasing

Computation capability Decreasing

Mobility Increasing

Network Heterogeneity Increasing

Bandwidth Decreasing

Traffic Increasing

Data Volume Increasing

Persistence Decreasing

Distribution Increasing

data producers and consumers and the dynamic nature of edge-fog cloud model,
we propose a novel container orchestration mechanism to minimize the end-to-
end latency of services. Our proposed mechanism selects the most adequate host
to achieve the minimum response time for IoT services. Our scheduling mech-
anism can be implemented as a plugin module for any available orchestration
framework such as Docker Swarm2 and Kubernetes3.

In Sect. 2, we first discuss how edge-fog cloud applications can benefit from
containerization technology. Next in Sect. 3, we review the related work for
resource provisioning problem in edge-fog cloud environment. We model the
problem formally in Sect. 4. In Sect. 5, we propose our container orchestration
approach, which is evaluated in Sect. 6. Finally, we conclude the paper in Sect. 7.

2 Containerization and Edge-Fog Cloud

Container as a service (CaaS) is relatively a new offering of almost all major
cloud providers including Amazon Web Services, Microsoft Azure and Google
Cloud Platform. Containerization is a lightweight kernel- or operating system
(OS)-level virtualization technology [8]. A container is an isolated environment
that includes its own process table structure, services, network adapters and
mount points. As shown in Fig. 2, containers and virtual machines (VM) are
two technologies for consolidation of hardware platforms. Containers are similar
to VMs with a major difference that they run on a shared OS kernel. In con-
trast, traditional VMs (based on hardware-level virtualization) suffer from the
overhead needed to separate the OS for individual VMs, which causes the waste
of resources. Using the abstraction layer called containerization engine, libraries

2 https://docs.docker.com/engine/swarm/.
3 https://kubernetes.io/.

https://docs.docker.com/engine/swarm/
https://kubernetes.io/
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and application bundles no longer need complete and separated OS. Containers
separate a single OS from isolated user spaces by using several OS features such
as kernel namespaces and control group (cgroup). This type of isolation is more
flexible and efficient than using hypervisor virtualized hardware (such as vCPU
and vRAM) [5].

Fig. 2. Containers versus virtual machines architectural comparison.

In comparison to hardware-level virtualization, kernel-level virtualization
benefits from several remarkable advantages:

– containers can be deployed faster;
– containers are more scalable than VMs;
– booting containers takes few seconds (or even milliseconds for cached images)

instead of tens of seconds for VMs;
– containers are more portable across infrastructures;
– because of sharing kernel services, containers consume and waste less

resources;
– images of containers are smaller and can be transferred or migrated faster;
– containers are usable in limited bandwidth environments;
– containerized services are cheaper than leasing VMs in public clouds.

Container technologies, such as LXC and LXD4, have been around for more
than a decade, but they got popularized by Docker5, which proposed in 2013 a
simple to use framework. Docker is an API around several open source Linux
containers projects that wraps up a piece of software in a complete file system
including code, runtime system tools and libraries.

Orchestration tools are responsible for placement and state management of
containers in a cluster. Swarm is the native clustering solution in the Docker
ecosystem and there are several third-party orchestration tools usable for Docker
containers like Kubernetes and Apache Memos6. In fact, the main task of orches-
trator is to choose a node out of all available cluster nodes for deploying a con-
tainer, considering all its requirements (e.g. fast storage).
4 https://www.linuxcontainers.org/.
5 https://www.docker.com/.
6 http://mesos.apache.org/.

https://www.linuxcontainers.org/
https://www.docker.com/
http://mesos.apache.org/
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Containerization is the major backbone technology used for microservice
architectures. A serverless microservice is a package that consists of the entire
environment required to run an application, including the application and its
dependencies. This technology is not new either and has been promoted by the
Heroku7 as the initiator of this kind of services. A serverless microservice is a
fine-grained service that can be run on demand on the cloud and has several
features such as auto-scaling, pay-per-execution, short-lived, stateless functions
and event-driven workflow. To gain these features, we need to transform mono-
lithic applications into a microservices-oriented architecture, which is not always
easy because of its complexity and the need of redesign in most cases.

The limited computation capability of edge and fog nodes forces the appli-
cations to be designed and decomposed as less resource-intensive and more
lightweight services. Moreover, the mobility of the endpoints [3] in IoT networks
(e.g. wearable devices, smart phones, car cameras) needs lightweight migration
of services. Infrastructure agnosticism provided by containerization covers the
ultra heterogeneity of resources in complex environments like edge-fog cloud.
Using containers, the infrastructure becomes an application platform rather
than plain data center hardware. Considering the advantages of containers and
microservices, particularly their single-service, short-lived and lightweight nature
and their ultra scalability, we motivated to use their combination efficiently for
resource provisioning in an edge-fog cloud environment.

3 Related Work

IoT devices are usually simple sensors and embedded systems with low battery,
low computation capacity and low bandwidth level. To efficiently execute IoT
applications in an edge-fog cloud, resource provisioning and scheduling of services
are of highest importance [3,14].

Because of dynamic nature of the IoT network, static scheduling and dynamic
rescheduling of resources are not efficiently applicable in an edge-fog cloud that
requires fully dynamic approaches [1]. Although the fog is assumed as a new
distributed system extending the cloud, scheduling approaches such as [7] are
inefficient and need to be customized to deal with the new challenges of an
edge-fog cloud environment.

In [17], the authors proposed a time-shared provisioning approach for ser-
vices. The main simplification in their model is neglecting the dynamic nature
of fog environments.

In [15], the authors assumed that the edge and fog devices are powerful
enough for hardware virtualization which is not always true. We discuss the
inefficiency of hardware virtualization in our results in Sect. 6.

Fog computing extends the cloud boundaries such that the fog nodes can
play the providers’ role. An example implementation of a new cloud is the iExec
project8. FogSpot [18] is a spot pricing approach for service provisioning of IoT
7 https://www.heroku.com/.
8 https://iex.ec/.

https://www.heroku.com/
https://iex.ec/
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applications in fog computing, but ignores many challenges in such a market. For
these new commercial computation models, we need to deal with many issues
like reliability of resources and selfishness of the providers. Using game theory,
we proposed a truthful market model [6] for execution of scientific applications
in a cloud federation that can be extended easily for edge-fog cloud market.

Different models have been proposed for edge and fog computing [19,21] and
all have the same crucial constraints for resource provisioning. Some works such
as [17] miss implementation details. The authors of [20] proposed a container-
based task scheduling model considering assembly lines in smart manufacturing.

The idea of using containerization is a controversial subject too. Some
researches use containerization as a proper and efficient approach [12,13], while
other works [2] claim that containers are inefficient in fog computing. In this
paper we propose an edge-fog cloud model and a container orchestration app-
roach, efficiently usable in such an environment.

4 System Model

In this section, we formally define our model including platform, application and
problem models.

4.1 Platform Model

Usually two approaches are followed for implementing edge and fog computing
models. In the first approach called cloud-edge, the public cloud providers with
the help of internet and telecommunication service providers, extend their data
centers in multiple point-of-presence (PoP) locations. Although this approach
is widely used, it is costly and limited to special locations and services. In the
second approach called device-edge, different organizations emulate the cloud
services by running a custom software stack on their existing geo-distributed
hardware. Any device including computation power and storage with connected
network could be a fog or edge node. This approach is more affordable in many
scenarios and can efficiently utilize the organizational in-house infrastructure.
Inspired by these models, we propose our general Edge-Fog Cloud model, which is
a hybrid combination of both cloud-edge and device-edge models and involves all
other new computation models in this domain, such as dew and mist computing.

We assume a set of m geographically distributed non-mobile IoT devices (on
the edge) denoted as D = {d1, . . . , dm}, belonging to an organization. The fog
layer contains a range of devices including network equipment (e.g. Cisco IOx
routers), geo-distributed personal computers, cloudlets and micro- and mini-data
centers. We model the fog layer by the set of n geo-distributed nodes, denoted
as F = {f1, . . . , fn}. The set of p leased virtual machines in different availability
zones provided by the cloud federation providers is denoted by C = {c1, . . . , cp}.
In this model, we assume that m � n � p.

We assume that F is the in-house IT infrastructure of the organization (e.g.
routers and local distributed data centers) and C is the public cloud infrastruc-
ture that needs to be leased by the organization on demand. An abstraction of
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our model is shown in Fig. 3. Based on this model, using the local IT infrastruc-
ture has no extra cost for the organization, but it needs to pay for using public
infrastructure, which includes the cost of data transfer to and from the cloud
and the cost of using cloud computation capacities.

The cloud resources in C can be used in two different ways; reserved in
advance (by leasing virtual machine instances for example) or by calling server-
less microservices. Therefore, to implement our edge-fog cloud model (cluster),
we follow two approaches:

(a) modela clusters all nodes available in V = D ∪ F ∪ C.
(b) modelb clusters only the nodes in D ∪ F (in other words V − C) and the

cloud resources are used as serverless microservice calls.

In modela, we need to regularly lease the cloud resources based on the cloud
pay-as-you-go model (e.g. hourly-based virtual machines) and then to add the
leased nodes to the cluster. In modelb we do not lease and reserve any resource
in advance, but pay based on the number of service calls. We evaluate both
implementations in Sect. 6 and compare their differences.

The network topology, connecting three layers (see Fig. 3), is modeled as a
weighted directed graph G(V,E) such that the set of all available nodes is the
vector set V and the network links available between the nodes denotes the edge
set E.

Fig. 3. Edge-fog cloud model: IoT, edge and fog nodes are in-house assets and the
cloud data centers belong to an enterprise public cloud federation.

4.2 Application Model

Each IoT device di ∈ D calls a set of services, denoted by si = {s1i , ..., slii } such
that li is the number of services that might be called by di. The services are
modeled as stateless containerized services on the edge. The set of all services
required by D is S = {s1, ..., sm}. To sake of precise modeling, we need to notice
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that while there can be services shared by two devices di and dj such that
si ∩ sj �= ∅, sharing stateless services has no impact on the model.

Theoretically, each service of S can run on cloud, fog and even IoT devices
(edge), which have enough hardware to run the containerized services. Therefore
each node vi ∈ V can be potentially a container host in this model.

Each service sji ∈ si is initiated by the IoT device di. To run the service sji
on a node vk ∈ V , we need to transfer the required input data from di to vk
that will last timeIn(sji , vk). After the execution, we need to transfer the output
data from vk to di that takes timeOut(sji , vk). Consequently, the entire data
transfer time between the device and the service’s host is timeInOut(sji , vk) =
timeIn(sji , vk) + timeOut(sji , vk).

The service processing time for sji on vk lasts timeProcess(sji , vk). If the
service sji cannot physically run on vk, for instance because of need to special
hardware or privacy issues, we define timeProcess(sji , vk) = ∞.

Because the services running on the cluster are containerized, we need to
model the image transfer time of each container from a locally-implemented
image repository by timeImage(sji , vk). Depending on the service used frequency
and the amount of available storage per host, the image may be cached on the
host and thus, timeImage(sji , vk) = 0. To keep the model simple, however, we
ignore this situation without loss of generality.

4.3 Problem Model

To place a service sji called by the IoT device di on a cluster node vk, we define the
orchestration as the function orchestration(sji , vk) : S 	→ V . Since the services
are dynamically initiated by the IoT devices, we cannot assume a predefined and
static communication network graph between S and V . In other words, the net-
work graph for assigning each service to the cluster is a subgraph of G. A single
and static network graph allows us to benefit from techniques such as between-
ness centrality from graph theory to find the best placement of services [10].
However, considering the dynamic complexity and variety of the network graph,
we need to apply other dynamic heuristic- or greedy-based approaches.

5 Minimizing End-to-End Latency Algorithm

In this section, we propose a novel resource provisioning approach for our pro-
posed edge-fog cloud architecture based on a dynamic application-aware con-
tainer orchestration called Minimizing End-to-End Latency (METEL). The main
goal of METEL is to run the services S on the cluster nodes V to minimize the
round-trip time of each single service. Since scheduling of containers in server-
less microservices provided by commercial public clouds (e.g. AWS Lambda) are
controlled by the providers, we concentrate in METEL only on the user-level
orchestration.

Transferring multi-hop distance for each chunk of data is timely and costly
inefficient. On the other hand, clearly one cannot always expect that processing
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data on the adjacent nodes reduces the service delivery latency. Of course, the
proximity of IoT nodes and computation resources reduces the network traffic
and communication cost, however, a major challenge in the edge-fog cloud pro-
visioning is the lack of powerful resources compared to the cloud data centers.
To minimize the end-to-end latency, one should not simply rely on the proximity
of nodes and minimize the data movement only. For container orchestration, in
addition to the proximity, we need to define the effective latency by considering
the processing time and the image transfer delay of each service. Since the edge
and fog nodes are not rich capacity resources, there is always a tradeoff between
the available capacity and the proximity of data producers and consumers to the
computational resources.

Our scheduling mechanism needs least modification in the available orches-
tration frameworks such as Docker Swarm and Kubernetes and can be imple-
mented as a plugin besides any orchestration module. For instance, as displayed
in Fig. 4, using Docker APIs, METEL extracts the cluster information from the
discovery service in Swarm and, after making the decision about the most ade-
quate worker node, can justify the constraints in Swarm (e.g. by using affinity
filters, placement constraints or host labels) such that the container is hosted on
the selected node.

Fig. 4. METEL implementation in the Docker Swarm mode.

METEL includes two main modules: Algorithm 1, called SETEL, to calculate
the static end-to-end-latency and Algorithm 2, called DETEL, to select the most
adequate worker nodes for running the services, based on dynamic end-to-end-
latency. The role of these two modules in METEL algorithm and their relation
are shown in Fig. 5.

We declare a global two-dimensional matrix setelMatrix to store the static
end-to-end latency of each service sji ∈ S to each vk ∈ V . The static end-
to-end latency is the latency of running a service ignoring the dynamic load
and availability of the resources, calculated offline based on the static available
information. Algorithm 1 calculates the static end-to-end latency of services on
each cluster node. In lines 2–6, the Dijkstra’s algorithm calculates the shortest
cycle from and to each IoT endpoint di ∈ D which must pass through vk ∈
V . Because of different up- and down-links between the devices, the send and
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Fig. 5. METEL’s inside. SETEL (Static End-to-End Latency) calculates the static
latency. It runs once at launch time and is triggered and run by cluster changes. DETEL
(Dynamic End-to-End Latency) adjusts the placement constraints to select the worker
node for containers and runs in each orchestration decision.

receive communication paths between the IoT devices and fog nodes may not
be the same. The three nested loops in lines 7–13 calculate the static-end-to-
end latency of the services. The algorithm returns the calculated static end-to-
end latency of all services on all nodes in setelMatrix. The matrix is updated
whenever the resource discovery module in the container orchestration detects an
infrastructure change, such as adding a new node or failing an already available
node.

Dynamic end-to-end latency of each service is calculated by considering the
static end-to-end latency and the dynamic status of the worker node. Algorithm 2
makes the final orchestration decision for each service sji using setelMatrix
calculated by Algorithm 1, and returning the cluster node which provides the
minimum effective latency for the service sji . The function delay(sji , vk) in line 4
returns the dynamic delay of the service sji on the worker node vk, obtained from
runtime status of the nodes. Lines 3–10 find the host which provides the lowest
completion time of the service sji , and line 11 returns the selected host vmin as
the final schedule decision.

The sequence diagram of launching a service is shown in Fig. 6. Upon request-
ing a service by an IoT device, the scheduler finds the proper host based on
METEL, which justifies the builtin orchestrator constraints such that the service
is hosted on the selected node. The rest of the container life-cycle is monitored
and controlled by the orchestrator.
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Algorithm 1: Static End-to-End Latency (SETEL).
Input: Set of services: S; Set of worker nodes: V
Output: Static end-to-end latency matrix: setelMatrix

1 begin
2 for i ← 1 to m do

/* Iterate over IoT devices */
3 for k ← 1 to |V | do

/* Iterate over the cluster nodes */
4 spf(di, vk) ← Dijkstra(from : di, to : di,must pass : vk) /* Find shortest

cycle from di through vk */

5 end

6 end
7 for i ← 1 to m do

/* Iterate over IoT devices */
8 for j ← 1 to li do

/* Iterate over IoT device services */
9 for k ← 1 to |V | do

/* Iterate over cluster nodes */

10 setelMatrix(sji , vk) ←
timeProcess(sji , vk) + timeInOut(sji , vk) + Image(sji , vk)

/* Calculate static latency of each service sji on each node vk */

11 end

12 end

13 end
14 return setelMatrix

15 end

Algorithm 2: Dynamic End-to-End Latency (DETEL).
Input: Service called by di: s

j
i ; Set of worker nodes: V ; Static end-to-end latency matrix:

setelMatrix
Output: Worker node for running sji : vmin

1 begin

2 detelmin ← ∞ /* Dynamic latency of running service sji */
3 for k ← 1 to |V | do

/* Iterate over cluster nodes */

4 detel ← setelMatrix(sji , vk) + delay(sji , vk) /* Calculate dynamic latency of

running service sji on node vk */
5 if detel < detelmin then

/* Find node with lowest dynamic latency */
6 detelmin ← detel
7 vmin ← vk

8 else

9 end

10 end
11 return vmin

12 end

5.1 Time Complexity Analysis

To analyze the time complexity of METEL, we need to analyze SETEL and
DETEL algorithms separately.

As shown in Fig. 5, DETEL runs dynamically at each orchestration deci-
sion. The time complexity of Algorithm 2 is O(|V |), which is simply linear (as
discussed in Sect. 4.1, |V | = m + n + p).
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Fig. 6. METEL service orchestration timeline based on the sense-process-actuate
model.

The complex part of METEL is SETEL module. As shown in Fig. 5, Algo-
rithm 1 runs once at launch time and is triggered and run by cluster changes.
Algorithm 1 includes two nested loops. Respecting the time complexity of Dijk-
stra’s algorithm, which is O(|E| + |V | · log |V |), the time complexity of the first
loop (2–6) is O(m · |V | · (|E| + |V | · log |V |)). As discussed in Sect. 4.1, if we
assume a fully connected network between all nodes in two adjacent layers of
the graph G (between IoT and fog nodes and between fog and cloud nodes)
then |E| = n · (m + p). The time complexity of the second loop (lines 7–13) is
O(m · max

1≤i≤m
(li) · |V |), which will be dominated by the time complexity of the

first loop.
About the time complexity of the first loop in SETEL, we need to notice

several important facts in the real world problems:

– |E| � n · (m + p) because the nodes in two adjacent layers are not fully
connected;

– as discussed in Sect. 4.2, for all nodes with timeProcess(sji , vk) = ∞, we do
not need to run Dijkstra’s algorithm.

Consequently, the final time complexity of Algorithm 1 is much lower than
O(m · |V | · (|E| + |V | · log |V |)). Moreover, we need to notice that the calculated
time complexity for SETEL is for the first run of the algorithm at lunch time.
Algorithm 1 will be also triggered and run by cluster changes but in this case,
the update of setelMatrix is only calculated for the cluster changes not for
the whole cluster. In other words, the time complexity of Algorithm 1 to update
setelMatrix is much lower than the time complexity of first run of the algorithm.
Therefore, in practice we could observe that METEL is really well scalable, even
for enterprise organizations with large number of IoT devices and services.

6 Evaluation

Considering the variety and the number of resources in edge, fog and cloud
layers, resource management in the edge-fog cloud is a complex task. The real-
time need of many IoT applications makes this problem even more complicated.
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Running comprehensive empirical analysis for the resource management algo-
rithms in such a problem would be very costly, therefore, we rely on simulation
environment.

For evaluating our approach, we ran an extensive set of experiments, based
on the iFogSim [9] simulator for sense-process-actuate modeling of IoT applica-
tions. However, we needed to extend iFogSim to overcome some of its limitations
required by our experiments. First, iFogSim implements a tree network struc-
ture (a hierarchical topology with direct communication possible only between a
parent-child pair). To create a flexible network topology, we needed to replicate
IoT devices for each gateway by extending the Tuple class. Second, iFogSim does
not support containerization. To cover this, we extended the AppModule class,
which is the entity scheduled on the fog devices. The simulation setup used in
our experiments is summarized in Table 2.

Table 2. Experimental simulation setup.

Entity Entity specification

IoT devices m = 500

10000 ≤ computation capacity (MIPSa) ≤ 20000

IoT services 1 ≤ |si| ≤ 5

3000 ≤ service size (MIb) ≤ 30000

20 ≤ container image size (MB) ≤ 100

1 ≤ data rate (MB/s) ≤ 10

Fog nodes n = 50

15000 ≤ computation capacity (MIPS) ≤ 30000

Cloud zones p = 5

20000 ≤ computation capacity (MIPS) ≤ 80000

Network 1 ≤ bandwidth(Mb/s) ≤ 100

1 ≤ hops to fog ≤ 5

10 ≤ hops to cloud ≤ 15
aMIPS: Million Instructions Per Second
bMI: Million Instructions

6.1 Containers Versus VMs

In the first part of the experiments (see Fig. 7), we analyzed the efficiency of
containerization in edge-fog cloud resource provisioning and compared METEL
with a VM-based provisioning approach using no containers. In the VM-based
approach we launched separated VMs for isolated services, while for shared ser-
vices we used a single shared VM. The VMs including services are launched at
the start of the simulation and kept running across the entire evaluation time,
which avoids the overhead of launching services. For launching VMs, we defined
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three priority levels: IoT devices, fog nodes and cloud. To launch a service, we
first search in the IoT device layer. If there is no possibility to launch an IoT
service, we search in the fog layer. Finally in case of not enough resources in the
fog, we launch a VM in the cloud.

(a) Number of services running in different
layers.

(b) Average utilization of different layers.

(c) Response times.

Fig. 7. Experimental comparison of METEL against a pure VM-based approach.

Figure 7a compares the number of services distributed across different edge-
fog cloud layers. First, we observe that in a pure VM-based approach, the IoT
resources are not rich enough to launch the VMs and no IoT device can pro-
vide a service. Because of the lightweight containers, METEL was able to run
around 8% of the services on the IoT layer. Similarly, we observed that METEL
executed around 57% of the services in the fog, in comparison to 10% by VM-
based approach. In contrast, the pure VM-based approach run close to 90% of
the services in the cloud layer, against around 40% run by METEL. Using no
containerization, we not only spend a higher cost for leasing cloud resources, but
also increase the latency. As we discussed before, the response time is important
in comparing the final results, not the latency time.

Figure 7b represents the average utilization of nodes on the IoT, fog and
cloud layers, which is considerably lower using a VM-based approach compared
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to METEL. As expected, the lightweight containers improve the consolidation
of the resources and increase the average utilization in all three layers.

Figure 7c shows that METEL attains much better response time compared
to the VM-based approach because of lower latency time and close proximity of
producers and consumers.

6.2 Serverless Versus Containers

In the next experiments, we compare two implementations of METEL based
on the two proposed models modela and modelb, discussed in Sect. 4, for a
period of 12 h. The motivation for this analysis is to evaluate the efficiency
of using serverless microservice implementation of services compared to calling
remote containerized services on the leased cloud VMs. For this experiment, we
simulated the service prices based on the AWS EC29 and AWS Lambda pricing10

models.

(a) Cost of running cloud resources. (b) Response time.

Fig. 8. Experimental comparison of modela and modelb.

Figure 8a shows the monetary cost of our two implementations of METEL.
For modela, we present the results of running the cloud services with $1 and
$2 per hour (or $12 and $24 for 12 h). The services run as containerized ser-
vices on these leased cloud resources. In the modelb, we do not lease VMs on
the cloud, but use serverless microservice calls instead. As shown in Fig. 8a,
modelb has remarkably lower cloud expenses using serverless microservice calls.
Furthermore, the total cost in modela is even higher than the measured cost
because we ignored the data transfer cost in our model. As shown in Fig. 8b,
serverless microservices do not have a remarkable overhead in response time
compared to calling services directly on leased VMs. In addition, not leasing
enough resources in modelb dramatically increases the response times due to
over-utilizing the VMs.

9 https://aws.amazon.com/ec2/pricing/.
10 https://aws.amazon.com/lambda/pricing/.

https://aws.amazon.com/ec2/pricing/
https://aws.amazon.com/lambda/pricing/
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Figure 9 compares METEL with the two native orchestration strategies
implemented by Docker Swarm: Random and Spread. In the random strategy,
the containers are placed randomly on the cluster nodes and the Spread strat-
egy balances the cluster nodes by selecting the nodes with the least container
load. As indicated in the figure, METEL outperforms both Random and Spread
strategies.

Fig. 9. Experimental comparison of METEL, Spread and Random orchestration strate-
gies.

7 Conclusion

Although cloud computing can deliver scalable services for IoT network, the
latency of data communication between ever increasing IoT devices and central-
ized cloud data centers can not be easily ignored and might be the bottleneck
for many IoT applications. The edge-fog cloud promises to overcome the high
amount of traffic generated by IoT devices, by bringing the cloud capabilities
closer to the IoT endpoints.

In this paper, we introduced a minimizing end-to-end latency algorithm to
provide the computation demand of IoT services in edge-fog cloud model. We
also presented that serverless microservices provided by public clouds can be effi-
ciently used in combination with in-house containerized services by our proposed
mechanism. Moreover, our approach can be implemented as a complementary
plugin in any container orchestration too.

In our experiments, we first showed that using traditional virtualization of
resources is not scalable in an edge-fog cloud and containerization properly fits
in such environments. Then, we analyzed how our application-aware scheduling
mechanism can dramatically improve the utilization of fog resources to improve
the response time, considering both proximity and compute capacity of edge, fog
and cloud nodes. Finally, we observed that our results outperform the builtin
Spread and Random scheduling mechanisms of Docker Swarm.
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Considering the mobility of IoT nodes, migration of services is a major need.
Although the lightweight containerization technology seems to be a proper choice
for resource provisioning, its efficiency and applicability needs to be evaluated
as future work.
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