
A Monitoring System for Distributed Edge
Infrastructures with Decentralized

Coordination

Roger Pueyo Centelles1, Mennan Selimi1,2, Felix Freitag1(B),
and Leandro Navarro1

1 Universitat Politècnica de Catalunya, BarcelonaTech, Barcelona, Spain
{rpueyo,mselimi,felix,leandro}@ac.upc.edu

2 Max van der Stoel Institute, South East European University,
Tetovo, North Macedonia
m.selimi@seeu.edu.mk

Abstract. We present the case of monitoring a decentralized and crowd-
sourced network infrastructure, that needs to be monitored over geo-
graphically distributed devices at the network edge. It is a characteris-
tic of the target environment that both, the infrastructure to be moni-
tored and the hosts where the monitoring system runs, change over time,
and network partitions may happen. The proposed monitoring system is
decentralized, and monitoring servers coordinate their actions through an
eventually consistent data storage layer deployed at the network edge. We
developed a proof-of-concept implementation, which leverages CRDT-
based data types provided by AntidoteDB. Our evaluation focuses on
the understanding of the continuously updated mapping of monitoring
server to network devices, specifically on the effects of different policies
for each individual monitoring server to decide on which and how many
network devices to monitor. One of the policies is experimented by means
of a deployment on 8 real nodes, leveraging the data replication of Anti-
doteDB in a realistic setting. The observed effects of the different policies
are interpreted from the point of view of the trade-off between resource
consumption and redundancy.

Keywords: Edge computing · Distributed monitoring · Decentralized
coordination

1 Introduction

We aim to develop a monitoring system for decentralized and crowdsourced
network infrastructures such as Guifi.net, a community network with more than
30,000 networking devices with IP addressing. The infrastructure of Guifi.net
can be understood as a crowd-sourced, multi-tenant collection of heterogeneous
network devices (wired and wireless) interconnected between them and forming
a collective communication and computing system [1].
c© Springer Nature Switzerland AG 2020
I. Brandic et al. (Eds.): ALGOCLOUD 2019, LNCS 12041, pp. 42–58, 2020.
https://doi.org/10.1007/978-3-030-58628-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58628-7_4&domain=pdf
https://doi.org/10.1007/978-3-030-58628-7_4


A Monitoring System for Distributed Edge Infrastructures 43

An edge cloud computing paradigm may initially be considered to build this
monitoring system. In edge computing, cloud services running in data centers,
e.g. data storage, are extended with the capacities of local processing at the edge.
In such cloud-based services, which leverage edge devices, improved response
time is achieved through local processing at the edge device and reduction of
communication needs with remote data centers [2]. In the practical implemen-
tation of such a paradigm, the edge devices would be deployed as part of the
vendor’s monitoring application. They would need a suitable physical locations
available in Guifi.net. In addition, the community network would need to assume
the economic cost for the provision of the monitoring infrastructure.

Collaborative edge computing in Guifi.net started to be researched and devel-
oped in the last few years [3]. Currently in 2019 there are tenths of opera-
tional interconnected edge devices in the community network, which host diverse
local services. These edge devices, such as mini-PCs or Single-Board-Computers
(SBC), are located at the premises of some members of the community. Further-
more, the owners have system administrator permissions of the device, which
enables them to install any required service. Differently, commercial edge gate-
ways are typically locked and operate in a dedicated mode for the vendor’s
application. In fact, the edge computing model in community networks is radi-
cally different to the locked devices and application model of vendors: owners of
edge devices in Guifi.net are encouraged to collaborate and actively contribute to
the provision of network monitoring and end user-oriented services, and sustain
edge micro-clouds [4,5].

The goal of the targeted monitoring system is to leverage the geographically-
scattered low-capacity computing devices available at the premises of Guifi.net
members to host the monitoring system software components. Since in the given
context network partitions and failures of these servers may happen, and there is
no traditional cloud data center infrastructure available in Guifi.net, we pursue
a decentralized solution for the monitoring system. As a consequence, we envi-
sioned to store monitoring data by means of a distributed replicated database.
Furthermore, the software of the monitoring system will run as an additional
service on the low-capacity computing devices that belong to Guifi.net mem-
bers.

2 Needs for Monitoring System and Use Cases

The aim of a network monitoring system is to keep aware about the operational
status of a network infrastructure, including the detection of anomalies and the
collection of usage and performance data for every network component. We first
describe the limitations of the current monitoring system, and we describe the
requirements about economic compensation of network provision and usage.



44 R. P. Centelles et al.

2.1 Limitations of the Current Monitoring System

The current legacy monitoring system for the Guifi.net network aims at offering
a public up-time and traffic accounting service. It consists of several independent,
non-coordinated, crowd-sourced monitoring servers (built on several off-the-shelf
Linux x86 low-end devices). Each server gets the list of nodes (i.e., network
devices) to monitor from the Guifi.net website and, periodically, checks them for
reachability/uptime (via ICMP pings) and measures network traffic (via SNMP).
A limitation of this service is that each node in Guifi.net is assigned to only one
monitoring instance/server. Therefore, if a monitor server fails, all the nodes
under its supervision stop being monitored. Furthermore, monitoring data from
a certain node is stored only by the assigned monitoring server, so data loss is
prone to occur. Finally, the system is not self-adaptive to changes and requires
manual intervention.

The current monitoring system impedes the implementation of relevant use
cases, as sketched in the following subsection, and a more resilient, self-adaptive
monitoring system is needed.

2.2 Needs of a Billing and Economic Compensations System

Currently, more than 20 companies operate their services professionally on top
of the Guifi.net community network. For this, the project has put in practice a
disruptive economic model [6] based on the commons and collaborative economy
models, by means of the deployment of a common-pool network infrastructure
and a fair and sustainable economic exploitation1. There is need for a compre-
hensive and reliable source of traffic data in the network.

The current billing system to balance the community effort and the com-
mercial activity related to contribution of network capacity and consumption
of connectivity mostly relies on the traffic accounting being performed at the
core routers by the Guifi.net Foundation. However, this requires a considerable
amount of manual intervention to combine, verify and validate not only the fig-
ures, but also the data reported by the ISPs themselves. An automated billing
mechanism enabled by the retrieval of reliable monitoring information from a
shared data layer would help in making the operation of the network more sus-
tainable, both technically and economically. In addition, publicly-available traf-
fic and resources usage data facilitated by a monitoring system would improve
the transparency for the whole ecosystem, leading to less disputes between the
Guifi.net Foundation and the ISPs.

3 An Edge Monitoring System for Network
Infrastructures

The new monitoring system aims at solving the limitations of the legacy mon-
itoring system and provide comprehensive and reliable monitoring data for all
1 Guifi.net - The economic project - https://guifi.net/en/economic-project.

https://guifi.net/en/economic-project


A Monitoring System for Distributed Edge Infrastructures 45

network devices despite network and server failures. We describe the system
architecture and its implementation.

Fig. 1. Architecture of the monitoring system showing the different components.

3.1 Architecture

The architecture of the monitoring system, showing the monitoring servers and
their integration with the Guifi.net website and network nodes, is depicted in
Fig. 1. On the top of the picture appears the Guifi.net website and its cen-
tral database, which contains the lists of network nodes and monitoring servers.
These two lists are always provided by the website, and can be considered to
be correct and available at any time. Compared to the current implementa-
tion (i.e., the legacy monitoring system) with a fixed mapping of network nodes
to monitoring servers, the new monitoring system proposes a mapping, that is
decentralized and autonomous, managed by the monitoring servers themselves,
and dynamically updated to ensure sufficient coverage and balance in the mon-
itoring.

Considering Algorithm 1, once the monitoring servers know the list of nodes
to watch (Phase 1 - Monitor registration), they coordinate with each other
(Phase 2 - Self-assignment) indirectly over the mutable data object given by
the monitoring servers ⇔ network devices mapping in order to perform the
actual monitoring of all nodes. The objective is to assign every single network



46 R. P. Centelles et al.

Algorithm 1 Assign algorithm with policies, for node id

Require:
dbhost � AntidoteDB hostname/IP address
dbPort � AntidoteDB TCP port
id � Unique ID of the monitor in the network
minMonitors � Min # of monitors a device needs
maxMonitors � Max # of monitors a device needs
maxDevices � Max # of devices the monitor can watch
policy � Network devices to monitoring servers assignation policy (1, 2, 3)

Phase 1 – Monitor registration

1: procedure Registration(G)
2: monitorsList[] ← GetGlobalMonitorsList
3: AddMonitorToList(id, monitorsList[])
4: UpdateGlobalMonitorList(monitorsList[])
5: end procedure

Phase 2 – Monitor Self-assignment

6: procedure Assign(id)
7: numDevices ← 0
8: devicesInAntidote[] ← getDevicesInAntidote()
9: for each device in devicesInAntidote[] do

10: if (id is in device.monitors[]) then
11: numDevices++
12: end if
13: end for � We find out the total numDevices this node monitors
14: switch policy do
15: case 1 � Min: Assign if network device not enough covered (minMonitors)
16: for each device in devicesInAntidote[] do
17: if (sizeOf (device.monitors[]) < minMons)

&& (numDevices < maxDevices) then
18: assignMonitorToDevice(id, device), numDevices++
19: end if
20: end for
21: case 2 � Max: Assign if network device not fully covered (maxMonitors)
22: for each device in devicesInAntidote[] do
23: if (sizeOf (device.monitors[]) < maxMons)

&& (numDevices < maxDevices) then
24: assignMonitorToDevice(id, device), numDevices++
25: end if
26: end for
27: case 3 � Fair: Assign if device not well covered ([minMons, maxMons])
28: maxMons ← minMons+1
29: for each device in devicesInAntidote[] do � order by asc #mons
30: if (sizeOf (device.monitors[]) ∈ [minMons, maxMons])

&& (numDevices < maxDevices) then
31: assignMonitorToDevice(id, device), numDevices++
32: end if
33: end for
34: end procedure



A Monitoring System for Distributed Edge Infrastructures 47

device to –at least– a minimum number of monitoring servers. This task can
be performed in different ways. Currently, three policies are implemented. Each
policy leads to different properties of the monitoring system, elaborated in the
following Sect. 4.

The data manipulated by the monitoring system draws from two sets of
immutable objects and creates a mapping between these objects. The first set
contains a list with all the network devices in Guifi.net that have to be mon-
itored. The list of network devices in the whole Guifi.net contains more than
30,000 nodes. The data in this first set is only modified by authoritative updates
issued from the Guifi.net website; the monitoring servers only read it but do not
modify it.

The second set contains a list with all the active monitoring servers. Servers
are also identified by a unique numeric ID, being the servers list a subset of the
nodes list (a monitoring server is indeed a device inside the network, with its
own IP address, etc. that must be monitored too). The data in this second set is
only modified by authoritative updates issued from the Guifi.net website; again,
the monitoring servers only read it but do not modify it.

In the assign operation (Phase 2 – Monitor Self-assignment), any monitoring
server may modify the mapping between network devices and monitoring servers
(add, update or remove these relations at any time).

The assignment in the monitoring servers ⇔ network devices mapping will
change over time, as new network devices are added to the list, the network
conditions change, workload is redistributed, monitoring servers join or exit the
pool, etc. As a consequence, each monitoring server continuously and concur-
rently –not in synchronisation with the other servers– reads and writes to the
shared distributed mapping object.

After conducting the monitor self-assignment procedure in Algorithm 1, in
Algorithm 2 additional operations take place. Depending on policy, if the num-
ber of monitors for a device exceeds the requirement, a monitor may un-assign
itself from the list of monitors of a device. With regards to un-assigning other
unresponsive monitors, the sanitize function is performed. By means of out-
dated timestamps, disconnected monitors are detected and an active monitor
erases them from the monitoring servers ⇔ network devices mapping. In case of
a controlled disconnection of a monitor, it performs the de-registration function,
in which a monitor un-assigns itself from the list of monitored devices before
un-assigning itself from the list of available monitors.

In order to successfully deal with the required concurrent updates of the
monitoring servers ⇔ network devices mapping shared among all monitors, the
data consistency and integrity between the different database instances is needed.
If these properties are kept, it can be ensured that all network nodes eventually
end up being properly assigned to monitoring servers.

3.2 Implementation

We developed the monitoring system as a prototype implementation that uses
the Go language. The system is composed of four components to conduct the



48 R. P. Centelles et al.

Algorithm 2 Algorithm for un-assign, sanitization and de-registration
Phase 1 – Monitor Self-unassignment

1: procedure Unassign(id)
2: devices[] ← getDevicesInAntidote()
3: for each device in devices[] do
4: if device.monitors[] > minMonitors then
5: unassignMonitorFromDevice(id, device)
6: end if
7: end for
8: end procedure

Phase 2 – Global assignment sanitization

9: procedure Sanitize
10: monitorsList[] ← GetGlobalMonitorsList
11: devices[] ← getDevicesInAntidote()
12: for each device in devicesInAntidote[] do
13: for each monitor in device.monitors[] do
14: if (monitor is not in monitorsList[]) then
15: unassignMonitorFromDevice(monitor,

device)
16: end if
17: end for
18: end for
19: end procedure

Phase 3 – Monitor Self-deregistration

20: procedure Deregistration(id)
21: monitorsList[] ← GetGlobalMonitorsList
22: RemoveMonitorFromList(id, monitorsList[])
23: UpdateGlobalMonitorList(monitorsList[])
24: end procedure

operations named fetch, assign, ping and snmp. The source code is available
at our GitLab repository2. For the consistency of the data in the distributed
database instances, the AntidoteDB database was chosen [7]. AntidoteDB imple-
ments Conflict-Free Replicated Data Types (CRDT), which offer strong eventual
consistency [8]. The integration between the monitoring server component and
AntidoteDB is done through AntidoteDB’s Go client.3

4 Evaluation of the Assign Algorithm

Our objective is to study the assign component, specifically the algorithm of
the assign operation, when using three different policies for assigning the mon-
itors to network devices. For this purpose, we aim to observe the evolution of
2 https://lightkone.guifi.net/lightkone.
3 https://github.com/AntidoteDB/antidote-go-client.

https://lightkone.guifi.net/lightkone
https://github.com/AntidoteDB/antidote-go-client


A Monitoring System for Distributed Edge Infrastructures 49

the assignment of network devices, when monitoring servers perform the assign
operation join and leave.

For conducting the experiments, first, using the fetch component of the mon-
itoring system, a data file with 54 devices of a small region of Guifi.net infras-
tructure is stored in to the AntidoteDB storage service in order to have it for
the monitors network devices to be assigned to these servers. For observing the
assign operation in the experiments, a customized setting with shorter routine
execution periods of 10 s is configured (instead of the default value of 150 s).
The required minimum number of monitors per network device (minMonitors)
is set to 3 monitors. The maximum number of network devices per monitor
(maxDevices) is set to 50 devices. The assignment state is dumped every 5 s,
which is half of the period of the assign operations. In the first half of the exper-
iment duration, assign clients join one by one the monitoring system. In the
second half of the experiment duration, the assign clients gradually leave the
monitoring system.

The experiments for policy 1 and 2 are undertaken with a local Antidot-
eDB instance, to which during the experiment up to 10 assign client write. The
experiment for policy 3 is conducted with 8 Minix devices and 7 assign clients
in Guifi.net.

4.1 Assignment Policy 1 (min): Reach minMons per Network
Device

In policy 1 each monitoring server self-assigns those network devices that have
less monitoring devices assigned than the minimum number specified by the
minMons parameter. Devices are picked randomly (no preference) until the
server reaches its maximum number of monitored devices, specified by the
maxDevices parameter of the monitor.

In this experiment 10 assign clients join and leave the monitoring system
during 7min. In the first 3 min the assign servers join every 20 s, one by one,
and after approximately 4min, they gradually leave until having 0 clients at the
end of the experiment.

Figure 2 shows the assigned devices with policy 1. The configuration has set
the parameters minMons = 3, which requires a minimum of 3 monitors per
device. With 54 devices in the dataset, the number of assigned devices must
reach 162. Before 100 s, this number of assigned devices is reached. With a mon-
itoring capacity configured as 50 devices per monitor, which 4 monitors the
number of 162 assigned devices is reached. After 4min, one of assigned monitors
disconnects. When the other idle monitors periodically connect (unsynchronized
with each other) to the system, they detect the under-monitoring of the system,
and as a consequence, self-assign devices to be monitored as to their monitoring
capacity (maxDev = 50). Since these operations are done concurrently among
several monitors and while the local decision is not updated in the shared mon-
itoring servers ⇔ network devices mapping, the number of assigned devices
raises. As the monitors get disconnected, down to 0 monitors, the number of
assigned devices decreases correspondingly.



50 R. P. Centelles et al.

Fig. 2. Assigned devices with policy 1.

Fig. 3. Monitors per devices with policy 1.

Figure 3 shows the monitors per device with policy 1. It can be seen that after
around 100 s, all devices have at least 3 monitors. This assignment corresponds
to the configured system requirements and remains stable until the disconnection
of one of the assigned monitors starts at minute 4. It can be seen that at some
instant the maximum number of monitors per device (MaxMonPerDev) raises



A Monitoring System for Distributed Edge Infrastructures 51

Fig. 4. Devices per monitor with policy 1.

up to 7, which corresponds to the concurrent responses of the idle monitors to
take over the monitoring duties of the disconnected monitors.

Figure 4 shows the devices per monitor with policy 1. It can be seen that
after around 100 s the value for the minimum number of devices per monitor
stays at 0 during some time of the experiment. This can be explained since new
joining monitors detect that the system requirements are satisfied and remain
in idle state, without self-assigning any new devices to be monitored.

4.2 Assignment Policy 2 (max): Reach maxMons per Network
Device

In policy 2 the system uses all the possible monitoring resources. Devices are
picked starting by the ones with the least monitors.

Figure 5 shows the sum of assigned devices with policy 2. Different to policy
1, policy 2 ignores any minimum number of monitors per device and the moni-
tors self-assign devices to be monitored up to reaching its maximum monitoring
capacity. It can be seen that a sum of up to 500 assigned devices is reached,
which corresponds to the 10 monitoring servers and a capacity of 50 devices
each to monitor.

Figure 6 shows the monitors per device with policy 2. Since all available
monitors are assigned, devices obtain up to 10 monitors shortly before 200 s of
the experiment, which corresponds to all 10 monitors connected.

In Fig. 7 it can be seen that at around 200 s the value for the minimum
number of devices per monitor reaches 50, which corresponds to the fact that all



52 R. P. Centelles et al.

Fig. 5. Assigned devices with policy 2.

Fig. 6. Monitors per devices with policy 2.

joined monitors operate at the maximum monitoring capacity, corresponding to
the behaviour expected from policy 2.



A Monitoring System for Distributed Edge Infrastructures 53

Fig. 7. Devices per monitor with policy 2.

4.3 Assignment Policy 3 (fair): Reach [minMons,maxMons] per
Network Device

In policy 3, devices are picked starting by the ones with the least monitors
until they are monitored by minMons monitors. If there are still monitoring

Fig. 8. Testbed for the assign operation with policy 3. The testbed is deployed in the
GuifiSants wireless mesh network (see footnote 4).



54 R. P. Centelles et al.

capacities available, devices will be monitored by at most maxMons (by default,
maxMons = minMons+ 1).

We conduct this evaluation by deploying the monitoring system on real nodes
of Guifi.net. In the Guifi.net environment, monitoring servers consist of different
hardware, which can range from resource-constraint SBCs to desktop computers.
In order to represent this situation, we have have installed several x86 mini-PCs
in a wireless mesh network part of Guifi.net (at users’ homes) to form a testbed
in which these devices operate as monitoring servers4.

Figure 8 illustrates the deployed testbed and provides some information
about the network characteristics (IP, bandwidth between nodes and RTT). The
eight black nodes correspond to Minix devices (Intel Atom x5-Z8350 4-cores CPU
@ 1.44 GHz, 4 GB of DDR3L RAM and 32 GB eMMC) running Debian Strech.
Each Minix device hosts an AntidoteDB instance. Most of the Minix devices
are geographically far from each other with a few hops of wireless links between
them. As shown in the Fig. 8, we use 7 assign clients, which are hosted on the
same Minix device they write to. On the 8th Minix device, we installed a compo-
nent which reads the current assignments from the AntidoteDB instance every
5 s. Note that all 8 AntidoteDB instances are fully replicating the data.

Figure 9 shows the assigned devices with policy 3. The configuration has set
the parameters maxMons = minMons + 1 (minMons = 3), which requires a
minimum of 3 monitors per device, and 4 monitors if there are available moni-
toring capabilities in the system. With 54 devices in the dataset, the number of
assigned devices can reach up to 216 for 4 monitors per device. At around 100 s,
this capacity is reached. With a monitoring capacity configure as 50 devices
per monitor, which 4 monitors the number of 162 assigned devices is reached,
requiring 5 monitors for 216 assigned devices. After 4min, one of assigned mon-
itors disconnects. When the idle monitors periodically connect, they detect the
under-monitoring, and as a consequence, self-assign devices as to their monitor-
ing capacity (maxDev = 50). Since this operation is done concurrently among
several monitors, the number of assigned devices raises. The local decisions are
then communicated to the shared monitoring servers ⇔ network devices map-
ping to allow coordination in the next periodic assign operation of each monitor.
As in the second half of the experiment the monitors become disconnected down
to 0 monitors, the number or assigned devices decreases correspondingly.

4.4 Comparison of Policies

Table 1 compares the three assignment policies. Each of the policies target to
achieve a certain property of the monitoring system. In policy 1 the joining
monitors self-assign devices up to their maximum monitoring capacity. Once
all devices are monitored by the minimum number of monitors, no additional
assignment takes place. It can be considered that policy 1 is resource consump-
tion efficient, by having the least number of monitors doing active monitoring at

4 The wireless mesh network is GuifiSants; nodes and network topology can be found
at http://dsg.ac.upc.edu/qmpsu/index.php.

http://dsg.ac.upc.edu/qmpsu/index.php


A Monitoring System for Distributed Edge Infrastructures 55

Fig. 9. Assigned devices with policy 3.

Fig. 10. Monitors per devices with policy 3.

their maximum capacity. In policy 2, the maximum redundancy for the monitor-
ing task is pursued by assigning the total monitoring capacity of the monitors,
even if the system requirements for the minimum number of monitors per device
are exceeded. By activating all monitors, policy 2 is less resource consumption
friendly. Policy 3 implements a trade-off between policy 1 and 2. By setting the



56 R. P. Centelles et al.

Fig. 11. Devices per monitor with policy 3.

Table 1. Comparison of the three assignment policies.

Policy Pros Cons

1 Once the system
requirement are reached,
additional monitors remain
idle

In some corner cases, depending on
the timing the servers joined the
system, some devices could end up
not being monitored even if there
are enough resources available

2 Every device is
overwatched. Increased
redundancy

The more monitoring servers are
available, the more waste of
resources. No idle monitors

3 Exceeding slightly
monitoring requirements if
servers become available

Possibly idle monitors, not
maximum redundancy

maxMons parameter, the minimum system requirement can be exceeded slightly,
while if there is an excess of monitoring capacity available beyond the maxMons
requirement, it will remain idle (Fig. 10).

5 Related Work

In the presented monitoring system, we focus on the control algorithm, how the
distributed local monitors coordinate among them their actions. We consider
that decisions are taken in a decentralized way by each local monitor, based on
the information of the global state retrieved periodically from the distributed



A Monitoring System for Distributed Edge Infrastructures 57

database, instead of retrieving the order for its monitoring actions from a cen-
tralized controller. We do not focus on the actual monitoring of network data,
which corresponds to the actions of the monitors once the assignment is done.
Differently, in [9] the lack of a centralized data storage is motivating a decen-
tralized monitoring approach, where monitoring data is communicated among
local monitors, which face the challenge of taking global decisions based on an
incomplete view about the global monitoring data (Fig. 11).

In [10], targeting large-scale Software-Defined Networks (SDN), multiple
monitoring entities that perform monitoring tasks autonomously and without
maintaining a global view of the network run-time state are proposed. The goal
is to enable these local managers to adaptively reconfigure the network resources
under their scope of responsibility. The local managers, integrated in a so called
monitoring module (MM), communicate northbound with a higher level man-
agement applications (MAs), and southbound with the SDN controller. The
MAs change the monitoring requirements for the MMs. Differently, in our work
there is no equivalent to the MA. Our monitors coordinate horizontally (over
the shared database mapping object) with the other monitors their actions. The
requirements for the monitoring that each monitor does are not obtained from
a MA, but determined by each monitor from the actions of the other monitors.

Graphite [11] is monitoring tool able to run on low-cost hardware and cloud
data centres. Graphite integrates with several other professional tools for data
storage and visualization. While Graphite allows for many customization options,
this flexibility is applied to the actual monitoring task. Context awareness to take
into account in deciding about the monitoring operation, individual automatic
re-configurations in response to a current situation in the network or monitoring
system itself, seem to be less well supported.

Many other time series databases [12] exhibit centralization and the intrin-
sic problem of distributing writes while keeping full consistency, that depends
on a data storage layer that ensures strong eventual consistency. This is the
differentiating aspect of the monitoring system presented in this work, in the
use of CRDT-based data structures to enable strong eventual consistency of the
mapping object, which is used to by each monitor to decide on its individual
monitoring duties, with concurrent writes to shared data structures.

6 Conclusions

A distributed monitoring system for a crowdsourced network infrastructure was
presented. Situated in a dynamic edge environment in which failures and net-
work partitions may happen, a decentralized approach was proposed to built
the monitoring system. A key design was the shared distributed monitoring
servers ⇔ network devices mapping to allow the coordination between the peri-
odic assign operations of each monitor. The monitoring system was implemented
and leverages the AntidoteDB database, which provides a strong eventually con-
sistent data storage service for distributed replicas of data. The assign opera-
tion, decentrally conducted by all monitoring servers while they coordinate over



58 R. P. Centelles et al.

a shared distributed data object, was evaluated. The functional performance
of three assignment policies was analyzed. The different policies are interpreted
from the point of view of the trade-off between resource consumption and redun-
dancy, effects to be taken into account when determining the monitoring system
requirements. Future work can consider enhancements of the assign policies, by
becoming more context-aware, for instance by each monitor taking into account
network conditions and network device attributes.

Acknowledgment. This work was supported by the European H2020 framework
programme project LightKone (H2020-732505), by the Spanish government contract
TIN2016-77836-C2-2-R and PID2019-106774RB-C21 by the Catalan government con-
tract AGAUR SGR 990.

References

1. Baig, R., Roca, R., Freitag, F., Navarro, L.: Guifi.net, a crowdsourced network
infrastructure held in common. Comput. Netw. 90, 150–165 (2015)

2. Satyanarayanan, M.: The emergence of edge computing. Computer 50(1), 30–39
(2017)

3. Baig, R., Freitag, F., Navarro, L.: Cloudy in guifi.net: establishing and sustaining
a community cloud as open commons. Future Gener. Comput. Syst. 87, 868–887
(2018)

4. Selimi, M., Cerdà-Alabern, L., Freitag, F., Veiga, L., Sathiaseelan, A., Crowcroft,
J.: A lightweight service placement approach for community network micro-clouds.
J. Grid Comput. 17(1), 169–189 (2019)

5. Sathiaseelan, A., et al.: Towards decentralised resilient community clouds. In: Pro-
ceedings of the 2nd Workshop on Middleware for Edge Clouds & Cloudlets, MECC
2017, pp. 4:1–4:6. ACM, New York (2017)

6. Cerdà-Alabern, L., Baig, R., Navarro, L.: On the guifi.net community network
economics. Comput. Netw. 168, 107067 (2020)

7. AntidoteDB: A planet scale, highly available, transactional database (2019).
https://www.antidotedb.eu/

8. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: Conflict-free replicated data
types. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp.
386–400. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24550-
3_29

9. Falcone, Y., Cornebize, T., Fernandez, J.-C.: Efficient and generalized decentralized
monitoring of regular languages. In: Ábrahám, E., Palamidessi, C. (eds.) FORTE
2014. LNCS, vol. 8461, pp. 66–83. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-43613-4_5

10. Tangari, G., Tuncer, D., Charalambides, M., Pavlou, G.: Decentralized monitor-
ing for large-scale software-defined networks. In: 2017 IFIP/IEEE Symposium on
Integrated Network and Service Management (IM), pp. 289–297, May 2017

11. Davis, C., contributors: Graphite: an enterprise-ready monitoring tool. https://
graphiteapp.org/

12. Bader, A., Kopp, O., Falkenthal, M.: Survey and comparison of open source time
series databases. Datenbanksysteme für Business, Technologie und Web (BTW
2017)-Workshopband (2017)

https://www.antidotedb.eu/
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1007/978-3-662-43613-4_5
https://doi.org/10.1007/978-3-662-43613-4_5
https://graphiteapp.org/
https://graphiteapp.org/

	A Monitoring System for Distributed Edge Infrastructures with Decentralized Coordination
	1 Introduction
	2 Needs for Monitoring System and Use Cases
	2.1 Limitations of the Current Monitoring System
	2.2 Needs of a Billing and Economic Compensations System

	3 An Edge Monitoring System for Network Infrastructures
	3.1 Architecture
	3.2 Implementation

	4 Evaluation of the Assign Algorithm
	4.1 Assignment Policy 1 (min): Reach minMons per Network Device
	4.2 Assignment Policy 2 (max): Reach maxMons per Network Device
	4.3 Assignment Policy 3 (fair): Reach [minMons,maxMons] per Network Device
	4.4 Comparison of Policies

	5 Related Work
	6 Conclusions
	References




