
Ivona Brandic
Thiago A. L. Genez
Ilia Pietri
Rizos Sakellariou (Eds.)

LN
CS

 1
20

41

5th International Symposium, ALGOCLOUD 2019
Munich, Germany, September 10, 2019
Revised Selected Papers

Algorithmic Aspects
of Cloud Computing

Lecture Notes in Computer Science 12041

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Ivona Brandic • Thiago A. L. Genez •

Ilia Pietri • Rizos Sakellariou (Eds.)

Algorithmic Aspects
of Cloud Computing
5th International Symposium, ALGOCLOUD 2019
Munich, Germany, September 10, 2019
Revised Selected Papers

123

Editors
Ivona Brandic
Vienna University of Technology
Vienna, Austria

Thiago A. L. Genez
Department of Engineering
University of Cambridge
Cambridge, UK

Ilia Pietri
Intracom Telecom
Paiania, Greece

Rizos Sakellariou
University of Manchester
Manchester, UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-58627-0 ISBN 978-3-030-58628-7 (eBook)
https://doi.org/10.1007/978-3-030-58628-7

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-7424-0208
https://orcid.org/0000-0003-2825-8639
https://orcid.org/0000-0003-0481-5998
https://orcid.org/0000-0002-6104-6649
https://doi.org/10.1007/978-3-030-58628-7

Preface

The International Symposium on Algorithmic Aspects of Cloud Computing
(ALGOCLOUD) is an annual event that aims to tackle the diverse new topics in the
emerging area of algorithmic aspects of computing and data management in the cloud.

The aim of the symposium is to bring together international researchers, students,
and practitioners to present research activities and results on topics related to algo-
rithmic, design, and development aspects of modern cloud-based systems.

As in previous years, paper submissions were solicited through an open call for
papers. ALGOCLOUD welcomes submissions on all theoretical, design, and imple-
mentation aspects of modern cloud-based systems. We are particularly interested in
novel algorithms in the context of cloud computing, cloud architectures, as well as
experimental work that evaluates contemporary cloud approaches and pertinent
applications. We also welcome demonstration manuscripts, which discuss successful
elastic system developments, as well as experience/use-case articles and reviews.
Contributions may span a wide range of algorithms for modeling, practices for con-
structing, and techniques for evaluating operations and services in a variety of systems,
including but not limited to, virtualized infrastructures, cloud platforms, data centers,
cloud-storage options, cloud data management, non-traditional key-value stores on the
cloud, HPC architectures, etc.

Topics of interest addressed by this workshop include, but are not limited to:

• Analysis of algorithms and data structures
• Resource management and scheduling
• Data center and infrastructure management
• Privacy, security, and anonymization
• Cloud-based applications
• Virtualization and containers
• Performance models
• Cloud deployment tools and their analysis
• Novel programming models
• Storage management
• Fog and edge computing
• Economic models and pricing
• Energy and power management
• Big data and the cloud
• Network management and techniques
• Caching and load balancing

ALGOCLOUD 2019 took place on September 10, 2019, in Munich, Germany. It
collocated and was part of ALGO 2019 (September 9–13, 2019), the major annual
congress that combines the premier algorithmic conference European Symposium on
Algorithms (ESA), and a number of other specialized symposiums and workshops, all

related to algorithms and their applications, making ALGO the major European event
for researchers, students, and practitioners in algorithms.

There was a positive response to the ALGOCLOUD 2019 call for papers. The
diverse nature of papers submitted demonstrated the vitality of the algorithmic aspects
of cloud computing. All submissions went through a rigorous peer-review process and
were reviewed by at least three Program Committee (PC) members. Following their
recommendations, the PC chairs accepted seven original research papers in a wide
variety of topics that were presented at the workshop. We would like to thank all PC
members for their significant contribution in the review process.

The program of ALGOCLOUD 2019 was complemented with a highly interesting
keynote, entitled “New Horizons in IoT Workflows Provisioning in Edge and Cloud
Datacentres for Fast Data Analytics,” which was delivered by Rajiv Ranjan (Newcastle
University, UK), and an informative and well-thought-out tutorial entitled “Algorithms
for a Smart Construction Environment,” which was delivered by Vlado Stankovski
(University of Ljubljana, Slovenia). We wish to express our sincere gratitude to both
our esteemed invitees for their contributions.

Finally, we would like to thank all authors who submitted their research work to
ALGOCLOUD and the Steering Committee for volunteering their time.

We hope that these proceedings will help researchers, students, and practitioners
understand and be aware of state-of-the-art algorithmic aspects of cloud computing,
and that they will stimulate further research in the domain of algorithmic approaches in
cloud computing in general.

September 2019 Ivona Brandic
Thiago A. L. Genez

Ilia Pietri
Rizos Sakellariou

vi Preface

Organization

Steering Committee

Spyros Sioutas University of Patras, Greece
Peter Triantafillou University of Warwick, UK
Christos D. Zaroliagis University of Patras, Greece

Symposium Chairs

Ivona Brandic Vienna University of Technology, Austria
Thiago A. L. Genez University of Cambridge, UK
Ilia Pietri Intracom SA, Greece
Rizos Sakellariou The University of Manchester, UK

Program Committee

Olivier Beaumont Inria Bordeaux, France
Luiz Fernando Bittencourt University of Campinas, Brazil
Valeria Cardellini University of Rome Tor Vergata, Italy
Alex Delis University of Athens, Greece
Elisabetta Di Nitto Politecnico di Milano, Italy
Katerina Doka National Technical University of Athens, Greece
Fanny Dufossé Inria Grenoble, France
Thomas Fahringer University of Innsbruck, Austria
Sarunas Girdzijauskas KTH Royal Institute of Technology, Sweden
Anastasios Gounaris Aristotle University of Thessaloniki, Greece
Raffaele Montella Parthenope University of Naples, Italy
George Pallis University of Cyprus, Cyprus
Alessandro Papadopoulos Mälardalen University, Sweden
Guido Proietti University of L’Aquila, Italy
Krzysztof Rzadca University of Warsaw, Poland
Rafael Brundo Uriarte IMT Lucca, Italy

Additional Reviewer

Thanh-Phuong Pham University of Innsbruck, Austria

New Horizons in IoT Workflows Provisioning
in Edge and Cloud Datacentres for Fast Data

Analytics (Keynote Talk)

Rajiv Ranjan

Newcastle University, UK
raj.ranjan@ncl.ac.uk

Abstract. Supporting Internet of Things (IoT) workflow enactment/execution
on a combination of computational resources at the network edge and at a
datacentre remains a challenge. Increasing volumes of data being generated
through smart phones and IoT devices (which can vary significantly in scope
and capability), need to be processed in a timely manner [2]. Current practice
involves using edge nodes (e.g. sensors or other low-capacity devices) as a
means to acquire/collect data (i.e. as an “observation” mechanism). Subse-
quently, this data is transmitted to a datacentre/cloud for analysis/insight.
Increasingly, the limitation with the use of a large-scale, centralised datacentre is
being realised (such as speed of response for latency-sensitive applications),
with the emergence of a number of paradigms to address this concern – such as
fog computing, edge computing, Cloud-of-Things, etc. [1]. All of these propose
the use of dedicated servers (with varying capacity and capability) within
micro/nano datacentres at the network edge, to overcome latency constraints
associated with moving data to a central facility and (lack of use of) increasing
computational capability within edge devices. These paradigms also closely
align with work in content distribution networks (e.g. from Akamai CDNs),
which attempt to place data servers within one (or a small number of)
hop-of-end users (currently 85% of users are supported in this way, with >175K
Akamai servers).
A key objective of this keynote talk is to understand how such emerging

paradigms can be used to enable cloud systems (supported through large scale
computational facilities) to be “stretched” to the network edge, to enable
data-driven IoT workflows to be enacted efficiently over such combined
infrastructure. We propose the combined use of (varying) capability at the
network edge (referred to as an Edge DataCentre (EDC)) with capability within
a Cloud DataCentre (CDC). Collectively, IoT devices and edge resources, like
gateways (Raspberry Pi 3), software-defined network systems (Huawei Clou-
dEngine 6800), and smart phones equipped with sensors, constitute a new set of
computing resources – and are potential components of an EDC [1, 3].
This keynote talk will have the following outline:

1. Overview of the research challenges involved with composing and orches-
trating complex IoT workflows in cloud-edge continuum infrastructure.
2. Discuss two case studies in healthcare and smart cities domain to understand
how data-driven workflows can be applied to create/compose next-generation
IoT applications.

3. Discuss our experience with running the UK’s largest IoT infrastructure,
namely, the Urban Observatory (http://www.urbanobservatory.ac.uk/).

References

1. Nardelli, M., Nastic, S., Dustdar, S., Villari, M., Ranjan, R.: Osmotic flow: osmotic com-
puting + IoT workflow. IEEE Cloud Comput. 4(2), 68–75 (2017). https://doi.org/10.1109/
MCC.2017.22

2. Ranjan, R., et al.: The next grand challenges: integrating the internet of things and data
science. IEEE Cloud Comput. 5(3), 12–26 (2018). https://doi.org/10.1109/MCC.2018.
032591612

3. Villari, M., Fazio, M., Dustdar, S., Rana, O., Ranjan, R.: Osmotic computing: a new paradigm
for edge/cloud integration. IEEE Cloud Comput. 3(6), 76–83 (2016). https://doi.org/10.1109/
MCC.2016.124

x Rajiv Ranjan

http://www.urbanobservatory.ac.uk/
https://doi.org/10.1109/MCC.2017.22
https://doi.org/10.1109/MCC.2017.22
https://doi.org/10.1109/MCC.2018.032591612
https://doi.org/10.1109/MCC.2018.032591612
https://doi.org/10.1109/MCC.2016.124
https://doi.org/10.1109/MCC.2016.124

Contents

Algorithms for a Smart Construction Environment 1
Petar Kochovski and Vlado Stankovski

Developing a Cloud-Based Algorithm for Analyzing the Polarization
of Social Media Users . 15

Loris Belcastro, Fabrizio Marozzo, Domenico Talia, and Paolo Trunfio

Coordinated Data Flow Control in IoT Networks . 25
Nipun Balan Thekkummal, Devki Nandan Jha, Deepak Puthal,
Philip James, and Rajiv Ranjan

A Monitoring System for Distributed Edge Infrastructures
with Decentralized Coordination . 42

Roger Pueyo Centelles, Mennan Selimi, Felix Freitag,
and Leandro Navarro

A Container-Driven Approach for Resource Provisioning
in Edge-Fog Cloud . 59

Hamid Mohammadi Fard, Radu Prodan, and Felix Wolf

Self-adaptive Container Deployment in the Fog: A Survey 77
Valeria Cardellini, Francesco Lo Presti, Matteo Nardelli,
and Fabiana Rossi

Security-Aware Database Migration Planning . 103
K. Subramani, Bugra Caskurlu, and Utku Umur Acikalin

Scalable and Hierarchical Distributed Data Structures for Efficient
Big Data Management . 122

Spyros Sioutas, Gerasimos Vonitsanos, Nikolaos Zacharatos,
and Christos Zaroliagis

Author Index . 161

Algorithms for a Smart Construction
Environment

Petar Kochovski and Vlado Stankovski(B)

University of Ljubljana, Ljubljana, Slovenia
vlado.stankovski@fri.uni-lj.si

Abstract. Every building project is one of a kind. Unique are its design,
location, collaborating people and organizations, time-frame, cost and
many other aspects. Setting up smart services and applications that
would support the building process is on the wish list of every construc-
tion company. Such applications, however, have time-critical require-
ments that must be addressed in the application designing process. There
are four broad types of converging technologies that are currently used
to build smart applications. These include the Internet of Things (IoT),
Artificial Intelligence (AI), Cloud Computing and Blockchain. The EU-
Korean research and innovation project DECENTER intends to play a
pivotal role in the integration of such technologies in a new Fog Com-
puting Platform. The DECENTER Fog Computing Platform would help
address the resource requirements of smart applications and provide high
Quality of Service (QoS) to various AI-based applications. Due to the var-
ious uncertainties of the Fog Computing environment, the project aims at
also providing Service Level Agreements for the offered services, which
include assurances, ranking and verification of Edge-to-Cloud deploy-
ment options. Our present work focuses on the use of stochastic methods,
particularly, the Markov Decision Process to deliver a QoS model of the
smart application in relation to the available Cloud computing resources.
This work presents the algorithm, which is used to achieve high QoS of
smart applications and its implementation considerations. Our findings
support the understanding that dynamic Edge-to-Cloud computing envi-
ronments require a stochastic approach to establish assurances for high
QoS operation of the applications. It is shown that the required assur-
ances can be expressed as a probability value for confidence, which is
calculated by the stochastic method.

Keywords: Internet of Things · Artificial Intelligence · Cloud · Fog ·
Edge · Blockchain · Markov Decision Process · Decision-making

1 Introduction

Smart applications may be required to operate at actual building sites in order to
address problems of resources and assets management, building process monitor-
ing, construction site automation, robots assisted construction, infrastructures
c© Springer Nature Switzerland AG 2020
I. Brandic et al. (Eds.): ALGOCLOUD 2019, LNCS 12041, pp. 1–14, 2020.
https://doi.org/10.1007/978-3-030-58628-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58628-7_1&domain=pdf
https://doi.org/10.1007/978-3-030-58628-7_1

2 P. Kochovski and V. Stankovski

monitoring, safety monitoring and similar. In order to develop smart construction
applications, their development and deployment stages may require to address a
variety of requirements including those for high performance or response time,
i.e. high Quality of Service (QoS). In order to achieve this goal, some appli-
cations require high network performance (e.g. Web real-time communication),
whilst other require more processing power (e.g. video-stream analysis) or stor-
age capacity (e.g. data management system). Often, Internet of Things (IoT)
and Edge devices run on batteries and are lacking processing power, which leads
to the necessity of placing the computations at nearby micro-servers and data
centers, where higher frequency processors can be obtained. Generally, the net-
work performance metrics (e.g. latency, network throughput, packet loss) are
relevant for smart applications in order to achieve high levels of dependability.
Hence, to reach their business value, smart applications in construction must
satisfy very specific technical, performance-related requirements. In summary,
requirements analysis must take into consideration network and performance-
wise QoS attributes, particularly non-functional requirements, such as reliability,
availability, security, safety and similar, which are commonly known in systems
engineering as dependability attributes.

In order to facilitate efficient and effective development of smart IoT-based
applications, they come hands-in-hands with component-based software engi-
neering approaches and tools, which introduce radical improvements of the soft-
ware lifecycle. An important improvement is the ability to use container images
within workbenches i.e. Interactive Development Environments(IDEs), such as
SWITCH IDE [17] or Fabric81. Existing open-source technologies for interoper-
ability, such as Docker Swarm2 and Kubernetes3 allow to orchestrate container-
ized applications across the Edge-to-Cloud computing continuum. The process
of placing i.e. deploying a containerized smart application in the computing
continuum is a complex problem, because during this stage of the application,
it is necessary to choose optimal or close-to-optimal Cloud deployment option
among large quantity of options by considering multiple quality constraints. As a
result, various trade-offs between the constraints must be considered and uncer-
tainties which can only be addressed at the time of deployment. For instance,
one trade-off can be the service cost versus the infrastructure processing power.
The decision-making process during the deployment stage can be expressed as
a complex multi-objective decision-making problem, which is too challenging to
be addressed manually by the software engineer.

The ongoing Horizon 2020 European Union-Korea project DECENTER4 is
inspired by four main use cases, which fit in the context of Smart Homes, Smart
Cities, Smart Construction and Robot Logistics. The smart applications that
are designed for these domains, require data integration and processing that is
constantly streamed from large amounts of sensors and data sources. Once the

1 https://fabric8.io/.
2 https://docs.docker.com/engine/swarm/.
3 https://kubernetes.io/.
4 https://www.decenter-project.eu/.

https://fabric8.io/
https://docs.docker.com/engine/swarm/
https://kubernetes.io/
https://www.decenter-project.eu/

Algorithms for a Smart Construction Environment 3

data is gathered, it is necessary to extract some useful information by using
various Artificial Intelligence (AI) methods. Due to the different application sce-
narios and requirements, the data is processed, filtered, integrated and visualized
at different stages of the Big Data pipeline, starting from the Edge computing
nodes to the high performance Cloud data centers.

The DECENTER project currently integrates four technology types: the IoT,
AI, Cloud computing and Blockchain, in order to build a new Fog Computing
Platform, which offers new opportunities for the development of smart applica-
tions in a wide range of domains. It also provides a workbench that helps software
engineers to use Edge-to-Cloud resources to carry out a substantial amount of
computation, storage, communication from the Edge to the Cloud, and thus
addresses the requirements of Big Data pipelines, which start at the Edge of
the computing network and may run across multiple computing tiers up to vari-
ous public or private Cloud providers. While providing mechanisms for seamless
integration of resources necessary for smart application deployment, the project
aims to achieve high QoS guarantees for its services provided as Service-Level
Agreements (SLAs). This whole effort is necessary in order to provide depend-
ability to the operation of smart applications.

Hence, DECENTER has potential to improve the development of depend-
able smart environments, notification systems, Ambient Intelligence solutions
and even Cyber-Physical Systems. DECENTER can be used to dynamically
integrate both static (e.g. sensors, cameras, actuators) or moving (e.g. sensors,
vehicles, drones, robots) Things. Application domains include smart cities and
communities, smart buildings and homes, smart trading chains, the circular econ-
omy, sustainable food production, sustainable tourism, factories of the future,
e-health, smart mobility and beyond, and are well exemplified by projects of the
Slovenia’s Smart Specialization programme of research and innovation.

This paper focuses on the decision-making process when deploying smart
applications in the cloud. The key objective is to design specific algorithms that
may help maintain high Quality of Service during the operation in conditions
where the execution context may dynamically change (e.g. varying network band-
width) and thus influence the resulting QoS. This work also intends to provide
an overview of various decision-making mechanisms that can be utilized in such
circumstances.

The rest of the paper is structured as follows. Section 2 describes vari-
ous smart application scenarios for smart construction environments. Section 3
presents the different computing paradigms, requirements that can be used
when developing applications for different scenarios for the purposes of Smart
Construction environments. Section 4 describes the necessity of utilizing multi-
objective decision-making mechanisms in order to achieve optimal QoS and
an evaluation results of the implemented Markov Decision Process (MDP).
Section 5 discusses the importance of trust in smart environments and the role of
Blockchain in achieving trust. Section 6 concludes the paper and discusses future
challenges in the field.

4 P. Kochovski and V. Stankovski

2 Smart Application Scenarios

In order to illustrate the benefits of implementing multi-layered architectures
for smart construction environments, this section describes three of the analyzed
smart applications. Each application is built from reusable components, which
can be deployed in three-tier architecture (Edge-Fog-Cloud).

(a) Video stream application workflow

(b) Video stream Graphical User Interface

Fig. 1. Video stream application scenario

Web real time communication represents an important communication
method potentially to be used at a smart construction site. It can be com-
plemented with various other features, such as Deep Learning Neural Networks
for AI video analysis, and other real-time communication functions in order to
address safety and security risks, improve teamwork and prevent delays in the
construction process.

In this scenario, the video conferencing application is developed by using
the open-source videoconferencing service Jitsi Meet5, which is virtualized as
5 https://jitsi.org/.

https://jitsi.org/

Algorithms for a Smart Construction Environment 5

a Docker container. The containerized application can be run on any physical
device or Virtual Machine where the Docker Engine is running. The videocon-
ferencing session is initiated via a Web link, which forwards the users to a con-
tainerized Jitsi Meet software running on an Edge computing node.

In this scenario, the Jitsi Meet application does not run constantly on a ded-
icated service. In fact, upon user’s request the KuberDeployer Servlet calls a
Decision-Making service, which retrieves a Cloud deployment option satisfying
high QoS. Once an optimal deployment option is retrieved, the application’s
container image is deployed and run on the computing node by the Kuber-
netes Orchestrator. This approach allows to save resources on the Edge com-
puting node, when the service is not required, and thus save on operational
costs. In addition to that high QoS is achieved due to the use of Edge com-
puting. More details of this scenario are depicted on Fig. 1 and are explained
elsewhere [10], [12].

Video surveillance and safety violations detection is a scenario in which a
containerized application is designed and deployed in order to increase the safety
at construction sites by analyzing video surveillance data. The application is
composed of three containers, which cover the complete Big Data pipeline. Each
container runs on different layer in the Edge-to-Cloud continuum.

Fig. 2. AI processing workflow for video surveillance data

The video streaming data is firstly processed on the network Edge in order
to detect presence of meaningful data for further analysis. Once a subject or
object is detected, the data is forwarded to the Fog computing layer, where AI
empowered Microservices use the surveillance footage as input data to detect
safety violations. Figure 2 shows how surveillance data is fragmented into small

6 P. Kochovski and V. Stankovski

fragments that are separately analyzed in order to retrieve safety violations.
Finally the results of the analysis are stored on the top layer, which is the Cloud
computing layer, where Cloud data is present, and additional data analyses and
visualizations are performed on high power computing cloud infrastructures.

Data management and documentation are very important processes during
construction. In larger projects, delays and data-loss are probable, thus docu-
menting and backing up data from the overall construction process is essential.
In order to achieve high QoS in such scenarios, when large files are constantly
exchanged, it is necessary to store the files in close proximity to the users.

In this scenario, the smart application takes advantage of decentralized stor-
age services that are part of the Fog computing layer. In particular, the applica-
tion is deployed on the optimal infrastructure as a Docker container, which allows
file transfer through HTTP RESTfull APIs. The container is created, served and
destroyed for each individual file upload request. The application components
are described in the following study [10], whilst [9] describes a multi-tier archi-
tecture for achieving high QoS when computing data in multi-tier distributed
computing systems.

3 Edge-to-Cloud Computing for Smart Environments

The implementation of Big Data pipelines from the Edge of the computing net-
work up to the Cloud data centres poses some important requirements that have
been addressed by new architectures, standards and technologies for Edge com-
puting. In the following we present some outstanding initiatives in this context,
and the summary of important requirements that underpin the development of
the DECENTER’s Fog Computing Platform.

3.1 Computing Layers for Smart Environments

Following the latest standards, defined by the Cloud Native Computing Foun-
dation (CNCF)6, the OpenFog Consortium 7 and the Edge Computing Con-
sortium Europe (ECCE)8, smart application and data produced by them can
be computed across the whole Edge-to-Cloud computing continuum as depicted
on Fig. 3.

The Edge-to-Cloud computing paradigm, that is, the plethora of various com-
puting resources and connections can be differentiated among properties such
as: computing performance, network performance and geographic distribution.
Cloud computing is a centralised computing approach that offers high comput-
ing power in large data centres, often being too remote from the data sources. In

6 https://www.cncf.io/.
7 http://www.openfogconsortium.org/.
8 https://ecconsortium.eu/.

https://www.cncf.io/
http://www.openfogconsortium.org/
https://ecconsortium.eu/

Algorithms for a Smart Construction Environment 7

Fig. 3. Smart construction environment and IoT applications

order to address the network quality issues, Cloud computing is being comple-
mented by emerging computing paradigms that extend the computing capacity
closer to the sources of data, such as Edge computing.

According to the OpenFog Consortium, Fog computing is a computing
paradigm that distributes computing, storage, control and networking functions
closer to the users along the Cloud-to-Things continuum. Moreover, it can be
considered as Cloud resources that exist between the Edge devices and the tra-
ditional Cloud computing data centres that offer high computing performance
with improved network performance.

Edge computing is the lowest layer of computing, which is designed to guar-
antee high network performance. It is highly distributed and allows processing
data on various multiprocessor devices that operate in close proximity to sen-
sors (e.g. Raspberry Pi, BeagleBoard or PCDuino). Although, edge computing
offers high network performance, it is not recommended for intensive computing
operations.

8 P. Kochovski and V. Stankovski

3.2 Summary of Requirements for Smart Applications

Smart applications have a range of functional and non-functional requirements
that have to be addressed at their design phase. Here follows a brief summary
of such requirements.

– Non-Functional Requirements are system requirements that specify how a
system should operate. Areas in need of smart applications in civil engineer-
ing include construction monitoring, construction site management, safety at
work, early disaster warning, and resources and assets management. So far,
smart applications in these areas have not taken off due to significant Quality
of Service (QoS) requirements. For such applications, geographic proximity,
low latency and high bandwidth may be the only feasible options. Moreover,
using sensors in construction sites may pose privacy or security challenges.
Whatever is identified from sensor or video streams may need to stay locally
and under strict access control.

– Functional Requirements are system requirements that specify the behavior
of the system. Every construction site is a dynamic place: various Artificial
Intelligence and other Big Data analytics software should dynamically adapt.
It is therefore necessary to provide an orchestration technology that is event-
driven as various services may be needed in real time, to be deployed, used
and destroyed. Benefits for QoS metrics have already been observed when
such microservices are deployed in geographic proximity of an actual smart
construction site [10]. It is therefore necessary to provide a system design
for smart applications, which may benefit from an event-driven orchestration
technology for containers that are deployed in close proximity to the loca-
tions of the sensors. Based on this rationale we proceeded by designing an
application that is container-based and suitable for Fog computing.

4 Multi-objective Decision-Making for the Selection of
Cloud Deployment Options

4.1 Decision-Making Mechanisms Summary

Managing non-functional requirements of smart applications that need to be
deployed in the Edge-to-Cloud continuum requires detailed understanding of
their trade-offs. For instance, utilizing greater processing power, requires higher
operational cost. Moreover, it is necessary to address the uncertainties present
at application deployment time. Usually, the application deployment processes
has to take into account multiple non-functional requirements, hence the process
is complex and can be formulated as a multi-objective decision-making problem.

Several studies that address this problem from deterministic and stochastic
point of view were investigated for this study. The studies [3,4,6] approach the
application deployment problem by implementing deterministic decision-making
solutions based on the Analytical Hierarchy Process (AHP). This method imple-
ments threshold values to various metrics selected by the developer and helps

Algorithms for a Smart Construction Environment 9

rank the considered Cloud deployment options. Furthermore, there are stud-
ies [5,13] that propose algorithms based on Pareto front decision-making. How-
ever, these studies are limited to the amount of non-functional requirements that
are being considered in the decision-making process.

Stochastic decision-making approaches allow for suitable probabilistic evalu-
ation and may help achieving the required application QoS in addition to assur-
ances, ranking and verification of Cloud deployment options. For example, MDP
is a suitable stochastic method to address the stochastic nature of the Cloud
computing domain which has been exemplified in related studies [11,14,16].

4.2 Markov Decision Process

MDP is a powerful decision-making method for dynamic environments where
the results are partly random and partly under the control of a decision maker.
In other words, MDP is a method for planning in stochastic environments. Our
hypothesis is that this method is suitable for container deployment, that is, Cloud
deployment options decision-making because it is capable of: (1) autonomous
evaluation of all possible outcomes, whilst analyzing all events that can take place
in the stochastic environment; (2) utilize prior knowledge of the system behavior
to determine the best set of actions in a stochastic environment; (3) calculate the
utility i.e. usefulness of each deployment option in order to prepare a ranking
list and determine an optimal deployment option. Moreover, the method can
be used to provide assurances for the QoS expressed as probability values. This
property makes it suitable for implementation of SLAs within the DECENTER
Fog Computing Platform.

B-1

B-1 B-1

B-1B-2

B-2 B-2

B-2B-3

B-3 B-3

B-3B-4

B-4 B-4

B-4

0.4 0.5

1.0

1.0

idle
(re)deploy

1.0

1.0

0.1

0.2

0.3

0.6

0.2

0.4

0.4

0.1

0.3

0.5

0 1

23

A A

AA

Fig. 4. Example of a MDP model where each state represents a federation of computing
infrastructures

10 P. Kochovski and V. Stankovski

In order to illustrate our algorithmic approach to the decision-making for
Cloud deployment options, we have prepared an illustrative example in Fig. 4.
The MDP model is defined as a tuple of elements M = (S,A, P,R, γ), where:
S is a finite set of states (i.e. each state can represent one or a federation of
deployment options in the Edge-to-Cloud computing continuum); A is a finite
set of actions (i.e. re/deploy, idle); P is the transition probability from one state
to another due to an specific action; R is the expected reward for transitioning
from one state to another; and γ is a discount factor, which exists to reduce the
number of iterations when evaluating the model.

As we can see from the figure, the MDP probabilistic model is a finite automa-
ton, which is necessary for delivering a decision for deployment an application
on an optimal Cloud deployment option. Each MDP model has to satisfy the
Markov rule, which states that for any given time, the conditional distribution
of future states of the process given present and past states depends only on the
present state and not on the past states.

Mathematically, the Markov property is expressed as follows:

P [St+1|St] = P [St+1|S1, ..., St] (1)

In our case, the MDP model is generated for each software component (or
set of software components) and can dynamically change due to the variability
of available deployment options and their input non-functional requirements.
Within the model, each transition from one state is a probabilistic choice over
multiple next states, where the probability value is estimated from prior usage
data.

Transitions between states represent different actions: (re)deployment, which
is responsible for retrieving an optimal deployment option; and idle state, which
is selected to terminate the process, once a deployment option is retrieved. Each
state in the model is mapped to a different reward value, which are derived from
the metrics thresholds that the state satisfies.

Finally the deployment options are ranked by their utility values, which are
derived by performing value iteration over the Bellman equation:

u(S) = r(S) + γ max
a

∑

S′
P (S′|a, S)u(S′) (2)

Detailed information on the method and a previously developed model for
single-tiered applications, are elaborated in our previous study [7]. In this work,
however, we address the possibility to address the requirements of multi-tier
applications that are comprised by several Microservice containers. This is rep-
resented by combinations of states A−B1, A−B2, A−B3 and A−B4, that is
from Edge to Cloud in the above presented Fig. 4.

4.3 Probabilistic Decision-Making Evaluation

In order to prove the feasibility of implementation the above described decision-
making mechanism, a two-tier application composed of two AI methods that

Algorithms for a Smart Construction Environment 11

had to be deployed on optimal or close-to-optimal pair of computing infras-
tructures. The infrastructure pairs are enlisted in Table 1, where infrastruc-
ture A is a powerful small computer NVIDIA Jetson Nano that runs at the
network Edge i.e. in close proximity to data sources; and infrastructure(s)
B-type can be computing instances hosted by Amazon AWS EC29 i.e.
a1.medium, a1.large, a1.xlarge, a1.2xlarge or Google Cloud Platform10 i.e. n1-
standard-1,2,4 in Europe. For the needs of the evaluation, the following non-
functional requirements were taken into account: latency between the paired
infrastructures lower than 60 ms, throughput between the paired infrastructures
higher than 10 Gb/s, packet loss lower than 2% and cost of infrastructure B
lower than 90$.

The results, presented in Table 1 show the scores and the ranking of infras-
tructure pairs for the two-tier application. Due to the prior usage data that was
used for generating the probabilistic model and the rewards that were estimated
from the current monitoring data, the optimal deployment pair with highest
score in this evaluation was the NVIDIA Jetson Nano + a1.large infrastructure
pair.

Table 1. Deployment ranking results of the infrastructure pairs

Rank Infrastructure pairs Score

A B

I NVIDIA Jetson Nano a1.large 115.8

II n1-standard2-Frankfurt 115.44

III a1.xlarge 115.17

IV a1.medium 105.49

V n1-standard1-Frankfurt 104.03

VI n1-standard1-London 103.99

VII n1-standard1-London 97.33

VIII a1.2xlarge 96.98

IX n1-standard4-London 95.68

X n1-standard4-Frankfurt 95.48

*Edge computing infrastructures;
**Fog and Cloud computing infrastructures.

The presented results show the suitability of the MDP method to take into
account information at both design and runtime in order to calculate the optimal
Cloud deployment option for two-tiered applications. This fits the requirements
of the use cases scenarios that we investigated. Moreover, in the following we
discuss the possibility to use Blockchain-based services to provide high-level of
trust in the operation of such applications.
9 https://aws.amazon.com/ec2/.

10 https://cloud.google.com/.

https://aws.amazon.com/ec2/
https://cloud.google.com/

12 P. Kochovski and V. Stankovski

5 Trust as a High-Level Requirement

Besides addressing the QoS requirements of smart applications, MDP can be
used to also address high-level requirements such as trust, dependability, avail-
ability and others. Smart applications usually face many threats in various
domains, including smart constructions, particularly when it is necessary to
deploy them in the Edge-to-Cloud computing continuum, that is, in a comput-
ing environment that spans across different administrative domains and employs
heterogeneous and dynamic infrastructures. Achieving trust among the partic-
ipating entities is of crucial importance in such environments. Usually trust
is defined as subjective probability with which an entity assesses that another
entity or group of entities will perform a particular action. In computer science
the question of trust is still not investigated thoroughly. Few isolated studies have
aimed to define a trust ontology [15]. The role of trust has also been investigated
when maintaining reliable services, preventing incidental failures and handling
misbehavior issues [1,2].

An overreaching goal of our work is therefore to incorporate trust man-
agement principles in the context of the DECENTER’s Fog Computing Plat-
form. DECENTER is designed to orchestrate AI microservice containers across
the Edge-to-Cloud computing continuum. For this purpose several trust-related
attributes, such as availability, credibility, privacy, response time, throughput,
security, transparency and traceability have to be satisfied.

In order to assure that the complex interactions among humans and the smart
applications are trusted, the DECENTER Fog Computing Platform implements
a Blockchain layer. Blockchain is an immutable ledger with operations which are
transparent. Its data is consistent among all the participants. Autonomous trust
management in the DECENTER Platform is supported through the execution of
Smart Contracts. Smart Contracts are computer protocols intended to facilitate
and enforce digital contracts between different entities. All Smart Contracts are
executed on the Blockchain, hence all transactions are irreversible, transparent
and traceable. In complex and dynamic Edge-to-Cloud computing environments,
such as those mentioned before, Smart Contracts may use timely monitoring data
provided by less costly off-chain services. A Smart Oracle is a mechanism that
can provide tamper-proof off-blockchain data to Smart Contracts, which can be
used in the runtime.

In our ongoing work in this domain, we assure trust in the three smart appli-
cation scenarios by using Smart Contracts [8]. Each Cloud application deploy-
ment scenario was complemented with three trust management scenarios: assur-
ing trust between sensors or cameras and users, assuring trusted data flow in
the Edge-to-Cloud continuum and assuring high QoS in the Edge-to-Cloud con-
tinuum. The architecture, system workflow and the Smart Contracts logic in
achieving trust in smart construction environments.

Algorithms for a Smart Construction Environment 13

6 Conclusions

The goal of our work is to address the QoS requirements of smart applica-
tions for highly dynamic and heterogeneous Edge-to-Cloud environments. In
our study we focused on various Edge-to-Cloud deployment options and on pro-
viding assurances and ranking that can be used for SLA management. In our
work we implemented a Markov Decision Process that can be used to address not
only QoS, but also various other high-level requirements including trust. More-
over, we experimented with the development of Smart Contracts that would
provide transparency and traceability to the overall smart application adapta-
tion process in the Edge-to-Cloud environment. Our work indicates that MDP
based decision-making can effectively be used to also address the needs for trust
management, which is an essential requirement in Fog Computing.

Our plans for future work is to improve the decision-making mechanism and
introduce new components to the whole architecture that will provide secure
and safe data management in smart construction environments. We currently
investigate cross-border data management facilitated through the use of Smart
Contracts.

References

1. Alrawais, A., Alhothaily, A., Hu, C., Cheng, X.: Fog computing for the internet of
things: security and privacy issues. IEEE Internet Comput. 21(2), 34–42 (2017)

2. Corradini, F., De Angelis, F., Ippoliti, F., Marcantoni, F.: A survey of trust man-
agement models for cloud computing. In: CLOSER, pp. 155–162 (2015)

3. Garg, S.K., Versteeg, S., Buyya, R.: A framework for ranking of cloud computing
services. Future Gener. Comput. Syst. 29(4), 1012–1023 (2013)

4. Gonçalves Junior, R., Rolim, T., Sampaio, A., Mendonça, N.C.: A multi-criteria
approach for assessing cloud deployment options based on non-functional require-
ments. In: Proceedings of the 30th Annual ACM Symposium on Applied Comput-
ing, pp. 1383–1389. ACM (2015)

5. Guerrero, C., Lera, I., Juiz, C.: Genetic algorithm for multi-objective optimiza-
tion of container allocation in cloud architecture. J. Grid Comput. 16(1), 113–135
(2017). https://doi.org/10.1007/s10723-017-9419-x

6. Karim, R., Ding, C., Miri, A.: An end-to-end qos mapping approach for cloud
service selection. In: IEEE Ninth World Congress on Services (SERVICES), 2013,
pp. 341–348. IEEE (2013)

7. Kochovski, P., Drobintsev, P.D., Stankovski, V.: Formal quality of service assur-
ances, ranking and verification of cloud deployment options with a probabilistic
model checking method. Inf. Softw. Technol. 109, 14–25 (2019)

8. Kochovski, P., Gec, S., Stankovski, V., Bajec, M., Drobintsev, P.D.: Trust manage-
ment in a blockchain based fog computing platform with trustless smart oracles.
Future Gener. Comput. Syst. 101, 747–759 (2019)

9. Kochovski, P., Sakellariou, R., Bajec, M., Drobintsev, P., Stankovski, V.: An archi-
tecture and stochastic method for database container placement in the edge-fog-
cloud continuum. In: IEEE International Parallel and Distributed Processing Sym-
posium (IPDPS), pp. 396–405. IEEE (2019)

https://doi.org/10.1007/s10723-017-9419-x

14 P. Kochovski and V. Stankovski

10. Kochovski, P., Stankovski, V.: Supporting smart construction with dependable
edge computing infrastructures and applications. Autom. Construct. 85, 182–192
(2018)

11. Naskos, A., et al.: Dependable horizontal scaling based on probabilistic model
checking. In: 15th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGrid), 2015, pp. 31–40. IEEE (2015)

12. Paščinski, U., Trnkoczy, J., Stankovski, V., Cigale, M., Gec, S.: QoS-Aware orches-
tration of network intensive software utilities within software defined data centres.
J. Grid Comput. 16(1), 85–112 (2017). https://doi.org/10.1007/s10723-017-9415-1

13. Štefanič, P., Kimovski, D., Suciu, G., Stankovski, V.: Non-functional require-
ments optimisation for multi-tier cloud applications: An early warning sys-
tem case study. In: IEEE SmartWorld, Ubiquitous Intelligence & Computing,
Advanced & Trusted Computed, Scalable Computing & Communications, Cloud
& Big Data Computing, Internet of People and Smart City Innovation (Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pp. 1–8. IEEE (2017)

14. Tsoumakos, D., Konstantinou, I., Boumpouka, C., Sioutas, S., Koziris, N.: Auto-
mated, elastic resource provisioning for NoSQL clusters using TIRAMOLA. In:
13th IEEE/ACM International Symposium on Cluster, Cloud and Grid Comput-
ing (CCGrid), 2013, pp. 34–41. IEEE (2013)

15. Viljanen, L.: Towards an ontology of trust. In: Katsikas, S., López, J., Pernul, G.
(eds.) TrustBus 2005. LNCS, vol. 3592, pp. 175–184. Springer, Heidelberg (2005).
https://doi.org/10.1007/11537878 18

16. Yang, J., Lin, W., Dou, W.: An adaptive service selection method for cross-cloud
service composition. Concurr. Comput. Pract. Exp. 25(18), 2435–2454 (2013)

17. Zhao, Z., et al.: A software workbench for interactive, time critical and highly
self-adaptive cloud applications (switch). In: 15th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing (CCGrid), 2015, pp. 1181–1184.
IEEE (2015)

https://doi.org/10.1007/s10723-017-9415-1
https://doi.org/10.1007/11537878_18

Developing a Cloud-Based Algorithm
for Analyzing the Polarization of Social

Media Users

Loris Belcastro1, Fabrizio Marozzo1,2, Domenico Talia1,2(B),
and Paolo Trunfio1,2

1 DIMES, University of Calabria, Arcavacata, Italy
{lbelcastro,fmarozzo,talia,trunfio}@dimes.unical.it

2 DtoK Lab Srl, Rende, Italy

Abstract. Social media analysis is a fast growing research area aimed at
extracting useful information from social media. Several opinion mining
techniques have been developed for capturing the mood of social media
users related to a specific topic of interest. This paper shows how to use
a cloud-based algorithm aimed at discovering the polarization of social
media users in relation to political events characterized by the rivalry of
different factions. The algorithm has been applied to a case study that
analyzes the polarization of a large number of Twitter users during the
2016 Italian constitutional referendum. In particular, Twitter users have
been classified and the results have been compared with the polls before
voting and with the results obtained after the vote. The achieved results
are very close to the real ones.

Keywords: Social data analysis · Cloud computing · Big Data · User
polarization · Sentiment analysis

1 Introduction

With the growth of utilization of social media, every day millions of people pro-
duce huge amount of digital data containing information about human dynam-
ics, collective sentiments, and the behavior of groups of people. Such data, com-
monly referred as Big Data, overwhelms our ability to make use of it and extract
useful information in reasonable time. Cloud computing systems provide elas-
tic services, high performance and scalable data storage, which can be used as
large-scale computing infrastructures for complex high-performance data mining
applications. Combining Big Data analytics and machine learning techniques
with scalable computing systems allows the production of new insights in a
shorter time [5]. The analysis of such information is clearly highly valuable in
science and business, since it is suitable for a wide range of applications: tourism
agencies and municipalities can know the most important regions-of-interest vis-
ited by users [6], transport operators can reveal mobility insights in cities such as

c© Springer Nature Switzerland AG 2020
I. Brandic et al. (Eds.): ALGOCLOUD 2019, LNCS 12041, pp. 15–24, 2020.
https://doi.org/10.1007/978-3-030-58628-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58628-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-58628-7_2

16 L. Belcastro et al.

incident locations [12], business managers can understand the opinions of people
on a topic, a product or an event of interest.

In this work we propose a new parallel and distributed algorithm for dis-
covering the polarization of social media users in relation to a political event,
which is characterized by the rivalry of different factions or parties. Examples of
political events are:

– municipal elections, in which a faction supports a mayor candidate;
– political elections, in which a faction supports a party;
– presidential elections, in which a party (or a coalition of parties) supports a

presidential candidate.

To deploy and run the designed algorithm on the Cloud, it has been written
using ParSoDA (Parallel Social Data Analytics) [7], a Java library for building
parallel social media analysis algorithms and simplifying the programming task
necessary to implement these class of algorithms on parallel computing systems.
To reach this goal, ParSoDA includes functions that are widely used for process-
ing and analyzing data gathered from social media so as to find different types
of information (e.g., user trajectories, user sentiments, topics trends).

The algorithm is designed to deal with Big Data. For this reason, it is based
on the MapReduce model and can be executed in parallel on distributed systems,
such as the HPC and Cloud platforms. The main benefit of using ParSoDA is
that it was specifically designed to build Cloud-based data analysis applications.
To this end, ParSoDA provides scalability mechanisms based on two of the most
popular parallel processing frameworks (Hadoop1 and Spark2), which are fun-
damental to provide satisfactory services as the amount of data to be managed
grows.

To assess the accuracy of our algorithm, we present a case study application
to extract the political polarization of Twitter users. In particular, the algorithm
has been applied on a case study that analyzes the polarization of a large number
of Twitter users during the 2016 Italian constitutional referendum. The obtained
results are very close to the real ones and significantly more accurate than the
average of the opinion polls, assessing the high accuracy and effectiveness of the
proposed algorithm.

The paper is organized as follows: Sect. 2 discusses related work and compares
other techniques with the one proposed here. Section 3 introduces the algorithm
details and Sect. 4 discusses the case study on which the proposed algorithm has
been used. Section 5 draws some conclusions.

2 Related Work

Several researches are working on the design and implementation algorithms for
measuring public opinion and predicting the polarization of social users accord-
ing to political events.
1 https://hadoop.apache.org/.
2 https://spark.apache.org/.

https://hadoop.apache.org/
https://spark.apache.org/

Developing a Cloud-Based Algorithm for Analyzing the Polarization 17

Graham et al. [10] performed an hand-coded content analysis for understand-
ing how British and Dutch parliamentary candidates used Twitter during the
2010 general elections. Anstead and O’Loughlin [2] analyzed the 2010 United
Kingdom election and suggested the use of social media as a new way to under-
stand public opinion. Gruzd and Roy [11] investigated the political polarization
of social network users during the 2011 Canadian Federal Election by analyzing
a sample of tweets posted by social media users that self-declared political views
and affiliations.

Marozzo and Bessi [13] presented a methodology aimed at discovering the
behavior of social media users and how news sites are used during political cam-
paigns characterized by the rivalry of different factions. The idea behind this
technique is to use the keywords inside a tweet to classify it by calculating the
degree of polarity. Ceron et al. [8] proposed a text analysis methodology for
studying the voting intention of French Internet users during the 2012 Presiden-
tial ballot and the subsequent legislative election, comparing their results with
the predictions made by survey companies. El Alaoui et al. [9] proposed an
adaptive sentiment analysis approach for extracting user opinions about polit-
ical events. Their approach classifies the posts by exploiting a series of word
polarity dictionaries built from a selected set of hashtags related to a political
event of interest. Oikonomou et al. [14] used a Näıve Bayes classifier for estimat-
ing the winning candidate of USA presidential elections in three US states (i.e.,
Florida, Ohio and North Carolina). Ahmed et al. [1] compared three different
volumetric and sentiment analysis methods in order to predict the outcome of
the elections from Twitter posts in three Asian countries: Malaysia, India, and
Pakistan. Olorunnimbe et al. [15] presented an incremental learning method,
based on a multiple independent Näıve Baye models for predicting the political
orientation of users over time.

Our algorithm analyzes the tags used by social media users for supporting
their voting intentions. As an important aspect of the analysis process, we eval-
uated the statistical significance of collected data, which gives strong indications
about the users and if they are voters of the political event under analysis. The
algorithm has been applied to a real case study: the 2016 Italian constitutional
referendum. We studied the behavior of about 50,000 Twitter users by analyzing
more than 300,000 tweets posted on the referendum by them in the five weeks
preceding the vote. The achieved results are very close to the real ones and sig-
nificantly more accurate than the average of the opinion polls, assessing the high
accuracy and effectiveness of the proposed algorithm.

3 Algorithm Details

As mentioned in Sect. 1, this work proposes a new algorithm for estimating the
polarization of social media users during political events. Given a political event
E , a set of the factions F , and a set the keywords K associated to E , the proposed
algorithm consists of the following steps (see Fig. 1):

18 L. Belcastro et al.

– Data collection: during this step all tweets that contain one or more keywords
in K are gathered from Twitter3 through public API.

– Data preprocessing : at this step several operations are done for cleaning data,
including removal of duplicates and tweets without tags, normalization of
texts;

– Tweet polarization: during this step, each tweet is assigned to a specific faction
f by considering the polarization of the tags it contains.

– User polarization: for each social media user u, a heuristic is used to calculate
a score vu, which represents the polarization of the user u towards each faction
under analysis.

– Result visualization: at this step, the polarization scores are exploited for cre-
ating info-graphics that presents the results in a way that is easy to under-
stand to the general public.

Fig. 1. Main steps of the proposed algorithm

3.1 Definition of Keywords K

A political event E is characterized by the rivalry of different factions F =
{f0, f1, ..., fn}. The algorithm requires a set of the main keywords K used by
social media users to write tweets associated to E . Following the same approach
used in [3], such keywords can be divided in neutral or in favor of a specific
faction, i.e., K = K� ∪ K⊕

F . Specifically:

– K� contains all the keywords that can be associated to E , but not to any
faction in F .

– K⊕
F = K⊕

f0
∪ ...∪K⊕

fn
, where K⊕

fi
contains the keywords used by social media

users for supporting fi ∈ F .

Usually, this preparation step requires a minimal knowledge of the domain,
that means it could be easily automated. In fact, keywords used for supporting
a specific faction usually match some fixed patterns, such as the form “#vote +
(faction/candidate/yes/no)”. In data gathered from Twitter, such patterns can
be searched in hashtags or words.
3 https://developer.twitter.com/.

https://developer.twitter.com/

Developing a Cloud-Based Algorithm for Analyzing the Polarization 19

3.2 Data Preprocessing

During this step, the tweets collected are pre-processed for making them suitable
for the analysis. In particular, they are filtered and modified so as to:

– remove duplicates and stopwords;
– normalize all the keywords by transforming them in lowercase and replac-

ing accented characters with regular ones (e.g., IOVOTOSI or iovotośı →
iovotosi);

– improve data representativeness by filtering out all tweets having a language
different from the one spoken in the nation hosting the considered political
event.

The following operations are performed in parallel on multiple computing
nodes exploiting the data parallelism provided by the MapReduce programming
model. Since the algorithm has been developed using the ParSoDA library, it
can run both on a Hadoop and a Spark cluster. In particular, some perfor-
mance evaluation experiments we run show that the Spark version of ParSoDA
is able to greatly reduce the execution compared to the Hadoop version of the
library [4].

3.3 Tweet Polarization

At this step, each tweet is assigned to a specific faction by considering the polar-
ization of the tags it contains. In particular, if a tweet t contains only keywords
that are in favor of a specific faction f , then t is classified as in favor of f ; oth-
erwise, t is classified as neutral . Algorithm 1 shows the pseudo-code of the tweet
polarization procedure.

ALGORITHM 1: Polarization of tweets.
Input : Set of tweets T , set of factions F , set of keywords KF for the different

factions
Output: Dictionary of 〈tweet, faction〉 DT

for t ∈ T do
vf ← [];
for i = 0; i < F.size; i + + do

if contains(t,Kfi) then
vf [i] = 1;

if sum(vf) = 1 then
f ← argmax(v);
DT ← DT ∪ 〈t, f〉;

return DP

3.4 User Polarization

Using the classified tweets obtained at the previous step, the algorithm exploits
a heuristic for estimating the polarization of each social user. Specifically, in a

20 L. Belcastro et al.

two-factions political event, characterized by the rivalry between the factions f0
and f1, the polarization of a user u is defined as:

vu = 2 × |f0|
|f0| + |f1| − 1 (1)

where |f0| and |f1| represent the number of tweets published by u that have been
classified in favor of f0 and f1 respectively. A value of vu close to 1 means that
user u tends to be polarized towards the faction f0, while when vu is close to −1
the user is polarized towards f1.

To obtain more robust results, the algorithm requires a threshold th, usually
set to a high value (e.g., 0.9), to select users with strong polarization in favor of f0
or f1. Specifically, we consider users with vu > th as polarized towards |f1|, users
with vu < −th as polarized towards |f1|, otherwise neutral . The pseudo-code of
the user polarization procedure is shown in Algorithm 2.

ALGORITHM 2: Polarization of users.

Input : Dictionary of 〈tweet, faction 〉 DT , threshold th, two factions f0 and f1
Output: Dictionary of 〈user, faction〉 DU

DF ← ∅;
for t ∈ DT do

u ← t.user;
f ← t.faction;
DF (u, f) + +;

DU ← ∅;
for u ∈ DF .users do

vu = 2 × |DF (u,f0)|
|DF (u,f0)|+|DF (u,f1)| − 1;

if vu > th then
DU ← DU ∪ 〈u, f0〉;

else if vu < −th then
DU ← DU ∪ 〈u, f1〉;

return DU

3.5 Results Visualization

Results visualization is performed by the creation of info-graphics aimed at pre-
senting the results in a way that is easy to understand to the general public,
without providing complex statistical details that may be hard to understand
to the intended audience. Displaying quantitative information by visual means
instead of just using numeric symbols - or at least a combination of the two
approaches - has been proven extremely useful in providing a kind of sensory
evidence to the inherent abstraction of numbers, because this allows everybody
to instantly grasp similarities and differences among values. In fact, basic visual
metaphors (e.g., the largest is the greatest, the thickest is the highest) enable
more natural ways of understanding and relating sets of quantities [16].

Developing a Cloud-Based Algorithm for Analyzing the Polarization 21

4 Case Study and Results

The algorithm has been applied to a case study that analyzes the polarization of a
large number of Twitter users during the 2016 Italian constitutional referendum.
The referendum, focused on changing the second part of the constitution, was
characterized by the rivalry of two factions: yes and no. The results of the
referendum saw the victory of the no, with about 60% of the votes. We collected
the main keywords used as hashtags in tweets related to the political event. We
collected the main keywords K used as hashtags in tweets related to the political
event under analysis. Such keywords have been grouped as follows:

– K� = {#referendumcostituzionale, #siono, #riformacostituzionale, #refer-
endum, #4dicembre, #referendum-4dicembre}

– K⊕
yes = {#bastaunsi, #iovotosi, #italiachedicesi, #iodicosi, #leragionidelsi}

– K⊕
no = {#iovotono, #iodicono, #bastaunno, #famiglieperilno, #leragion-

idelno}

4.1 Statistical Significance of Analyzed Data

The goal of this section is to assess the statistical significance of the dataset used
for the analysis. Specifically, we studied whether the Twitter users included in
our analysis were actual voters of the referendum, i.e., whether they were Italian
citizens aged at least 18 years old. We also extracted aggregate information on
the language used to write a tweet (e.g., “it” for Italian or “und” if no language
could be detected) and on the location of users who wrote it. In addition, from
the user metadata we analyzed the location field, which indicates the user-defined
location for the accounts profile (e.g., Rome, Italy). By analyzing the metadata
described above, we can say that:

– All the tweets under analysis have been written in Italian. Such language
is mainly used by Italians who reside in Italy (about 60 million) or abroad
(about 4 million). Italian is used as first language only by a small part of
Swiss (about 640,000 people), and a very small part of Croats and Slovenes
(about 22.000 people).

– 98% of users who have defined the location in their profile live in Italy.

We calculated that there is a strong correlation (Pearson coefficient 0.9)
between the number of Twitter users included in our analysis and the total
number of citizens grouped by Italian regions. Similar results are obtained by
comparing the number of users and the total number of citizen grouped by Italian
cities (Pearson coefficient 0.96). These statistics give us strong indications about
the users analyzed in our case study: it is highly likely that they are voters of
the political event under analysis.

22 L. Belcastro et al.

4.2 Analysis Results

In the last few weeks before the mandatory stop to the polls, the no clearly
prevailed on the yes in the totality of the opinion polls, maintaining about 4%
of advantage. Figure 2 shows the comparison among the results achieved by our
algorithm, the real voting percentages, the average of opinion polls before voting,
and the post-voting percentages estimated for users aged 18–49. Specifically, our
analysis focuses on two opposing factions, those in favor of the constitutional
reform (i.e., yes) and the opposites (i.e., no).

Fig. 2. Comparison between the obtained results, the real ones and the average of
opinion polls.

The results achieved are very close to the real ones. This result assesses the
high accuracy and effectiveness of the proposed approach. In particular, our
algorithm estimated a consensus of 65.7% in favor of no, which is a slightly
higher than the real one (59.1%), but really close to that estimated after the
vote for users aged 18–49 (65.5%). Opinion polls underestimated the vote in
favor of no, estimating only a percentage of about 53.6% for it. Differently from
opinion polls, which tend to underestimate the results, our algorithm tends to
overestimate them. This is most likely due to the Twitter data used for the
analysis. As 75% of global Italian Twitter audiences were aged between 18 and
49 years, while only 14% of them are 50 or older4. An analysis carried out after
the referendum5 showed that the distribution of the vote by age was as follows:

4 https://datareportal.com/reports/digital-2019-q2-global-digital-statshot (page 43).
5 https://www.youtrend.it/2016/12/09/referendum-costituzionale-tutti-numeri/.

https://datareportal.com/reports/digital-2019-q2-global-digital-statshot
https://www.youtrend.it/2016/12/09/referendum-costituzionale-tutti-numeri/

Developing a Cloud-Based Algorithm for Analyzing the Polarization 23

– age 18–34: 64% no, 36% yes;
– age 35–49: 67% no, 33% yes;
– age 50–64: 57% no, 43% yes;
– age 65+: 51% no, 49% yes;

Since the majority of Italian Twitter users are aged between 18–49 (75% of
audiences), our results strongly respect the distribution of the vote for these
age groups. On the contrary, the polls are more cautious and generate more
conservative estimates that tend to offset this gap.

5 Conclusion

With the growth of social media, every day millions of people produce huge
amount of digital data containing information about human dynamics, collec-
tive sentiments, and the behavior of group of people. In this work we presented a
new parallel and distributed algorithm for discovering the polarization of social
media users during political events, which are characterized by the rivalry of dif-
ferent factions or parties. The algorithm is based on the MapReduce model and
can be executed in parallel on distributed systems, such as the Cloud, ensuring
scalability as the amount of data to be analyzed grows. To validate the proposed
algorithm, it has been applied to a real case study: the 2016 Italian constitu-
tional referendum. The achieved results are very close to the real ones and are
significantly more accurate than the average of the opinion polls, revealing the
high accuracy and effectiveness of the proposed approach.

Acknowledgment. This work has been partially supported by the SMART Project,
CUP J28C17000150006, funded by Regione Calabria (POR FESR-FSE 2014–2020) and
by the ASPIDE Project funded by the European Union’s Horizon 2020 Research and
Innovation Programme under grant agreement No. 801091.

References

1. Ahmed, S., Jaidka, K., Skoric, M.M.: Tweets and votes: a four-country comparison
of volumetric and sentiment analysis approaches. In: Tenth International AAAI
Conference on Web and Social Media (2016)

2. Anstead, N., O’Loughlin, B.: Social media analysis and public opinion: the 2010
UK general election. J. Comput. Mediated Commun. 20(2), 204–220 (2014)

3. Belcastro, L., Cantini, R., Marozzo, F., Talia, D., Trunfio, P.: Discovering political
polarization on social media: a case study. In: The 15th International Conference
on Semantics, Knowledge and Grids, Guangzhou, China (2019)

4. Belcastro, L., Marozzo, F., Talia, D., Trunfio, P.: Appraising SPARK on large-scale
social media analysis. In: Heras, D.B., Bougé, L. (eds.) Euro-Par 2017. LNCS, vol.
10659, pp. 483–495. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
75178-8 39

5. Belcastro, L., Marozzo, F., Talia, D., Trunfio, P.: Big data analysis on clouds. In:
Zomaya, A.Y., Sakr, S. (eds.) Handbook of Big Data Technologies, pp. 101–142.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49340-4 4

https://doi.org/10.1007/978-3-319-75178-8_39
https://doi.org/10.1007/978-3-319-75178-8_39
https://doi.org/10.1007/978-3-319-49340-4_4

24 L. Belcastro et al.

6. Belcastro, L., Marozzo, F., Talia, D., Trunfio, P.: G-RoI: automatic region-of-
interest detection driven by geotagged social media data. ACM Trans. Knowl.
Discov. Data 12(3), 1–22 (2018)

7. Belcastro, L., Marozzo, F., Talia, D., Trunfio, P.: ParSoDA: high-level parallel
programming for social data mining. Soc. Netw. Anal. Min. 9(1), 1–19 (2018).
https://doi.org/10.1007/s13278-018-0547-5

8. Ceron, A., Curini, L., Iacus, S.M., Porro, G.: Every tweet counts? How sentiment
analysis of social media can improve our knowledge of citizens’ political preferences
with an application to Italy and France. New Media Soc. 16(2), 340–358 (2014)

9. El Alaoui, I., Gahi, Y., Messoussi, R., Chaabi, Y., Todoskoff, A., Kobi, A.: A novel
adaptable approach for sentiment analysis on big social data. J. Big Data 5(1),
1–18 (2018). https://doi.org/10.1186/s40537-018-0120-0

10. Graham, T., Jackson, D., Broersma, M.: New platform, old habits? Candidates’
use of Twitter during the 2010 British and Dutch general election campaigns. New
Media Soc. 18(5), 765–783 (2016)

11. Gruzd, A., Roy, J.: Investigating political polarization on Twitter: a canadian
perspective. Policy Internet 6(1), 28–45 (2014)

12. Lee, R., Wakamiya, S., Sumiya, K.: Urban area characterization based on crowd
behavioral lifelogs over twitter. Pers. Ubiquit. Comput. 17(4), 605–620 (2013).
https://doi.org/10.1007/s00779-012-0510-9

13. Marozzo, F., Bessi, A.: Analyzing polarization of social media users and news sites
during political campaigns. Soc. Netw. Anal. Min. 8(1), 1–13 (2017). https://doi.
org/10.1007/s13278-017-0479-5

14. Oikonomou, L., Tjortjis, C.: A method for predicting the winner of the USA presi-
dential elections using data extracted from Twitter. In: 2018 South-Eastern Euro-
pean Design Automation, Computer Engineering, Computer Networks and Society
Media Conference (SEEDA CECNSM), pp. 1–8. IEEE (2018)

15. Olorunnimbe, M.K., Viktor, H.L.: Tweets as a vote: exploring political sentiments
on Twitter for opinion mining. In: Esposito, F., Pivert, O., Hacid, M.-S., Raś, Z.W.,
Ferilli, S. (eds.) ISMIS 2015. LNCS (LNAI), vol. 9384, pp. 180–185. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-25252-0 19

16. Tufte, E.R.: The Visual Display of Quantitative Information. Graphics Press,
Cheshire (1986)

https://doi.org/10.1007/s13278-018-0547-5
https://doi.org/10.1186/s40537-018-0120-0
https://doi.org/10.1007/s00779-012-0510-9
https://doi.org/10.1007/s13278-017-0479-5
https://doi.org/10.1007/s13278-017-0479-5
https://doi.org/10.1007/978-3-319-25252-0_19

Coordinated Data Flow Control in IoT
Networks

Nipun Balan Thekkummal(B), Devki Nandan Jha, Deepak Puthal,
Philip James, and Rajiv Ranjan

School of Computing, Newcastle University, Newcastle upon Tyne, UK
{n.b.thekkummal1,d.n.jha2,deepak.puthal,
philip.james,raj.ranjan}@newcastle.ac.uk

Abstract. An IoT cloud environment consists of connected physical
devices communicating with the cloud, sending telemetry data and
accepting actuation information. For sensors, the data flow is from the
physical devices to the cloud. The IoT edge device is responsible for col-
lecting this data and forwarding it to the cloud environment for process-
ing. The time it takes for the data to be made available for processing
in the cloud is critical, and the network connectivity, bandwidth and
latency are the bottlenecks. In this work, we created a flow controller
which adaptively controls the flow of the data from the edge device to
the cloud. While rate limiting is a trivial technique to control data flow,
it is crucial how the edge devices dynamically control the data rate by
re-configuring the IoT devices to send data based on the current net-
work condition and load on the Edge device. We tested this system with
a simulated data flow from 10 sensors to a Raspberry Pi Device which
performed the rate limiting.

Keywords: Internet of Things · Data flow control · Edge computing ·
Co-ordination algorithm

1 Introduction

IoT (Internet of Things) aims to connect physical devices to the Internet, and
data comes from a variety of resources including industrial sensors and control
systems, business applications, open web data, etc. [27]. It was reported that IoT
would generate 508 zettabytes, termed as “Big Data”, by the end of 2019 [24].
These big data is eventually sent from IoT devices to cloud for further analysis,
which is a grand challenge.

There are two leading solutions for transferring the IoT data, i.e. (i) the
sensor sends data directly to the cloud, or (ii) the edge node collects the data
from IoT devices and then forwards the collected and processed data to the
cloud. The former solution does not have sufficient flexibility to reprocess the
IoT data on the ground due to the limited computing resources of the sensors.
In some scenarios, this solution may cause high latency when the network is

c© Springer Nature Switzerland AG 2020
I. Brandic et al. (Eds.): ALGOCLOUD 2019, LNCS 12041, pp. 25–41, 2020.
https://doi.org/10.1007/978-3-030-58628-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58628-7_3&domain=pdf
https://doi.org/10.1007/978-3-030-58628-7_3

26 N. B. Thekkummal et al.

unstable, wasting network bandwidth to forward entire data to the cloud where
we only require some aggregated information.

The integration of edge and cloud solutions has been applied in many state-
of-the-art systems [5,28]. However, these systems consider replacing the analytic
jobs close to the data source, thereby reducing the latency. ApproxIoT system
[33] was designed to utilise edge computing resources such as mobile phones, net-
work gateways and edge data centres at ISPs where the approximate computing
is performed by achieving low latency analytics. However, the uncertainty of the
IoT network affects the stability of edge devices and its communication to the
cloud. For example, the available bandwidth of a cellular network is extremely
variable due to the changing number of devices connected to a base station. Also,
the cellular network is dynamically changing among 2G, 3G and 4G in rural areas
where there are not enough base stations. In many cases, high-frequency data
is not required when there is no significant variance in the value, or there is no
imminent real-world situation demanding a high data rate reading and analy-
sis of sensor data. The sensor types, the location and real-world scenarios are
the factors which determine the data sending rate or frequency. For example, a
sensor installed for measuring the ambient temperature of a factory floor may
send its values twice a second while a vibration sensor installed in a compression
pump at a critical location sends data at a rate of 100 values per second as any
significant change in vibration within a short period can cause severe damage if
it is not acted upon quickly.

In this work, we build a data flow control system which can adapt the data
forwarding from edge to cloud based on the uncertainly of the IoT network. To
this end, we develop an Edge Gatekeeper (EGK) which monitors the status of
each edge node while dynamically adapting the data ingestion rate from the IoT
sensors to edge nodes, and edge nodes The design of the EGK allows the edge
node to process and deliver only a subset of the data to reduce the latency.

Our proposed system needs to consider the following two research questions:

– how to decide the size of the subset of the data on each edge node
– how to efficiently coordinate a large number of heterogeneous edge nodes send-

ing data to a cloud simultaneously

To address the research questions mentioned above this work makes the following
contribution

– We propose a system and a reference architecture for IoT which coordinates
the operations of edge devices to ensure stable and resilient operation using an
adaptive data flow control mechanism. It is capable of coordinating a large
number of heterogeneous edge nodes to utilise the computing resources in
the cloud efficiently. We also provide a formal model of data flow in an IoT
analytics system.

– We validated our proposed models and the system architecture through a set
of experiments using real-world data and testbed. Our experimental results
support the effectiveness of flow control for the stable operation on edge
devices and resilience to the changes in the number of sensors and the data
rate from the sensors.

Coordinated Data Flow Control in IoT Networks 27

Outline. The remaining paper is organised as follows. Section 2 sets the back-
ground and reviews some related work. Section 3 explains the proposed system
architecture including Edge GateKeeper (3.1) and Adaptive Flow Controller
(AFC) (3.2). The proposed model and algorithm is explained in Sect. 3.3 fol-
lowed by the implementation details in Sect. 4, evaluation and future works in
Sect. 6.

2 Background and Related Work

In this section, we first present the background of edge+cloud IoT architecture,
and then discuss the desired properties of a stream processing application, in
the context of IoT, following which we briefly introduce the two mainstream
computational models. Finally, we illustrate the techniques that we used in our
system.

2.1 Edge+Cloud IoT Architecture

The increasing number of sensors or IoT devices in smart manufacturing facil-
ities and smart cities are continuously generating and emitting high volumes
of data across distributed infrastructures. Further, more powerful devices such
as Raspberry Pi, edge gateway, PC or edge cloud collect the emitted data and
perform the data aggregation, sampling, filtering, projections or transformation
into other formats over these collected data in the edge. This processed data is
forwarded to the cloud for more complex analysis. This processing workflow is
running over the Edge+cloud architecture as shown in Fig. 1. The Edge+cloud
architecture helps in reducing latency, increasing privacy and saving network
bandwidth [21] compared to the architecture where the sensors or IoT devices
are connected directly to the cloud. [8] uses Edge+cloud architecture to extend
the cloud computing paradigm to the edge layer by moving some of the process-
ing workloads to the edge layer.

2.2 IoT Data Flow Challenges

The data flow management challenges in IoT network are well studied, and both
industry and academia have proposed multiple solutions. Lukić, Mihajlović and
Mezei (2018) [19] study various methods to establish a data path between sensor
nodes and web-or cloud-based IoT applications. In this work, the authors studied
the details of data flow challenges in the IoT network while using long-range, low
power networks such as LoRAWAN and NB-IoT. Tomasz Szydlo et al. (2019) [29]
used the concept of data flow transformation to run parts of the computation,
closer to the origin of data, on edge devices with constrained resources.

28 N. B. Thekkummal et al.

IoT Layer Edge Layer Cloud Layer

Monitoring Agent

Command
Listener

Rate
Limiter

Device
Config.
Agent

Edge GateKeeper

Data
Forwarder

Messaging Broker

M
es

sa
gi

ng
 B

ro
ke

r

Data

AMQP Edge
Device

Controller
(AFC) Stats

Command

Ingestion
Layer

Stream
Analytics

Historical
Analytics

Analytics
Layer

IoT
Sensors

...

Cloud Servers

Data

Command

Edge Devices

Fig. 1. Architecture

2.3 IoT Data Streams

Stream processing, which started from a single machine system such as Aurora
[1] and TelegraphCQ [10], has been studied for decades. With the increasing
amount of input data, stream processing has been moved to a distributed pro-
cessing paradigm, for example Spark Streaming [34], Storm [30], Flink [9], Google
Dataflow [4]. Furthermore, stream processing in the IoT environment requires
systems that can utilise the computing resources from both edge nodes and cloud
to achieve low latency and high throughput [33]. In this paper, we re-use the
existing sampling technology and priority queue to ensure the QoS when the
computing resources are limited. IoT data streams have some desirable proper-
ties for its applications:

High Throughput. In edge+cloud solutions, an edge node may connect with a
large number of sensors; similarly, a large number of edge nodes are continuously
sending data to the cloud. Therefore, high throughput processing is the key to
keeping up with the incoming streams. For example, more than 15,000 sensors
(attached to around 1,200 sensor nodes) were deployed in the Santander project
for smart city research [11], and Boeing 787 creates half a terabyte of data per
flight reported by Virgin Atlantic [7].

Low Latency (Data Freshness). The latency or data freshness is defined as
the elapses between a sensor sensing the value from an IoT device and that data
arriving at the cloud. Data latency is a crucial performance parameter in the
sensor network as delayed or stale data could result in wrong analysis/decision
making. Consider a real-time traffic monitoring application which collects the
traffic data across the city. If the latency is too high because of limited network
bandwidth or computing resources of edge nodes, this application may not be

Coordinated Data Flow Control in IoT Networks 29

able to make a correct decision or may provide inaccurate information for users.
Consequently, low latency is very important for this distributed IoT data stream
processing system. The system designer should use techniques like sampling [33]
and edge processing to ensure low latency in low bandwidth/high latency IoT
networks.

Adaptability. Computation resources are geo-distributed in edge+cloud archi-
tecture and the underlying hardware are heterogeneous. As a result, the system
needs to be adapted to the dynamic IoT environment. For example, cloud-based
distributed stream process systems have frequently experienced crash-stop node
failures [3,32], and IoT environments have much more uncertainty than cloud
environments [25].

2.4 Computational Models for IoT Data Streams

For IoT data, several streaming computation models are preferred depending on
the use cases. This section introduces a few computation models in use.

Bulk-Synchronous Parallel (BSP). This model has been used in many
stream processing system such as Spark Streaming [34], Google Dataflow [4] with
FlumeJava. In this model, the computation is a directed acyclic graph (DAG)
of operators (e.g. sum, group by, join), the DAG is partitioned into the available
computing resources. Moreover, the mini-batch, which reserves the streaming
data for T seconds, is processed over the entire DAG.

Continuous Operator Streaming (COS). In this model, there is no blocking
barrier like mini-batch to sync all operators in a defined time period. These oper-
ators are long-running operators, and the messages can be transferred directly
among them. The representative systems are Naiad [23], Stream Scope [18] and
Flink [9].

Approximate Computing. Sampling techniques have been applied in dis-
tributed big data analytics to obtain a reasonable output efficiently [2,13,16].
This approach is based on the observation that, for many applications, only an
approximate value of the sensor reading is required for its desired functionality.
Chippa et al. reported in [12] that by reducing 5% accuracy of the k-means clus-
tering algorithm, 50 times energy can be saved. As a result, we leverage a similar
strategy by using a sampling algorithm to overcome the trade-off between the
limited computing resources and processing the large volumes of IoT data in
real-time.

Next, these techniques are widely applied in stream processing [6,26], which
demonstrated well that the proposed systems could balance the quality of out-
put and computation efficiency. Unfortunately, these systems only work on cloud-
based environments and cannot utilise the computing resources from edge nodes.

30 N. B. Thekkummal et al.

Wen et al. (2018) [33] share the same architecture in their work and use the sim-
ple technique to overcome the issue of how to sample IoT data in truly distributed
environments while ensuring low latency and high throughput.

Simple Random Sampling (SRS). SRS is a naive approach for sampling, in
which n samples are drawn from a population in such a way that the chance of
sampling every set of n individuals is equal. Thus, SRS is an unbiased surveying
technique which means the selected subset can represent the population as the
whole.

3 Architecture

The purpose of the flow controller is to actively control the rate of data being
processed and forwarded from the edge device to the cloud. To reduce the amount
of data being sent by the sensors, the edge gateway can reconfigure IoT sensors
to set the data rate. This acts as a stabilisation mechanism for the varying
workload at the edge layer. While designing the reference architecture (Fig. 1),
we considered the type, frequency and priority of the sensors. We considered the
scenario of a single-hop star network where the sensor IoT devices are interacting
directly with the edge device. It consists of 1) IoT layer which contains the
IoT devices/sensors having the lowest processing capacity, 2) Edge layer which
consists of devices which acts as the entry points to the larger cloud network and
is also capable of doing some processing of the sensor data, 3) Cloud layer with
the highest processing capacity of all the other layers. Data flows from the IoT
to the cloud layer through the edge layer. The data flow control is done using
Edge GateKeeper (EGK), which is deployed in the edge layer and Adaptive flow
controller (AFC) deployed in the cloud layer. This work proposes the system
architecture for dynamically reconfiguring the edge device based on the number
of devices connected and the priority of each sensor in the network.

3.1 Edge GateKeeper (EGK)

An extensive IoT network contains 1000 s of sensors connected to 100 s of edge
devices. The load on the edge device is proportional to the volume and velocity
of data. Edge devices can either send the full data as-it-is to the cloud layer or
perform sampling/pre-processing before sending to cloud. The proposed refer-
ence architecture uses a coordinated data flow control to allow the edge devices
to balance the data flow by dynamically reconfiguring sensors to send data at
different frequency allowing control of the volume and velocity of data. This
acts as a stabilisation mechanism for a varying workload at the edge layer. The
reference architecture consists of IoT sensor devices, which have a data channel
and control channel for communication with the edge device. The edge device
is a low powered computer with essential traffic management and processing
capacity.

Coordinated Data Flow Control in IoT Networks 31

Edge GateKeeper (EGK) is a lightweight application running on the edge
device which acts as the gateway for all communication to and from it. It consists
of i) Lightweight local message broker, ii) Sensor data ingest and Forwarder, iii)
Pre-processor, iv) Rate Limiter, v) Command listener, and vi) Device reconfigu-
ration agent. The Sensor data reader reads the data from the message broker to
which sensors send their readings in real-time. The pre-processor performs essen-
tial pre-processing and filtering operations. Figure 4 explains the functionality
of EGK.

IoT Layer Edge Layer Cloud Layer

Data
Flow

Control
Flow

Data
Flow

Control
Flow

Fig. 2. Data flow and control flow between the layers: For IoT sensors, data
flow happens from IoT layer to cloud while the control flow is from cloud layer to IoT
layer

3.2 Adaptive Flow Controller (AFC)

The Adaptive Flow Controller (AFC), hosted in the cloud layer, controls the
reconfiguration decisions. EGK and cloud layer are connected using a data chan-
nel and a control channel. The data channel carries data forwarded by the EGK
from the IoT layer to the cloud ingestion layer. The control channel carries com-
mands to control the edge layer and IoT layer. Sensors are registered to EGK,
and EGK registers itself and its connected sensors to the ingestion layer in the
cloud. The AFC stores the full map of the IoT network as a graph. The graph
can be represented as a 2D sparse matrix M (Fig. 3). Edge devices are repre-
sented as rows, and IoT devices are represented as columns. The value at M [i][j]
represents the data rate of IoT device Dj to edge device Ei. Three scenarios can
trigger a reconfiguration. i) More IoT devices are added to an edge device. ii)
Edge devices’ processing capacity becomes a bottleneck for the data flow. iii)
There is a demand for higher data rate by some of the sensors. The maximum
forward rate is set on the edge device based on the resource capacity of the edge
device and network stability. We assume this value is set for each edge device
during the initial setup. When additional IoT devices are added, the edge device
informs the AFC. The AFC, in turn, recalculates the data rate allocation for
each IoT device and sends back to the edge device. The data rate allocation
problem is formally defined in Sect. 3.3. An algorithm (Algorithm 1) has been
developed to dynamically set the data rates and runs periodically in the AFC.
The edge device has a device reconfiguration agent which configures the IoT
device with the new data rate.

32 N. B. Thekkummal et al.

C

E2 E3E1

D1

D2

D3

D4 D5 D6

D7

D8

D9

(A)

D1 D2 D3 D4 D5 D6 D7 D8 D9

E1

E2

E3

(B)

Fig. 3. Shows data flow from sensor network to cloud through edge. D1–D9: IoT sen-
sors, E1–E3: Edge Devices, C: Cloud Layer. λ1–λ9: Data from from D1–D9 to the
connected Edge devices. In matrix M rows represent the edge devices (E1–E3) and
columns represent IoT devices (D1–D9)

commandListener()

idle

commandReceived

detectCommandType()

cmd =
setForwardRate

cmd = reConfigureIoTDevice

sensorDataIngestAndForward()

m=readDataFromDataStream()

preProcess()

forwardToCloudQueue()

Cloud Message Queue

rateLimiter()

setNewRateLimit()

RateLimiter()

tokenEmitter()

deviceConfigurationAgent()

process
command

selectDevice()

sendSetRateLimit
(newRate, DeviceID)

Device
Command
Channel

Fig. 4. Edge GateKeeper workflow

Coordinated Data Flow Control in IoT Networks 33

3.3 Model

Assume that we have a set of IoT devices D, and each one Di ∈ D has its
priority Pi and sending rate λi. These devices are partitioned into K groups,
and each group Gk, k ∈ K interacts with only one edge node Ej . As a result, the
total number of edge node |E| equals the number of groups K, where E is a set
of edge nodes. Finally, all edge nodes forward the received data streams to the
cloud datacenter DC. We define the data flow as a tuple 〈μj , λi〉, where μj is
the forwarding rate of Ej while λi represents the data injection rate from Di to
Ej . We consider the situation that IoT devices are generating more data streams
than the edge node can process and forward. This situation can occur because
of two main reasons, i) Edge does not have enough resources to process and
forward the amount of data it receives ii) Edge node has assigned a maximum
data forwarding rate it could perform to the cloud when the total incoming data
rate is higher than the forward rate. For example, the injection rate of a group
of IoT devices Gj which are connecting with edge node Ej is larger than the
forwarding rate of Ej , noting μj , i.e.,

∑
i∈Gj

λi > μj .
To overcome this, we design a flow control method that prioritises the data

streams which are coming from high priority IoT devices by dynamically reducing
the injection rates of the less critical IoT devices. We set weights to each sensor
according to the priority. Possible values of priority P are {HIGH, MEDIUM,
LOW}. Weights W corresponding to these priorities are {3, 2, 1}. Weights asso-
ciated with IoT device Di is represented by Wi.

The data rate allocation for device Di is given by

Ai =
Wi∑

k∈Gj
Wk

× μ (1)

Algorithm 1 finds the data rate of individual IoT devices. Data stream ds
for each IoT device is again a tuple ds = 〈λi, Si〉 where, λi and Si are the data
rate and size of data generated by the IoT device Di. We therefore define the
dataflow mapping as a tuple 〈Ej , C, λ{Di→Ej}, λ{Ej→C}〉, where the λ{Di→Ej}
represents the data rate from device Di to edge Ej and λ{Ej→C} represents the
data rate from edge Ej to cloud data center C. Consider there are X number of
edge devices each represented by the tuple 〈id, C, λ{Di→Ej}, λ{Ej→C}〉 where id
is the identifier of the edge device, C is the capacity of the edge device which is
again a tuple C = 〈RS ,RH〉 where RH and RS are the hardware and software
support provided by the edge device. Similarly, cloud datacentre C is repre-
sented as a set of components (VMs or containers) with an incoming data rate
constraint of λC .

Based on the given priority of IoT devices Di, the edge to cloud communica-
tion is sampled according to the function F : λ{Di→Ej} → λ{Ej→C}. To perform
this operation, the edge needs to compute the data rate for each IoT sensor
device which enables the sampling of the data.

Problem Formulation: Given the IoT infrastructure, D,E,C,

34 N. B. Thekkummal et al.

maximize{λ{E1→C}, λ{E2→C}, ..., λ{EK→C}}
with constraint to:

∑
{λ{E1→C} + λ{E2→C} + ... + λ{EK→C}} ≤ λC (2)

∃i∃j{
∑

i

λDi
≤ λEj

} (3)

where there is a mapping between Di and Ej

Constraint 2 explains that the data rate of all the edge to cloud communica-
tion should be less than the available data rate of the cloud. Similarly, Constraint
3 explains the data rate limitation of each edge device Ej (Table 1).

Algorithm 1: Data Rate Controller Algorithm
Input : A[n][m]: A 2-D matrix where rows represent Edge devices and columns

represent IoT Devices; Values represent the data rate from the IoT device to
the Edge device; n edge device; m IoT devices

P[n][m]: List of Priority for each Edge device; n=number of Edge Devices
λ: Total data rate of all IoT devices connected to an Edge device
μj : Data rate from edge to the cloud
Output: Data rate allocation matrix A[n][m]

1 Initiate weight matrix W[n][m]

2 Initiate total weight array tw[n] with 0
3 for i=0 to n-1 do
4 for j=0 to m-1 do

5 if P[i][j]=’HIGH’ then
6 W [i][j]=3

7 tw[i] = tw[i] + 3

8 end
9 else if P[i]=’MEDIUM’ then

10 W [i][j]=2

11 tw[i] = tw[i] + 2

12 end
13 else

14 W [i][j]=1

15 tw[i] = tw[i] + 1

16 end

17 end

18 end

19 Initiate data rate allocation matrix A[n][m]

20 for i=0 to n-1 do

21 for j=0 to m-1 do

22 A[i][j] =
W [i][j]
tw[i]

× μ

23 end

24 end

Coordinated Data Flow Control in IoT Networks 35

Table 1. A summary of symbols and abbreviations used within the formal definition.

Symbol Explanation

Di IoT Device

Pi Priority of IoT device Di

K Number of partitions of IoT devices

Gk Group of IoT devices

Ej Edge device

|E| Total number of edge nodes

λi Data emission rate of ith IoT device

Si Data size of each value of ith IoT device

N Number of IoT devices

K Number of Partitions of IoT devices

〈μj , λi〉 Data Flow

μj Forwarding rate of Edge node Ej

λj Data injection rate from Di to Ej

Wi Weight given to the IoT device Di

A[n][m] Data rate allocation matix. Rows represent
edge devices and columns represent IoT devices

4 Implementation Details

We used Raspberry Pi 3B+ as edge nodes and for emulating sensors. Raspberry
Pi is a credit-card-sized single-board computer (SBC) [31] mainly developed for
simulation and teaching purposes. As it has a small form factor, is reliable and
has low power requirement, this device is increasingly being used for industrial
and IoT applications [22].

We set up a proof of concept system, consisting of the three layers, namely,
IoT layer, Edge layer and Cloud layer. We used real sensor values from New-
castle Urban Observatory (UO) [15], which is an IoT based city environment
monitoring system which consists of about 1000 sensors forwarding around 5000
data points a second. To test this system, we developed a sensor emulator which
sends data points to edge devices at a configured frequency. The sensor emulator
runs on three Raspberry Pi devices, each emulating a subset of sensors (Fig. 5).

The system is implemented based on the reference architecture (Fig. 1) pro-
posed in this paper. We used Raspberry Pi 3B+ devices as the edge nodes.
Devices are installed with Raspbian OS running in shell only mode. A lightweight
MQTT broker, Mosquitto [17] is installed in each edge device to queue data from
the sensors. As mentioned in the architecture section, sensors are partitioned,
and each partition is connected to one Raspberry Pi device through LAN con-
nectivity. An instance of Edge Gatekeeper (EGK) software is configured to run
in each edge node. EGK is designed to run with minimal memory and CPU
footprint and is developed in GoLang [20]. One topic is created for each sensor
for command communication, while a single topic is used for data communica-

36 N. B. Thekkummal et al.

Fig. 5. Prototype implementation

tion from sensors to edge. Sensors receive commands from the device configura-
tion agent in EGK by subscribing to the command topic to which it publishes
reconfiguration commands. Sensors send the readings as streams of data points
in JSON format to MQTT broker. As MQTT is a pub/sub based messaging
protocol working over TCP/IP, both (emulated) sensors/IoT devices and edge
devices communicate through network sockets. We selected a QoS Level 1 [14]
which promises “AT LEAST ONCE” delivery assurance to ensure delivery of
every message. Elevating to QoS Level 2 has a significant performance impact.
All the sensors publish data points to the topic “sensor data”. Upon startup,
EGK initiates the data forwarder sub-service as a thread which subscribes to the
topic “sensor data”. EGK receives the messages from all the sensors publishing
to its local broker at the configured publish rate. EGK receives data from all the
sensors connected to it, and it forwards this to the cloud messaging queue. The
data forwarding rate is preset at each edge device, which can be reconfigured by
the Adaptive Flow Controller (AFC) in the cloud data centre.

EGK also runs a service which listens to the commands from the (AFC).
We have defined reconfiguration commands (Table 2) to set data rate/frequency
of both IoT devices and edge devices. A reconfiguration command could be
addressed to an IoT device (using sensor id) or edge device (using edge id). AFC
sends the reconfiguration command to the corresponding edge node. The device
reconfiguration agent running as a service in edge gatekeeper is responsible for
reconfiguring the edge and IoT nodes. If it is a command addressed to the edge
node, it reconfigures itself with the new data rate. If it is addressed to a sensor,
the device configuration agent sends the reconfiguration command to the sensor,
which sets the new data rate and continues its normal operation.

AFC is a program running in the cloud environment which has the infor-
mation of all the sensors and edge nodes. The data rate allocation algorithm
(Algorithm 1) is triggered whenever a new sensor is added to the network.

5 Evaluation

For the validation of the proposed system, we designed four experiments to run
on the prototype. The primary objective of the experiments is to understand the
impact of a different rate of data flow for a fixed load on the edge device. The

Coordinated Data Flow Control in IoT Networks 37

Table 2. Device reconfiguration commands

Command Description

SET E FWD RT 〈edge id〉〈datarate〉 Set data forwarding rate of an edge node

SET S RT 〈sensor id〉〈datarate〉 Set data rate of a sensor node/IoT device

START E FWD 〈edge id〉 Instructs an edge node to start forwarding data

STOP E FWD 〈edge id〉 Instructs an edge node to stop forwarding data

START S SND 〈sensor id〉 Instructs a sensor node to start sending data points

STOP S SND 〈sensor id〉 Instructs a sensor node to stop sending data points

second objective is to understand the point at which the edge device is rendered
into an unstable state, where data flow backpressure starts building on the edge
device. The third objective is to understand how adaptive flow control deals with
the backpressure and how it impacts the data freshness ingested into the cloud
layer.

Experiment Setup: The experiment setup consists of two sensor emulators
emulating 10 sensors each. These sensor emulators are connected to two edge
devices with a balanced configuration where each edge device is receiving 10
sensor streams. Both sensor emulators and edge devices are implemented on
Raspberry Pi devices. All these devices are connected to the network using wired
LAN cables through a 1 Gigabit LAN switch. A router is connected to the switch
providing edge layer access to the cloud layer.

5.1 Performance Baseline

Experiment 1: The processing load on the edge device is the prepossessing and
forwarding overhead. This experiment establishes the baseline performance of the
edge device for different data rates for the fixed load. Data rates are incrementally
set on the IoT devices so that the total data rates are varied from 10 records
per second to 450 records per second for each sensor. ie values are set for λDi

such that
∑

kεGi
λDi

is varied from 100 to 4500 records per second. The effective
forward rate is measured for each data rate for a fixed period (Fig. 6).

The results show that the forward rate is matching the receive rate until
capped forward rates (1000, 2000 records/sec) after which backpressure started
building and affecting the data forward performance making the forward rate
dip.

5.2 Stability Analysis

Experiment 2: In this experiment, we try to identify the point at which the
system reaches an unstable state while the backpressure in the edge device starts
building. For this, each edge device is set with a forward rate of 5000 records
per second. The data rates of sensors are elevated gradually to identify the point

38 N. B. Thekkummal et al.

Fig. 6. Results of baseline performance in terms of forwarding rates for different data
arrival rate

at which the edge is not capable of forwarding all the data received. CPU and
memory stats of the edge device are monitored and plotted against the data
receive rate. Results show the point at which the backpressure of the data spikes
up the resource utilisation, especially the memory utilisation (Fig. 7).

(a) CPU usage for different data rates (b) Memory usage for different data rates

Fig. 7. CPU and memory usage of edge device for different data rates

5.3 Data Freshness and Backpressure Recovery Time with AFC

Experiment 3: The clocks of all the devices are synchronised using a standard
Network Time Protocol (NTP) server. Each record produced in the sensor sim-
ulator is attached with an epoch time. These records are passed to the cloud
environment through edge devices. The edge device attaches its current times-
tamp to the record before forwarding it to the cloud. This timestamp attached
by the sensor is compared with the epoch time in the cloud environment to
measure the latency/data freshness. The latency is tested with three different
network scenarios 4G, 3G and GPRS. The results show that the latency is show-
ing a sharp spike at the point of the forward rate limit (Fig. 8).

The following table (Table 3) shows the recovery time from the backpressure
for each data rate when AFC is engaged.

Coordinated Data Flow Control in IoT Networks 39

Fig. 8. Results of latency test for 4G, 3G and GPRS network

Table 3. Back pressure recovery time with AFC

Data rate (rec/sec) Recovery time (seconds)

3250 ∼2

3500 ∼2.5

3750 ∼4

4000 ∼6

4500 ∼7

6 Summary and Future Work

The prototype system we developed enabled the edge devices to control the
data rate it forwards to the cloud environment by dynamically reconfiguring the
IoT devices. The AFC algorithm is effective for recovering the system from the
backpressure in the data flow. This approach helps to improve the data freshness
in a congested IoT network. Future work includes the integration of sampling
algorithms into EGK to perform sampling of the incoming data keeping the data
quality high. EGK also opens the possibility of load balancing between multiple
edge devices to reduce the load while maintaining the data quality.

References

1. Abadi, D.J., et al.: Aurora: a new model and architecture for data stream man-
agement. VLDB J. 12(2), 120–139 (2003)

2. Agarwal, S., Mozafari, B., Panda, A., Milner, H., Madden, S., Stoica, I.: BlinkDB:
Queries with bounded errors and bounded response times on very large data. In:
Proceedings of the 8th ACM European Conference on Computer Systems, pp.
29–42. ACM (2013)

3. Akidau, T., et al.: Millwheel: fault-tolerant stream processing at internet scale.
Proc. VLDB Endowment 6(11), 1033–1044 (2013)

4. Akidau, T., et al.: The dataflow model: a practical approach to balancing correct-
ness, latency, and cost in massive-scale, unbounded, out-of-order data processing.
Proc. VLDB Endowment 8(12), 1792–1803 (2015)

40 N. B. Thekkummal et al.

5. Bahreini, T., Grosu, D.: Efficient placement of multi-component applications in
edge computing systems. In: Proceedings of the Second ACM/IEEE Symposium
on Edge Computing, p. 5. ACM (2017)

6. Beck, M., Bhatotia, P., Chen, R., Fetzer, C., Strufe, T., et al.: Privapprox: privacy-
preserving stream analytics. In: 2017 {USENIX} Annual Technical Conference
({USENIX}{ATC} 17). pp. 659–672 (2017)

7. Boeing: Boeing 787s to create half a terabyte of data per flight, says vir-
gin atlantic. https://www.computerworlduk.com/data/boeing-787s-create-half-
terabyte-of-data-per-flight-says-virgin-atlantic-3433595/. Accessed 08 Apr 2019

8. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the
internet of things. In: Proceedings of the First Edition of the MCC Workshop on
Mobile Cloud Computing, MCC 2012, pp. 13–16. ACM, New York (2012). https://
doi.org/10.1145/2342509.2342513

9. Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., Tzoumas, K.:
Apache Flink: stream and batch processing in a single engine. Bull. IEEE Comput.
Soc. Tech. Committee Data Eng. 36(4), 28–38 (2015)

10. Chandrasekaran, S., et al.: TelegraphCQ: continuous dataflow processing for an
uncertain world. In: CIDR, vol. 2, p. 4 (2003)

11. Cheng, B., Longo, S., Cirillo, F., Bauer, M., Kovacs, E.: Building a big data plat-
form for smart cities: experience and lessons from Santander. In: IEEE Interna-
tional Congress on Big Data, pp. 592–599. IEEE (2015)

12. Chippa, V.K., Chakradhar, S.T., Roy, K., Raghunathan, A.: Analysis and char-
acterization of inherent application resilience for approximate computing. In: Pro-
ceedings of the 50th Annual Design Automation Conference, p. 113. ACM (2013)

13. Goiri, I., Bianchini, R., Nagarakatte, S., Nguyen, T.D.: ApproxHadoop: bringing
approximations to mapreduce frameworks. In: ACM SIGARCH Computer Archi-
tecture News, vol. 43, pp. 383–397. ACM (2015)

14. Hunkeler, U., Truong, H.L., Stanford-Clark, A.: MQTT-S - A publish/subscribe
protocol for wireless sensor networks. In: 3rd International Conference on Commu-
nication Systems Software and Middleware and Workshops (COMSWARE 2008),
pp. 791–798. IEEE (2008)

15. James, P.M., Dawson, R.J., Harris, N., Joncyzk, J.: Urban observatory environ-
ment. Newcastle University, pp. 154300–154319 (2014)

16. Kandula, S., et al.: Quickr: lazily approximating complex adhoc queries in bigdata
clusters. In: Proceedings of the 2016 International Conference on Management of
Data, pp. 631–646. ACM (2016)

17. Light, R.A., et al.: Mosquitto: server and client implementation of the MQTT
protocol. J. Open Source Softw. 2(13), 265 (2017)

18. Lin, W., Qian, Z., Xu, J., Yang, S., Zhou, J., Zhou, L.: Streamscope: continuous
reliable distributed processing of big data streams. In: 13th {USENIX} Symposium
on Networked Systems Design and Implementation ({NSDI} 2016), pp. 439–453
(2016)

19. Lukić, M., Mihajlović,, Mezei, I.: Data flow in low-power wide-area IoT applica-
tions. In: 2018 26th Telecommunications Forum (TELFOR). pp. 1–4 (Nov 2018).
https://doi.org/10.1109/TELFOR.2018.8611848

20. Meyerson, J.: The go programming language. IEEE Softw. 31(5), 104–104 (2014).
https://doi.org/10.1109/MS.2014.127

21. Mohammadi, M., Al-Fuqaha, A., Sorour, S., Guizani, M.: Deep learning for IoT
big data and streaming analytics: a survey. IEEE Commun. Surv. Tutorials 20(4),
2923–2960 (2018)

https://www.computerworlduk.com/data/boeing-787s-create-half-terabyte-of-data-per-flight-says-virgin-atlantic-3433595/
https://www.computerworlduk.com/data/boeing-787s-create-half-terabyte-of-data-per-flight-says-virgin-atlantic-3433595/
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1109/TELFOR.2018.8611848
https://doi.org/10.1109/MS.2014.127

Coordinated Data Flow Control in IoT Networks 41

22. Morabito, R., Beijar, N.: Enabling data processing at the network edge through
lightweight virtualization technologies. In: IEEE International Conference on Sens-
ing, Communication and Networking (SECON Workshops), pp. 1–6, June 2016.
https://doi.org/10.1109/SECONW.2016.7746807

23. Murray, D.G., McSherry, F., Isaacs, R., Isard, M., Barham, P., Abadi, M.: Naiad:
a timely dataflow system. In: Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, pp. 439–455. ACM (2013)

24. Networking, C.V.: Cisco global cloud index: Forecast and methodology 2015–2020.
White paper (2016)

25. O’Keeffe, D., Salonidis, T., Pietzuch, P.: Frontier: resilient edge processing for the
internet of things. Proc. VLDB Endowment 11(10), 1178–1191 (2018)

26. Quoc, D.L., Chen, R., Bhatotia, P., Fetze, C., Hilt, V., Strufe, T.: Approximate
stream analytics in Apache Flink and Apache Spark streaming. arXiv preprint
arXiv:1709.02946 (2017)

27. Ranjan, R., et al.: The next grand challenges: integrating the internet of things
and data science. IEEE Cloud Comput. 5(3), 12–26 (2018)

28. Sajjad, H.P., Danniswara, K., Al-Shishtawy, A., Vlassov, V.: Spanedge: towards
unifying stream processing over central and near-the-edge data centers. In: 2016
IEEE/ACM Symposium on Edge Computing (SEC), pp. 168–178. IEEE (2016)

29. Szydlo, T., Brzoza-Woch, R., Sendorek, J., Windak, M., Gniady, C.: Flow-based
programming for IoT leveraging fog computing. In: IEEE 26th International Con-
ference on Enabling Technologies: Infrastructure for Collaborative Enterprises
(WETICE), pp. 74–79, June 2017. https://doi.org/10.1109/WETICE.2017.17

30. Toshniwal, A., et al.: Storm@ Twitter. In: Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data, pp. 147–156. ACM (2014)

31. Upton, E., Halfacree, G.: Raspberry Pi User Guide. Wiley, New York (2014)
32. Venkataraman, S., et al.: Drizzle: fast and adaptable stream processing at scale. In:

Proceedings of the 26th Symposium on Operating Systems Principles, pp. 374–389.
ACM (2017)

33. Wen, Z., Bhatotia, P., Chen, R., Lee, M., et al.: ApproxIoT: approximate ana-
lytics for edge computing. In: IEEE 38th International Conference on Distributed
Computing Systems (ICDCS), pp. 411–421. IEEE (2018)

34. Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S., Stoica, I.: Discretized streams:
Fault-tolerant streaming computation at scale. In: Proceedings of the Twenty-
fourth ACM Symposium on Operating Systems Principles, pp. 423–438. ACM
(2013)

https://doi.org/10.1109/SECONW.2016.7746807
http://arxiv.org/abs/1709.02946
https://doi.org/10.1109/WETICE.2017.17

A Monitoring System for Distributed Edge
Infrastructures with Decentralized

Coordination

Roger Pueyo Centelles1, Mennan Selimi1,2, Felix Freitag1(B),
and Leandro Navarro1

1 Universitat Politècnica de Catalunya, BarcelonaTech, Barcelona, Spain
{rpueyo,mselimi,felix,leandro}@ac.upc.edu

2 Max van der Stoel Institute, South East European University,
Tetovo, North Macedonia
m.selimi@seeu.edu.mk

Abstract. We present the case of monitoring a decentralized and crowd-
sourced network infrastructure, that needs to be monitored over geo-
graphically distributed devices at the network edge. It is a characteris-
tic of the target environment that both, the infrastructure to be moni-
tored and the hosts where the monitoring system runs, change over time,
and network partitions may happen. The proposed monitoring system is
decentralized, and monitoring servers coordinate their actions through an
eventually consistent data storage layer deployed at the network edge. We
developed a proof-of-concept implementation, which leverages CRDT-
based data types provided by AntidoteDB. Our evaluation focuses on
the understanding of the continuously updated mapping of monitoring
server to network devices, specifically on the effects of different policies
for each individual monitoring server to decide on which and how many
network devices to monitor. One of the policies is experimented by means
of a deployment on 8 real nodes, leveraging the data replication of Anti-
doteDB in a realistic setting. The observed effects of the different policies
are interpreted from the point of view of the trade-off between resource
consumption and redundancy.

Keywords: Edge computing · Distributed monitoring · Decentralized
coordination

1 Introduction

We aim to develop a monitoring system for decentralized and crowdsourced
network infrastructures such as Guifi.net, a community network with more than
30,000 networking devices with IP addressing. The infrastructure of Guifi.net
can be understood as a crowd-sourced, multi-tenant collection of heterogeneous
network devices (wired and wireless) interconnected between them and forming
a collective communication and computing system [1].
c© Springer Nature Switzerland AG 2020
I. Brandic et al. (Eds.): ALGOCLOUD 2019, LNCS 12041, pp. 42–58, 2020.
https://doi.org/10.1007/978-3-030-58628-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58628-7_4&domain=pdf
https://doi.org/10.1007/978-3-030-58628-7_4

A Monitoring System for Distributed Edge Infrastructures 43

An edge cloud computing paradigm may initially be considered to build this
monitoring system. In edge computing, cloud services running in data centers,
e.g. data storage, are extended with the capacities of local processing at the edge.
In such cloud-based services, which leverage edge devices, improved response
time is achieved through local processing at the edge device and reduction of
communication needs with remote data centers [2]. In the practical implemen-
tation of such a paradigm, the edge devices would be deployed as part of the
vendor’s monitoring application. They would need a suitable physical locations
available in Guifi.net. In addition, the community network would need to assume
the economic cost for the provision of the monitoring infrastructure.

Collaborative edge computing in Guifi.net started to be researched and devel-
oped in the last few years [3]. Currently in 2019 there are tenths of opera-
tional interconnected edge devices in the community network, which host diverse
local services. These edge devices, such as mini-PCs or Single-Board-Computers
(SBC), are located at the premises of some members of the community. Further-
more, the owners have system administrator permissions of the device, which
enables them to install any required service. Differently, commercial edge gate-
ways are typically locked and operate in a dedicated mode for the vendor’s
application. In fact, the edge computing model in community networks is radi-
cally different to the locked devices and application model of vendors: owners of
edge devices in Guifi.net are encouraged to collaborate and actively contribute to
the provision of network monitoring and end user-oriented services, and sustain
edge micro-clouds [4,5].

The goal of the targeted monitoring system is to leverage the geographically-
scattered low-capacity computing devices available at the premises of Guifi.net
members to host the monitoring system software components. Since in the given
context network partitions and failures of these servers may happen, and there is
no traditional cloud data center infrastructure available in Guifi.net, we pursue
a decentralized solution for the monitoring system. As a consequence, we envi-
sioned to store monitoring data by means of a distributed replicated database.
Furthermore, the software of the monitoring system will run as an additional
service on the low-capacity computing devices that belong to Guifi.net mem-
bers.

2 Needs for Monitoring System and Use Cases

The aim of a network monitoring system is to keep aware about the operational
status of a network infrastructure, including the detection of anomalies and the
collection of usage and performance data for every network component. We first
describe the limitations of the current monitoring system, and we describe the
requirements about economic compensation of network provision and usage.

44 R. P. Centelles et al.

2.1 Limitations of the Current Monitoring System

The current legacy monitoring system for the Guifi.net network aims at offering
a public up-time and traffic accounting service. It consists of several independent,
non-coordinated, crowd-sourced monitoring servers (built on several off-the-shelf
Linux x86 low-end devices). Each server gets the list of nodes (i.e., network
devices) to monitor from the Guifi.net website and, periodically, checks them for
reachability/uptime (via ICMP pings) and measures network traffic (via SNMP).
A limitation of this service is that each node in Guifi.net is assigned to only one
monitoring instance/server. Therefore, if a monitor server fails, all the nodes
under its supervision stop being monitored. Furthermore, monitoring data from
a certain node is stored only by the assigned monitoring server, so data loss is
prone to occur. Finally, the system is not self-adaptive to changes and requires
manual intervention.

The current monitoring system impedes the implementation of relevant use
cases, as sketched in the following subsection, and a more resilient, self-adaptive
monitoring system is needed.

2.2 Needs of a Billing and Economic Compensations System

Currently, more than 20 companies operate their services professionally on top
of the Guifi.net community network. For this, the project has put in practice a
disruptive economic model [6] based on the commons and collaborative economy
models, by means of the deployment of a common-pool network infrastructure
and a fair and sustainable economic exploitation1. There is need for a compre-
hensive and reliable source of traffic data in the network.

The current billing system to balance the community effort and the com-
mercial activity related to contribution of network capacity and consumption
of connectivity mostly relies on the traffic accounting being performed at the
core routers by the Guifi.net Foundation. However, this requires a considerable
amount of manual intervention to combine, verify and validate not only the fig-
ures, but also the data reported by the ISPs themselves. An automated billing
mechanism enabled by the retrieval of reliable monitoring information from a
shared data layer would help in making the operation of the network more sus-
tainable, both technically and economically. In addition, publicly-available traf-
fic and resources usage data facilitated by a monitoring system would improve
the transparency for the whole ecosystem, leading to less disputes between the
Guifi.net Foundation and the ISPs.

3 An Edge Monitoring System for Network
Infrastructures

The new monitoring system aims at solving the limitations of the legacy mon-
itoring system and provide comprehensive and reliable monitoring data for all
1 Guifi.net - The economic project - https://guifi.net/en/economic-project.

https://guifi.net/en/economic-project

A Monitoring System for Distributed Edge Infrastructures 45

network devices despite network and server failures. We describe the system
architecture and its implementation.

Fig. 1. Architecture of the monitoring system showing the different components.

3.1 Architecture

The architecture of the monitoring system, showing the monitoring servers and
their integration with the Guifi.net website and network nodes, is depicted in
Fig. 1. On the top of the picture appears the Guifi.net website and its cen-
tral database, which contains the lists of network nodes and monitoring servers.
These two lists are always provided by the website, and can be considered to
be correct and available at any time. Compared to the current implementa-
tion (i.e., the legacy monitoring system) with a fixed mapping of network nodes
to monitoring servers, the new monitoring system proposes a mapping, that is
decentralized and autonomous, managed by the monitoring servers themselves,
and dynamically updated to ensure sufficient coverage and balance in the mon-
itoring.

Considering Algorithm 1, once the monitoring servers know the list of nodes
to watch (Phase 1 - Monitor registration), they coordinate with each other
(Phase 2 - Self-assignment) indirectly over the mutable data object given by
the monitoring servers ⇔ network devices mapping in order to perform the
actual monitoring of all nodes. The objective is to assign every single network

46 R. P. Centelles et al.

Algorithm 1 Assign algorithm with policies, for node id

Require:
dbhost � AntidoteDB hostname/IP address
dbPort � AntidoteDB TCP port
id � Unique ID of the monitor in the network
minMonitors � Min # of monitors a device needs
maxMonitors � Max # of monitors a device needs
maxDevices � Max # of devices the monitor can watch
policy � Network devices to monitoring servers assignation policy (1, 2, 3)

Phase 1 – Monitor registration

1: procedure Registration(G)
2: monitorsList[] ← GetGlobalMonitorsList
3: AddMonitorToList(id, monitorsList[])
4: UpdateGlobalMonitorList(monitorsList[])
5: end procedure

Phase 2 – Monitor Self-assignment

6: procedure Assign(id)
7: numDevices ← 0
8: devicesInAntidote[] ← getDevicesInAntidote()
9: for each device in devicesInAntidote[] do

10: if (id is in device.monitors[]) then
11: numDevices++
12: end if
13: end for � We find out the total numDevices this node monitors
14: switch policy do
15: case 1 � Min: Assign if network device not enough covered (minMonitors)
16: for each device in devicesInAntidote[] do
17: if (sizeOf (device.monitors[]) < minMons)

&& (numDevices < maxDevices) then
18: assignMonitorToDevice(id, device), numDevices++
19: end if
20: end for
21: case 2 � Max: Assign if network device not fully covered (maxMonitors)
22: for each device in devicesInAntidote[] do
23: if (sizeOf (device.monitors[]) < maxMons)

&& (numDevices < maxDevices) then
24: assignMonitorToDevice(id, device), numDevices++
25: end if
26: end for
27: case 3 � Fair: Assign if device not well covered ([minMons, maxMons])
28: maxMons ← minMons+1
29: for each device in devicesInAntidote[] do � order by asc #mons
30: if (sizeOf (device.monitors[]) ∈ [minMons, maxMons])

&& (numDevices < maxDevices) then
31: assignMonitorToDevice(id, device), numDevices++
32: end if
33: end for
34: end procedure

A Monitoring System for Distributed Edge Infrastructures 47

device to –at least– a minimum number of monitoring servers. This task can
be performed in different ways. Currently, three policies are implemented. Each
policy leads to different properties of the monitoring system, elaborated in the
following Sect. 4.

The data manipulated by the monitoring system draws from two sets of
immutable objects and creates a mapping between these objects. The first set
contains a list with all the network devices in Guifi.net that have to be mon-
itored. The list of network devices in the whole Guifi.net contains more than
30,000 nodes. The data in this first set is only modified by authoritative updates
issued from the Guifi.net website; the monitoring servers only read it but do not
modify it.

The second set contains a list with all the active monitoring servers. Servers
are also identified by a unique numeric ID, being the servers list a subset of the
nodes list (a monitoring server is indeed a device inside the network, with its
own IP address, etc. that must be monitored too). The data in this second set is
only modified by authoritative updates issued from the Guifi.net website; again,
the monitoring servers only read it but do not modify it.

In the assign operation (Phase 2 – Monitor Self-assignment), any monitoring
server may modify the mapping between network devices and monitoring servers
(add, update or remove these relations at any time).

The assignment in the monitoring servers ⇔ network devices mapping will
change over time, as new network devices are added to the list, the network
conditions change, workload is redistributed, monitoring servers join or exit the
pool, etc. As a consequence, each monitoring server continuously and concur-
rently –not in synchronisation with the other servers– reads and writes to the
shared distributed mapping object.

After conducting the monitor self-assignment procedure in Algorithm 1, in
Algorithm 2 additional operations take place. Depending on policy, if the num-
ber of monitors for a device exceeds the requirement, a monitor may un-assign
itself from the list of monitors of a device. With regards to un-assigning other
unresponsive monitors, the sanitize function is performed. By means of out-
dated timestamps, disconnected monitors are detected and an active monitor
erases them from the monitoring servers ⇔ network devices mapping. In case of
a controlled disconnection of a monitor, it performs the de-registration function,
in which a monitor un-assigns itself from the list of monitored devices before
un-assigning itself from the list of available monitors.

In order to successfully deal with the required concurrent updates of the
monitoring servers ⇔ network devices mapping shared among all monitors, the
data consistency and integrity between the different database instances is needed.
If these properties are kept, it can be ensured that all network nodes eventually
end up being properly assigned to monitoring servers.

3.2 Implementation

We developed the monitoring system as a prototype implementation that uses
the Go language. The system is composed of four components to conduct the

48 R. P. Centelles et al.

Algorithm 2 Algorithm for un-assign, sanitization and de-registration
Phase 1 – Monitor Self-unassignment

1: procedure Unassign(id)
2: devices[] ← getDevicesInAntidote()
3: for each device in devices[] do
4: if device.monitors[] > minMonitors then
5: unassignMonitorFromDevice(id, device)
6: end if
7: end for
8: end procedure

Phase 2 – Global assignment sanitization

9: procedure Sanitize
10: monitorsList[] ← GetGlobalMonitorsList
11: devices[] ← getDevicesInAntidote()
12: for each device in devicesInAntidote[] do
13: for each monitor in device.monitors[] do
14: if (monitor is not in monitorsList[]) then
15: unassignMonitorFromDevice(monitor,

device)
16: end if
17: end for
18: end for
19: end procedure

Phase 3 – Monitor Self-deregistration

20: procedure Deregistration(id)
21: monitorsList[] ← GetGlobalMonitorsList
22: RemoveMonitorFromList(id, monitorsList[])
23: UpdateGlobalMonitorList(monitorsList[])
24: end procedure

operations named fetch, assign, ping and snmp. The source code is available
at our GitLab repository2. For the consistency of the data in the distributed
database instances, the AntidoteDB database was chosen [7]. AntidoteDB imple-
ments Conflict-Free Replicated Data Types (CRDT), which offer strong eventual
consistency [8]. The integration between the monitoring server component and
AntidoteDB is done through AntidoteDB’s Go client.3

4 Evaluation of the Assign Algorithm

Our objective is to study the assign component, specifically the algorithm of
the assign operation, when using three different policies for assigning the mon-
itors to network devices. For this purpose, we aim to observe the evolution of
2 https://lightkone.guifi.net/lightkone.
3 https://github.com/AntidoteDB/antidote-go-client.

https://lightkone.guifi.net/lightkone
https://github.com/AntidoteDB/antidote-go-client

A Monitoring System for Distributed Edge Infrastructures 49

the assignment of network devices, when monitoring servers perform the assign
operation join and leave.

For conducting the experiments, first, using the fetch component of the mon-
itoring system, a data file with 54 devices of a small region of Guifi.net infras-
tructure is stored in to the AntidoteDB storage service in order to have it for
the monitors network devices to be assigned to these servers. For observing the
assign operation in the experiments, a customized setting with shorter routine
execution periods of 10 s is configured (instead of the default value of 150 s).
The required minimum number of monitors per network device (minMonitors)
is set to 3 monitors. The maximum number of network devices per monitor
(maxDevices) is set to 50 devices. The assignment state is dumped every 5 s,
which is half of the period of the assign operations. In the first half of the exper-
iment duration, assign clients join one by one the monitoring system. In the
second half of the experiment duration, the assign clients gradually leave the
monitoring system.

The experiments for policy 1 and 2 are undertaken with a local Antidot-
eDB instance, to which during the experiment up to 10 assign client write. The
experiment for policy 3 is conducted with 8 Minix devices and 7 assign clients
in Guifi.net.

4.1 Assignment Policy 1 (min): Reach minMons per Network
Device

In policy 1 each monitoring server self-assigns those network devices that have
less monitoring devices assigned than the minimum number specified by the
minMons parameter. Devices are picked randomly (no preference) until the
server reaches its maximum number of monitored devices, specified by the
maxDevices parameter of the monitor.

In this experiment 10 assign clients join and leave the monitoring system
during 7min. In the first 3 min the assign servers join every 20 s, one by one,
and after approximately 4min, they gradually leave until having 0 clients at the
end of the experiment.

Figure 2 shows the assigned devices with policy 1. The configuration has set
the parameters minMons = 3, which requires a minimum of 3 monitors per
device. With 54 devices in the dataset, the number of assigned devices must
reach 162. Before 100 s, this number of assigned devices is reached. With a mon-
itoring capacity configured as 50 devices per monitor, which 4 monitors the
number of 162 assigned devices is reached. After 4min, one of assigned monitors
disconnects. When the other idle monitors periodically connect (unsynchronized
with each other) to the system, they detect the under-monitoring of the system,
and as a consequence, self-assign devices to be monitored as to their monitoring
capacity (maxDev = 50). Since these operations are done concurrently among
several monitors and while the local decision is not updated in the shared mon-
itoring servers ⇔ network devices mapping, the number of assigned devices
raises. As the monitors get disconnected, down to 0 monitors, the number of
assigned devices decreases correspondingly.

50 R. P. Centelles et al.

Fig. 2. Assigned devices with policy 1.

Fig. 3. Monitors per devices with policy 1.

Figure 3 shows the monitors per device with policy 1. It can be seen that after
around 100 s, all devices have at least 3 monitors. This assignment corresponds
to the configured system requirements and remains stable until the disconnection
of one of the assigned monitors starts at minute 4. It can be seen that at some
instant the maximum number of monitors per device (MaxMonPerDev) raises

A Monitoring System for Distributed Edge Infrastructures 51

Fig. 4. Devices per monitor with policy 1.

up to 7, which corresponds to the concurrent responses of the idle monitors to
take over the monitoring duties of the disconnected monitors.

Figure 4 shows the devices per monitor with policy 1. It can be seen that
after around 100 s the value for the minimum number of devices per monitor
stays at 0 during some time of the experiment. This can be explained since new
joining monitors detect that the system requirements are satisfied and remain
in idle state, without self-assigning any new devices to be monitored.

4.2 Assignment Policy 2 (max): Reach maxMons per Network
Device

In policy 2 the system uses all the possible monitoring resources. Devices are
picked starting by the ones with the least monitors.

Figure 5 shows the sum of assigned devices with policy 2. Different to policy
1, policy 2 ignores any minimum number of monitors per device and the moni-
tors self-assign devices to be monitored up to reaching its maximum monitoring
capacity. It can be seen that a sum of up to 500 assigned devices is reached,
which corresponds to the 10 monitoring servers and a capacity of 50 devices
each to monitor.

Figure 6 shows the monitors per device with policy 2. Since all available
monitors are assigned, devices obtain up to 10 monitors shortly before 200 s of
the experiment, which corresponds to all 10 monitors connected.

In Fig. 7 it can be seen that at around 200 s the value for the minimum
number of devices per monitor reaches 50, which corresponds to the fact that all

52 R. P. Centelles et al.

Fig. 5. Assigned devices with policy 2.

Fig. 6. Monitors per devices with policy 2.

joined monitors operate at the maximum monitoring capacity, corresponding to
the behaviour expected from policy 2.

A Monitoring System for Distributed Edge Infrastructures 53

Fig. 7. Devices per monitor with policy 2.

4.3 Assignment Policy 3 (fair): Reach [minMons,maxMons] per
Network Device

In policy 3, devices are picked starting by the ones with the least monitors
until they are monitored by minMons monitors. If there are still monitoring

Fig. 8. Testbed for the assign operation with policy 3. The testbed is deployed in the
GuifiSants wireless mesh network (see footnote 4).

54 R. P. Centelles et al.

capacities available, devices will be monitored by at most maxMons (by default,
maxMons = minMons+ 1).

We conduct this evaluation by deploying the monitoring system on real nodes
of Guifi.net. In the Guifi.net environment, monitoring servers consist of different
hardware, which can range from resource-constraint SBCs to desktop computers.
In order to represent this situation, we have have installed several x86 mini-PCs
in a wireless mesh network part of Guifi.net (at users’ homes) to form a testbed
in which these devices operate as monitoring servers4.

Figure 8 illustrates the deployed testbed and provides some information
about the network characteristics (IP, bandwidth between nodes and RTT). The
eight black nodes correspond to Minix devices (Intel Atom x5-Z8350 4-cores CPU
@ 1.44 GHz, 4 GB of DDR3L RAM and 32 GB eMMC) running Debian Strech.
Each Minix device hosts an AntidoteDB instance. Most of the Minix devices
are geographically far from each other with a few hops of wireless links between
them. As shown in the Fig. 8, we use 7 assign clients, which are hosted on the
same Minix device they write to. On the 8th Minix device, we installed a compo-
nent which reads the current assignments from the AntidoteDB instance every
5 s. Note that all 8 AntidoteDB instances are fully replicating the data.

Figure 9 shows the assigned devices with policy 3. The configuration has set
the parameters maxMons = minMons + 1 (minMons = 3), which requires a
minimum of 3 monitors per device, and 4 monitors if there are available moni-
toring capabilities in the system. With 54 devices in the dataset, the number of
assigned devices can reach up to 216 for 4 monitors per device. At around 100 s,
this capacity is reached. With a monitoring capacity configure as 50 devices
per monitor, which 4 monitors the number of 162 assigned devices is reached,
requiring 5 monitors for 216 assigned devices. After 4min, one of assigned mon-
itors disconnects. When the idle monitors periodically connect, they detect the
under-monitoring, and as a consequence, self-assign devices as to their monitor-
ing capacity (maxDev = 50). Since this operation is done concurrently among
several monitors, the number of assigned devices raises. The local decisions are
then communicated to the shared monitoring servers ⇔ network devices map-
ping to allow coordination in the next periodic assign operation of each monitor.
As in the second half of the experiment the monitors become disconnected down
to 0 monitors, the number or assigned devices decreases correspondingly.

4.4 Comparison of Policies

Table 1 compares the three assignment policies. Each of the policies target to
achieve a certain property of the monitoring system. In policy 1 the joining
monitors self-assign devices up to their maximum monitoring capacity. Once
all devices are monitored by the minimum number of monitors, no additional
assignment takes place. It can be considered that policy 1 is resource consump-
tion efficient, by having the least number of monitors doing active monitoring at

4 The wireless mesh network is GuifiSants; nodes and network topology can be found
at http://dsg.ac.upc.edu/qmpsu/index.php.

http://dsg.ac.upc.edu/qmpsu/index.php

A Monitoring System for Distributed Edge Infrastructures 55

Fig. 9. Assigned devices with policy 3.

Fig. 10. Monitors per devices with policy 3.

their maximum capacity. In policy 2, the maximum redundancy for the monitor-
ing task is pursued by assigning the total monitoring capacity of the monitors,
even if the system requirements for the minimum number of monitors per device
are exceeded. By activating all monitors, policy 2 is less resource consumption
friendly. Policy 3 implements a trade-off between policy 1 and 2. By setting the

56 R. P. Centelles et al.

Fig. 11. Devices per monitor with policy 3.

Table 1. Comparison of the three assignment policies.

Policy Pros Cons

1 Once the system
requirement are reached,
additional monitors remain
idle

In some corner cases, depending on
the timing the servers joined the
system, some devices could end up
not being monitored even if there
are enough resources available

2 Every device is
overwatched. Increased
redundancy

The more monitoring servers are
available, the more waste of
resources. No idle monitors

3 Exceeding slightly
monitoring requirements if
servers become available

Possibly idle monitors, not
maximum redundancy

maxMons parameter, the minimum system requirement can be exceeded slightly,
while if there is an excess of monitoring capacity available beyond the maxMons
requirement, it will remain idle (Fig. 10).

5 Related Work

In the presented monitoring system, we focus on the control algorithm, how the
distributed local monitors coordinate among them their actions. We consider
that decisions are taken in a decentralized way by each local monitor, based on
the information of the global state retrieved periodically from the distributed

A Monitoring System for Distributed Edge Infrastructures 57

database, instead of retrieving the order for its monitoring actions from a cen-
tralized controller. We do not focus on the actual monitoring of network data,
which corresponds to the actions of the monitors once the assignment is done.
Differently, in [9] the lack of a centralized data storage is motivating a decen-
tralized monitoring approach, where monitoring data is communicated among
local monitors, which face the challenge of taking global decisions based on an
incomplete view about the global monitoring data (Fig. 11).

In [10], targeting large-scale Software-Defined Networks (SDN), multiple
monitoring entities that perform monitoring tasks autonomously and without
maintaining a global view of the network run-time state are proposed. The goal
is to enable these local managers to adaptively reconfigure the network resources
under their scope of responsibility. The local managers, integrated in a so called
monitoring module (MM), communicate northbound with a higher level man-
agement applications (MAs), and southbound with the SDN controller. The
MAs change the monitoring requirements for the MMs. Differently, in our work
there is no equivalent to the MA. Our monitors coordinate horizontally (over
the shared database mapping object) with the other monitors their actions. The
requirements for the monitoring that each monitor does are not obtained from
a MA, but determined by each monitor from the actions of the other monitors.

Graphite [11] is monitoring tool able to run on low-cost hardware and cloud
data centres. Graphite integrates with several other professional tools for data
storage and visualization. While Graphite allows for many customization options,
this flexibility is applied to the actual monitoring task. Context awareness to take
into account in deciding about the monitoring operation, individual automatic
re-configurations in response to a current situation in the network or monitoring
system itself, seem to be less well supported.

Many other time series databases [12] exhibit centralization and the intrin-
sic problem of distributing writes while keeping full consistency, that depends
on a data storage layer that ensures strong eventual consistency. This is the
differentiating aspect of the monitoring system presented in this work, in the
use of CRDT-based data structures to enable strong eventual consistency of the
mapping object, which is used to by each monitor to decide on its individual
monitoring duties, with concurrent writes to shared data structures.

6 Conclusions

A distributed monitoring system for a crowdsourced network infrastructure was
presented. Situated in a dynamic edge environment in which failures and net-
work partitions may happen, a decentralized approach was proposed to built
the monitoring system. A key design was the shared distributed monitoring
servers ⇔ network devices mapping to allow the coordination between the peri-
odic assign operations of each monitor. The monitoring system was implemented
and leverages the AntidoteDB database, which provides a strong eventually con-
sistent data storage service for distributed replicas of data. The assign opera-
tion, decentrally conducted by all monitoring servers while they coordinate over

58 R. P. Centelles et al.

a shared distributed data object, was evaluated. The functional performance
of three assignment policies was analyzed. The different policies are interpreted
from the point of view of the trade-off between resource consumption and redun-
dancy, effects to be taken into account when determining the monitoring system
requirements. Future work can consider enhancements of the assign policies, by
becoming more context-aware, for instance by each monitor taking into account
network conditions and network device attributes.

Acknowledgment. This work was supported by the European H2020 framework
programme project LightKone (H2020-732505), by the Spanish government contract
TIN2016-77836-C2-2-R and PID2019-106774RB-C21 by the Catalan government con-
tract AGAUR SGR 990.

References

1. Baig, R., Roca, R., Freitag, F., Navarro, L.: Guifi.net, a crowdsourced network
infrastructure held in common. Comput. Netw. 90, 150–165 (2015)

2. Satyanarayanan, M.: The emergence of edge computing. Computer 50(1), 30–39
(2017)

3. Baig, R., Freitag, F., Navarro, L.: Cloudy in guifi.net: establishing and sustaining
a community cloud as open commons. Future Gener. Comput. Syst. 87, 868–887
(2018)

4. Selimi, M., Cerdà-Alabern, L., Freitag, F., Veiga, L., Sathiaseelan, A., Crowcroft,
J.: A lightweight service placement approach for community network micro-clouds.
J. Grid Comput. 17(1), 169–189 (2019)

5. Sathiaseelan, A., et al.: Towards decentralised resilient community clouds. In: Pro-
ceedings of the 2nd Workshop on Middleware for Edge Clouds & Cloudlets, MECC
2017, pp. 4:1–4:6. ACM, New York (2017)

6. Cerdà-Alabern, L., Baig, R., Navarro, L.: On the guifi.net community network
economics. Comput. Netw. 168, 107067 (2020)

7. AntidoteDB: A planet scale, highly available, transactional database (2019).
https://www.antidotedb.eu/

8. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: Conflict-free replicated data
types. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp.
386–400. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24550-
3_29

9. Falcone, Y., Cornebize, T., Fernandez, J.-C.: Efficient and generalized decentralized
monitoring of regular languages. In: Ábrahám, E., Palamidessi, C. (eds.) FORTE
2014. LNCS, vol. 8461, pp. 66–83. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-43613-4_5

10. Tangari, G., Tuncer, D., Charalambides, M., Pavlou, G.: Decentralized monitor-
ing for large-scale software-defined networks. In: 2017 IFIP/IEEE Symposium on
Integrated Network and Service Management (IM), pp. 289–297, May 2017

11. Davis, C., contributors: Graphite: an enterprise-ready monitoring tool. https://
graphiteapp.org/

12. Bader, A., Kopp, O., Falkenthal, M.: Survey and comparison of open source time
series databases. Datenbanksysteme für Business, Technologie und Web (BTW
2017)-Workshopband (2017)

https://www.antidotedb.eu/
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1007/978-3-662-43613-4_5
https://doi.org/10.1007/978-3-662-43613-4_5
https://graphiteapp.org/
https://graphiteapp.org/

A Container-Driven Approach for
Resource Provisioning in Edge-Fog Cloud

Hamid Mohammadi Fard1(B), Radu Prodan2, and Felix Wolf1

1 Department of Computer Science, Technical University of Darmstadt,
Darmstadt, Germany

{fard,wolf}@cs.tu-darmstadt.de
2 Alpen Adria-Universität Klagenfurt, Klagenfurt, Austria

radu@itec.aau.at

Abstract. With the emerging Internet of Things (IoT), distributed sys-
tems enter a new era. While pervasive and ubiquitous computing already
became reality with the use of the cloud, IoT networks present new
challenges because the ever growing number of IoT devices increases
the latency of transferring data to central cloud data centers. Edge
and fog computing represent practical solutions to counter the huge
communication needs between IoT devices and the cloud. Considering
the complexity and heterogeneity of edge and fog computing, however,
resource provisioning remains the Achilles heel of efficiency for IoT appli-
cations. According to the importance of operating-system virtualization
(so-called containerization), we propose an application-aware container
scheduler that helps to orchestrate dynamic heterogeneous resources
of edge and fog architectures. By considering available computational
capacity, the proximity of computational resources to data producers
and consumers, and the dynamic system status, our proposed schedul-
ing mechanism selects the most adequate host to achieve the minimum
response time for a given IoT service. We show how a hybrid use of con-
tainers and serverless microservices improves the performance of running
IoT applications in fog-edge clouds and lowers usage fees. Moreover, our
approach outperforms the scheduling mechanisms of Docker Swarm.

Keywords: Edge computing · Fog computing · Cloud computing ·
Resource provisioning · Containerization · Microservice ·
Orchestration · Scheduling

1 Introduction

The Internet of Things (IoT) has emerged by the rising number of connected
smart technologies, which will remarkably affect the daily life of human beings
in the near future. According to Cisco, 75 billion devices are expected to be
connected to the Internet by 20251 in the future smart world. Nowadays, there

1 https://www.cisco.com/c/en/us/solutions/internet-of-things/future-of-iot.html.

c© Springer Nature Switzerland AG 2020
I. Brandic et al. (Eds.): ALGOCLOUD 2019, LNCS 12041, pp. 59–76, 2020.
https://doi.org/10.1007/978-3-030-58628-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58628-7_5&domain=pdf
https://www.cisco.com/c/en/us/solutions/internet-of-things/future-of-iot.html
https://doi.org/10.1007/978-3-030-58628-7_5

60 H. M. Fard et al.

are countless IoT endpoints offloading their big data on the high performance
resources of central clouds. In this traditional architecture, the raw data gener-
ated by IoT sensors are transferred to the cloud, which is in charge of filtering,
processing, analyzing and persistently storing these data. After refining the data,
the final results are transferred back to the IoT actuators to complete the cycle.
The explosive amount of data produced by IoT sensors and the high compu-
tation demand for storing, transferring and analyzing these data are the new
challenges of using centralized clouds that become a network and computational
bottleneck.

A proposed solution to cover these challenges is a combination of edge, fog
and cloud computing paradigms [4,11]. As shown in Fig. 1, the goal of this
model, which we call it edge-fog cloud is to process and store data close to
the producers and consumers instead of sending the entire traffic to the cloud
resources. Therefore, the computation capacity for data analysis and application
services will stay close to the end users, resulting in lower latency that is critically
important for many types of real-time applications, such as augmented reality. As
edge and fog computing are highly dynamic and increasingly complex distributed
system paradigms with a high degree of heterogeneity [16], resource provisioning
is one of the significant challenges in managing these architectures. Although
edge and fog computing were suggested to deal with the response time and data
latency of IoT applications, the edge and fog nodes are often not as strong as the
cloud resources. Table 1 summarizes the main differences between edge, fog and
cloud models by considering the features variations moving between the models.

Fig. 1. Cloud vs. Edge-fog cloud: compared to the edge-fog cloud, execution of IoT
applications in the cloud only causes much longer data transfer time.

In this paper, we discuss and analyze the efficiency of combining containers
and serverless microservices compared to hardware virtualization for resource
provisioning in an edge-fog cloud. We present that despite the limited resource
capacity of edge and fog layers, the proximity of IoT nodes and computation
resources in edge and fog computing reduces the communication cost of services
and plays a remarkable role for achieving effective latency. By considering the
available computation capacity, the proximity of these computation resources to

A Container-Driven Approach for Resource Provisioning in Edge-Fog Cloud 61

Table 1. Comparison of edge, fog and cloud models. Moving from cloud to IoT layer,
node, network and data specications change considerably

Specification Change

Nodes Number Increasing

Heterogeneity Increasing

Reliability Decreasing

Computation capability Decreasing

Mobility Increasing

Network Heterogeneity Increasing

Bandwidth Decreasing

Traffic Increasing

Data Volume Increasing

Persistence Decreasing

Distribution Increasing

data producers and consumers and the dynamic nature of edge-fog cloud model,
we propose a novel container orchestration mechanism to minimize the end-to-
end latency of services. Our proposed mechanism selects the most adequate host
to achieve the minimum response time for IoT services. Our scheduling mech-
anism can be implemented as a plugin module for any available orchestration
framework such as Docker Swarm2 and Kubernetes3.

In Sect. 2, we first discuss how edge-fog cloud applications can benefit from
containerization technology. Next in Sect. 3, we review the related work for
resource provisioning problem in edge-fog cloud environment. We model the
problem formally in Sect. 4. In Sect. 5, we propose our container orchestration
approach, which is evaluated in Sect. 6. Finally, we conclude the paper in Sect. 7.

2 Containerization and Edge-Fog Cloud

Container as a service (CaaS) is relatively a new offering of almost all major
cloud providers including Amazon Web Services, Microsoft Azure and Google
Cloud Platform. Containerization is a lightweight kernel- or operating system
(OS)-level virtualization technology [8]. A container is an isolated environment
that includes its own process table structure, services, network adapters and
mount points. As shown in Fig. 2, containers and virtual machines (VM) are
two technologies for consolidation of hardware platforms. Containers are similar
to VMs with a major difference that they run on a shared OS kernel. In con-
trast, traditional VMs (based on hardware-level virtualization) suffer from the
overhead needed to separate the OS for individual VMs, which causes the waste
of resources. Using the abstraction layer called containerization engine, libraries

2 https://docs.docker.com/engine/swarm/.
3 https://kubernetes.io/.

https://docs.docker.com/engine/swarm/
https://kubernetes.io/

62 H. M. Fard et al.

and application bundles no longer need complete and separated OS. Containers
separate a single OS from isolated user spaces by using several OS features such
as kernel namespaces and control group (cgroup). This type of isolation is more
flexible and efficient than using hypervisor virtualized hardware (such as vCPU
and vRAM) [5].

Fig. 2. Containers versus virtual machines architectural comparison.

In comparison to hardware-level virtualization, kernel-level virtualization
benefits from several remarkable advantages:

– containers can be deployed faster;
– containers are more scalable than VMs;
– booting containers takes few seconds (or even milliseconds for cached images)

instead of tens of seconds for VMs;
– containers are more portable across infrastructures;
– because of sharing kernel services, containers consume and waste less

resources;
– images of containers are smaller and can be transferred or migrated faster;
– containers are usable in limited bandwidth environments;
– containerized services are cheaper than leasing VMs in public clouds.

Container technologies, such as LXC and LXD4, have been around for more
than a decade, but they got popularized by Docker5, which proposed in 2013 a
simple to use framework. Docker is an API around several open source Linux
containers projects that wraps up a piece of software in a complete file system
including code, runtime system tools and libraries.

Orchestration tools are responsible for placement and state management of
containers in a cluster. Swarm is the native clustering solution in the Docker
ecosystem and there are several third-party orchestration tools usable for Docker
containers like Kubernetes and Apache Memos6. In fact, the main task of orches-
trator is to choose a node out of all available cluster nodes for deploying a con-
tainer, considering all its requirements (e.g. fast storage).
4 https://www.linuxcontainers.org/.
5 https://www.docker.com/.
6 http://mesos.apache.org/.

https://www.linuxcontainers.org/
https://www.docker.com/
http://mesos.apache.org/

A Container-Driven Approach for Resource Provisioning in Edge-Fog Cloud 63

Containerization is the major backbone technology used for microservice
architectures. A serverless microservice is a package that consists of the entire
environment required to run an application, including the application and its
dependencies. This technology is not new either and has been promoted by the
Heroku7 as the initiator of this kind of services. A serverless microservice is a
fine-grained service that can be run on demand on the cloud and has several
features such as auto-scaling, pay-per-execution, short-lived, stateless functions
and event-driven workflow. To gain these features, we need to transform mono-
lithic applications into a microservices-oriented architecture, which is not always
easy because of its complexity and the need of redesign in most cases.

The limited computation capability of edge and fog nodes forces the appli-
cations to be designed and decomposed as less resource-intensive and more
lightweight services. Moreover, the mobility of the endpoints [3] in IoT networks
(e.g. wearable devices, smart phones, car cameras) needs lightweight migration
of services. Infrastructure agnosticism provided by containerization covers the
ultra heterogeneity of resources in complex environments like edge-fog cloud.
Using containers, the infrastructure becomes an application platform rather
than plain data center hardware. Considering the advantages of containers and
microservices, particularly their single-service, short-lived and lightweight nature
and their ultra scalability, we motivated to use their combination efficiently for
resource provisioning in an edge-fog cloud environment.

3 Related Work

IoT devices are usually simple sensors and embedded systems with low battery,
low computation capacity and low bandwidth level. To efficiently execute IoT
applications in an edge-fog cloud, resource provisioning and scheduling of services
are of highest importance [3,14].

Because of dynamic nature of the IoT network, static scheduling and dynamic
rescheduling of resources are not efficiently applicable in an edge-fog cloud that
requires fully dynamic approaches [1]. Although the fog is assumed as a new
distributed system extending the cloud, scheduling approaches such as [7] are
inefficient and need to be customized to deal with the new challenges of an
edge-fog cloud environment.

In [17], the authors proposed a time-shared provisioning approach for ser-
vices. The main simplification in their model is neglecting the dynamic nature
of fog environments.

In [15], the authors assumed that the edge and fog devices are powerful
enough for hardware virtualization which is not always true. We discuss the
inefficiency of hardware virtualization in our results in Sect. 6.

Fog computing extends the cloud boundaries such that the fog nodes can
play the providers’ role. An example implementation of a new cloud is the iExec
project8. FogSpot [18] is a spot pricing approach for service provisioning of IoT
7 https://www.heroku.com/.
8 https://iex.ec/.

https://www.heroku.com/
https://iex.ec/

64 H. M. Fard et al.

applications in fog computing, but ignores many challenges in such a market. For
these new commercial computation models, we need to deal with many issues
like reliability of resources and selfishness of the providers. Using game theory,
we proposed a truthful market model [6] for execution of scientific applications
in a cloud federation that can be extended easily for edge-fog cloud market.

Different models have been proposed for edge and fog computing [19,21] and
all have the same crucial constraints for resource provisioning. Some works such
as [17] miss implementation details. The authors of [20] proposed a container-
based task scheduling model considering assembly lines in smart manufacturing.

The idea of using containerization is a controversial subject too. Some
researches use containerization as a proper and efficient approach [12,13], while
other works [2] claim that containers are inefficient in fog computing. In this
paper we propose an edge-fog cloud model and a container orchestration app-
roach, efficiently usable in such an environment.

4 System Model

In this section, we formally define our model including platform, application and
problem models.

4.1 Platform Model

Usually two approaches are followed for implementing edge and fog computing
models. In the first approach called cloud-edge, the public cloud providers with
the help of internet and telecommunication service providers, extend their data
centers in multiple point-of-presence (PoP) locations. Although this approach
is widely used, it is costly and limited to special locations and services. In the
second approach called device-edge, different organizations emulate the cloud
services by running a custom software stack on their existing geo-distributed
hardware. Any device including computation power and storage with connected
network could be a fog or edge node. This approach is more affordable in many
scenarios and can efficiently utilize the organizational in-house infrastructure.
Inspired by these models, we propose our general Edge-Fog Cloud model, which is
a hybrid combination of both cloud-edge and device-edge models and involves all
other new computation models in this domain, such as dew and mist computing.

We assume a set of m geographically distributed non-mobile IoT devices (on
the edge) denoted as D = {d1, . . . , dm}, belonging to an organization. The fog
layer contains a range of devices including network equipment (e.g. Cisco IOx
routers), geo-distributed personal computers, cloudlets and micro- and mini-data
centers. We model the fog layer by the set of n geo-distributed nodes, denoted
as F = {f1, . . . , fn}. The set of p leased virtual machines in different availability
zones provided by the cloud federation providers is denoted by C = {c1, . . . , cp}.
In this model, we assume that m � n � p.

We assume that F is the in-house IT infrastructure of the organization (e.g.
routers and local distributed data centers) and C is the public cloud infrastruc-
ture that needs to be leased by the organization on demand. An abstraction of

A Container-Driven Approach for Resource Provisioning in Edge-Fog Cloud 65

our model is shown in Fig. 3. Based on this model, using the local IT infrastruc-
ture has no extra cost for the organization, but it needs to pay for using public
infrastructure, which includes the cost of data transfer to and from the cloud
and the cost of using cloud computation capacities.

The cloud resources in C can be used in two different ways; reserved in
advance (by leasing virtual machine instances for example) or by calling server-
less microservices. Therefore, to implement our edge-fog cloud model (cluster),
we follow two approaches:

(a) modela clusters all nodes available in V = D ∪ F ∪ C.
(b) modelb clusters only the nodes in D ∪ F (in other words V − C) and the

cloud resources are used as serverless microservice calls.

In modela, we need to regularly lease the cloud resources based on the cloud
pay-as-you-go model (e.g. hourly-based virtual machines) and then to add the
leased nodes to the cluster. In modelb we do not lease and reserve any resource
in advance, but pay based on the number of service calls. We evaluate both
implementations in Sect. 6 and compare their differences.

The network topology, connecting three layers (see Fig. 3), is modeled as a
weighted directed graph G(V,E) such that the set of all available nodes is the
vector set V and the network links available between the nodes denotes the edge
set E.

Fig. 3. Edge-fog cloud model: IoT, edge and fog nodes are in-house assets and the
cloud data centers belong to an enterprise public cloud federation.

4.2 Application Model

Each IoT device di ∈ D calls a set of services, denoted by si = {s1i , ..., slii } such
that li is the number of services that might be called by di. The services are
modeled as stateless containerized services on the edge. The set of all services
required by D is S = {s1, ..., sm}. To sake of precise modeling, we need to notice

66 H. M. Fard et al.

that while there can be services shared by two devices di and dj such that
si ∩ sj �= ∅, sharing stateless services has no impact on the model.

Theoretically, each service of S can run on cloud, fog and even IoT devices
(edge), which have enough hardware to run the containerized services. Therefore
each node vi ∈ V can be potentially a container host in this model.

Each service sji ∈ si is initiated by the IoT device di. To run the service sji
on a node vk ∈ V , we need to transfer the required input data from di to vk
that will last timeIn(sji , vk). After the execution, we need to transfer the output
data from vk to di that takes timeOut(sji , vk). Consequently, the entire data
transfer time between the device and the service’s host is timeInOut(sji , vk) =
timeIn(sji , vk) + timeOut(sji , vk).

The service processing time for sji on vk lasts timeProcess(sji , vk). If the
service sji cannot physically run on vk, for instance because of need to special
hardware or privacy issues, we define timeProcess(sji , vk) = ∞.

Because the services running on the cluster are containerized, we need to
model the image transfer time of each container from a locally-implemented
image repository by timeImage(sji , vk). Depending on the service used frequency
and the amount of available storage per host, the image may be cached on the
host and thus, timeImage(sji , vk) = 0. To keep the model simple, however, we
ignore this situation without loss of generality.

4.3 Problem Model

To place a service sji called by the IoT device di on a cluster node vk, we define the
orchestration as the function orchestration(sji , vk) : S 	→ V . Since the services
are dynamically initiated by the IoT devices, we cannot assume a predefined and
static communication network graph between S and V . In other words, the net-
work graph for assigning each service to the cluster is a subgraph of G. A single
and static network graph allows us to benefit from techniques such as between-
ness centrality from graph theory to find the best placement of services [10].
However, considering the dynamic complexity and variety of the network graph,
we need to apply other dynamic heuristic- or greedy-based approaches.

5 Minimizing End-to-End Latency Algorithm

In this section, we propose a novel resource provisioning approach for our pro-
posed edge-fog cloud architecture based on a dynamic application-aware con-
tainer orchestration called Minimizing End-to-End Latency (METEL). The main
goal of METEL is to run the services S on the cluster nodes V to minimize the
round-trip time of each single service. Since scheduling of containers in server-
less microservices provided by commercial public clouds (e.g. AWS Lambda) are
controlled by the providers, we concentrate in METEL only on the user-level
orchestration.

Transferring multi-hop distance for each chunk of data is timely and costly
inefficient. On the other hand, clearly one cannot always expect that processing

A Container-Driven Approach for Resource Provisioning in Edge-Fog Cloud 67

data on the adjacent nodes reduces the service delivery latency. Of course, the
proximity of IoT nodes and computation resources reduces the network traffic
and communication cost, however, a major challenge in the edge-fog cloud pro-
visioning is the lack of powerful resources compared to the cloud data centers.
To minimize the end-to-end latency, one should not simply rely on the proximity
of nodes and minimize the data movement only. For container orchestration, in
addition to the proximity, we need to define the effective latency by considering
the processing time and the image transfer delay of each service. Since the edge
and fog nodes are not rich capacity resources, there is always a tradeoff between
the available capacity and the proximity of data producers and consumers to the
computational resources.

Our scheduling mechanism needs least modification in the available orches-
tration frameworks such as Docker Swarm and Kubernetes and can be imple-
mented as a plugin besides any orchestration module. For instance, as displayed
in Fig. 4, using Docker APIs, METEL extracts the cluster information from the
discovery service in Swarm and, after making the decision about the most ade-
quate worker node, can justify the constraints in Swarm (e.g. by using affinity
filters, placement constraints or host labels) such that the container is hosted on
the selected node.

Fig. 4. METEL implementation in the Docker Swarm mode.

METEL includes two main modules: Algorithm 1, called SETEL, to calculate
the static end-to-end-latency and Algorithm 2, called DETEL, to select the most
adequate worker nodes for running the services, based on dynamic end-to-end-
latency. The role of these two modules in METEL algorithm and their relation
are shown in Fig. 5.

We declare a global two-dimensional matrix setelMatrix to store the static
end-to-end latency of each service sji ∈ S to each vk ∈ V . The static end-
to-end latency is the latency of running a service ignoring the dynamic load
and availability of the resources, calculated offline based on the static available
information. Algorithm 1 calculates the static end-to-end latency of services on
each cluster node. In lines 2–6, the Dijkstra’s algorithm calculates the shortest
cycle from and to each IoT endpoint di ∈ D which must pass through vk ∈
V . Because of different up- and down-links between the devices, the send and

68 H. M. Fard et al.

Fig. 5. METEL’s inside. SETEL (Static End-to-End Latency) calculates the static
latency. It runs once at launch time and is triggered and run by cluster changes. DETEL
(Dynamic End-to-End Latency) adjusts the placement constraints to select the worker
node for containers and runs in each orchestration decision.

receive communication paths between the IoT devices and fog nodes may not
be the same. The three nested loops in lines 7–13 calculate the static-end-to-
end latency of the services. The algorithm returns the calculated static end-to-
end latency of all services on all nodes in setelMatrix. The matrix is updated
whenever the resource discovery module in the container orchestration detects an
infrastructure change, such as adding a new node or failing an already available
node.

Dynamic end-to-end latency of each service is calculated by considering the
static end-to-end latency and the dynamic status of the worker node. Algorithm 2
makes the final orchestration decision for each service sji using setelMatrix
calculated by Algorithm 1, and returning the cluster node which provides the
minimum effective latency for the service sji . The function delay(sji , vk) in line 4
returns the dynamic delay of the service sji on the worker node vk, obtained from
runtime status of the nodes. Lines 3–10 find the host which provides the lowest
completion time of the service sji , and line 11 returns the selected host vmin as
the final schedule decision.

The sequence diagram of launching a service is shown in Fig. 6. Upon request-
ing a service by an IoT device, the scheduler finds the proper host based on
METEL, which justifies the builtin orchestrator constraints such that the service
is hosted on the selected node. The rest of the container life-cycle is monitored
and controlled by the orchestrator.

A Container-Driven Approach for Resource Provisioning in Edge-Fog Cloud 69

Algorithm 1: Static End-to-End Latency (SETEL).
Input: Set of services: S; Set of worker nodes: V
Output: Static end-to-end latency matrix: setelMatrix

1 begin
2 for i ← 1 to m do

/* Iterate over IoT devices */
3 for k ← 1 to |V | do

/* Iterate over the cluster nodes */
4 spf(di, vk) ← Dijkstra(from : di, to : di,must pass : vk) /* Find shortest

cycle from di through vk */

5 end

6 end
7 for i ← 1 to m do

/* Iterate over IoT devices */
8 for j ← 1 to li do

/* Iterate over IoT device services */
9 for k ← 1 to |V | do

/* Iterate over cluster nodes */

10 setelMatrix(sji , vk) ←
timeProcess(sji , vk) + timeInOut(sji , vk) + Image(sji , vk)

/* Calculate static latency of each service sji on each node vk */

11 end

12 end

13 end
14 return setelMatrix

15 end

Algorithm 2: Dynamic End-to-End Latency (DETEL).
Input: Service called by di: s

j
i ; Set of worker nodes: V ; Static end-to-end latency matrix:

setelMatrix
Output: Worker node for running sji : vmin

1 begin

2 detelmin ← ∞ /* Dynamic latency of running service sji */
3 for k ← 1 to |V | do

/* Iterate over cluster nodes */

4 detel ← setelMatrix(sji , vk) + delay(sji , vk) /* Calculate dynamic latency of

running service sji on node vk */
5 if detel < detelmin then

/* Find node with lowest dynamic latency */
6 detelmin ← detel
7 vmin ← vk

8 else

9 end

10 end
11 return vmin

12 end

5.1 Time Complexity Analysis

To analyze the time complexity of METEL, we need to analyze SETEL and
DETEL algorithms separately.

As shown in Fig. 5, DETEL runs dynamically at each orchestration deci-
sion. The time complexity of Algorithm 2 is O(|V |), which is simply linear (as
discussed in Sect. 4.1, |V | = m + n + p).

70 H. M. Fard et al.

Fig. 6. METEL service orchestration timeline based on the sense-process-actuate
model.

The complex part of METEL is SETEL module. As shown in Fig. 5, Algo-
rithm 1 runs once at launch time and is triggered and run by cluster changes.
Algorithm 1 includes two nested loops. Respecting the time complexity of Dijk-
stra’s algorithm, which is O(|E| + |V | · log |V |), the time complexity of the first
loop (2–6) is O(m · |V | · (|E| + |V | · log |V |)). As discussed in Sect. 4.1, if we
assume a fully connected network between all nodes in two adjacent layers of
the graph G (between IoT and fog nodes and between fog and cloud nodes)
then |E| = n · (m + p). The time complexity of the second loop (lines 7–13) is
O(m · max

1≤i≤m
(li) · |V |), which will be dominated by the time complexity of the

first loop.
About the time complexity of the first loop in SETEL, we need to notice

several important facts in the real world problems:

– |E| � n · (m + p) because the nodes in two adjacent layers are not fully
connected;

– as discussed in Sect. 4.2, for all nodes with timeProcess(sji , vk) = ∞, we do
not need to run Dijkstra’s algorithm.

Consequently, the final time complexity of Algorithm 1 is much lower than
O(m · |V | · (|E| + |V | · log |V |)). Moreover, we need to notice that the calculated
time complexity for SETEL is for the first run of the algorithm at lunch time.
Algorithm 1 will be also triggered and run by cluster changes but in this case,
the update of setelMatrix is only calculated for the cluster changes not for
the whole cluster. In other words, the time complexity of Algorithm 1 to update
setelMatrix is much lower than the time complexity of first run of the algorithm.
Therefore, in practice we could observe that METEL is really well scalable, even
for enterprise organizations with large number of IoT devices and services.

6 Evaluation

Considering the variety and the number of resources in edge, fog and cloud
layers, resource management in the edge-fog cloud is a complex task. The real-
time need of many IoT applications makes this problem even more complicated.

A Container-Driven Approach for Resource Provisioning in Edge-Fog Cloud 71

Running comprehensive empirical analysis for the resource management algo-
rithms in such a problem would be very costly, therefore, we rely on simulation
environment.

For evaluating our approach, we ran an extensive set of experiments, based
on the iFogSim [9] simulator for sense-process-actuate modeling of IoT applica-
tions. However, we needed to extend iFogSim to overcome some of its limitations
required by our experiments. First, iFogSim implements a tree network struc-
ture (a hierarchical topology with direct communication possible only between a
parent-child pair). To create a flexible network topology, we needed to replicate
IoT devices for each gateway by extending the Tuple class. Second, iFogSim does
not support containerization. To cover this, we extended the AppModule class,
which is the entity scheduled on the fog devices. The simulation setup used in
our experiments is summarized in Table 2.

Table 2. Experimental simulation setup.

Entity Entity specification

IoT devices m = 500

10000 ≤ computation capacity (MIPSa) ≤ 20000

IoT services 1 ≤ |si| ≤ 5

3000 ≤ service size (MIb) ≤ 30000

20 ≤ container image size (MB) ≤ 100

1 ≤ data rate (MB/s) ≤ 10

Fog nodes n = 50

15000 ≤ computation capacity (MIPS) ≤ 30000

Cloud zones p = 5

20000 ≤ computation capacity (MIPS) ≤ 80000

Network 1 ≤ bandwidth(Mb/s) ≤ 100

1 ≤ hops to fog ≤ 5

10 ≤ hops to cloud ≤ 15
aMIPS: Million Instructions Per Second
bMI: Million Instructions

6.1 Containers Versus VMs

In the first part of the experiments (see Fig. 7), we analyzed the efficiency of
containerization in edge-fog cloud resource provisioning and compared METEL
with a VM-based provisioning approach using no containers. In the VM-based
approach we launched separated VMs for isolated services, while for shared ser-
vices we used a single shared VM. The VMs including services are launched at
the start of the simulation and kept running across the entire evaluation time,
which avoids the overhead of launching services. For launching VMs, we defined

72 H. M. Fard et al.

three priority levels: IoT devices, fog nodes and cloud. To launch a service, we
first search in the IoT device layer. If there is no possibility to launch an IoT
service, we search in the fog layer. Finally in case of not enough resources in the
fog, we launch a VM in the cloud.

(a) Number of services running in different
layers.

(b) Average utilization of different layers.

(c) Response times.

Fig. 7. Experimental comparison of METEL against a pure VM-based approach.

Figure 7a compares the number of services distributed across different edge-
fog cloud layers. First, we observe that in a pure VM-based approach, the IoT
resources are not rich enough to launch the VMs and no IoT device can pro-
vide a service. Because of the lightweight containers, METEL was able to run
around 8% of the services on the IoT layer. Similarly, we observed that METEL
executed around 57% of the services in the fog, in comparison to 10% by VM-
based approach. In contrast, the pure VM-based approach run close to 90% of
the services in the cloud layer, against around 40% run by METEL. Using no
containerization, we not only spend a higher cost for leasing cloud resources, but
also increase the latency. As we discussed before, the response time is important
in comparing the final results, not the latency time.

Figure 7b represents the average utilization of nodes on the IoT, fog and
cloud layers, which is considerably lower using a VM-based approach compared

A Container-Driven Approach for Resource Provisioning in Edge-Fog Cloud 73

to METEL. As expected, the lightweight containers improve the consolidation
of the resources and increase the average utilization in all three layers.

Figure 7c shows that METEL attains much better response time compared
to the VM-based approach because of lower latency time and close proximity of
producers and consumers.

6.2 Serverless Versus Containers

In the next experiments, we compare two implementations of METEL based
on the two proposed models modela and modelb, discussed in Sect. 4, for a
period of 12 h. The motivation for this analysis is to evaluate the efficiency
of using serverless microservice implementation of services compared to calling
remote containerized services on the leased cloud VMs. For this experiment, we
simulated the service prices based on the AWS EC29 and AWS Lambda pricing10

models.

(a) Cost of running cloud resources. (b) Response time.

Fig. 8. Experimental comparison of modela and modelb.

Figure 8a shows the monetary cost of our two implementations of METEL.
For modela, we present the results of running the cloud services with $1 and
$2 per hour (or $12 and $24 for 12 h). The services run as containerized ser-
vices on these leased cloud resources. In the modelb, we do not lease VMs on
the cloud, but use serverless microservice calls instead. As shown in Fig. 8a,
modelb has remarkably lower cloud expenses using serverless microservice calls.
Furthermore, the total cost in modela is even higher than the measured cost
because we ignored the data transfer cost in our model. As shown in Fig. 8b,
serverless microservices do not have a remarkable overhead in response time
compared to calling services directly on leased VMs. In addition, not leasing
enough resources in modelb dramatically increases the response times due to
over-utilizing the VMs.

9 https://aws.amazon.com/ec2/pricing/.
10 https://aws.amazon.com/lambda/pricing/.

https://aws.amazon.com/ec2/pricing/
https://aws.amazon.com/lambda/pricing/

74 H. M. Fard et al.

Figure 9 compares METEL with the two native orchestration strategies
implemented by Docker Swarm: Random and Spread. In the random strategy,
the containers are placed randomly on the cluster nodes and the Spread strat-
egy balances the cluster nodes by selecting the nodes with the least container
load. As indicated in the figure, METEL outperforms both Random and Spread
strategies.

Fig. 9. Experimental comparison of METEL, Spread and Random orchestration strate-
gies.

7 Conclusion

Although cloud computing can deliver scalable services for IoT network, the
latency of data communication between ever increasing IoT devices and central-
ized cloud data centers can not be easily ignored and might be the bottleneck
for many IoT applications. The edge-fog cloud promises to overcome the high
amount of traffic generated by IoT devices, by bringing the cloud capabilities
closer to the IoT endpoints.

In this paper, we introduced a minimizing end-to-end latency algorithm to
provide the computation demand of IoT services in edge-fog cloud model. We
also presented that serverless microservices provided by public clouds can be effi-
ciently used in combination with in-house containerized services by our proposed
mechanism. Moreover, our approach can be implemented as a complementary
plugin in any container orchestration too.

In our experiments, we first showed that using traditional virtualization of
resources is not scalable in an edge-fog cloud and containerization properly fits
in such environments. Then, we analyzed how our application-aware scheduling
mechanism can dramatically improve the utilization of fog resources to improve
the response time, considering both proximity and compute capacity of edge, fog
and cloud nodes. Finally, we observed that our results outperform the builtin
Spread and Random scheduling mechanisms of Docker Swarm.

A Container-Driven Approach for Resource Provisioning in Edge-Fog Cloud 75

Considering the mobility of IoT nodes, migration of services is a major need.
Although the lightweight containerization technology seems to be a proper choice
for resource provisioning, its efficiency and applicability needs to be evaluated
as future work.

Acknowledgement. This research has been funded by the European Union’s Horizon
2020 Framework Programme for Research and Innovation under Grant Agreement No.
785907 (Human Brain Project SGA2).

References

1. Aazam, M., Huh, E.N.: Dynamic resource provisioning through fog micro datacen-
ter. In: IEEE International Conference on Pervasive Computing and Communica-
tion Workshops (PerCom Workshops), pp. 105–110, March 2015. https://doi.org/
10.1109/PERCOMW.2015.7134002

2. Ahmed, A., Pierre, G.: Docker container deployment in fog computing infrastruc-
tures. In: IEEE International Conference on Edge Computing (EDGE), pp. 1–8,
July 2018. https://doi.org/10.1109/EDGE.2018.00008

3. Bittencourt, L.F., Diaz-Montes, J., Buyya, R., Rana, O.F., Parashar, M.: Mobility-
aware application scheduling in fog computing. IEEE Cloud Comput. 4(2), 26–35
(2017). https://doi.org/10.1109/MCC.2017.27

4. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the
internet of things. In: Proceedings of the First Edition of the MCC Workshop on
Mobile Cloud Computing, MCC 2012, pp. 13–16. ACM, New York (2012). https://
doi.org/10.1145/2342509.2342513

5. Dua, R., Raja, A.R., Kakadia, D.: Virtualization vs. containerization to support
PaaS. In: Proceedings of the 2014 IEEE International Conference on Cloud Engi-
neering, IC2E 2014, Washington, DC, USA, pp. 610–614. IEEE Computer Society
(2014). https://doi.org/10.1109/IC2E.2014.41

6. Fard, H.M., Prodan, R., Moser, G., Fahringer, T.: A bi-criteria truthful mechanism
for scheduling of workflows in clouds. In: IEEE Third International Conference on
Cloud Computing Technology and Science, pp. 599–605, November 2011. https://
doi.org/10.1109/CloudCom.2011.92

7. Fard, H.M., Ristov, S., Prodan, R.: Handling the uncertainty in resource perfor-
mance for executing workflow applications in clouds. In: IEEE/ACM 9th Interna-
tional Conference on Utility and Cloud Computing (UCC), pp. 89–98, December
2016. https://doi.org/10.1145/2996890.2996902

8. Felter, W., Ferreira, A., Rajamony, R., Rubio, J.: An updated performance compar-
ison of virtual machines and linux containers. In: IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), pp. 171–172, March
2015. https://doi.org/10.1109/ISPASS.2015.7095802

9. Gupta, H., Dastjerdi, A.V., Ghosh, S.K., Buyya, R.: ifogsim: A toolkit for modeling
and simulation of resource management techniques in internet of things, edge and
fog computing environments. Softw. Pract. Exp. (SPE) 47(9), 1275–1296 (2017)

10. Kimovski, D., Ijaz, H., Surabh, N., Prodan, R.: Adaptive nature-inspired fog archi-
tecture. In: IEEE 2nd International Conference on Fog and Edge Computing
(ICFEC), pp. 1–8, May 2018. https://doi.org/10.1109/CFEC.2018.8358723

https://doi.org/10.1109/PERCOMW.2015.7134002
https://doi.org/10.1109/PERCOMW.2015.7134002
https://doi.org/10.1109/EDGE.2018.00008
https://doi.org/10.1109/MCC.2017.27
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1109/IC2E.2014.41
https://doi.org/10.1109/CloudCom.2011.92
https://doi.org/10.1109/CloudCom.2011.92
https://doi.org/10.1145/2996890.2996902
https://doi.org/10.1109/ISPASS.2015.7095802
https://doi.org/10.1109/CFEC.2018.8358723

76 H. M. Fard et al.

11. Masip-Bruin, X., Maŕın-Tordera, E., Tashakor, G., Jukan, A., Ren, G.J.: Foggy
clouds and cloudy fogs: a real need for coordinated management of fog-to-cloud
computing systems. IEEE Wirel. Commun. 23(5), 120–128 (2016). https://doi.
org/10.1109/MWC.2016.7721750

12. Morabito, R., Cozzolino, V., Ding, A.Y., Beijar, N., Ott, J.: Consolidate IoT edge
computing with lightweight virtualization. IEEE Network 32(1), 102–111 (2018).
https://doi.org/10.1109/MNET.2018.1700175

13. Pahl, C., Lee, B.: Containers and clusters for edge cloud architectures - a technology
review. In: 3rd International Conference on Future Internet of Things and Cloud,
pp. 379–386, August 2015. https://doi.org/10.1109/FiCloud.2015.35

14. Pham, X.Q., Huh, E.N.: Towards task scheduling in a cloud-fog computing sys-
tem. In: 18th Asia-Pacific Network Operations and Management Symposium
(APNOMS), pp. 1–4, October 2016

15. Scoca, V., Aral, A., Brandic, I., Nicola, R.D., Uriarte, R.B.: Scheduling latency-
sensitive applications in edge computing. In: CLOSER (2018)

16. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges.
IEEE Internet Things J. 3(5), 637–646 (2016). https://doi.org/10.1109/JIOT.2016.
2579198

17. Skarlat, O., Schulte, S., Borkowski, M., Leitner, P.: Resource provisioning for IoT
services in the fog. In: IEEE 9th International Conference on Service-Oriented
Computing and Applications (SOCA), pp. 32–39, November 2016. https://doi.
org/10.1109/SOCA.2016.10

18. Tasiopoulos, A., Ascigil, O., Psaras, I., Toumpis, S., Pavlou, G.: Fogspot: spot pric-
ing for application provisioning in edge/fog computing. IEEE Trans. Serv. Comput.
1 (2019). https://doi.org/10.1109/TSC.2019.2895037

19. Villari, M., Fazio, M., Dustdar, S., Rana, O., Ranjan, R.: Osmotic computing: a
new paradigm for edge/cloud integration. IEEE Cloud Comput. 3(6), 76–83 (2016).
https://doi.org/10.1109/MCC.2016.124

20. Yin, L., Luo, J., Luo, H.: Tasks scheduling and resource allocation in fog computing
based on containers for smart manufacturing. IEEE Trans. Ind. Inf. 14(10), 4712–
4721 (2018). https://doi.org/10.1109/TII.2018.2851241

21. Yousefpour, A., Ishigaki, G., Jue, J.P.: Fog computing: Towards minimizing delay
in the internet of things. In: IEEE International Conference on Edge Computing
(EDGE), pp. 17–24, June 2017. https://doi.org/10.1109/IEEE.EDGE.2017.12

https://doi.org/10.1109/MWC.2016.7721750
https://doi.org/10.1109/MWC.2016.7721750
https://doi.org/10.1109/MNET.2018.1700175
https://doi.org/10.1109/FiCloud.2015.35
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1109/SOCA.2016.10
https://doi.org/10.1109/SOCA.2016.10
https://doi.org/10.1109/TSC.2019.2895037
https://doi.org/10.1109/MCC.2016.124
https://doi.org/10.1109/TII.2018.2851241
https://doi.org/10.1109/IEEE.EDGE.2017.12

Self-adaptive Container Deployment
in the Fog: A Survey

Valeria Cardellini(B) , Francesco Lo Presti , Matteo Nardelli ,
and Fabiana Rossi

Department of Civil Engineering and Computer Science Engineering,
University of Rome Tor Vergata, Rome, Italy

{cardellini,nardelli,f.rossi}@ing.uniroma2.it, lopresti@info.uniroma2.it

Abstract. The fast increasing presence of Internet-of-Things and fog
computing resources exposes new challenges due to heterogeneity and
non-negligible network delays among resources as well as the dynamism
of operating conditions. Such a variable computing environment leads
the applications to adopt an elastic and decentralized execution. To sim-
plify the application deployment and run-time management, containers
are widely used nowadays. The deployment of a container-based appli-
cation over a geo-distributed computing infrastructure is a key task that
has a significant impact on the application non-functional requirements
(e.g., performance, security, cost). In this survey, we first develop a tax-
onomy based on the goals, the scope, the actions, and the methodologies
considered to adapt at run-time the application deployment. Then, we
use it to classify some of the existing research results. Finally, we iden-
tify some open challenges that arise for the application deployment in the
fog. In literature, we can find many different approaches for adapting the
containers deployment, each tailored for optimizing a specific objective,
such as the application response time, its deployment cost, or the efficient
utilization of the available computing resources. However, although sev-
eral solutions for deploying containers exist, those explicitly considering
the distinctive features of fog computing are at the early stages: indeed,
existing solutions scale containers without considering their placement,
or do not consider the heterogeneity, the geographic distribution, and
mobility of fog resources.

Keywords: Containers · Elasticity · Fog computing · Placement ·
Self-adaptive systems

1 Introduction

Fog computing promises to extend cloud computing exploiting the ever increas-
ing presence of resources located at the edges of the network (e.g., single-board
computers, wearable devices, smartphones). However, it introduces new chal-
lenges that mainly result from the heterogeneity of computing and networking
resources as well as from their decentralized distribution. Differently from cloud
c© Springer Nature Switzerland AG 2020
I. Brandic et al. (Eds.): ALGOCLOUD 2019, LNCS 12041, pp. 77–102, 2020.
https://doi.org/10.1007/978-3-030-58628-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58628-7_6&domain=pdf
http://orcid.org/0000-0002-6870-7083
http://orcid.org/0000-0002-7461-6276
http://orcid.org/0000-0002-9519-9387
http://orcid.org/0000-0002-5263-2208
https://doi.org/10.1007/978-3-030-58628-7_6

78 V. Cardellini et al.

resources, fog resources typically offer a constrained environment, where changes
in resource availability, efficiency, and energy consumption play a critical role in
determining a successful computing platform. The presence of different Internet
connectivity and bandwidth, as well as the dispersed resource distribution, calls
for the study of deployment strategies that explicitly take into account at least
the presence of heterogeneous resources and non-negligible network delays.

Extending cloud computing towards network edges, fog computing is well
suited to manage Internet-of-Things (IoT) applications, whose data are gener-
ated and consumed at the network periphery. When interacting with IoT appli-
cations, the user requires the application to run with strict quality requirements
(e.g., low latency response requirements), often expressed by means of Service
Level Agreements (SLAs). In particular, IoT applications usually require reduced
response time and high throughput, that should be obtained even in face of highly
changing operating conditions. To satisfy these performance goals, the applica-
tion deployment should be promptly adapted at run-time by conveniently acting
according to two control directions: the placement and elasticity of the appli-
cation. The application placement addresses the mapping of each application
instance to a specific computing resource, while the elasticity feature aims at
scaling at run-time the number of application instances and/or the amount of
computing resources assigned to each of them. To simplify the deployment and
run-time adaptation of applications, we can use software containers. Exploit-
ing a lightweight operating system-level virtualization, software containers (e.g.,
Docker) have rapidly become a popular technology to run applications on any
machine, physical or virtual. Containers enable to bundle together applications
and their dependencies (i.e., libraries, code). Differently from virtual machines
(VMs), they allow a faster start-up time and a reduced computational overhead.

In this paper, we survey existing solutions to adapt the deployment of
container-based applications on fog and cloud computing resources, focusing
on the algorithms used to control the adaptation. Different surveys (e.g., [16,26,
46,60,77]) have recently investigated the challenges that arise in fog computing
environments. Mahmud et al. [46] analyze the challenges in fog computing and
discuss its differences with respect to other computing paradigms. Yi et al. [77]
identify security and privacy as critical points that should be considered in every
stage of fog computing platform design. Specifically, the authors believe that, in
a fog environment, general application programming interfaces (APIs) should
be provided to cope with existing protocols and APIs. Puliafito et al. [60] ana-
lyze the applicability of existing technologies in the fog computing environment
in order to support IoT devices and services. Gedeon et al. [26] focus on the
application perspective and present a classification and analysis of use cases of
edge/fog computing. The survey by Brogi et al. [16] is the one most related
to our work since they explore the existing methodologies and algorithms to
place applications on fog resources. Differently from these works and in particu-
lar from [16], we focus on the runtime execution of fog applications, since their
deployment should also efficiently self-adapt with respect to workload changes
and dynamism of the fog computing environment (e.g., fog resource constraints,

Self-adaptive Container Deployment in the Fog: A Survey 79

network constraints in term of latency and bandwidth, fog resources that join or
leave the system). Therefore, not only an effective application placement should
be enacted as initial deployment, but it should be also conveniently modified
at run-time so to be dynamism-aware and deal with the heterogeneity of the
underlying fog resources. To this end, the application elasticity plays a key role.
Indeed, fog-native applications should be able to adapt to workload changes by
provisioning and de-provisioning resources in an autonomic manner, thus cop-
ing with the environment dynamism. While the elasticity issue has been well
investigated in the cloud environment, as surveyed in [4], as well as in specific
domains such as data stream processing [62], to the best of our knowledge it
has not yet been analyzed and categorized in the fog context, especially from an
algorithmic perspective. Moreover, in this work we aim to identify fully-fledged
deployment solutions that can jointly address the elasticity and placement of
applications in fog computing environments. When the managed applications
are geo-distributed, a fully centralized controller introduces a single point of
failure and a bottleneck for scalability. Indeed, a centralized controller may be
able to efficiently control the adaptation of only a limited number of entities,
and its efficacy may be negatively affected by the presence of network latencies
among the application components. Considering the new emerging environment,
in this work we want to identify the existing solutions that can be used in practice
to decentralize the self-adaptation functionalities.

The rest of the paper is organized as follows. First, we discuss the specific
challenges of fog computing environments and their fundamental differences with
cloud computing environments (Sect. 2). Second, we present a taxonomy on the
existing approaches and deployment controllers used to adapt at run-time the
deployment of applications on fog and cloud resources (Sect. 3). Then, in Sects. 4
and 5, we describe some container orchestration tools used to simplify the deploy-
ment and management of container-based applications, as well as some simula-
tion tools proposed and used by the research community to perform experiments.
We conclude by identifying open research challenges that can be explored to
improve the deployment effectiveness in fog environments (Sect. 6).

2 Fog Environment Challenges

Fog computing extends the cloud computing paradigm by expanding compu-
tational and storage resources at the edge of the network, in a close prox-
imity to where data are generated. As such, fog environment exposes many
old and new challenges. In accordance with previous surveys on fog comput-
ing [16,26,46,60,77], we can identify the following most relevant challenges: het-
erogeneity, scale and complexity, dynamism and mobility, fault tolerance, and
security.

Fog and cloud computing infrastructures provide computing resources with
different characteristics. Cloud computing offers powerful and general purpose
computing (and storage) resources on-demand. Conversely, fog computing usu-
ally exposes heterogeneous resources, with reduced computing and energy capac-
ity, that can also change location at run-time. Also, fog computing can provide

80 V. Cardellini et al.

storage resources, usually of reduced capacity, that can be used to collect and
distribute data from/to edge devices (e.g., AWS Snowball Edge). Being of limited
capacity, fog computing resources are cheaper and more constrained than tradi-
tional cloud computing resources (e.g., Raspberry Pi); therefore, we assist to a
large proliferation of devices standing at the network periphery [17]. As regards
the connectivity among resources, we observe that cloud resources reside in a
single data center or can be distributed among multiple data centers; either way,
they rely on very a fast inter-connectivity that results in negligible communi-
cation delays. Conversely, fog resources can communicate using different (and
mixed) technologies (e.g., wired, wireless, Bluetooth) that may introduce non-
negligible network latency. Such a delay can impact on performance, and be
detrimental for latency-sensitive applications.

To rule the complexity of the emerging fog computing environment, efficient
algorithms to drive the application deployment are needed. They should explic-
itly address its heterogeneity and dynamism, which also include the presence of
mobile resources (e.g., smartphones). Due to these features and the increased
number of constraints, deploying application in a fog computing environment is
challenging. As such, many fog computing architectures and platforms have been
proposed in literature, aiming to simplify the application distribution and execu-
tion (e.g., [30,41]). Most of them resort on lightweight virtualization technologies,
i.e., software containers, to simplify the application management (e.g., [12,81]).

Similarly to cloud applications, the user wants to obtain specified levels of
Quality of Service (QoS), e.g., in terms of response time, or Quality of Experience
(QoE). In cloud computing, the user and the service provider often stipulate
a contract referred as SLA. It represents an agreement between the customer
and service provider, and is characterized by quantified objectives and metrics
(Service Level Objectives, SLOs) which the provider undertakes to respect during
service delivery. Defining such kind of agreement is particularly challenging in the
fog computing environment, because the SLOs satisfaction is often affected by
many factors, which might also be out of the provider’s control (e.g., connectivity,
mobility).

In the past few years, cloud applications stressed the importance of fault
tolerance, and the key role it plays when the application requires a distributed
execution. Although many mechanisms can be used to increase fault tolerance
(e.g., check-pointing, replication), their implementation in a fog environment
is not trivial due to the increased scale, heterogeneity, and complexity with
respect to a cloud scenario. However, fault tolerance is a key enabler for the
deployment of applications in the fog environment. So far, only a limited num-
ber of works explore fault tolerance in the emerging scenario, resulting in an
important open challenge to be addressed in the near future [13]. For exam-
ple, Javed et al. [33] propose a fault-tolerant architecture for IoT applications
in edge and cloud infrastructure. Specifically, the proposed solution replicates
the processing instancing using the fault-tolerance functionality by Kubernetes;
to transfer data with no loss, the architecture includes a fault-tolerant message
broker, implemented using Apache Kafka.

Self-adaptive Container Deployment in the Fog: A Survey 81

When distributed applications, possibly with IoT sensors and actuators, are
deployed on fog resources, the overall system may expose a large number of
vulnerabilities, which can represent security threats. Geographically distributed
computing and storage resources, that communicate through Internet, might
not be easily controlled by a single provider. This further exposes the system to
attacks, data leaks, impersonations, and hijacking. So far, many fog platforms
and their deployment algorithms have been designed without considering secu-
rity as a first-class pillar. Moreover, the limited capabilities of fog resources may
compromise the applicability of widely adopted security mechanisms [67].

Considering the dynamism and heterogeneity of the fog environment, the
discussed challenges and the (unpredictable) changes in the application workload
make of primary importance the run-time self-adaption of the deployment of
container-based applications. In the next section, we therefore survey existing
models and algorithms that explore, possibly in a joint manner, the placement
and elasticity control dimensions in a fog computing environment.

3 Approaches for Container-Based Application
Deployment

In this section, we analyze existing approaches that deal with the deployment of
container-based applications on cloud and fog computing resources. We broaden
the view also to the cloud environment because, so far, only few research works
have specifically targeted the fog environment, especially with regards to the elas-
ticity issue. As we will see, the different research efforts address a wide range of
challenges that arise when applications with stringent QoS requirements run in a
dynamic and geo-distributed environment. We can classify the existing research
works according to: (1) the deployment goals, (2) the scope, (3) the deploy-
ment actions, (4) the methodologies used to adapt the deployment, and (5) the
deployment controllers. Figure 1 illustrates a taxonomy of the design choices to
control the container deployment, whereas Table 1 classifies with respect to the
taxonomy the application deployment approaches in literature.

3.1 Deployment Goals

The deployment adaptation of applications is carried out in order to satisfy
a variety of QoS requirements. To quantify the deployment objective, several
metrics have been adopted in literature; we can broadly distinguish them in
user-oriented and system-oriented metrics. A user-oriented metric models a spe-
cific aspect of the application performance, as can be perceived by the user:
e.g., throughput, response time, cost. A system-oriented metric aims to quantify
a specific aspect of the system, following the service provider’s viewpoint who
wants to efficiently use the available resources. Considering the Cloud service
stack, an IaaS provider wants to maximize profits, minimize resource utilization,
while fulfilling the SLA agreed with its customers. A PaaS provider can be inter-
ested in minimizing the cost associated to the infrastructure utilization. A SaaS

82 V. Cardellini et al.

Application Deployment

Deployment Goals

Objective
Multiple [M]

Single [S]

Metric

User-oriented [UO]

Cost

Response time

Throughput

System-oriented [SO]

Load Balancing

Resource Utilization

Availability

Controlled Entities

Scope
Infrastructure level [Infr]

Application level [Appl]

Resources

Homogeneous [Hom]

Heterogeneous [Het]

Mobile [Mob]

Adaptation Actions

Scaling
Horizontal [H]

Vertical [V]

Placement

Migration

Methodologies

Mathematical Progr. [MP]

Control Theory [CT]

Queuing Theory [QT]

Machine Learning [ML]

Heuristic [H]

Greedy

Fuzzy Logic

Threshold-based

Meta-heuristic

Local-search

Simulated annealing

Genetic Algorithm

Game Theory [GT]

Deployment Controllers
Embedded

External

Fig. 1. Taxonomy of existing container deployment solutions

customer aims at minimizing the service costs, while achieving a satisfactory QoE
level. Deployment policies in literature aim to reduce the application response
time (e.g., [10,31,64]), its deployment costs (e.g., [3,11,16,27,53,54]), and/or to
save energy consumption (e.g., [9,27,36,37]). To better exploit the on-demand
resource allocation, several approaches aim to optimize load balance and resource
utilization (e.g., [1,28,35,47]), or to improve system availability (e.g., [39,40,47]).
In the context of fog computing, most works consider user-oriented metrics. On
the other hand, few works (e.g., [19,23,27,51,63,79]) consider a combination of
deployment goals. Casalicchio et al. [19] aim to improve the resource allocation
and fulfill application response time constraints. Zhao et al. [79] aim to improve
data locality and load balance. Mseddi et al. [51] goal is to optimize the number
of served end-users and resource utilization taking into account storage demands.
Rossi et al. [63] propose a container-based application deployment strategy to
jointly optimize the 95th percentile of application response time and resource
utilization. De Maio et al. [23] propose a hybrid approach for task offloading in

Self-adaptive Container Deployment in the Fog: A Survey 83

Table 1. Classification of existing solutions for deploying applications in geo-
distributed computing environments according to the taxonomy in Fig. 1.

Ref. Depl. goals Controlled entity Adaptation actions Methodologies

ObjectiveMetric Scope Resources ScalingPlacementMigration

Abdelbaky et al. [1] M UO + SOAppl. Het. No Yes No MP

Addya et al. [2] M SO Infr. Hom. No Yes No H

AlDhuraibi et al. [3] M UO + SOAppl. Hom. V No Yes H

Ali-Eldin et al. [6] S SO Infr. Hom. H No No CT + QT

Arabnejad et al. [7] M UO + SOInfr. Hom. H No No ML + H

Arkian et al. [8] M UO Infr. Het. No Yes No MP

Asnaghi et al. [9] S SO Appl. Hom. V No No CT + H

Baresi et al. [10] S UO Appl. Hom. H+V No No CT

Barna et al. [11] S SO Infr. + Appl.Hom. H No No QT + H

Brogi et al. [15] M UO + SOAppl. Het. No Yes No ML + H

Casalicchio et al. [19]M UO + SOAppl. Hom. H No No H

Garefalakis et al. [25]M SO Appl. Hom. No Yes No MP

Guan et al. [27] M SO Appl. Hom. H Yes No MP

Guerrero et al. [28] M SO Appl. Het. H Yes No H

Horovitz et al. [31] S UO Appl. Hom. H No No ML + H

Huang et al. [32] S SO Appl. Hom. No Yes No MP

Kaewkasi et al. [35] S SO Appl. Hom. No Yes No H

Kaur et al. [36] M SO Appl. Hom. No Yes Yes H + GT

Kayal et al. [37] M SO Appl. Het. No Yes No MP

Khazaei et al. [39] M SO Appl. Hom. H No No H

Khazaei et al. [40] M SO Appl. Hom. H No No H

Mahmud et al. [45] M UO Appl. Het. No Yes No H

Mao et al. [47] M SO Appl. Het. No Yes Yes QT + H

Mennes et al. [49] S SO Appl. Het. No Yes No H

Mouradian et al. [50] M UO Appl. Het. + Mob.No Yes No MP + H

Mseddi et al. [51] M UO + SOAppl. Het. + Mob.No Yes Yes H

Naas et al. [52] M UO Appl. Het. No Yes No MP + H

Nardelli et al. [53] M UO + SOInfr. + Appl.Het. H Yes No MP

Nardelli et al. [54] M UO Infr. + Appl.Het. H Yes No MP

Nouri et al. [56] M SO Appl. Hom. H No No ML

Rossi et al. [63] M UO + SOAppl. Het. H + V Yes No MP + ML

Rossi et al. [64] M UO + SOAppl. Hom. H + V No No ML

Santos et al. [65] S UO Appl. Het. No Yes No H

Souza et al. [66] S UO Appl. Hom. No Yes No H

Tan et al. [69] S SO Infr. + Appl.Hom. No Yes No H

Tang et al. [70] M SO Appl. Het. + Mob.No No Yes MP + ML

Tesauro et al. [71] S UO Infr. Hom. No Yes No QT + ML

Townend et al. [72] S SO Appl. Hom. No Yes No H

Wu et al. [75] S SO Appl. Hom. H No No H

Yigitoglu et al. [78] M UO + SOAppl. Het. + Mob.No Yes No H

Zhao et al. [79] M UO + SOAppl. Het. No Yes No H

Zhu et al. [82] M UO + SOInfr. Hom. V No No CT + ML

mobile edge computing scenarios which jointly maximize user-oriented (i.e., user
QoE) and system-oriented (i.e., provider profit) metrics.

84 V. Cardellini et al.

3.2 Controlled Entities

To identify the scope, we observe that adaptation actions can be applied either at
the infrastructure level [4] or at the application level [44]. At the infrastructure
level, the elasticity controller changes the number of computing resources, usually
by acquiring and releasing VMs, e.g., [6,54,71]. At the application level, the
controller adjusts the computing resources directly assigned to the application
(e.g., changing their parallelism degree [3,27,64]).

Fog environments can include resources with different computing and storage
capacity as well as network connectivity. Therefore, some deployment solutions
explicitly consider resource heterogeneity, i.e., they take into account specific
features of computing and networking resources, such as processing or storage
capacity of resources, available resources, or network delay (e.g., [28,53,63,70]).
Nonetheless, a large number of solutions model only a homogeneous comput-
ing infrastructure (e.g., [6,7,9,64,66,82]). Moreover, user devices and/or fog
resources (e.g., smart cars, drones) can be mobile. Most works consider only
user mobility and address the application migration among multiple resources
(e.g. [58]) or the placement of static edge nodes in a cellular network [23] with
the goal to satisfy the application SLOs. To the best of our knowledge, only the
work by Mouradian et al. tackles the mobility of fog nodes [50], while there are
more efforts in the research area of vehicle cloud computing (e.g., [80]).

Software containers offer a lightweight virtualization solution, which is often
adopted in the context of fog computing (e.g., [30]), even in extremely con-
strained nodes as fog gateways [12]. Souza et al. [66] analyze the challenges
of fog computing environments and propose containers as a possible solution to
smoothly deploy application across geo-distributed fog nodes. When applications
are containerized, a single-level deployment regards the container placement on
the underlying (physical or virtual) resources. In addition, depending on the
virtualization layering, a double-level deployment can involve the placement of
virtual resources (i.e., VMs) onto physical computing resources. Most works con-
sider a single level of deployment (e.g., [2,3,27,64,79]), while only a few solve a
multi-level deployment problem [11,53,69].

3.3 Adaptation Actions

The adaptation actions to control at run-time the deployment of container-based
applications include the application placement, the application elasticity accord-
ing to two possible directions (i.e., horizontal and vertical scaling), and the
migration of some application components. The elasticity problem determines
how and when to perform scaling operations, thus enabling elastic applications
that can dynamically adapt in face of workload variations. Horizontal scaling
allows to increase (scale-out) and decrease (scale-in) the number of application
instances (e.g., containers or VMs). Vertical scaling allows to increase (scale-up)
and decrease (scale-down) the amount of computing resources assigned to each
application instance. A fine-grained vertical scaling is preferred to more quickly

Self-adaptive Container Deployment in the Fog: A Survey 85

react to small workload changes, while a horizontal scaling operation makes eas-
ier to react to sudden workload peaks. However, most of the existing solutions
consider either horizontal or vertical scaling operations to change at run-time
the application deployment (e.g., [3,7,9,11,31,53,54]).

Differently from cloud computing environment, the presence of heterogeneous
fog resources emphasizes the importance of the application placement problem.
Its goal is to define the computing resources that will host and execute each
application instance. Most of the existing solutions consider the two problems
separately and focus either on the placement or on the elasticity of application
instances (e.g., [8,10,71]). So far, only a limited number of works have studied
how to jointly solve the two problems (e.g., [27,28,53,63]).

When the application placement is updated at run-time, it results in (state-
less or stateful) migrations of virtualized resources (i.e., containers or VMs), that
can be moved from one location to another. Migration is used to improve sys-
tem performance, seeking to balance load or to maximize resource utilization. In
addition, it allows to cope with user and/or resource movement across different
geographical locations. For example, Kaur et al. [36] propose a technique that
allows task scheduling on lightweight containers and supports container migra-
tion within or between the VMs. Elliott et al. [24] present a novel approach that
enables the rapid live migration of stateful containers between hosts belonging
to different cloud infrastructures. However, migration has a cost, because the
application downtime during migration, although minimal, cannot be avoided.
Therefore, a trade-off between migration benefits and cost should be considered.

3.4 Methodologies

The methodology identifies the class of algorithms used to plan how the appli-
cation deployment should be changed so to achieve the deployment goals. Elas-
ticity and placement are often considered as two orthogonal problems [9,32,66].
Nonetheless, few research efforts propose policies that jointly address the two
problems (e.g., [27,63]). Considering that scaling in the fog environment take
place in a geo-distributed context, where network latencies among computing
resources cannot be neglected as when scaling inside a data center, we believe
that the two issues cannot be separately solved.

We classify the methodologies in the following categories: mathematical pro-
gramming, control theory, queuing theory, machine learning, and heuristics.

Mathematical Programming. Mathematical programming approaches
exploit methods from operational research in order to determine or adapt at
run-time the placement of application instances, to change the application par-
allelism, or a combination thereof (e.g., [8,27,47,52]). The formulation and res-
olution of Integer Programming (IP) problems belongs to this category.

When the deployment problem is formulated as an IP optimization problem,
its most general definition can be described as follows. Given an application
with n instances, a deployment strategy can be modeled by associating to each

86 V. Cardellini et al.

application instance i = 1, . . . , n a vector xi = (xi
1, . . . , x

i
R), with R the set of fog

resources, where xi
r = 1 if an application instance is placed on the fog resource

r ∈ R, 0 otherwise. The deployment problem can be expressed as:

min F (x) (1)
subject to : Qα(x) ≤ Qα

max

Qβ(x) ≥ Qβ
min

x ∈ D

where x = (x1, . . . ,xn) is the vector of the application instances deployment vari-
ables. F (x) is a suitable deployment objective function to be optimized. Qα(x)
and Qβ(x) are, respectively, those QoS attributes whose values are bounded
by a maximum and a minimum, respectively, and x ∈ D is a set of functional
constraints.

Most of the existing solutions use IP formulations to solve (only) the place-
ment problem of application instances. Mao et al. [47] present an IP formulation
of the initial container placement aiming to maximize the available resources
in each hosting machine. Garefalakis et al. [25] propose Medea, a new cluster
scheduler based on Apache Hadoop YARN. Medea solves an Integer Linear Pro-
gramming (ILP) placement problem to meet global cluster objectives, such as to
minimize the number of application constraint violations, reduce resource frag-
mentation, balance node load, and minimize number of active computing nodes.
However, fog-based deployment goals are not considered. Arkian et al. [8] solve a
Mixed-ILP (MILP) problem to deploy application components (i.e., VMs) on fog
nodes to satisfy end-to-end delay constraints. Huang et al. [32] model the map-
ping of IoT services to edge/fog devices as a quadratic programming problem,
that, although simplified into an ILP formulation, may suffer from scalability
issues. To reduce the resolution time that limits the system size scalability, Naas
et al. [52] exploit the geographic distribution of fog resources so to identify sub-
problems that are then solved separately. Zhao et al. [79] deal with the scheduling
of containerized cloud applications with the goal to make them more aware of
their data locality. To address the limited scalability of the proposed mathemat-
ical optimization problem (which is a variant of the Multiple Knapsack Problem
and therefore NP-hard), they devise heuristic algorithms, tackling the problem
in a bottom-up fashion. Such a resolution approach is well rooted in the fog envi-
ronment, characterized by a hierarchical architecture. Kayal et al. [37] present an
autonomic service placement strategy based on Markov approximation to map
microservices to fog resources without any central coordination.

In literature there are some works that consider mathematical approaches
not only to address the application placement problem but also to jointly solve
the elasticity problem (e.g., [27,53,63]). For example, Guan et al. [27] present a
LP formulation to determine the number of containers and their placement on
a static pool of physical resources; nevertheless, vertical scaling operations are
not considered. Nardelli et al. [53] propose an optimization problem formulation
of the elastic provisioning of VMs for container deployment taking into account

Self-adaptive Container Deployment in the Fog: A Survey 87

the time needed for the deployment reconfiguration. A multi-level optimization
problem is defined: at the first level, it deals with the elastic adaptation of the
number and type of application instances (i.e., containers); at the second level, it
defines the container placement on a set of VMs that can be elastically acquired
and released on demand. Rossi et al. [63] propose a two-step approach that
manages the run-time adaptation of container-based applications deployed over
geo-distributed VMs. An ILP problem is formulated to place containers on VM,
with the aim of minimizing adaptation time and VM cost.

Some works have addressed the problem of offloading computation in a fog
environment, For example, Liu et al. [42] formulate a multi-objective optimiza-
tion problem, which involves minimizing the energy consumption, delay, and
payment cost. Chang et al. [21] propose an energy-efficient optimization prob-
lem to find the optimal offloading probability and transmission power. By using
the method of multipliers [14], they allow to deal with it in a distributed manner.

The main drawback of the mathematical programming approaches is scal-
ability. Indeed, the deployment problem is NP-hard and resolving the exact
formulation may require prohibitive time when the problem size grows.

Control Theory. A deployment policy based on control theory usually identifies
three main entities: decision variables, disturbance, system configuration. Then,
it adapts consolidate theory to determine the next system configuration that
satisfies the deployment objectives. The decision variables identify the place-
ment or replication of each application instance. The disturbances represent the
events that cannot be controlled, e.g., incoming data rate, load distribution,
and processing time; nevertheless, it is usually assumed that their future value
can be predicted, at least in the short term. By combining the decision vari-
ables, alternative configurations of the application deployment can be obtained,
which result in different performance, e.g., in terms of application latency or
throughput. There are three types of control systems: open-loop, feedback and
feed-forward. Open-loop controllers (without feedback) are based exclusively on
system input, not being able to analyze the output. Feedback controllers, on the
other hand, monitor the output of the system in order to correct any deviations
from the final goal. Feed-forward controllers can be used to implement a proac-
tive approach as they predict, using a model, the behavior of the system and
react before the error is produced.

Baresi et al. [10] model a control system for horizontal and vertical scaling
of applications. They combine infrastructure and application adaptation using a
novel deployment planner that consists of a discrete-time feedback controller. In
their work, a nonlinear, time-invariant dynamic system controls the application
response time as a function of the assigned CPU cores (decision variables) and
the request rate (disturbance). Zhu et al. [82] use control theory combined with
reinforcement learning techniques to adapt the applications deployment in cloud
computing environments. To dynamically add or remove VMs of cloud services,
Ali-Eldin et al. [6] propose two adaptive reactive/proactive controllers. They
model a cloud service and estimate the future load using queuing theory.

88 V. Cardellini et al.

Queuing Theory. Queuing theory is often used to estimate the application
response time. The key idea is to model the application as a queuing network
with inter-arrival times and service times having general statistical distribu-
tions (e.g., M/M/1, M/M/k, Gi/G/k). To simplify the analytical investigation,
the application is considered to satisfy the Markovian property, thus leading to
approximated system behavior (and performance metrics).

Since queuing theory allows to predict the application performance under
different conditions of load and number of replicas, it is often used to drive
scaling operations (e.g., [11,47]), also in combination with other techniques
(e.g., [6,66,71]). Mao et al. [47] model a four-tier application using queuing the-
ory. A centralized deployment controller takes scaling decisions using the queu-
ing model of each application layer. Using a Layered Queuing Network, Barna
et al. [11] use the number of user requests and the application topology to esti-
mate the resource utilization and application response time. Ali-Eldin et al. [6]
and Tesauro et al. [71] combine queuing theory with control theory and machine
learning, respectively.

Machine Learning. In the field of machine learning, reinforcement learning
(RL) is a special technique that has been used to adapt the application deploy-
ment at run-time. RL refers to a collection of trial-and-error methods by which
an agent can learn to make good decisions through a sequence of interactions
with a system or environment. As such, the agent learns from experience the
adaptation policy, i.e., the best adaptation action to take with respect to the
current system state. The system state can consider the amount of incoming
workload, the current application deployment, or its performance (e.g., [64]).
When the agent applies an action, the system transits in a new state and the
agent receives a reward, that indicates the action goodness. The received reward
and the next state transition usually depend on external unknown factors. One of
the challenges that arise in RL is the trade-off between exploration and exploita-
tion. To maximize the obtained reward, the RL agent must prefer actions known
to provide high reward (exploitation). However, in order to discover such actions,
it has to try actions not selected before (exploration). The dilemma is that nei-
ther exploration nor exploitation can be pursued exclusively without failing at
the task. To maximize the expected long-term reward, the agent estimates the
so-called Q-function. It represents the expected long-term reward that follows
the execution of an action in a specific system state. Different strategies can
be used to estimate the Q-function, ranging from model-free (e.g., Q-learning,
SARSA) to model-based solutions; these solutions exploit different degrees of
system knowledge to approximate its behavior [68].

RL has mostly been applied to devise policies for VM allocation and provi-
sioning (e.g., [7,71]) and, in a limited way, to manage containers (e.g., [31,64]).
Horovitz et al. [31] propose a threshold-based policy for horizontal container elas-
ticity using Q-learning to adapt the thresholds. Nouri et al. [56] describe a decen-
tralized RL-based controller to scale a web application running on cloud com-
puting resources. Interestingly, they design a decentralized architecture, where

Self-adaptive Container Deployment in the Fog: A Survey 89

each server is responsible for maintaining the performance of its own-hosted
applications, while fulfilling the requirements of the whole system. This decen-
tralized approach is well suited to rule complexity of nowadays fog computing
environments.

Being model-free solutions, Q-learning and SARSA may suffer from slow
convergence rate. To overcome this issue, Tesauro et al. [71] propose a hybrid RL
method to dynamically allocate homogeneous servers to multiple applications.
They combine the advantages of both explicit model-based methods and tabula
rasa RL. Instead of training a RL module online, they propose to train offline
the RL agent using collected data, while an initial policy (based on a queuing
model) drives management decisions in the system. Arabnejad et al. [7] combine
Q-learning and SARSA RL algorithms with a fuzzy inference system that drives
VM auto-scaling. Rossi et al. [64] present RL policies to control (horizontal and
vertical) elasticity of containers so to satisfy the average application response
time. To speed-up the learning phase, they propose a model-based RL approach
that exploits the (known or estimate) system dynamics.

Another approach to solve the slow convergence rate of RL consists in approx-
imating the system state or the action-value function; as such, the agent can
explore a reduced number of system configurations [68]. Tang et al. [70] propose
a RL algorithm that controls the migration of containers in a fog environment.
In particular, they define a multi-dimensional Markov Decision Process aimed to
minimize communication delay, power consumption and migration costs; inter-
estingly, to deal with the large number of system states, the authors integrate a
deep neural network within the Q-learning algorithm.

Recently, RL approaches have also been used to drive the decision of offload-
ing computation from mobile devices to cloud resources (e.g., [5,76]). Alam et
al. [5] propose a deep Q-learning based offloading policy suited for mobile fog
environments. To minimize the service latency, offloading decisions are taken by
considering resource demand and availability as well as the geographical distri-
bution of mobile devices. Xu et al. [76] present a post-decision state solution
for managing computing resources, which learns on-the-fly the optimal policy of
dynamic workload offloading and edge resource provisioning.

Heuristics. Different heuristics have been proposed to solve the placement and
elasticity of container-based applications. The most popular heuristics include:
greedy heuristics (e.g., [66,78]), fuzzy logic (e.g., [7,46]), threshold-based heuris-
tics (e.g., [11,40]), meta-heuristics (e.g., [28,35]), and specifically designed solu-
tions (e.g., [55]).

Due to their design simplicity, greedy heuristics are often adopted to allocate
containers. Yigitoglu et al. [78] propose to place the application containers on
the available fog resources in a greedy first-fit manner. Souza et al. [66] propose
a greedy best-fit heuristic that first sorts the applications according to their
processing demand, and then allocates them on the available fog resources; if
there is not enough processing capacity available, cloud computing resources
are used. Along with the simple best-fit solution, the authors also propose a

90 V. Cardellini et al.

“best-fit with queue” heuristic that offloads applications to the cloud, exploiting
the estimated application response time.

The purpose of fuzzy logic is to model human knowledge; it allows to con-
vert knowledge in rules, that can be applied to the system to identify suitable
deployment actions. The fuzzy logic usually includes three phases: fuzzification,
fuzzy inference, and defuzzification. In fuzzification, system states or metrics
are converted into equivalent fuzzy dimensions by using a membership function.
During fuzzy inference, fuzzy inputs are mutually compared to determine the
corresponding fuzzy output. A set of fuzzy rules assists in this case. Fuzzy rules
are collections of if-then rules that represent how to take decisions and control
a system according to human knowledge. In a fuzzy inference, any number of
fuzzy rules can be triggered. Then, the fuzzy outputs are combined through a
defuzzification function so to derive a metric related to the application place-
ment request. Mahmud et al. [45] propose a QoE-aware placement policy based
on fuzzy logic, which prioritizes different application placement requests and
classifies fog computing resources. Arabnejad et al. [7] combine the fuzzy con-
troller with a model-free RL algorithm to horizontally scale VMs at run-time.

Many solutions exploit best-effort threshold-based policies to change the
application replication degree or to recompute the application instance place-
ment at run-time. Threshold-based policies represent the most popular app-
roach to scale at run-time application instances (i.e., containers) also for the
cloud infrastructure layer. Orchestration frameworks that support container scal-
ing (e.g., Kubernetes, Docker Swarm, Amazon ECS) usually rely on best-effort
threshold-based policies based on some load metrics (e.g., CPU utilization). The
main idea is to increase (or reduce) the application parallelism degree or to
change the application instance placement as soon as a QoS metric is above (or
below) a critical value. Several works use as QoS metric the utilization of either
the system nodes or the application replicas. Most of works use policies based on
the definition of static thresholds. Barna et al. [11] propose a static threshold-
based algorithm which determines the scaling action taking into account the
average CPU utilization of the containers in a cluster. Static thresholds are also
used for planning the adaptation of container deployment (e.g., [3,36,39,40]).
Khazaei et al. [39,40] take into account CPU, memory, network utilization to
determine the scaling action of container-based application. Al-Dhuraibi et al. [3]
propose Elasticdocker, which employs a threshold-based policy to vertically
scale CPU and memory resources assigned to each container. Kaur et al. [36]
use a static threshold-based approach to enable container migration. The migra-
tion would be initiated whenever the utilization of the computing nodes exceeds
or falls behind the predefined upper and lower threshold limits, respectively.
All these approaches require a manual tuning of the thresholds, which can be
cumbersome and application-dependent. To overcome this limitation, Horovitz
et al. [31], for example, propose a threshold-based policy for horizontal container
elasticity that uses Q-learning to dynamically adapt the thresholds at run-time.

Among meta-heuristics, we can include local search, simulated annealing,
and genetic algorithms. Greedy approaches or local search solutions that greedily

Self-adaptive Container Deployment in the Fog: A Survey 91

explore local changes may get stuck in local optima and miss the identification
of global optimum configurations. Conversely, simulated annealing is a popular
meta-heuristic that first aims to find the region containing the global optimum
configuration, and then moves with small steps towards the optimum. To the
best of our knowledge, simulated annealing has not been yet used in the context
of fog computing. Starting from initial configuration, this technique randomly
generates a new neighbouring configuration, aiming to find a better deployment
solution. If the best computed solution does not improve the previous one, it can
be accepted with a certain probability (referred as temperature), which decreases
over time (e.g., [2]).

A genetic algorithm generates a random population of chromosomes, which
represent deployment configurations. Then, it performs genetic operations, such
as crossover and mutations, to obtain successive generations of these chromo-
somes. A crossover operator takes a pair of parent chromosomes and generates
an offspring chromosome by crossing over individual genes from each parent. A
mutation operator randomly alters some parts of a given chromosome so to avoid
to get stuck in a local optimum. Afterwards, the genetic algorithm picks the best
chromosomes from the entire population based on their fitness values and elimi-
nates the rest. This process is repeated until a stopping criterion is met. Guerrero
et al. [28] present a genetic algorithm for container horizontal scaling and allo-
cation on physical machines; however, this solution does not take explicitly into
account the characteristics of a geo-distributed environment (i.e., network delay
between fog resources). To solve the fog placement problem, Tan et al. [69], Wen
et al. [73], and Mennes et al. [49] propose service placement solutions based
on genetic algorithms. Tan et al. [69] provide a novel problem definition of the
two-level container allocation problem. Specifically, they design a genetic algo-
rithm to automatically generate rules for allocating VMs to physical nodes. Even
though genetic algorithms considerably reduce the need of systematically explor-
ing large solution space (thus reducing the resolution time), they are not well
suited to quickly react to the dynamism of a fog computing environment. To
overcome this issue, recent approaches combine genetic algorithms with Monte
Carlo simulations (e.g., [15,23]). De Maio et al. [23] focus on offloading applica-
tion tasks in a mobile edge computing scenario, whereas Brogi et al. [15] target
the multi-service application placement in the Fog.

Kaur et al. [36] consider a multi-layer computing infrastructure that allows
to process tasks on fog and cloud computing resources. The scheduling problem
maps tasks to broker and, then, from broker to containers across VMs. To solve
the task scheduling problem, the authors propose a game theoretical solution.
The primary objective of the cooperative game is to schedule the set of task
requests to containers so that the overall energy utilization of VMs and response
time of tasks are minimized. In the game, each player (i.e., broker) attempts to
reduce the overall communication cost based on its current bandwidth and load
status. The utility function of brokers is formulated using weighted contributions
of these two metrics (i.e., bandwidth and load).

92 V. Cardellini et al.

3.5 Deployment Controllers

The deployment controller is the software component in charge of controlling
the deployment of applications or computing resources. In the context of fog
computing, deployment controllers usually manage the execution of (container-
ized) applications on heterogeneous and geo-distributed computing resources.
Besides determining the initial deployment, this controller can be used to adapt
the application deployment at run-time so to respond to system or workload
changes. The deployment controller usually provides deployment mechanism,
so it can be equipped with centralized or decentralized deployment policies.
Few solutions integrate the deployment controller within the application code
(e.g., embedded elasticity [4]). Having no separation of concerns, the application
itself should also implement mechanisms and policies steering the adaptation.
Although this approach enables optimized scaling policies, it complicates the
application design.

Conversely, most research efforts use an external deployment controller to
carry out the adaptation actions (e.g., [9,11,22,30,31,40,41,64]). Such approach
improves software modularity and flexibility. Kimoviski et al. [41], for example,
propose SmartFog, a nature-inspired fog architecture. Modeling the fog environ-
ment as the human brain, SmartFog is capable of providing low-latency deci-
sion making and adaptive resource management. The fog nodes are modeled as
neurons, while the communication channels as synapses. Fog nodes are capa-
ble of self-clustering into multiple functional areas. IoT devices and sensors are
represented as the sensory nervous system. Cloud computing resources support
communication between the different functional areas.

Extending the existing orchestration tools (see Sect. 4), the external con-
trollers usually implement a MAPE control loop [38]. The latter includes four
main components (Monitor, Analyze, Plan and Execute) that manage the self-
adaptation functions. The Monitor collects data about the application and the
execution environment. The Analyze component uses the collected data to deter-
mine whether an adaptation is beneficial. If so, the Plan component determines
an adaptation plan for the application, which is enacted through the Execute
component. Different patterns to design multiple MAPE loops have been used in
practice by decentralizing the self-adaptation components [74], being the master-
worker the most used one. In the master-worker decentralization pattern, the
system includes a single master, which runs the centralized Analyze and Plan
phases, and multiple independent workers, which run the decentralized Monitor
and Execute phases. To manage services in a fog environment, De Brito et al. [22]
propose an architecture that includes a multitude of decentralized agents, coor-
dinated by a single orchestrator (which could be elected among the agents). For
container deployment in a fog computing environment, Hoque et al. [30] extend
an existing orchestration tool (i.e., Docker Swarm) according to a master-worker
decentralization pattern. No fog-aware orchestration policy is provided. A cen-
tralized master component allows to more easily design the self-adaptation poli-
cies and compute globally optimal reconfiguration strategies. However, it may

Self-adaptive Container Deployment in the Fog: A Survey 93

easily become the system bottleneck when it has to control a great number of
entities in a large-scale geo-distributed system.

4 Container Orchestration Tools

To simplify the deployment and management of applications over fog and cloud
computing resources, most of the existing solutions exploit software containers. A
software container allows to tie an application with all the dependencies required
for its execution, such as libraries, configurations, and data. Docker is the most
popular container management system, which allows to create, distribute, and
run applications inside containers. Although it is easy to manually deploy a single
container, managing a complex application (or multiple applications) during its
whole lifetime requires a container orchestration tool. The latter automatizes
the container provisioning, management, communication, and fault-tolerance.
Although several container orchestration tools exist [20,61], nowadays the most
used ones in the academic and industrial scenarios are Docker Swarm, Apache
Mesos, and Kubernetes.

Docker Swarm is an open-source platform that enables to simplify the exe-
cution and management of containers across multiple computing nodes1. There
are two types of nodes: managers and workers. The manager nodes perform the
orchestration and management functions required to maintain the desired cluster
state; they elect a single leader to conduct orchestration and scheduling tasks.
The worker nodes execute tasks received from the leader node; they do not par-
ticipate in taking scheduling decisions and in maintaining the cluster state. To
manage the global cluster state, the manager nodes implement the Raft algo-
rithm for distributed consensus [57]. Let n be the number of managers, Raft
tolerates up to (n − 1)/2 failures and requires a quorum of (n/2) + 1 managers
to agree on the cluster state. Having the same consistent state across the cluster
means that, in case of unexpectedly leader failure, any other manager can restore
the services to a stable state.

Apache Mesos allows to share resources in a cluster between multiple frame-
works ensuring resource isolation2. Mesos can be considered as a kernel for the
data center: it provides a unified view of all node resources and shares the avail-
able capacity among heterogeneous frameworks. The main components of Mesos
are the master, the workers and the (external) frameworks. The master is respon-
sible for mediating between the worker resources and the frameworks. At any
point, Mesos has only one active master, which is elected through distributed
consensus using Zookeper. The master offers worker resources to frameworks,
and launches tasks on workers for the accepted offers. The workers manage vari-
ous resources (e.g., CPU, memory, storage), and can execute tasks submitted by
the frameworks. A framework is an application to run on Mesos and consists of,
at least, a scheduler and an executor. The framework scheduler is responsible for

1 https://docs.docker.com/engine/swarm/.
2 http://mesos.apache.org.

https://docs.docker.com/engine/swarm/
http://mesos.apache.org

94 V. Cardellini et al.

accepting or rejecting resources offered by Mesos, while the executors consume
resources to run application-specific tasks.

Kubernetes3 is an open-source platform developed and released by Google to
manage container-based applications in an autonomic manner. Kubernetes archi-
tecture also follows the master-worker decentralization pattern, where the mas-
ter uses worker nodes to manage resources and orchestrate applications (using
pods). Multiple master nodes provide a highly-available replicated cluster state
through the Raft consensus algorithm. A worker node is a physical or virtual
machine that offers its computational capability for executing pods in a dis-
tributed manner. A pod is the smallest deployment unit in Kubernetes, which
consists of a single container or a reduced number of tightly coupled contain-
ers. When multiple containers run within a pod, they are co-located and scaled
as an atomic entity. To provide a specific service, Kubernetes can ensure that a
given number of pods are up and running using a ReplicaSet. To further simplify
the deployment of applications, Kubernetes exposes DeploymentControllers, a
higher-level abstraction built upon the ReplicaSet concept. Kubernetes includes
Horizontal Pod Autoscaler, which automatically scales the number of pods in a
DeploymentController by monitoring, as default metric, CPU utilization. Exper-
imental results in [34] demonstrate that, for complex application deployments,
Kubernetes performs better than other orchestration tools.

We observe that all the above-mentioned orchestration tools have been specif-
ically designed for clustered environments, so they are not well-suited for man-
aging applications in a geographically distributed environment. Indeed, their
placement policies do not take into account the heterogeneity and geographic
distribution of the available computing resources. For example, Kubernetes’
default scheduler spreads containers on cluster’s worker nodes, while Docker
Swarm distributes containers so to optimize for the node with the least number
of containers. We also note that, as regards elasticity, these orchestration tools
are usually equipped with basic policies, such as static threshold-based policies
on system-oriented metrics. As discussed in Sect. 3.4, setting such thresholds is
a cumbersome and error-prone task and may require knowledge of the applica-
tion’s resource usage to be effective. To address these limitations, some research
works aim to improve existing orchestration tools (e.g., [55,65,72,75]). Wu et
al. [75] modify Kubernetes Horizontal Pod Autoscaler to adapt at run-time the
deployment of containerized data stream processing applications according to
the predicted load arrival rate. Netto et al. [55] propose a state machine app-
roach to scale Docker containers in Kubernetes. Santos et al. [65] extend the
default Kubernetes scheduler so to select nodes using a policy that minimizes
the round trip time between the node and a target location (labels are used to
statically assign the round trip time to each node).

3 https://kubernetes.io.

https://kubernetes.io

Self-adaptive Container Deployment in the Fog: A Survey 95

5 Simulation Tools

A large number of research works resort on simulation to evaluate application
performance in distributed computing environments (e.g., [2,27,32,45,66,69]).
On the one hand, simulators enable to more easily evaluate deployment policies
under different configurations and workload conditions. On the other hand, it
is not often clear how accurately they capture the dynamism of distributed
computing environments. Fog simulators allow to model the heterogeneity of
computing resources, which can be geographically distributed. Fog resources are
often organized as a graph; some simulators allow to further aggregate resources
in groups (also called cloudlets or micro-data centers). Although most recent
simulators model both cloud and fog computing resources, few existing solutions
offer the possibility to simulate mobility.

ContainerCloudSim [59] is a discrete-event-based simulator that supports
the evaluation of different container placement policies in cloud environments.
Extending CloudSim [18], ContainerCloudSim allows to model hosts, VMs, con-
tainers, and tasks. For each host, its processing, memory, and storage capacity,
as well as the belonging data center should be specified. Each host can run one
or more VMs where containers can be deployed. For each container, it should be
specified the required CPU and memory resources, needed to execute tasks.

EmuFog [48] is a framework for emulating a fog environment. In EmuFog,
a network is modeled as an undirected graph of devices (switches and routers)
connected together through communication channels (links). To create a fog
environment, the first step is to translate the network topology (generated or
imported) in a network topology supported by EmuFog. The second step consists
in defining the type and location of nodes. Although EmuFog allows to easily
create fog environments, it does not support application modeling.

iFogSim [29] provides a platform to simulate a fog environment and to deploy
applications. Based on CloudSim, it supports elasticity and migration of VMs.
The fog network topology structure should be tree-like: the deployment of appli-
cation instances starts from tree leaves (fog nodes) and proceeds up to the tree
root (usually, the cloud). iFogSim allows to monitor latency, network conges-
tion, energy consumption and resource utilization of the application instances.
The application is modeled as a directed graph: vertices represent the process-
ing units (i.e., modules), whereas edges are the data flow between the modules.
The communication between the different application modules occurs by sequen-
tially sending tuples. With respect to the other simulators, iFogSim allows to
model realistic multi-component applications. Nevertheless, it is not possible
to express network topologies different from tree-like. Furthermore, it does not
support node mobility. To overcome this limitation, Lopes et al. [43] proposed
MyiFogSim, an extension that supports mobility.

6 Open Challenges and Research Directions

Extending cloud computing, fog computing promises to improve scalability of
distributed applications and to reduce their response time. Nevertheless, the fog

96 V. Cardellini et al.

environment presents several key features (e.g., large-scale distribution, resource
heterogeneity) that introduce new challenges. The research community has been
dealing with these challenges in the last years; however, we are still at the first
stages, and there are several open issues and research directions to investigate.

Among all the interesting challenges, we identify a few of them that we con-
sider to be of utmost importance: elasticity and placement of multi-component
applications, mobility, scalability, fault-tolerance, security, and SLA definition.

The existing deployment algorithms usually consider single-component appli-
cations. However, modern applications often result by composing multiple micro-
services, where the adaptation of an application component is likely to affect
other components. In a fog environment, the limitation of computing resources
further stresses the need of optimized adaptation actions that pro-actively change
the multi-component application deployment.

Today’s applications exploit elasticity to efficiently use resources and react
to dynamic working conditions. The fog environment comes with a high num-
ber of heterogeneous resources, which often rely on a poor Internet connection.
These features call for efficient solutions for determining an application place-
ment, which should efficiently deal with the uncertainty of computing resources
and incoming workloads. So far, there is only a limited number of fog-specific
and mobility-aware solutions (e.g., [50]); most of the existing approaches solve
the application deployment problem in a centralized manner. Moreover, mobil-
ity of fog resources have been so far scarcely studied, notwithstanding that it
can lead to new applications and research directions, where mobile resources
are opportunistically exploited to reduce the dependence over geographically
bounded fixed fog resources.

Nowadays, orchestration tools present only a partially decentralized architec-
ture, which could not be suitable to manage complex applications in a geograph-
ically distributed environment. In a master-worker architecture, collecting mon-
itoring data on the master and dispatching the subsequent adaptation actions to
the decentralized executors may introduce significant communication overhead.
Furthermore, the master may easily become the system bottleneck when it has to
control a multitude of entities scattered in a large-scale geo-distributed environ-
ment. To increase scalability, a hierarchical architecture could be investigated:
exploiting the benefits of both centralized and decentralized architectures and
policies, it could be well suited for controlling applications in a fog environment.
The hierarchical control pattern revolves around the idea of a layered architec-
ture, where each layer works with time scales and concerns separation. Given
the great amount of interconnected devices and the system dynamism, also the
deployment algorithms should be as scalable as possible.

The definition of multi-component applications that run on edge devices also
exposes new security risks and trustiness issues, which should be addressed to
boost the utilization of fog computing. Most of the existing deployment solu-
tions neglect security-related issues. However, security is a first-class citizen in
the fog environment: while allocating containers on fog resources, privacy con-
straints should be taken into account, as well as the security of the communication

Self-adaptive Container Deployment in the Fog: A Survey 97

channels among the fog resources. The limited energy, network, and comput-
ing capacity of fog resources also requires to investigate whether existing fault-
tolerance mechanisms can be adopted in the fog. Processing data at the network
periphery, device (or connectivity) failures can easily compromise the applica-
tion availability and integrity. Considerations should be also made observing that
nearby fog resources are more likely to fail simultaneously (e.g., due to connectiv-
ity outage).

Also monitoring and enforcing the QoS of multi-component applications is
challenging in a fog environment. SLAs as defined today do not fit well in the
emerging environment, where applications can exchange data across multiple
service providers and, most importantly, can run on resources under different
administrative domains. In a fog environment, it could be also difficult to collect
application and service provisioning metrics, needed to evaluate the SLA ful-
fillment. The dynamism and heterogeneity of fog resources further increase the
difficulty of controlling the application performance.

To conclude, we can observe that deployment solutions for fog environments
are at their early stages; therefore, novel solutions that account for the distinctive
fog computing features are needed. Methodologies that have been successfully
adopted for cloud resources can be considered for the fog environments. For
example, it would be interesting to further investigate the applicability of evo-
lutionary algorithms, e.g., deep learning, genetic algorithms, and game theory,
for adapting the deployment of microservice-based applications.

References

1. Abdelbaky, M., Diaz-Montes, J., Parashar, M., Unuvar, M., Steinder, M.: Docker
containers across multiple clouds and data centers. In: Proceedings of IEEE/ACM
UCC 2015, pp. 368–371 (2015). https://doi.org/10.1109/UCC.2015.58

2. Addya, S.K., Turuk, A.K., Sahoo, B., Sarkar, M., Biswash, S.K.: Simulated anneal-
ing based VM placement strategy to maximize the profit for cloud service providers.
Eng. Sci. Technol. Int J. 20(4), 1249–1259 (2017)

3. Al-Dhuraibi, Y., Paraiso, F., Djarallah, N., Merle, P.: Autonomic vertical elasticity
of Docker containers with ElasticDocker. In: Proceedings of IEEE CLOUD 2017,
pp. 472–479 (2017). https://doi.org/10.1109/CLOUD.2017.67

4. Al-Dhuraibi, Y., Paraiso, F., Djarallah, N., Merle, P.: Elasticity in cloud computing:
state of the art and research challenges. IEEE Trans. Serv. Comput. 11, 430–447
(2018). https://doi.org/10.1109/TSC.2017.2711009

5. Alam, M.G.R., Hassan, M.M., Uddin, M.Z., Almogren, A., Fortino, G.: Autonomic
computation offloading in mobile edge for IoT applications. Future Gener. Comput.
Syst. 90, 149–157 (2019). https://doi.org/10.1016/j.future.2018.07.050

6. Ali-Eldin, A., Tordsson, J., Elmroth, E.: An adaptive hybrid elasticity controller
for cloud infrastructures. In: Proceedings of IEEE NOMS 2012, pp. 204–212 (2012)

7. Arabnejad, H., Pahl, C., Jamshidi, P., Estrada, G.: A comparison of reinforcement
learning techniques for fuzzy cloud auto-scaling. In: Proceedings of IEEE/ACM
CCGrid 2017, pp. 64–73 (2017). https://doi.org/10.1109/CCGRID.2017.15

8. Arkian, H.R., Diyanat, A., Pourkhalili, A.: MIST: fog-based data analytics scheme
with cost-efficient resource provisioning for IoT crowdsensing applications. J. Netw.
Comput. Appl. 82, 152–165 (2017). https://doi.org/10.1016/j.jnca.2017.01.012

https://doi.org/10.1109/UCC.2015.58
https://doi.org/10.1109/CLOUD.2017.67
https://doi.org/10.1109/TSC.2017.2711009
https://doi.org/10.1016/j.future.2018.07.050
https://doi.org/10.1109/CCGRID.2017.15
https://doi.org/10.1016/j.jnca.2017.01.012

98 V. Cardellini et al.

9. Asnaghi, A., Ferroni, M., Santambrogio, M.D.: DockerCap: a software-level power
capping orchestrator for Docker containers. In: Proceedings of IEEE EUC 2016
(2016)

10. Baresi, L., Guinea, S., Leva, A., Quattrocchi, G.: A discrete-time feedback con-
troller for containerized cloud applications. In: Proceedings of ACM SIGSOFT
FSE 2016, pp. 217–228 (2016). https://doi.org/10.1145/2950290.2950328

11. Barna, C., Khazaei, H., Fokaefs, M., Litoiu, M.: Delivering elastic containerized
cloud applications to enable DevOps. In: Proceedings of SEAMS 2017, pp. 65–75
(2017)

12. Bellavista, P., Zanni, A.: Feasibility of fog computing deployment based on Docker
containerization over RaspberryPi. In: Proceedings of ICDCN 2017. ACM (2017)

13. Bermbach, D., et al.: A research perspective on fog computing. In: Braubach, L.,
et al. (eds.) ICSOC 2017. LNCS, vol. 10797, pp. 198–210. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-91764-1_16

14. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization
and statistical learning via the alternating direction method of multipliers. Found.
Trends Mach. Learn. 3(1), 1–122 (2011)

15. Brogi, A., Forti, S., Guerrero, C., Lera, I.: Meet genetic algorithms in Monte Carlo:
optimised placement of multi-service applications in the fog. In: Proceedings of
IEEE EDGE 2019, pp. 13–17 (2019). https://doi.org/10.1109/EDGE.2019.00016

16. Brogi, A., Forti, S., Guerrero, C., Lera, I.: How to place your apps in the fog: state
of the art and open challenges. Softw. Pract. Exp. (2019). https://doi.org/10.1002/
spe.2766

17. Buyya, R., et al.: A manifesto for future generation cloud computing: research
directions for the next decade. ACM Comput. Surv. 51(5), 105:1–105:38 (2019)

18. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C., Buyya, R.: CloudSim: a
toolkit for modeling and simulation of cloud computing environments and evalua-
tion of resource provisioning algorithms. Softw. Pract. Exp. 41(1), 23–50 (2011)

19. Casalicchio, E., Perciballi, V.: Auto-scaling of containers: the impact of relative
and absolute metrics. In: Proceedings of IEEE FAS*W 2017, pp. 207–214 (2017)

20. Casalicchio, E.: Container orchestration: a survey. In: Puliafito, A., Trivedi, K.S.
(eds.) Systems Modeling: Methodologies and Tools. EICC, pp. 221–235. Springer,
Cham (2019). https://doi.org/10.1007/978-3-319-92378-9_14

21. Chang, Z., Zhou, Z., Ristaniemi, T., Niu, Z.: Energy efficient optimization for
computation offloading in fog computing system. In: Proceedings of IEEE GLOBE-
COM 2017 (2017). https://doi.org/10.1109/GLOCOM.2017.8254207

22. de Brito, M.S., et al.: A service orchestration architecture for fog-enabled infras-
tructures. In: Proceedings of FMEC 2017, pp. 127–132. IEEE (2017)

23. De Maio, V., Brandic, I.: Multi-objective mobile edge provisioning in small cell
clouds. In: Proceedings of ACM/SPEC ICPE 2019, pp. 127–138. ACM (2019)

24. Elliott, D., Otero, C., Ridley, M., Merino, X.: A cloud-agnostic container orches-
trator for improving interoperability. In: Proceedings of IEEE CLOUD 2018, pp.
958–961 (2018). https://doi.org/10.1109/CLOUD.2018.00145

25. Garefalakis, P., Karanasos, K., Pietzuch, P., Suresh, A., Rao, S.: Medea: schedul-
ing of long running applications in shared production clusters. In: Proceedings
of EuroSys 2018, pp. 4:1–4:13. ACM (2018). https://doi.org/10.1145/3190508.
3190549

26. Gedeon, J., Brandherm, F., Egert, R., Grube, T., Mühlhäuser, M.: What the
fog? Edge computing revisited: promises, applications and future challenges. IEEE
Access 7, 152847–152878 (2019). https://doi.org/10.1109/ACCESS.2019.2948399

https://doi.org/10.1145/2950290.2950328
https://doi.org/10.1007/978-3-319-91764-1_16
https://doi.org/10.1109/EDGE.2019.00016
https://doi.org/10.1002/spe.2766
https://doi.org/10.1002/spe.2766
https://doi.org/10.1007/978-3-319-92378-9_14
https://doi.org/10.1109/GLOCOM.2017.8254207
https://doi.org/10.1109/CLOUD.2018.00145
https://doi.org/10.1145/3190508.3190549
https://doi.org/10.1145/3190508.3190549
https://doi.org/10.1109/ACCESS.2019.2948399

Self-adaptive Container Deployment in the Fog: A Survey 99

27. Guan, X., Wan, X., Choi, B.Y., Song, S., Zhu, J.: Application oriented dynamic
resource allocation for data centers using Docker containers. IEEE Commun. Lett.
21(3), 504–507 (2017). https://doi.org/10.1109/LCOMM.2016.2644658

28. Guerrero, C., Lera, I., Juiz, C.: Genetic algorithm for multi-objective optimiza-
tion of container allocation in cloud architecture. J. Grid Comput. 16(1), 113–135
(2018). https://doi.org/10.1007/s10723-017-9419-x

29. Gupta, H., Vahid Dastjerdi, A., Ghosh, S.K., Buyya, R.: iFogSim: a toolkit for
modeling and simulation of resource management techniques in the internet of
things, edge and fog computing environments. Softw. Pract. Exp. 47(9), 1275–
1296 (2017). https://doi.org/10.1002/spe.2509

30. Hoque, S., d. Brito, M.S., Willner, A., Keil, O., Magedanz, T.: Towards container
orchestration in fog computing infrastructures. In: Proceedings of IEEE COMP-
SAC 2017, vol. 2, pp. 294–299 (2017). https://doi.org/10.1109/COMPSAC.2017.
248

31. Horovitz, S., Arian, Y.: Efficient cloud auto-scaling with SLA objective using Q-
learning. In: Proceedings of IEEE FiCloud 2018, pp. 85–92 (2018)

32. Huang, Z., Lin, K.J., Yu, S.Y., Hsu, J.Y.J.: Co-locating services in IoT systems
to minimize the communication energy cost. J. Innov. Digit. Ecosyst. 1(1), 47–57
(2014). https://doi.org/10.1016/j.jides.2015.02.005

33. Javed, A., Heljanko, K., Buda, A., Främling, K.: Cefiot: a fault-tolerant IoT archi-
tecture for edge and cloud. In: Proceedings of IEEE WF-IoT 2018, pp. 813–818
(2018)

34. Jawarneh, I.M.A., et al.: Container orchestration engines: a thorough functional
and performance comparison. In: Proceedings of IEEE ICC 2019, pp. 1–6 (2019)

35. Kaewkasi, C., Chuenmuneewong, K.: Improvement of container scheduling for
Docker using ant colony optimization. In: Proceedings of KST 2017. IEEE (2017)

36. Kaur, K., Dhand, T., Kumar, N., Zeadally, S.: Container-as-a-service at the edge:
trade-off between energy efficiency and service availability at fog nano data centers.
IEEE Wirel. Commun. 24(3), 48–56 (2017)

37. Kayal, P., Liebeherr, J.: Autonomic service placement in fog computing. In: Pro-
ceedings of IEEE WoWMoM 2019, pp. 1–9 (2019)

38. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Comput.
36(1), 41–50 (2003). https://doi.org/10.1109/MC.2003.1160055

39. Khazaei, H., Bannazadeh, H., Leon-Garcia, A.: SAVI-IoT: a self-managing con-
tainerized IoT platform. In: Proc. of IEEE FiCloud 2017, pp. 227–234 (2017)

40. Khazaei, H., Ravichandiran, R., Park, B., Bannazadeh, H., Tizghadam, A., Leon-
Garcia, A.: Elascale: autoscaling and monitoring as a service. In: Proceedings of
CASCON 2017, pp. 234–240 (2017)

41. Kimovski, D., Ijaz, H., Saurabh, N., Prodan, R.: Adaptive nature-inspired fog
architecture. In: Proceedings of IEEE ICFEC 2018, pp. 1–8 (2018)

42. Liu, L., Chang, Z., Guo, X., Mao, S., Ristaniemi, T.: Multiobjective optimization
for computation offloading in fog computing. IEEE Internet Things J. 5(1), 283–
294 (2018). https://doi.org/10.1109/JIOT.2017.2780236

43. Lopes, M.M., Higashino, W.A., Capretz, M.A., Bittencourt, L.F.: MyiFogSim:
a simulator for virtual machine migration in fog computing. In: Proceedings of
IEEE/ACM UCC 2017 Companion, pp. 47–52. ACM (2017)

44. Lorido-Botran, T., Miguel-Alonso, J., Lozano, J.A.: A review of auto-scaling tech-
niques for elastic applications in cloud environments. J. Grid Comput. 12(4), 559–
592 (2014). https://doi.org/10.1007/s10723-014-9314-7

https://doi.org/10.1109/LCOMM.2016.2644658
https://doi.org/10.1007/s10723-017-9419-x
https://doi.org/10.1002/spe.2509
https://doi.org/10.1109/COMPSAC.2017.248
https://doi.org/10.1109/COMPSAC.2017.248
https://doi.org/10.1016/j.jides.2015.02.005
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1109/JIOT.2017.2780236
https://doi.org/10.1007/s10723-014-9314-7

100 V. Cardellini et al.

45. Mahmud, M., Srirama, S., Ramamohanarao, K., Buyya, R.: Quality of experience
(QoE)-aware placement of applications in fog computing environments. J. Parallel
Distrib. Comput. 123, 190–203 (2018)

46. Mahmud, R., Kotagiri, R., Buyya, R.: Fog computing: a taxonomy, survey and
future directions. In: Di Martino, B., Li, K.-C., Yang, L.T., Esposito, A. (eds.)
Internet of Everything. IT, pp. 103–130. Springer, Singapore (2018). https://doi.
org/10.1007/978-981-10-5861-5_5

47. Mao, Y., Oak, J., Pompili, A., Beer, D., Han, T., Hu, P.: DRAPS: dynamic and
resource-aware placement scheme for Docker containers in a heterogeneous cluster.
In: Proceedings of IEEE IPCCC 2017 (2017). https://doi.org/10.1109/PCCC.2017.
8280474

48. Mayer, R., Graser, L., Gupta, H., Saurez, E., Ramachandran, U.: EmuFog: exten-
sible and scalable emulation of large-scale fog computing infrastructures. In: Pro-
ceedings of IEEE FWC 2017, pp. 1–6 (2017). https://doi.org/10.1109/FWC.2017.
8368525

49. Mennes, R., Spinnewyn, B., Latré, S., Botero, J.F.: GRECO: a distributed genetic
algorithm for reliable application placement in hybrid clouds. In: Proceedings of
IEEE CloudNet 2016, pp. 14–20 (2016). https://doi.org/10.1109/CloudNet.2016.
45

50. Mouradian, C., Kianpisheh, S., Abu-Lebdeh, M., Ebrahimnezhad, F., Jahromi,
N.T., Glitho, R.H.: Application component placement in NFV-based hybrid
cloud/fog systems with mobile fog nodes. IEEE J. Sel. Areas in Commun. 37(5),
1130–1143 (2019). https://doi.org/10.1109/JSAC.2019.2906790

51. Mseddi, A., Jaafar, W., Elbiaze, H., Ajib, W.: Joint container placement and task
provisioning in dynamic fog computing. IEEE Internet Things J. 6, 10028–10040
(2019)

52. Naas, M.I., Parvedy, P.R., Boukhobza, J., Lemarchand, L.: iFogStor: an IoT data
placement strategy for fog infrastructure. In: Proceedings of IEEE ICFEC 2017,
pp. 97–104 (2017). https://doi.org/10.1109/ICFEC.2017.15

53. Nardelli, M., Cardellini, V., Casalicchio, E.: Multi-level elastic deployment of con-
tainerized applications in geo-distributed environments. In: Proceedings of IEEE
FiCloud 2018, pp. 1–8 (2018). https://doi.org/10.1109/FiCloud.2018.00009

54. Nardelli, M., Hochreiner, C., Schulte, S.: Elastic provisioning of virtual machines
for container deployment. In: Proceedings of ACM/SPEC ICPE 2017 Companion,
pp. 5–10 (2017). https://doi.org/10.1145/3053600.3053602

55. Netto, H.V., Luiz, A.F., Correia, M., de Oliveira Rech, L., Oliveira, C.P.: Koor-
dinator: a service approach for replicating Docker containers in Kubernetes. In:
Proceedings of IEEE ISCC 2018, pp. 58–63 (2018)

56. Nouri, S.M.R., Li, H., Venugopal, S., Guo, W., He, M., Tian, W.: Autonomic decen-
tralized elasticity based on a reinforcement learning controller for cloud applica-
tions. Future Gener. Comput. Syst. 94, 765–780 (2019)

57. Ongaro, D., Ousterhout, J.: In search of an understandable consensus algorithm.
In: Proceedings of USENIX ATC 2014, pp. 305–319 (2014)

58. Ouyang, T., Zhou, Z., Chen, X.: Follow me at the edge: mobility-aware dynamic
service placement for mobile edge computing. IEEE J. Sel. Area Comm. 36(10),
2333–2345 (2018). https://doi.org/10.1109/JSAC.2018.2869954

59. Piraghaj, S.F., Dastjerdi, A.V., Calheiros, R.N., Buyya, R.: ContainerCloudSim:
an environment for modeling and simulation of containers in cloud data centers.
Softw. Pract. Exp. 47(4), 505–521 (2017)

https://doi.org/10.1007/978-981-10-5861-5_5
https://doi.org/10.1007/978-981-10-5861-5_5
https://doi.org/10.1109/PCCC.2017.8280474
https://doi.org/10.1109/PCCC.2017.8280474
https://doi.org/10.1109/FWC.2017.8368525
https://doi.org/10.1109/FWC.2017.8368525
https://doi.org/10.1109/CloudNet.2016.45
https://doi.org/10.1109/CloudNet.2016.45
https://doi.org/10.1109/JSAC.2019.2906790
https://doi.org/10.1109/ICFEC.2017.15
https://doi.org/10.1109/FiCloud.2018.00009
https://doi.org/10.1145/3053600.3053602
https://doi.org/10.1109/JSAC.2018.2869954

Self-adaptive Container Deployment in the Fog: A Survey 101

60. Puliafito, C., Mingozzi, E., Longo, F., Puliafito, A., Rana, O.: Fog computing for
the internet of things: a survey. ACM Trans. Internet Technol. 19(2), 18:1–18:41
(2019). https://doi.org/10.1145/3301443

61. Rodriguez, M.A., Buyya, R.: Container-based cluster orchestration systems: a tax-
onomy and future directions. Softw. Pract. Exp. 49(5), 698–719 (2019)

62. Röger, H., Mayer, R.: A comprehensive survey on parallelization and elasticity in
stream processing. ACM Comput. Surv. 52(2), 36:1–36:37 (2019)

63. Rossi, F., Cardellini, V., Lo Presti, F.: Elastic deployment of software containers
in geo-distributed computing environments. In: Proceedings of IEEE ISCC 2019
(2019). https://doi.org/10.1109/ISCC47284.2019.8969607

64. Rossi, F., Nardelli, M., Cardellini, V.: Horizontal and vertical scaling of container-
based applications using reinforcement learning. In: Proceedings of IEEE CLOUD
2019, pp. 329–338 (2019). https://doi.org/10.1109/CLOUD.2019.00061

65. Santos, J., Wauters, T., Volckaert, B., De Turck, F.: Towards network-aware
resource provisioning in Kubernetes for fog computing applications. In: Proceedings
of IEEE NetSoft 2019, pp. 351–359 (2019). https://doi.org/10.1109/NETSOFT.
2019.8806671

66. Souza, V., et al.: Towards a proper service placement in combined fog-to-cloud
(F2C) architectures. Future Gener. Comput. Syst. 87, 1–15 (2018)

67. Subashini, S., Kavitha, V.: A survey on security issues in service delivery models
of cloud computing. J. Netw. Comput. Appl. 34(1), 1–11 (2011)

68. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, 2nd edn.
MIT Press, Cambridge (2018)

69. Tan, B., Ma, H., Mei, Y.: A hybrid genetic programming hyper-heuristic app-
roach for online two-level resource allocation in container-based clouds. In: Pro-
ceedings of IEEE CEC 2019, pp. 2681–2688 (2019). https://doi.org/10.1109/CEC.
2019.8790220

70. Tang, Z., Zhou, X., Zhang, F., Jia, W., Zhao, W.: Migration modeling and learning
algorithms for containers in fog computing. IEEE Trans. Serv. Comput. 12(5),
712–725 (2019). https://doi.org/10.1109/TSC.2018.2827070

71. Tesauro, G., Jong, N.K., Das, R., Bennani, M.N.: A hybrid reinforcement learning
approach to autonomic resource allocation. In: Proceedings of IEEE ICAC 2006,
pp. 65–73 (2006). https://doi.org/10.1109/ICAC.2006.1662383

72. Townend, P., et al.: Improving data center efficiency through holistic scheduling in
Kubernetes. In: Proceedings of IEEE SOSE 2019, pp. 156–166 (2019)

73. Wen, Z., Yang, R., Garraghan, P., Lin, T., Xu, J., Rovatsos, M.: Fog orchestration
for internet of things services. IEEE Internet Comput. 21(2), 16–24 (2017)

74. Weyns, D., et al.: On patterns for decentralized control in self-adaptive systems.
In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering
for Self-Adaptive Systems II. LNCS, vol. 7475, pp. 76–107. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-35813-5_4

75. Wu, Y., Rao, R., Hong, P., Ma, J.: FAS: a flow aware scaling mechanism for stream
processing platform service based on LMS. In: Proceedings of ICMSS 2017, pp.
280–284. ACM (2017). https://doi.org/10.1145/3034950.3034965

76. Xu, J., Chen, L., Ren, S.: Online learning for offloading and autoscaling in energy
harvesting mobile edge computing. IEEE Trans. Cogn. Commun. Netw. 3(3), 361–
373 (2017). https://doi.org/10.1109/TCCN.2017.2725277

77. Yi, S., Hao, Z., Qin, Z., Li, Q.: Fog computing: platform and applications. In:
Proceedings of HotWeb 2015, pp. 73–78. IEEE (2015). https://doi.org/10.1109/
HotWeb.2015.22

https://doi.org/10.1145/3301443
https://doi.org/10.1109/ISCC47284.2019.8969607
https://doi.org/10.1109/CLOUD.2019.00061
https://doi.org/10.1109/NETSOFT.2019.8806671
https://doi.org/10.1109/NETSOFT.2019.8806671
https://doi.org/10.1109/CEC.2019.8790220
https://doi.org/10.1109/CEC.2019.8790220
https://doi.org/10.1109/TSC.2018.2827070
https://doi.org/10.1109/ICAC.2006.1662383
https://doi.org/10.1007/978-3-642-35813-5_4
https://doi.org/10.1145/3034950.3034965
https://doi.org/10.1109/TCCN.2017.2725277
https://doi.org/10.1109/HotWeb.2015.22
https://doi.org/10.1109/HotWeb.2015.22

102 V. Cardellini et al.

78. Yigitoglu, E., Mohamed, M., Liu, L., Ludwig, H.: Foggy: a framework for contin-
uous automated IoT application deployment in fog computing. In: Proceedings of
IEEE AIMS 2017, pp. 38–45 (2017). https://doi.org/10.1109/AIMS.2017.14

79. Zhao, D., Mohamed, M., Ludwig, H.: Locality-aware scheduling for containers in
cloud computing. IEEE Trans. Cloud Comput. 8(2), 635–646 (2020)

80. Zhou, Z., Liu, P., Feng, J., Zhang, Y., Mumtaz, S., Rodriguez, J.: Computation
resource allocation and task assignment optimization in vehicular fog computing: a
contract-matching approach. IEEE Trans. Veh. Technol. 68(4), 3113–3125 (2019)

81. Zhu, J., Chan, D.S., Prabhu, M.S., Natarajan, P., Hu, H., Bonomi, F.: Improv-
ing web sites performance using edge servers in fog computing architecture. In:
Proceedings of IEEE SOSE 2013, pp. 320–323 (2013)

82. Zhu, Q., Agrawal, G.: Resource provisioning with budget constraints for adaptive
applications in cloud environments. IEEE Trans. Serv. Comput. 5(4), 497–511
(2012). https://doi.org/10.1109/TSC.2011.61

https://doi.org/10.1109/AIMS.2017.14
https://doi.org/10.1109/TSC.2011.61

Security-Aware Database Migration
Planning

K. Subramani1(B), Bugra Caskurlu2, and Utku Umur Acikalin2

1 LDCSEE, West Virginia University, Morgantown, WV, USA
k.subramani@mail.wvu.edu

2 Department of Computer Engineering,
TOBB University of Economics and Technology, Ankara, Turkey

{bcaskurlu,uacikalin}@etu.edu.tr

Abstract. Database migration is an important problem faced by com-
panies dealing with big data. Not only is migration a costly procedure, it
involves serious security risks as well. For some institutions, the primary
focus is on reducing the cost of the migration operation, which manifests
itself in application testing. For other institutions, minimizing security
risks is the most important goal, especially if the data involved is of a sen-
sitive nature. In the literature, the database migration problem has been
studied from a test cost minimization perspective. In this paper, we focus
on an orthogonal measure, i.e., security risk minimization. We associate
security with the number of shifts needed to complete the migration task.
Ideally, we want to complete the migration in as few shifts as possible,
so that the risk of data exposure is minimized. In this paper, we provide
a formal framework for studying the database migration problem from
the perspective of security risk minimization (shift minimization) and
establish the computational complexities of several models in the same.
We present experimental results for various intractable models and show
that our heuristic methods produce solutions that are within 3.67% of
the optimal in more than 85% of the cases.

1 Introduction

The process of transferring data between storage types, formats, or computer
systems is usually referred to as data migration [8,11]. Software solutions are
preferred for the data migration operation [2] in order to automate the migra-
tion process [21] and free up human resources [22]. Data migration is required
when organizations or individuals change their computer systems or upgrade
their existing systems to new computer systems, or when two or more computer
systems merge. The latter usually takes place when two companies merge. The
data migration operation [14–16] may involve several phases, but at the very
minimum it includes the following two phases [12,28]: data extraction [23], and
data loading. In order to accomplish data migration effectively, the data from
the old system must be mapped onto the new system [1]. This mapping provides
a design for data extraction [30] and data loading [19]. The procedure usually
c© Springer Nature Switzerland AG 2020
I. Brandic et al. (Eds.): ALGOCLOUD 2019, LNCS 12041, pp. 103–121, 2020.
https://doi.org/10.1007/978-3-030-58628-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58628-7_7&domain=pdf
https://doi.org/10.1007/978-3-030-58628-7_7

104 K. Subramani et al.

involves complex data manipulation [3], especially if the new system is not an
upgrade of the old system, but software produced by a different vendor. This is
because different vendors typically use different data formats.

Storage migration [17,24] is the data migration method that is used most
often. In the event that more efficient storage technologies become available, a
business may choose to upgrade its physical media to take advantage of it. This
results in having to move physical blocks of data from one tape or disk to a more
efficient media by using virtualization techniques. The data format and content
itself are usually unchanged since the same database management system (or file
system if the data is stored as a collection of files) is used before and after the
operation. Since the storage migration operation does not affect the applications,
we do not need to test these applications.

The database migration operation is performed when a company moves from
one database vendor to another, or when the database software being used is
upgraded to a newer version [4,10]. In the former case, a physical migration of
data is required. Along with data extraction and data loading, the migration
operation may involve complex data manipulation since different database man-
agement systems store data in different formats. Upgrading the existing system
to a newer version is less likely to require a physical data migration, but this can
occur with major upgrades.

When we migrate databases, we also need to consider how the migration
will affect the behavior of the database applications. The change in behavior
depends heavily on whether or not the data manipulation language or protocol
has changed. Modern application software is designed for all commonly used
database management systems. This means if we change the application software
for a database, we should not have to worry about testing the software itself.
However, we must test the database performance to make sure that it has not
been adversely affected. Scheduling the migration so as to minimize testing costs
has been studied in the literature [29]. We focus on an orthogonal concern in this
paper, viz., minimization of security risks [18]. Greater the period over which
the data is exposed, greater is the risk of security violations. We therefore focus
our efforts in minimizing data exposure, which in turn is achieved by minimizing
the number of shifts that are used in the process.

The principal contributions of this paper are as follows:

1. A modeling framework for capturing a host of specifications in database
migration. This model is similar to the framework in [29], but is different in
that it considers different objective functions and allows the specification of
inter-database timing constraints.

2. Identifying tractable and NP-hard models within the above-mentioned
framework.

3. Developing efficient heuristic algorithms that find near-optimal solutions for
most instances of the intractable models.

The rest of this paper is organized as follows: Sect. 2 formally describes the
models and problems that are analyzed in this paper. We commence our analysis
in Sect. 3 by establishing the computational complexities of various models.

Security-Aware Database Migration Planning 105

The experimental results are presented in Sect. 4. We conclude in Sect. 5, by
summarizing our contributions and identifying avenues for future research.

2 Notations and Problem Formulation

We have a collection of n databases B = {B1, B2, . . . , Bn}, the sizes of which
are given by the size-vector w = [w1, w2, . . . , wn]T with wi representing the size
of database Bi.

In the database migration process, the set of databases are clustered so that
the databases in the same cluster are migrated at the same time. The migration
of the databases is carried out in shifts. The cumulative size of the databases
that may migrate in shift i (i.e., the capacity of shift i) is denoted by li. The
shift capacity-vector l = [l1, l2, . . . , ln]T is also part of the input. In the worst
case, we may have to assign each database to a separate shift.

Associated with each database Bi is a schedule-time variable si, which spec-
ifies the shift Bi is scheduled to be moved. There exist temporal relationships
between pairs of databases which constrain their schedules. Typical constraints
are of the following form:

(i) Database B5 must be scheduled in one of the first 4 shifts. This is represented
as: s5 ≤ 4.

(ii) Database B3 must be scheduled to migrate no earlier than database B1.
This is represented as: s3 ≥ s1.

The temporal relationships, given as a list C of m constraints, are also part
of the input. If a constraint involves only one variable, it is called an absolute
constraint, whereas if a constraint involves two variables, it is called a relative
timing constraint. In our framework, we allow absolute constraints of the form
si ≤ k and si ≥ k for some integer k. Within relative constraints, our framework
supports both strict inequality constraints of the form si < sj and non-strict
inequality constraints of the form si ≤ sj .

Thus, the input to the Security-Aware Database Migration (SADM) problem
is the following triple: 〈w, l,C〉. Example 1 illustrates a potential input.

Example 1: Consider the following input:

〈(1,2,2,3)T, (5,7,10,12)T, [s1 < s2, s2 ≤ s3, s4 ≤ 3, s4 ≥ 3]〉.
In this example, there are four databases with sizes 1, 2, 2, and 3 respec-

tively. The l vector gives the capacities of the four shifts, i.e., the total size of
the databases that can migrate in each shift, as 5, 7, 10, 12. The C list gives
the four temporal constraints. The first constraint is a strict inequality relative
timing constraint, whereas the second is a non-strict inequality relative timing
constraint. The third and the fourth constraints are absolute constraints and
they together imply that database B4 must be scheduled to migrate in the third
shift.

There are several parameters associated with the SADM problem:

106 K. Subramani et al.

(i) Size of Databases (α) - The size of a database is a factor in the amount
of time required for its migration. This is because the database migration
operation must read the database at the original location, write it at the
new location, and then delete the original database. This means the size of
the database affects the number of databases that are migrated in the same
shift. It is always a good practice for companies to have databases with the
same size, but this is not always possible for every organization. This means
we need two size models associated with the databases.
(a) Constant (const) - In this model, all databases have the same size and

are equal to some fixed constant W .
(b) Arbitrary (arb) - In this model, the sizes of the databases are arbitrary.

(ii) Shift capacity (β) - During the database migration operation, some parts of
the database will be inaccessible. For some companies, there is no ideal time
to make a database unavailable. For instance, Facebook and Youtube have
users all over the world which means the database access rate is roughly uni-
form. In this case, regardless when a database becomes inaccessible, there
will be a subset of users who cannot access the database until the migra-
tion is complete. It is critical for these companies to perform the database
migration operation in small shifts to minimize user dissatisfaction. For
companies that operate during regular business hours (for instance, banks),
it is preferable for the databases to be unavailable when the companies are
closed rather than when they are open. In order to model the needs of several
different companies, we use two capacity models associated with shifts.
(a) Uniform (unif) - In this model, the capacity of each shift is the same

and is equal to a constant L, for all shifts (i.e., l = 〈L,L, . . . , L〉). We
note that this model suits better for the database migration needs of
companies that have uniform database access rates.

(b) Non-uniform (non-unif) - In this model, the total size of the databases
that may migrate in each shift is arbitrary. We note that this model
would be more suitable for the database migration needs of companies
that have non-uniform database access rates.

(iii) Inter-database relationship (γ) - The data entries of a database Bi and
another database Bj may be complementary in nature. In this situation,
the company would prefer databases Bi and Bj migrate in the same shift.
Consider a company, such as Youtube, that stores various media uploaded by
its users. A typical user of Youtube will search for some keywords and want
to see relevant videos. Two distinct databases Bi and Bj are substitutable
to the users if the databases store data (e.g., videos) with similar content. In
this case, the company will prefer these two databases to migrate in different
shifts, so that the information content of at least one of them is available at
all times. As far as temporal inter-database relationships are concerned, we
have the following three models:
(a) R = φ - In this model, we consider the scenario where there are no

temporal constraints (i.e., each database can migrate in any shift).
(b) R = abs - In this model, only absolute constraints are permitted.

Security-Aware Database Migration Planning 107

(c) R = rel - In this model, we consider the most general form of inter-
database relationships, where both absolute and relative timing con-
straints are permitted. If the data contents of the databases Bi and Bj

are complementary for the users of a company, the company may prefer
to schedule the migration of Bi and Bj to the same shift by using the
relative timing constraints si ≤ sj and sj ≤ si. If the data content of Bi

and Bj can be considered as substitutable for the users of a company,
the company may prefer to have one of the relative timing constraints
si < sj or si > sj to ensure that both Bi and Bj are not unavailable
simultaneously.

(iv) Optimization function (Θ) - There are two optimization functions that are of
interest in minimizing the security risks involved during database migration.
(a) The number of actually used shifts (used) - The SADM problem with the

objective of minimizing the number of actually used shifts addresses an
important vulnerability of data security. The database migration oper-
ation enables technical personnel to access all contents of the database
that will be migrated. Although the technical personnel will have proper
training to perform the database migration operation using the highest
possible level of security measures, performing the operation will even-
tually become routine. When this occurs, there is a potential risk that
the personnel will become careless and fail to ensure that all security
measures are properly handled before performing the database migra-
tion operation. Since accidentally leaking information content can have
severe repercussions, the database migration operation should not be
performed often. This optimization function aims to prevent potential
adverse consequences by minimizing the number of times the database
migration occurs. Notice that in this model, if the migrator assigns
databases to the first and the third shifts, but not to the second shift,
the total number of shifts actually used is 2.

(b) The index of the last shift used (last) - This optimization function is
designed to accommodate corporations that aim to finish the database
migration process as soon as possible. This is true in situations where
the companies have to pay for blocks of contiguous time. In this case, the
companies are charged for shifts whether or not they are used. Accord-
ingly, the goal is to finish the migration process as quickly as is feasible.
In the SADM problem in which the goal is to minimize the index of
the last shift used, if the migrator assigns databases to the first and the
third shifts, but not to the second shift, then the index of the last shift
used is 3.

Thus, a model of the security-aware database migration (SADM) problem
has four parameters, and it is specified as a 4-tuple 〈α | β | γ | Θ〉. For instance,
〈const | unif | φ | used〉 refers to the SADM problem in which all databases
have the same size, the shift capacities are uniform, there are no inter-database
timing relationships, and the goal is to minimize the number of shifts actually
used. For notational convenience we use ∗ as an entry of the 4-tuple when we

108 K. Subramani et al.

present a statement that is true for all the models for that entry. For instance,
the notation 〈∗ | ∗ | φ | last〉 refers to all 4 models of the SADM problem
in which there are no inter-database timing relationships, and the goal is to
minimize the index of the last shift used. The following is formal definition of
the SADM problem:

SADM: Given a triple 〈w, l,C〉 and a 4-tuple 〈α | β | γ | Θ〉, the goal is to
organize the migration of the databases in accordance with the size, capacity and
timing constraints given by 〈w, l,C〉 under the model 〈α | β | γ | Θ〉.

Given that we have 2 different models for sizes of databases, 2 different models
for shift capacities, 3 different models for inter-database timing relationships, and
2 different models for optimization functions; the SADM problem formulation
gives us a framework with a total of 24 different models, each of which is suitable
for database migration needs of different companies.

3 Computational Complexity Results

This section is devoted to establishing the computational complexities of the
models of the SADM problem. We first show by Theorem 1 that the SADM
problem is NP-hard for all the 12 models with arbitrary database sizes.

Theorem 1. The SADM problem is NP-hard for all the 12 models captured
by the notation 〈arb | ∗ | ∗ | ∗〉.
Proof. Notice that the models 〈arb | unif | φ | last〉 and 〈arb | unif | φ | used〉
are the most restricted models of 〈arb | ∗ | ∗ | last〉 and 〈arb | ∗ | ∗ | used〉,
respectively. Moreover, 〈arb | unif | φ | last〉 and 〈arb | unif | φ | used〉 are
equivalent in the sense that the optimal value of the optimization functions last
and used are the same when shift capacities are uniform and timing constraints
are absent. Thus, all we need to complete the proof is to give a strict reduction
from the optimization version of the BIN-PACKING problem to the SADM
problem under the model 〈arb | ∗ | ∗ | used〉.

In the optimization version of the BIN-PACKING problem, we are given a
bin size V and a list a1, . . . , an of sizes of the items to pack. The goal is to
find the smallest integer C such that there exists a C-partition S1 ∪ . . . ∪ SC of
{1, 2, . . . , n} subject to the constraint that

∑
i∈Sk

ai ≤ V , for all k = 1, . . . C.
Given an instance x of BIN-PACKING, we construct an instance y of the SADM
problem under the model 〈arb | ∗ | ∗ | used〉 as follows:

– The size of the databases in instance y are equal to the size of the items in
instance x, i.e., w = [a1, a2, . . . , an]T .

– The size of each shift in instance y is equal to the bin size in instance x, i.e.,
l = [V, V, . . . , V]T .

The reduction given above is a strict reduction, since any feasible solution to
instance y is mapped to a feasible solution to instance x with the same objective
function value. �	

Security-Aware Database Migration Planning 109

Corollary 1 follows since the reduction given in the proof of Theorem 1 is
an approximation-preserving strict reduction, and BIN-PACKING admits an
asymptotic PTAS while it does not admit a PTAS.

Corollary 1. The SADM problem does not admit a PTAS for any of the models
〈arb | ∗ | ∗ | ∗〉, unless P = NP. Furthermore, there is an asymptotic PTAS for
the SADM problem for the models captured by the notation 〈arb | unif | φ | ∗〉.

Due to Theorem 1, we focus on the models with uniform database sizes in
the rest of the section. We show by Theorem 2 that the optimal solution can
be found in O(n)-time for the 4 models with uniform databases sizes and no
temporal constraints.

Theorem 2. The SADM problem can be solved in O(n) time for all the 4 models
captured by the notation 〈const | ∗ | φ | ∗〉.
Proof. We prove the result by giving an O(n) algorithm for the 4 models cap-
tured by the notation 〈const | ∗ | φ | ∗〉 (see Algorithm 3.1). Since the models
under consideration have no temporal constraints, the list C is dropped from the
parameter list of Algorithm 3.1. All the databases in these models have the same
size, and W denotes the size of each database. If the optimization function is
used, shifts are renumbered with respect to their capacities in descending order
(with the COUNTING-SORT algorithm [5] in O(n)-time). They are left as they
are, if the optimization function is last. Algorithm 3.1 is a greedy algorithm that
assigns the maximum number of databases that can be assigned to each shift.
In particular, it assigns
 l1

W � databases to the first shift,
 l2
W � databases to the

second shift, and so on until all databases are assigned to a shift. It is easy to
see that Algorithm 3.1 runs in O(n)-time.

Function Models 〈const | ∗ | φ | ∗〉(〈w, l〉)
1: Let W denote the size of each database.
2: Let U , initialized to B, denote the set of unscheduled databases.
3: if The optimization function Θ is used then
4: Renumber the shifts with respect to their sizes in descending order.
5: end if
6: Initialize counter i = 0.
7: while (U �= ∅) do
8: i = i + 1.
9: Let D be a subset of � li

W
� databases of U .

10: Assign the set of databases D to shift i.
11: U = U − D.
12: end while

Algorithm 3.1: Polynomial Time Algorithm for the models 〈const | ∗ | φ | ∗〉.

110 K. Subramani et al.

Correctness: First assume that the optimization function Θ is used. Let s be
the number of shifts used by the schedule constructed by Algorithm 3.1. For the
purpose of contradiction, assume the optimal schedule uses k < s shifts. But
then there should be an optimal schedule that only uses the first k shifts since
the shifts are ordered with respect to their sizes in descending order. However,
no schedule can assign all the databases to the first k shifts, since otherwise, that
is what Algorithm 3.1 would do. Thus, the schedule returned by Algorithm 3.1
is optimal.

Let us now assume that the optimization function Θ is last. Let s be the
largest index of the shift used by the schedule constructed by Algorithm 3.1. For
the purpose of contradiction, assume the largest index of the shift used in the
optimal schedule is k for some k < s. No schedule can assign all the databases to
the first k shifts, since otherwise, Algorithm 3.1 that assigned as many databases
as can be assigned to the first k shifts would suffice. Thus, the schedule returned
by Algorithm 3.1 is optimal. �	

3.1 Models with Timing Constraints

In this section, we consider the 8 models with uniform database sizes and inter-
database timing constraints. We show that the SADM problem is NP-hard
in all the models with relative timing constraints. For the models with only
absolute constraints, we show that there is an O(m+n lg n) algorithm for the last
optimization function. The computational complexity, however, is not resolved if
the optimization function is used and there are only absolute constraints. Before
we proceed, we make the following definitions.

Definition 1. We define ri, the release-time of the database Bi, as k if the
most stringent lower-bounding absolute timing constraint for Bi is si ≥ k. If no
such constraint exists for Bi then its release-time is 1.

Definition 2. We define di, the deadline of the database Bi, as k if the most
stringent upper-bounding absolute timing constraint for Bi is si ≤ k. If no such
constraint exists for Bi then its deadline is n.

Notice that the release-time (deadline) of a database is defined as the earliest
(latest) shift it can be assigned without violating the absolute timing constraints.

Theorem 3 establishes that for the 2 models with last objective function,
optimal solution can be found in O(m + n · lg n)-time, where m is the number
of constraints and n is the number of databases.

Theorem 3. The SADM problem can be solved in O(m + n · lg n) time for the
2 models captured by the notation 〈const | ∗ | abs | last〉.

Proof Sketch: We prove Theorem 3 via an iterative algorithm. Our algorithm
first determines the release-time and deadline of each database via a pass over the
list of constraints C in O(m + n)-time. It then loops through the shifts starting
from the first one until all databases are assigned to a shift, and at each iteration

Security-Aware Database Migration Planning 111

assigns the databases with the earliest deadline among the already released ones
while respecting the shift capacity constraints. This can be accomplished in
O(n · lg n) time by using a heap data structure.

We next show by Theorem 4 that all the 4 models of the SADM problem with
relative timing constraints are NP-hard through a reduction from the classical
3-PARTITION problem [13].

Theorem 4. The SADM problem is NP-hard for all the 4 models captured by
the notation 〈const | ∗ | rel | ∗〉.
Proof. We first establish NP-hardness for the model 〈const | unif | rel | used〉
via a many-one reduction from the classical 3-PARTITION problem to the deci-
sion version of the SADM problem under the model 〈const | unif | rel | used〉.

In the classical 3-PARTITION problem, we are given a multiset of 3t positive
integers S = {x1, x2, . . . , x3t} with

∑
xi∈S xi = tD for some integer D, such that

each xi satisfies D
4 < xi < D

2 . The goal is to decide whether S can be partitioned
into t groups of size 3 such that each group sums to exactly D.

Given a 3-PARTITION instance, we construct the corresponding SADM
instance under the model 〈const | unif | rel | used〉 as follows:

– The SADM instance has tD databases with unit size, i.e., wi = 1 for each
database Bi. So, for every integer xi ∈ S of the 3-PARTITION instance, the
SADM instance has xi databases. The databases B1, B2, · · · , Bx1 correspond
to x1, the databases Bx1+1, · · · , Bx1+x2 correspond to x2, and so on.

– The shift capacities are uniform and the capacity of each shift is D, i.e., li = D
for each shift i. Since all databases have unit size, each shift can accommodate
D databases.

– For every xi ∈ S of the 3-PARTITION instance, the SADM instance has xi

non-strict inequality constraints that ensure all the corresponding databases
of xi are to be scheduled to migrate in the same shift. Precisely, SADM
instance has the constraints s1 ≤ s2 ≤ · · · ≤ sx1 ≤ s1 for x1, and the con-
straints s(∑i−1

j=1 xj)+1 ≤ s(∑i−1
j=1 xj)+2 ≤ · · · s∑i

j=1 xj
≤ s(∑i−1

j=1 xj)+1 for xi with
i ≥ 1. The constructed SADM instance has no other temporal constraints or
absolute constraints.

All we need to complete the proof is to show that the optimal value of the
constructed SADM instance is t if it corresponds to a “yes” instance of the
3-PARTITION problem, and higher otherwise.

Let I be an instance of the 3-PARTITION problem. Assume that I is a “yes”
instance. In I, the elements of S can be partitioned into t groups of size 3 such
that each group sums to exactly D. For any i with 1 ≤ i ≤ t, the corresponding
databases of the elements of S in group i can be scheduled to migrate in shift
i. Thus the optimal value of the constructed SADM instance is at most t. It
cannot be less than t by the generalized pigeonhole principle since there are tD
databases with unit size and the capacity of each shift is D.

Let us now assume that I is a “no” instance. For the purpose of contradiction,
we also assume the optimal solution to the corresponding SADM instance is at

112 K. Subramani et al.

most t. Since the optimal solution to the corresponding SADM instance cannot
be less than t by the generalized pigeonhole principle, it is t. Then, we have
exactly D databases in each used shift. For any i with 1 ≤ i ≤ t, consider the
set of databases assigned to the actually used shift with ith smallest index. For
any xj ∈ S, we have either all the databases corresponding to xj are in this
shift, or none due to relative timing constraints. Since for any xj ∈ S we have
D
4 < xj < D

2 , the set of databases in this shift are corresponding to the 3 integers
in S that adds up to D. We obtain a contradiction since this is true for every
used shift.

Notice that since the shift capacities are uniform and the relative timing con-
straints only constrain some subset of databases to migrate in the same shift, the
contents of any two shifts can be exchanged in the constructed SADM instance
without affecting the feasibility of the solution. Hence, a solution to the con-
structed SADM instance that uses t shifts can use the first t shifts for any t.
Thus, the reduction holds for the model 〈const | unif | rel | last〉. Since the
models 〈const | unif | rel | last〉 and 〈const | unif | rel | used〉 are the most
restricted models captured by the notation 〈const | ∗ | rel | ∗〉, the reduction
holds for all 4 of the models captured by the notation 〈const | ∗ | rel | ∗〉.

We should note that the size of the constructed SADM instance is polynomial
in the size of the given 3-PARTITION instance in the above reduction, if the
3-PARTITION instance is represented in unary. The proof is sound since the
3-PARTITION problem is strongly NP-hard. �	

4 Experimental Study

In this section we present our heuristic approaches and experimental results for
the models captured by the notation 〈arb | non − unif | ∗ | ∗〉. Instances are
generated in the following ways: i) assigning random numbers to parameters,
ii) assigning random numbers to the missing problem specific values of known
instances of related problems in the literature. We developed genetic algorithms
for the models under consideration. For each instance, the specific genetic algo-
rithm is executed 10 times and the best solution is fed to CPLEX as the initial
solution to the Integer Program (IP) presented in Sect. 4.2. An improved solu-
tion and a lower-bound for each instance is obtained from CPLEX with 5 min
time limit. In the rest of the section, we present the data generation process, the
mathematical formulation, genetic algorithms we developed and the analysis of
the experimental results.

4.1 Data Generation Process

For the models with no timing constraints, we generated 360 instances
(10 instances per instance type) by assigning random numbers to parameters
by a similar approach used in [27]. Additionally, 84 instances are generated by
choosing random values for shift capacities from 3 different ranges using the

Security-Aware Database Migration Planning 113

Hard28 [6] benchmark instances, which is known as challenging for the BIN-
PACKING problem [26]. The range of parameters, where the values are chosen
uniformly at random, of the 36 instance types are listed below:

– Number of databases and shifts: n ∈ {50, 100, 250, 500}.

– Shift capacities: li ∈ [0.34L, 1.66L) , [0.5L, 1.5L) , [0.67L, 1.33L), with L
being the expected capacity of a shift. L is selected as 100 in randomly gen-
erated instances.

– Database sizes: wi ∈ [25, 39], [20, 119], [40, 99].

For the models with only absolute constraints, the 444 (=360+84) instances
for the models with no timing constraints are expanded with deadline and
release-time values for each database. For each database Bi, the deadline di
is chosen uniformly at random from the range [1, n], and then the release-time
ri is chosen uniformly at random from the range [1, di].

For the models with relative timing constraints, a total of medium and large-
sized 600 instances are generated by modifying medium and large-sized 200
instances constructed for the Simple Assembly Line Balancing Problem (SALBP)
in [25] as follows:

– The precedence relations of SALBP instances are randomly converted into
strict or non-strict inequality constraints.

– The task times of the SALBP instances are used as the size of databases.
– The cycle time in SALBP instances are constant and equal to 1000. In the

SADM instances, shift capacities are selected uniformly at random from the
following 3 ranges: [340, 1665], [500, 1499], [670, 1329].

– Each database is assigned a deadline or a release-time constraint with proba-
bility 0.16, and both a deadline and release-time constraint with probability
0.04.

Notice that three corresponding SADM instances with relative constraints
are constructed for each SALBP instance. Half of the instances are medium-
sized (n = 50), and the other half are large-sized (n = 100). If a database has
exactly one of deadline or a release-time, it is chosen uniformly at random from
the range [1, n]. If a database has both release-time and deadline, they are chosen
as in the models with only absolute constraints. In our experiments, infeasible
instances are replaced with additional feasible instances generated with the same
procedure.

4.2 Mathematical Formulations

In order to measure the performance of our heuristic algorithms, we compare
the solutions returned by them against the lower-bound obtained from CPLEX
by using the following mathematical formulation.

114 K. Subramani et al.

minimize z
subject to
n∑

j=1

xij = 1, ∀i = 1, ..., n (1)

n∑

i=1

wi · xij ≤ lj · yj , ∀j = 1, ..., n (2)

n∑

j=1

j · xij ≤ di, ∀i = 1, ..., n (3)

n∑

j=1

j · xij ≥ ri, ∀i = 1, ..., n (4)

n∑

j=1

j · xkj ≤
n∑

j=1

j · xij , ∀i = 1, ..., n, ∀k ∈ NIi (5)

n∑

j=1

j · xkj <

n∑

j=1

j · xij , ∀i = 1, ..., n, ∀k ∈ SIi (6)

n∑

j=1

yj = z, (7)

j · yj ≥ z, ∀j = 1, ..., n (8)
xij ∈ {0, 1}, ∀i, j = 1, ..., n (9)
yj ∈ {0, 1}, ∀j = 1, ..., n (10)

Decision variable xij equals to 1, if Bi is assigned to shift j, and 0 otherwise.
Decision variable yj equals to 1, if shift j is used, and 0 otherwise.

Constraint 1 ensures that each database is assigned to a shift. Shift capac-
ities are enforced by constraint 2. Constraints 3 and 4 enforce absolute timing
constraints, where di (ri) represents the deadline (release-time) of database Bi.
Constraints 5 and 6 enforce relative timing constraints, where NIi (SIi) repre-
sents the set of non-strict (strict) inequalities of the form sk ≤ si (sk < si). For
models with optimization function used, constraint 7 forces z to be the number
of actually used shifts. For models with optimization function last, constraint 8
enforces z to be greater than or equal to the index of the last used shift.

For the models without any timing constraints, our mathematical formu-
lation contains the constraints 1, 2, 9 and 10. For the models with absolute
timing constraints, our mathematical formulation contains the constraints 1–4,
9 and 10. For the models with both absolute and relative timing constraints, our
mathematical formulation contains the constraints 1–6, 9 and 10. Additionally,
constraint 7 is used if the optimization function is used, and constraint 8 is used
otherwise.

Security-Aware Database Migration Planning 115

4.3 Genetic Algorithms

A genetic algorithm is typically specified by its following parts: fitness func-
tion, encoding scheme, initial population generation, and the production of next
generations. In what follows, we explain our design choices for each part.

Fitness Function: Every genetic algorithm uses a fitness function to evaluate the
quality of a solution, which is referred to as the fitness of a solution. In order to
distinguish solutions with the same objective function value, fitness functions are
designed as a function of the objective function value and some problem specific
criteria. We used the following three problem specific criteria in our design of
the fitness function.

The first criterion used is similar in nature to the squared bin efficiency [9]
introduced for the BIN-PACKING problem. It aims to produce solutions with
nearly full and nearly empty bins instead of half-full bins, since nearly empty
bins can be eliminated more easily. Also nearly empty bins could potentially take
more additional items than nearly half-full bins. This can be directly translated
into SADM problem as squared shift efficiency (SSE):

SSE =
n∑

j=1

(Uj/Lmax)2 ,

where Uj denotes the cumulative sizes of the databases assigned to shift j, and
Lmax is the largest shift capacity.

The second criterion makes use of the maximum of the remaining capacities
of the used shifts, which we denote by Rmax. We use Rmax to determine the
potential of a solution to eliminate a shift. If there is a shift j with Uj ≤ Rmax,
the databases assigned to shift j can be moved to the shift with Rmax available
capacity. The potential is defined as follows:

potential =
1

2 + Rmax

The third criterion penalizes solutions that violate constraints. For the 4
models captured by the notations 〈arb | non − unif | φ | ∗〉 and 〈arb | non −
unif | abs | ∗〉, it is easy and effective to allow only shift capacity constraint
violations. On the other hand, for the remaining 2 models captured by the nota-
tion 〈arb | non − unif | rel | ∗〉, finding a feasible solution is harder and
allowing not only the shift capacity constraint violations, but also the abso-
lute and relative timing constraint violations leads to obtaining better solutions
than otherwise. Note that in the final solution returned by the genetic algo-
rithm, there would be no constraint violations. Penalty is defined as the function
(1 + CP) · (1 + AP) · (1 + RP), where capacity penalty (CP), absolute penalty
(AP), and relative penalty (RP) are defined as follows:

– Capacity Penalty(CP) =
∑n

j=1 e(j), where e(j) =

{
0, if Uj ≤ lj

Uj − lj , otherwise

116 K. Subramani et al.

– Absolute Penalty(AP) = number of violated absolute timing constraints
– Relative Penalty(RP) = number of violated relative timing constraints

The fitness function is then defined as follows:

fitness =
SSE

(z + potential) · penalty

where z represents the optimization function value.

Encoding Scheme: Our genetic algorithms use the group-based encoding scheme
since it is known to perform better than the alternatives, i.e., bin-based (shift-
based) and object-based encodings, for the BIN-PACKING problem [9]. Addi-
tionally, application of the crossover operator is time efficient when the group-
based encoding scheme is used. In the group-based encoding scheme, each gene
represents the group of databases that are assigned to the same shift. In the
example of Fig. 1, the first gene G1 consists of the database B1, which is the
only database assigned to the first shift. The second gene G2 consists of the
databases B2, B3 and B4, which are assigned to the second shift.

B1 B2 B3 B4

G1 G2

Fig. 1. An example for the group-based encoding scheme.

Initial Population Generation: Initial solutions are generated by a combination
of the FirstFit (FF) and the FirstFitDecreasing (FFD) [7] heuristics with random
shuffling of databases or limiting the usable shifts. For the models 〈arb | non −
unif | φ | last〉 and 〈arb | non − unif | abs | last〉, 99 initial solutions are
generated by first randomly shuffling databases and then using the FF heuristic.
1 initial solution is generated using the FFD heuristic. The only difference in
the models 〈arb | non − unif | φ | used〉 and 〈arb | non − unif | abs | used〉 is
that the shifts are sorted in non-increasing order with respect to their capacities
before FF and FFD heuristics are used. For the models with relative timing
constraints, i.e., 〈arb | non − unif | rel | ∗〉, 250 initial solutions are generated
by setting start index to 0, 1, . . . , 249 and using FF heuristic. The first start index
shifts are considered only if a database cannot be assigned to the remaining shifts
without violating a constraint. Additional 250 initial solutions are generated by
setting start index to an integer randomly selected from [0, n].

Production of Next Generation: While producing the next generation, elitism
rule is used and fittest 10% of the solutions are transferred to the next generation
directly. Rest of the 90% of the population is replaced by offsprings created from

Security-Aware Database Migration Planning 117

2 parents that are selected via a 2-way tournament. To produce offsprings, we
use an extended version of the approach in [26] since in our problem shifts have
varying capacities. Let Uj denote the cumulative size of the databases assigned
to shift j. Procedure first sorts both parents’ shifts in non-increasing order with
respect to Uj , then similar to the MERGE procedure of the MERGE-SORT
algorithm [5], combines shifts by selecting the shift with largest Uj value by
comparing the left-most unprocessed shifts of both parents. Selected shift is
discarded if one of the followings holds: i) the shift is already passed to the
offspring, ii) any database in the shift is already assigned to another shift of the
offspring, iii) the capacity constraint of the shift is violated, iv) the optimization
function value of the offspring is not better than both of its parents. If the shift
is not discarded, it is passed to the offspring. After this process some databases
might be left unassigned. These databases are assigned using the FFD and the
FF heuristics to create 2 offsprings, fitter one of which is returned. After an
offspring is created, a local search procedure inspired by MTP’s dominance rule
for the BIN-PACKING problem [20] is applied.

In this local search procedure, the 3 shifts with the smallest load are emptied
out if the optimization function is used. For the optimization function (last) the
last 3 shifts are emptied out instead. Then procedure tries to replace unassigned
databases with either databases with less cumulative size or more databases
with same cumulative size from already used shifts. This approach aims to
improve the shift efficiency and increase the probability of placing unassigned
databases. The procedure tries to replace databases in groups of m since one-to-
one replacements are less likely. To illustrate, at most m unassigned databases
replace at most m databases all of which assigned to the same shift, in a sin-
gle replacement. The procedure searches for the best replacement exhaustively.
Quality of the replacement and the time spent for finding the best replacement
increase exponentially as m increases. Thus m is selected as 2 since it offers
the best time-quality trade-off in our case. If no further replacement is possible,
remaining unassigned databases are assigned using the FFD heuristic. The local
search procedure is reiterated if the previous iteration increased the fitness of the
solution.

4.4 Experimental Setup

All algorithms are written in Java, compiled and run using JDK version 11.01
with 12 GB heap size. Integer Program is created using CPLEX Java API and run
with 12 GB memory limit (after reaching memory limit, CPLEX starts swapping
and compressing). All test are executed on the same computer which has 3.7 Ghz
(4.3 Ghz Turbo) 64-bit AMD Ryzen 7 2600X 6-core 12-thread CPU and 16 GB
DDR4 3200 MHz RAM running Windows 10 Education. CPLEX version 12.62
is used.

118 K. Subramani et al.

4.5 Results and Analysis

Our genetic algorithms terminated under 60 s for all instances. The solutions
returned by the genetic algorithms are used to warm start the integer program,
which is executed with 5 min time limit. We present a comparison of the quality of
the following solutions: i) solution returned by the genetic algorithm, ii) solution
returned by CPLEX on the IP presented in Sect. 4.2 with 5 min time limit, where
the solution to the genetic algorithm is used as the initial solution, iii) the lower
bound for the optimal solution returned by the CPLEX.

Table 1. Comparison of genetic algorithm and lower bound

〈φ| used〉 〈abs| used〉 〈rel| used〉 〈φ| last〉 〈abs| last〉 〈rel| last〉
Max %GAP 9.56 13.95 20.93 6.32 1.42 8.83

Avg %GAP 2.73 4.53 9.04 1.29 0.15 2.04

StdDev 2.03 2.68 4.71 1.43 0.31 1.95

Table 1 provides a comparison of the objective function values of the solutions
returned by the genetic algorithms and that of the lower bound provided by
CPLEX. For all instances, the genetic algorithm produced solutions that are
close to the optimal.

Table 2. Comparison of CPLEX after genetic algorithm and lower bound

〈φ| used〉 〈abs| used〉 〈rel| used〉 〈φ| last〉 〈abs| last〉 〈rel| last〉
Max %GAP 8.25 8.51 11.29 4.45 0.22 0.24

Avg %GAP 1.70 1.36 2.77 0.60 0.15 0.04

StdDev 2.02 1.69 2.48 0.91 0.31 0.06

Table 2 provides a comparison of the objective function values of the solutions
returned by the CPLEX (executed 5 min time limit and the solution returned
by the genetic algorithm is used as the initial solution) and that of the lower
bound provided by CPLEX. We see that CPLEX significantly improved the
initial solutions.

5 Conclusion

We introduced a variant of the database migration problem called the Security-
Aware Database Migration (SADM) problem. The database migration problem
has been studied from the perspective of test cost minimization; [29] documents
several results with respect to this objective. Here, we focused on two optimiza-
tion measures, viz., minimizing the total number of shifts used and minimizing

Security-Aware Database Migration Planning 119

the index of the last shift used. Both these optimization measures arise in the
context of minimizing security risks. All the models in our framework except
the ones captured by the notation 〈const | ∗ | abs | used〉 have been classified
as being either in P or NP-hard. For various NP-hard models, we devel-
oped genetic algorithms that produce solutions that are within at most 9.49% of
the optimal in most of the cases. These solutions are further improved by using
CPLEX and the improved solutions are within 3.67% of the optimal in more than
85% of the cases. In future work, we will focus on establishing the computational
complexity of the models captured by the notation 〈const | ∗ | abs | used〉.

References

1. Behm, A., Geppert, A., Dittrich, K.R.: On the migration of relational schemas and
data to object-oriented database systems. Technical report, University of Zurich
(1997)

2. Brodal, G.S., Frigioni, D., Marchetti-Spaccamela, A. (eds.): WAE 2001. LNCS, vol.
2141. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44688-5

3. Chatterjee, A., Segev, A.: Data manipulation in heterogeneous databases. SIG-
MOD Rec. 20(4), 64–68 (1991)

4. Chon, H.D., Agrawal, D., El Abbadi, A.: Data management for moving objects.
IEEE Data Eng. Bull. 25(2), 41–47 (2002)

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. The MIT Press, Cambridge (2009)

6. Delorme, M., Iori, M., Martello, S.: BPPLIB: a library for bin packing and cut-
ting stock problems. Optim. Lett. 12(2), 235–250 (2017). https://doi.org/10.1007/
s11590-017-1192-z

7. Dósa, G., Sgall, J.: First fit bin packing: a tight analysis. In: 30th International
Symposium on Theoretical Aspects of Computer Science, STACS 2013, Kiel,
Germany, 27 February–2 March 2013, pp. 538–549 (2013)

8. Drumm, C., Schmitt, M., Do, H.H., Rahm, E.: Quickmig: automatic schema match-
ing for data migration projects. In: Proceedings of the Sixteenth ACM Conference
on Information and Knowledge Management, CIKM 2007, Lisbon, Portugal, 6–10
November 2007, pp. 107–116 (2007)

9. Falkenauer, E.: A hybrid grouping genetic algorithm for bin packing. J. Heuristics
2(1), 5–30 (1996)

10. Ferrandina, F., Meyer, T., Zicari, R., Ferran, G., Madec, J.: Schema and database
evolution in the O2 object database system. In: VLDB 1995, Proceedings of 21th
International Conference on Very Large Data Bases, Zurich, Switzerland, 11–15
September 1995, pp. 170–181 (1995)

11. Gandhi, R., Halldórsson, M.M., Kortsarz, G., Shachnai, H.: Improved results for
data migration and open shop scheduling. In: Dı́az, J., Karhumäki, J., Lepistö, A.,
Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 658–669. Springer, Heidel-
berg (2004). https://doi.org/10.1007/978-3-540-27836-8 56

12. Gandhi, R., Mestre, J.: Combinatorial algorithms for data migration to minimize
average completion time. Algorithmica 54(1), 54–71 (2009)

13. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, New York (1979)

https://doi.org/10.1007/3-540-44688-5
https://doi.org/10.1007/s11590-017-1192-z
https://doi.org/10.1007/s11590-017-1192-z
https://doi.org/10.1007/978-3-540-27836-8_56

120 K. Subramani et al.

14. Goldman, R., McHugh, J., Widom, J.: From, semistructured data to XML: migrat-
ing the lore data model and query language. In: ACM SIGMOD Workshop on the
Web and Databases, WebDB 1999, Philadelphia, Pennsylvania, USA, 3–4 June
1999. Informal Proceedings, pp. 25–30 (1999)

15. Golubchik, L., Khuller, S., Kim, Y.-A., Shargorodskaya, S., Wan, Y.-C.J.: Data
migration on parallel disks. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS,
vol. 3221, pp. 689–701. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-30140-0 61

16. Hall, J., Hartline, J.D., Karlin, A.R., Saia, J., Wilkes, J.: On algorithms for efficient
data migration. In: Proceedings of the Twelfth Annual Symposium on Discrete
Algorithms, Washington, DC, USA, 7–9 January 2001, pp. 620–629 (2001)

17. Hirofuchi, T., Ogawa, H., Nakada, H., Itoh, S., Sekiguchi, S.: A live storage migra-
tion mechanism over WAN for relocatable virtual machine services on clouds. In:
9th IEEE/ACM International Symposium on Cluster Computing and the Grid,
CCGrid 2009, Shanghai, China, 18–21 May 2009, pp. 460–465 (2009)

18. Jensen, M., Schwenk, J., Gruschka, N., Iacono, L.L.: On technical security issues
in cloud computing. In: IEEE International Conference on Cloud Computing,
CLOUD 2009, Bangalore, India, 21–25 September 2009, pp. 109–116 (2009)

19. Khuller, S., Kim, Y.A., Wan, Y.J.: Algorithms for data migration with cloning. In:
Proceedings of the Twenty-Second ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, San Diego, CA, USA, 9–12 June 2003, pp.
27–36 (2003)

20. Martello, S., Toth, P.: Lower bounds and reduction procedures for the bin packing
problem. Discret. Appl. Math. 28(1), 59–70 (1990)

21. McBrien, P., Poulovassilis, A.: Automatic migration and wrapping of database
applications - a schema transformation approach. In: Proceedings of Conceptual
Modeling - ER 1999, 18th International Conference on Conceptual Modeling, Paris,
France, 15–18 November 1999, pp. 96–113 (1999)

22. Meier, A.: Providing database migration tools - a practicioner’s approach. In:
VLDB 1995, Proceedings of 21th International Conference on Very Large Data
Bases, Zurich, Switzerland, 11–15 September 1995, pp. 635–641 (1995)

23. Myllymaki, J.: Effective web data extraction with standard XML technologies. In:
Proceedings of the Tenth International World Wide Web Conference, WWW 10,
Hong Kong, China, 1–5 May 2001, pp. 689–696 (2001)

24. Narayanan, D., Thereska, E., Donnelly, A., Elnikety, S., Rowstron, A.I.T.: Migrat-
ing server storage to SSDs: analysis of tradeoffs. In: Proceedings of the 2009
EuroSys Conference, Nuremberg, Germany, 1–3 April 2009, pp. 145–158 (2009)

25. Otto, A., Otto, C., Scholl, A.: Systematic data generation and test design for
solution algorithms on the example of salbpgen for assembly line balancing. Eur.
J. Oper. Res. 228(1), 33–45 (2013)

26. Quiroz-Castellanos, M., Cruz Reyes, L., Torres-Jiménez, J., Santillán, C.G., Fraire
Huacuja, H.J., Alvim, A.C.F.: A grouping genetic algorithm with controlled gene
transmission for the bin packing problem. Comput. OR 55, 52–64 (2015)

27. Scholl, A., Klein, R., Jürgens, C.: Bison: a fast hybrid procedure for exactly solving
the one-dimensional bin packing problem. Comput. OR 24(7), 627–645 (1997)

28. Seo, B., Zimmermann, R.: Efficient disk replacement and data migration algorithms
for large disk subsystems. TOS 1(3), 316–345 (2005)

https://doi.org/10.1007/978-3-540-30140-0_61
https://doi.org/10.1007/978-3-540-30140-0_61

Security-Aware Database Migration Planning 121

29. Subramani, K., Caskurlu, B., Velasquez, A.: Minimization of testing costs in
capacity-constrained database migration. In: Algorithmic Aspects of Cloud Com-
puting - 4th International Symposium, ALGOCLOUD 2018, Helsinki, Finland,
20–21 August 2018. Revised Selected Papers, pp. 1–12 (2018)

30. Wang, J., Lochovsky, F.H.: Data extraction and label assignment for web
databases. In: Proceedings of the Twelfth International World Wide Web Con-
ference, WWW 2003, Budapest, Hungary, 20–24 May 2003, pp. 187–196 (2003)

Scalable and Hierarchical Distributed
Data Structures for Efficient Big Data

Management

Spyros Sioutas1, Gerasimos Vonitsanos1, Nikolaos Zacharatos1,
and Christos Zaroliagis1,2(B)

1 Department of Computer Engineering and Informatics,
University of Patras, 26504 Patras, Greece

{sioutas,mvonitsanos,zacharato,zaro}@ceid.upatras.gr
2 Computer Technology Institute and Press “Diophantus”,

Patras University Campus, 26504 Patras, Greece

Abstract. In this work, we survey state of the art hierarchical dis-
tributed data structures for the efficient handling of big data, in sce-
narios where the dominant operation is range queries which have to be
answered in real-time. Our main focus is on structures that exhibit stable
scalability.

1 Introduction

A great challenge faced by most organizations nowadays concerns their data
management. Due to the data endlessly flowing in from sources such as social
media activities, Internet of Things (IoT) [6] devices, online streaming services,
location based web information, mobile phone usage and consumer preferences
expressed on the web, a data-driven revolution is taking place. Analyzing all
that information fast can lead to:

– Better decision making based on data-driven insights
– Increased productivity
– Reduced production cost
– Quick fraud detection
– Better customer service

In order to achieve efficient big data management, several infrastructures have
been developed. The most popular ones are decentralized systems and MapRe-
duce [5] models.

Decentralized systems, although existed for many years, they have become
very popular nowadays and are promoted as the future of Internet network-
ing. They are widely used for sharing resources and store very large data sets,
using systems of small computers instead of large costly servers. Typical exam-
ples include cloud computing environments, peer-to-peer (P2P) systems and the
Internet.
c© Springer Nature Switzerland AG 2020
I. Brandic et al. (Eds.): ALGOCLOUD 2019, LNCS 12041, pp. 122–160, 2020.
https://doi.org/10.1007/978-3-030-58628-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58628-7_8&domain=pdf
https://doi.org/10.1007/978-3-030-58628-7_8

Scalable and Hierarchical Distributed Data Structures for Big Data 123

In decentralized systems, data are stored at the network nodes and the most
crucial operations are data search and data updates. A decentralized network is
represented by a graph, a logical overlay network, where its nodes correspond to
the network nodes, while its arcs may not correspond to existing communication
links, but to communication paths. The complexity (cost) of an operation is
measured in terms of the number of messages issued during its execution (internal
computations at nodes are considered insignificant). A typical assumption is
that messages between nodes are of constant size, they are sent through the
communication links, and that communication is asynchronous. Moreover, there
is an upper bound on the time needed for a node to send a message and receive an
acknowledgement. This facilitates the identification of communication problems
(e.g., when communication links or nodes are down).

With respect to its structure, the overlay supports the operations Join (of a
new node v; v communicates with an existing node u in order to be inserted into
the overlay) and Departure (of an existing node u; u leaves the overlay announc-
ing its intent to other nodes of the overlay). Moreover, the overlay implements
an indexing scheme for the stored data, supporting the operations Insert (a
new element), Delete (an existing element), Search (for an element), and Range
Query (for elements in a specific range). Throughout this paper, we shall denote
by N the number of network nodes and by n the size of data (N � n).

In terms of efficiency, an overlay network should address the following issues:

– Fast queries and updates: updates and queries must be executed in a minimal
number of communication rounds, using a minimal number of messages.

– Ordered data: keeping the data in order facilitates the implementation of
various enumeration queries when compared to a simple dictionary that can
only answer membership queries.

– Size of nodes: the size of a node is the routing information (links and related
data) maintained by this node and it is not related to the number of data
elements stored in it. Keeping the size of a node small allows for more efficient
update operations, but in general reduces the efficiency of access operations
while aggravating fault tolerance.

– Fault tolerance: the structure should be able to discover and heal failures at
nodes or links.

– Load balancing: it refers to the distribution of data elements on the nodes.
The goal of load balancing is to distribute equally the n elements stored in the
N nodes of the network (typically N � n). That is, if there are N nodes and
n data elements, ideally each node should carry approximately k elements,
where �n/N� ≤ k ≤ �n/N� + 1.

MapReduce is a programming model and an associated implementation for
processing and generating big data sets with a decentralized algorithm on a
cluster (collection of compute servers or nodes), with a designated node as master
and the other nodes designated as workers. A MapReduce task consists usually
of the following five-step computation.

124 S. Sioutas et al.

1. Partition: input is being split and assigned to each worker.
2. Map: each worker node applies the map function to its local data, and writes

the output to a temporary storage.
3. Shuffle: worker nodes redistribute data based on the output keys (produced

by the map function), such that all data belonging to one key is located on
the same worker node.

4. Reduce: worker nodes now process each group of output data, per key, in
parallel.

5. Join Results: workers combine their local output data to create the final
output result.

The reason why both decentralized architecture networks and MapReduce
models became so popular is that in order to increase the computing power of
the network/cluster, you can simply add more nodes, so that tasks are divided
to more nodes and therefore executed faster, compared with the client-server
model, where a brand new server machine is required.

Range query processing in decentralized network environments is a notori-
ously difficult problem to solve both efficiently and scalably. In cloud infrastruc-
tures, a most significant and apparent requirement is the monitoring of thousands
of computer nodes, which often requires support for range queries: consider range
queries issued in order to identify under-utilized nodes so as to assign them more
tasks, or to identify overloaded nodes so as to avoid bottlenecks in the cloud.

Fig. 1. Two dimensional range query (Color figure online)

The most fundamental, one-dimensional query (also known as the interval
query) involves retrieving all records x where their value is between an upper
bound b1 and a lower bound b2, that is, b1 ≤ value(x) ≤ b2. Evidently, gen-
eralizations to higher dimensions are derived easily. A multi-dimensional query

Scalable and Hierarchical Distributed Data Structures for Big Data 125

involves retrieving all records x = (x1, . . . , xd) for which bi1 ≤ value(xi) ≤ bi2, ∀
1 ≤ i ≤ d, where d denotes the number of dimensions, bi1 and bi2 denote the lower
and upper bounds on each dimension of the query respectively, and value(xi)
denotes the value of the elements in the i-th dimension. Each query forms a
hyper-rectangle of d dimensions which contains all the elements that satisfy it.
For instance (cf. Fig. 1), the two-dimensional range query forms a rectangle on
the plane. Red points represent those elements that satisfy the query.

The two dimensional query is very popular because it can answer geographical
as well as trajectory queries. Multi-dimensional queries are typically used when
browsing online for products, where every filter that you apply is one more
dimension on the range query. Many applications require the management and
the analysis of massive multi-dimensional datasets.

Overlay structures for decentralized systems can be divided in two big cate-
gories: hash-based structures and hierarchical-based structures. Both have their
pros and cons, therefore choosing one highly depends on the needs of the users
and the applications considered. Hash-based structures (e.g., CAN [15], Chord
[19]) use probabilistic methods to distribute the workload among nodes equally,
have good exact match query times, but slow range query times [22] since hashing
destroys the ordering. On the other hand, hierarchical-based structures support
range queries more naturally and efficiently as well as a wider range of operations,
since they maintain the ordering of data, but lack the simplicity of hash-based
systems.

Due to the importance of the range query problem, we focus in this work
on hierarchical overlay structures that support directly range and more complex
queries. The main goal of this work is to present and review state-of-the-art
structures for efficient big data management that exhibit stable scalability.

Over the last years, many data structures have been implemented to address
the range query problem on decentralized systems as well as to address the afore-
mentioned efficiency issues of overlay structures. In this framework, we review
four important hierarchical structures with their variations, and a ring based
one. In particular, we review the following structures.

1. Hierarchical Structures
(a) BATON [9] and BATON* [8]
(b) D2-Tree [3] and D3-Tree [16]
(c) ART [18] and ART+ [17]
(d) SPIS (SPark-based Interpolation Search Tree) [14]

2. Ring-based structures
(a) P-Ring [4]

The rest of the paper is organized as follows. In Sect. 2 we survey the most
popular hierarchical data structures, while in Sect. 3 we survey the ring-based
structures. In Sect. 4 we provide a comparison of all structures. We conclude in
Sect. 5.

126 S. Sioutas et al.

2 Hierarchical Tree-Based Structures

In this section, we present the hierarchical tree-based structures BATON [9],
BATON* [8], D2-Tree [3], D3-Tree [16], ART [18], ART+ [17], and SPIS [14].

2.1 BATON

2.1.1 Structure
The Balance Tree Structure for P2P Networks (BATON) [9] is the first overlay
network based on a balanced tree structure that can support both exact match
and range queries. It is based on a binary balanced tree structure in which each
node of the tree is maintained by a node. Each node in the network (cf. Fig. 2)
stores a link to its parent, a link to its left child, a link to its right child, a link
to its left adjacent node, a link to its right adjacent node, a left routing table to
selected nodes on its left hand side at the same level, and a right routing table to
selected nodes on its right hand side at the same level. While the tree structure
is binary, it has scalability and robustness similar to that of the B-tree.

Fig. 2. A node of the BATON structure

Each node of the BATON structure is associated with a level and a number.
The level of the root node is 0, its immediate children are at level 1 and so
on. The level of any node is one greater than the level of its parent. Hence the
maximum level number in the tree is one less than the height of the tree (which
can not be greater than 1.44 log N [11]).

At level L there are at most 2L nodes in a binary tree. The nodes are num-
bered from 1 to 2L (from left to right) within each level, regardless of whether
there is a node currently instantiated at that position. The pair of level and
number precisely determine the location of a node in the binary tree.

Every physical compute node has an IP address or some other network ID,
which can be used to locate the node and communicate with it. Thus every node

Scalable and Hierarchical Distributed Data Structures for Big Data 127

has a logical ID, which consists of number and level, and a physical ID which
consists of its IP address.

The links that each node maintains are the physical IDs of each node. Links
to selected neighbors are maintained by means of two special sideway routing
tables: a left routing table and a right routing table. Each of these routing tables
contains links to nodes at the same level with numbers that are less (respectively
greater) than the number of the source node by a power of 2. The j-th element
in the left (right) routing table at node numbered m contains a link to the node
at number m − 2j−1 (respectively m + 2j−1) at the same level in the tree. If
there is no such node, an entry is still made in the routing table, but marked as
null. A routing table is considered full if all valid links are not null.

Adjacency links are based on an in-order traversal of the tree. Given a node
x, the node immediately prior to it in the traversal is left adjacent to it, and the
node immediately after x is right adjacent to it. Note that adjacent nodes may
be at different levels of the tree.

2.1.2 Node Join/Departure
A new node that wants to join the network, must know at least one node inside
the network. The former sends to the latter a JOIN request which is being carried
out in two phases. The first phase is to determine where the new node should
join. The second phase is to insert the new node at a specific place and update
all the necessary links of the network. The complexity of this action is log N
steps for finding a place for the joining node and O(log N) cost for updating the
routing tables (which is more efficient than other P2P systems, which usually
require O(log2 N) for updating the routing tables).

Only leaf nodes can voluntarily leave the network, and only if their departure
will not affect the tree balance. In any other case, any node that wishes to leave
the network must find a replacement for itself, which can only be a leaf whose
absence does not affect the tree balance. If the leaf node can leave without
disrupting the tree balance, it sends a LEAVE message to is neighbor nodes, so
they can update their routing tables. If a leaf node (that can not leave because
it will disrupt the tree balance) or a inner node wishes to leave, then it sends a
FIND REPLACEMENT message to the network starting from the same level
and moving down in order to find a leaf node that will take their place. This
process takes at most as many steps as the height of the tree which is O(log N).
The BATON needs log N steps to find a replacement node and O(log N) cost
for updating the routing tables.

2.1.3 Fault Tolerance
In case of a node failure, the node’s IP will become unreachable. The first node
to discover an unreachable IP must report it to its father which takes care to
manage the node failure and update the routing tables.

It has already been described how a node failure is handled. Fault tolerance
denotes the ability of the BATON structure to continue its operation, by routing
the messages around the missing node. There are two axes in which messages

128 S. Sioutas et al.

can travel in BATON, vertical and horizontal. The horizontal axis uses the left
and right routing tables links of the nodes, while the vertical axis uses the par-
ent/children and adjacency links. The horizontal axis is naturally fault tolerant,
since there is a logarithmic expansion of links and therefore a larger number of
paths. The vertical axis is rendered fault tolerant because it can create paths that
include different levels of the tree. These additional links that BATON stores
suffice to provide efficient recovery even with a large number of node failures.

2.1.4 Load Balancing
The BATON is also equipped with a load balancing mechanism. Its goal is to
adjust the range of values in the nodes in order to achieve an equal computational
load across the network. This is accomplished through data migrations between
adjacent nodes (for internal and leaf nodes), and node re-position in the tree
(only for leaf nodes).

Fig. 3. Range of values for each node of BATON

2.1.5 Queries
In order to answer exact and range queries, a range (or interval) of values is
assigned to each node (both leaf and internal). The range of values managed by
a node is required to be to the right of the range managed by its left subtree
and less than the range managed by its right subtree. Figure 3 shows an instance
of BATON for range values 0 − 100. It is similar to the B+-tree indexing, but
internal nodes also manage a range of data values directly. The queries do not
start from the root, but from a random node of the structure.

Scalable and Hierarchical Distributed Data Structures for Big Data 129

The search operation in BATON first checks the horizontal axis (using right
and left routing tables’ links) then the vertical axis (using parent/children &
adjacency links) to locate the correct node. A search operation for key k issued
at node x works as follows. First, node x checks its own range. If k is within its
range, the local index is searched and the search is stopped. Otherwise, it checks
its right (left) routing table, if k is greater (less) than its own range to find the
rightmost (leftmost) node y that its lower (upper) bound is less (greater) than
k. Node x forwards the request to y. This step is performed until no node in the
routing tables satisfies the condition. The last node that completed the process
now forwards the request to its right (left) child if it exists or its right (left)
adjacent node until the correct node is found. The complexity of this process is
O(log N).

Range query works in the same manner. It follows the same steps, until it
finds an intersection of the node range value (interval) with the searched range.
Once the intersection is found, partial answers for the range query have always
been answered. It then continues to the left and/or to the right, following the
adjacency links to cover the remainder search range. Its complexity is O(log N)
to find the intersection and O(1) to cover each of the remainder nodes. An answer
to a range query that its range is spread across M nodes, requires O(log N +M)
steps.

2.1.6 Experimental Evaluation
In [9], an experimental evaluation was carried out in a network containing 1000 to
10000 nodes. For a network of size N , 1000 ·N values were inserted in batches in
the domain of [1, 100000000). For each test, 1000 exact queries and 1000 range
queries are executed and the average cost is taken. For comparison purposes,
CHORD [19] and a Multiway-tree proposed in [12] (which is a simplified version
of BATON) were used.

Fig. 4. Updating routing tables in BATON, CHORD and Multiway trees

130 S. Sioutas et al.

Fig. 5. BATON, CHORD and multiway trees: (a) exact match query; (b) range query

Figures 4 and 5 compare the number of nodes (x-axis) with the number of
messages exchanged (y-axis) for routing table updating, exact match and range
queries on BATON, CHORD and Multiway-tree structures. We observe that the
exchange of messages in BATON remain almost stable, regardless of the number
of the network size.

2.2 BATON*

2.2.1 Structure
BATON* [8] is very similar to the BATON structure, but with some core differ-
ences.

Each node in BATON* can have up to m children (also called fanout) instead
of two as in the original structure. In addition to maintaining links to children,
the parent node also has to keep track of the ranges of values managed by their
children.

Neighbor routing tables at a node maintain links to selected neighbor nodes
at the same level which have a distance equal to d · mi, where d = 1, ..,m − 1
and i ≥ 0, from the node itself. For example, in Fig. 6, the left routing table of
node o maintains links to n,m, l, k, g (shown as purple), which have a distance
equal to 1 ·40, 2 ·40, 3 ·40, 1 ·41 and 2 ·41, respectively. Similarly, the right routing
table of o maintains links to nodes p, q, r, s. The maximum number of links in
routing tables of a node at level L is bounded by (m − 1) · L.

For a BATON* structure of fanout m, a range of values managed by a node
is greater than the ranges of values managed by the first �m/2� children nodes
while less than ranges of values managed by the last �m/2	 children nodes. For
instance, in Fig. 6, the range of values managed by o is greater than those of
y, x, n, but smaller than those of z, d, p, q.

The cost of search in BATON* becomes O(logm N), as expected. Moreover,
the cost of updating routing tables becomes O(m · logm N). It is clear that by
increasing the fanout of a node to reduce the cost of the search, the size of the
routing tables is increased, and hence the cost of table updating.

Scalable and Hierarchical Distributed Data Structures for Big Data 131

Fig. 6. BATON* structure

2.2.2 Node Join/Departure
A node of the BATON* can only accept a new joining node as a child if it has
full neighbor routing tables but does not have m children. Otherwise, it has to
forward the join request to either its parent, its lower level adjacent node, or
a neighbor node that does not have enough children. In a similar manner, a
node can only leave its current position if it does not cause the tree to become
unbalanced. Otherwise, it has to find a replacement node by sending a leave
request to its lower level adjacent node.

The cost of finding a place for a new joining node or finding a replacement
node is O(logm N) since the height of the tree is O(logm N). The cost of updating
the routing table is O(m · logm N) for their neighbor routing tables since the
maximum number of neighbor nodes a node can have is O(m · logm N), and
each of these has to add or remove an entry. Also a newly inserted node has
to construct its own routing tables, with up to O(m · logm N) entries, each of
which can be obtained in constant time through its parent. In addition, there is
a parent link and two adjacency links to create/delete. There can be no children
links for a node being joined or departed. Summing these up, the total cost of
node join or departure is O(m · logm N).

2.2.3 Fault Tolerance
Fault tolerance in BATON* is very similar to that of its predecessor (BATON).
Having even more links on the vertical axis, routing around missing nodes
becomes much easier and cheaper, thus making BATON* highly fault tolerant.

2.2.4 Load Balancing
Load balancing in BATON* has two forms. Exchanging data with adjacent
nodes, or remove underloaded nodes and place them in overloaded regions of
the tree. The former is the easiest and cheapest form of load balancing, however
it will not suffice when there are global imbalances. In occasions like these, the
latter form of load balancing is used.

132 S. Sioutas et al.

Since BATON* employs the tree structure, internal nodes cannot be easily
removed, and hence the latter form of load balancing is only possible for leaf
nodes. In general, if a node is overloaded, it first tries to do load balancing with
its adjacent nodes. If there is no lightly loaded adjacent nodes, it then tries to
find a lightly loaded leaf node to do load balancing. Once such a node is found,
that node has to perform a forced leave from its current position and a forced
join to the new position to share the workload of the overloaded node.

2.2.5 Queries
Searching in BATON* is very similar to BATON. The sole difference is that
when the search request has to be forwarded to a suitable child node, there are
m/2 options instead of two.

A node u receiving a search request checks to see if there is a neighbor node
it knows about which is more appropriate to handle the search. If the searched
value is greater than u’s upper bound, while there is no right hand side neighbor
node of u whose lower bound is less than the searched value, then u checks to find
the most suitable child to forward the request. That is the rightmost child whose
lower bound is less than the searched value. Similarly, if the searched value is
less than the node’s lower bound while there is no left hand side neighbor node
whose upper bound is greater than the searched value, then the node has to try
to find the leftmost child whose upper bound is greater than the searched value,
to forward the search request.

The range query algorithm is modified in an analogous way.

Fig. 7. Effect of varying fanout values in BATON*

2.2.6 Experimental Evaluation
In [8], an experimental evaluation was carried out in networks consisted of 1000
to 10000 nodes and the fanout m used was from 2 to 10. For a network of size
N , 1000 · N values were inserted in batches in the domain of [1, 1000000000).
For each test, 1000 exact queries and 1000 range queries are executed and the
average cost is taken.

Figure 7 shows the effect of the different fanouts on an exact match query,
on a range query and on the cost of updating routing tables. It is clear that by

Scalable and Hierarchical Distributed Data Structures for Big Data 133

increasing the fanout, exact match queries and range queries become faster at
the expense of slower routing table updating. In order for BATON* to become
really efficient, one has to tune the fanout to his own needs to get the best
results.

Figure 8 shows how much node failure BATON and BATON* can withstand
before they are unable to complete a lookup operation. It is obvious that the
larger the fanout, the more fault tolerant the structure is.

Fig. 8. Lookup operations with node failures in BATON and BATON*

2.3 D2-Tree

2.3.1 Structure
The Deterministic Decentralized tree (D2-Tree) [3] is a hierarchical overlay con-
sisting of two levels as shown in Fig. 9. The upper level of the overlay is a perfect
binary tree (PBT). The leaves of the tree are representatives of the buckets that
constitute the lower level of the overlay. Each bucket is a set of O(log N) nodes
and it is structured as a doubly linked list. Each node of the bucket points to the
node which is a leaf of the PBT and is called the representative of the bucket.
Additionally it maintains its routing table w.r.t the nodes of all buckets.

Each node in the upper binary tree, maintains an additional set of links to
other nodes apart from the standard links which form the tree. More specifically
each node v in the tree maintains the following links (cf. Fig. 10):

– Links to its father (if there is one) and its children.
– Links to its adjacent nodes based on an in-order traversal of the tree.
– Links to its leftmost and rightmost leaves of its subtree.
– Links to nodes at the same level as v. These links facilitate an exponential

search on the nodes of the same level. Assume that node v lies at level l. In
a binary tree, the maximum number of nodes at level l is equal to 2l. Node v
maintains at most 2l links: l links to nodes to the right and l links to nodes
to the left. The links are distributed in exponential steps, that is the first link

134 S. Sioutas et al.

Fig. 9. The D2-Tree structure

Fig. 10. A D2-Tree node

points to a node (if there is one) 20 positions to the left (right), the second 21

positions to the left (right), and the i-th link 2i−1 positions to the left (right).
These links constitute the routing table of v.

Regarding the complexity bounds, the D2-Tree:

– uses O(log N) space per node;
– achieves a deterministic O(log N) query bound;
– achieves a deterministic (amortized) O(log N) update bound for elements as

well as for node joins and departures;
– exhibits a deterministic (amortized) O(log N) bound for load-balancing;
– supports ordered data queries optimally, and tolerates node failures.

Scalable and Hierarchical Distributed Data Structures for Big Data 135

2.3.2 Node Join/Departure
When a node z makes a join request to v, then this node is forwarded to its left
adjacent leaf u. Then, node z is added to the doubly linked list representing the
bucket of u by manipulating a constant number of links. The routing table of z
is updated.

When a node v leaves (departs from) the network, then it is replaced by
its left adjacent node u (if there is no left adjacent node, then the right one is
chosen), which in turn is replaced by its first node z in its bucket as shown in
Fig. 11. Link and data information are copied from v to u and from u to z.

When a node v is discovered to be unreachable, its left adjacent node u is
first located. This is accomplished by traversing the path to the rightmost leaf
starting from the left child of v. Node u fills the gap of v and the first child z
in the bucket of u fills the gap left by u. The data contents of u are not moved
to another node, but the navigation data (routing tables and other links) are
moved to node z that takes its place. Node u has its routing tables recomputed,
its links to adjacent nodes set, and the links to the rightmost and leftmost leaves
of its subtree are copied from its left and right child respectively.

The join and departure of nodes may cause the size of the buckets to be
uneven, which in the long run renders the structure unbalanced. To control the
size of the buckets, a weight-based approach is used.

2.3.3 Fault Tolerance
If a node v discovers that node u is unreachable, then it contacts a sibling of
u through the routing tables of the siblings of v. This sibling of u is able to
reconstruct all links of node u and a node departure of u is initiated, which
resolves this failure.

Fig. 11. D2-tree: To the left (right), the join of z (departure of u) is depicted. The
dotted labeled arrows represent the movement of the nodes denoted by the label.

136 S. Sioutas et al.

Due to the way the search operation is implemented, near to root nodes are
not crucial, and their failure will not cause more problems that the failure of any
other node.

2.3.4 Load Balancing
In the D2-Tree, the index from the overlay structure is separated using the
load balancing mechanism. The number of elements per node is dynamic w.r.t.
node joins and departures and it is controlled by the load-balancing mechanism.
Moreover, the number of nodes of the perfect binary tree is not connected by any
means to the number of elements stored in the structure. The overlay structure
supports the operations of node join and node departure, while at the same time
it tackles failures of nodes whenever these are discovered.

The load balancing technique of D2-Tree distributes almost equally the ele-
ments among nodes by making use of weights. Weights are used to define a metric
of load balance, which shows how uneven the load is between nodes. When the
load is uneven, then a data migration process is initiated to equally distribute
elements.

The load balancing technique can be described in two steps. The first step
is a mechanism that allows efficient local updates of weight information when
elements are added or removed at the leaves, which is necessary to avoid hotspots,
and the next step is the load-balancing scheme in the tree overlay.

Assume that the overlay structure is denoted by T . When an element is
added/removed to/from a leaf u in T , the weights on the path from u to the
root must be updated. Assume that node v lies at height h and its children
v1, v2, ..., vs are at height h−1. The variable virtual weight b(v) of v is defined as
the weight stored in node v. In particular, for a node v the algorithm maintains
the virtual weight invariant that b(v) is approximately equal to e(v)+

∑s
i=1 b(vi),

where e(v) denotes the number of elements residing in a node v.
Assume that an update takes place at leaf u. The path from u to the root is

traversed until a node z is found, for the virtual weight invariant holds. Let v be
the child of z, for which the virtual weight invariant does not hold. The weights
are then recomputed in the path from u to v. Node’s z weight information is
updated by taking the sum of the weights written in its children plus the number
of elements residing at z.

The load balancing mechanism redistributes the elements among nodes when
the load between nodes is not distributed equally enough, but it does not tam-
per with the structure of T . For ease of exposition, assume that T is binary
(the algorithm generalizes easily for trees whose nodes have a O(1) number of
children).

Let node v at height h have two children p and q at height h − 1. The
density d(v) of v denotes the mean number of elements per node in the subtree
of v. Let c(p, q) = d(p)

d(q) denotes the criticality of the two brother nodes p and
q, representing their difference in densities. The algorithm maintains also the
criticality invariant, namely that 1

c ≤ c(p, q) ≤ c, for some 1 < c ≤ 2. That is,

Scalable and Hierarchical Distributed Data Structures for Big Data 137

there are no large differences between densities. For instance, choosing c = 2
implies that the density of any node can be at most half of that of its brother.

Combining the two steps, each time an update takes place at leaf u, weights
in the path from u to the root are updated until a node z is found for which
the virtual weight invariant holds. Weights from u to z’s child are recomputed.
Then, the highest ancestor w of u is located where the criticality invariant is
violated, and a node redistribution between w and his brother takes place.

2.3.5 Queries
The search for an element a in the overlay may be initiated from any node v at
level l that has range of values [xv, x

′
v]. Let z be the node with range of values

containing a. Assume without loss of generality that x′
v < a. Then, by using the

routing tables of v, level � is searched for a node u with right sibling w (if there
is such a sibling) such that x′

u < a and xw > a unless a is in the range of u
and the search terminates. This step has O(�) cost, since it simulates a binary
search.

If the search continues, then node z will either be an ancestor of u or w or in
the subtree rooted at the right child r(u) of u or in the subtree rooted at the left
child l(w) of w. First, the rightmost leaf r of u and the leftmost leaf l of w are
located. If x′

r ≥ a then a is in the subtree of r(u) and symmetrically if xl ≤ a
then a is in the subtree of l(w). Note that at most one of these cases may hold
for a. For instance, if x′

r ≥ a then an ordinary top down search from node r(u)
suffices to find z in O(log N) steps (or in its bucket). Symmetrically, this is true
also for l(u). However, if both cases do not hold, then z is an ancestor of u or w.
In this case a bottom-up search is initiated from u towards the root. This step
can be carried out in O(log N) steps as well.

A range query [a, b] initiated at a node v, invokes a search operation for
element a. Node u that contains a returns to v all elements in this range. If
all elements of u are reported, then the range query is forwarded to the right
adjacent node (based on the in-order traversal) and continues until an element
larger than b is reached for the first time.

2.4 D3-Tree

The Dynamic Deterministic Decentralized Tree (D3-Tree) [16] is an extension of
D2-Tree that adopts all of its strengths and extends it in two respects: it intro-
duces an enhanced fault tolerant mechanism and it is able to answer efficiently
search queries when massive node failures occur. D3-Tree achieves the same
deterministic (worst-case or amortized) bounds as D2-Tree for search, update
and load-balancing operations, and answers search queries in O(log N) amor-
tized cost under massive node failures.

The D3-Tree has a significantly small redistribution rate (structure redistri-
butions after node joins or departures), while element load-balancing is rarely
necessary. It also achieves a significant success rate in element queries, even
under massive node failures.

138 S. Sioutas et al.

2.4.1 Structure
Similar to the D2-Tree, the D3-Tree consists of two levels. The upper level is
a Perfect Binary Tree (PBT) of height O(log N). The leaves of this tree are
representatives of the buckets that constitute the lower level of the D3-Tree.
Each bucket is a set of O(log N) nodes which are structured as a doubly linked
list as shown in Fig. 9. Each node v of the D3-Tree maintains an additional set of
links (described below) to other nodes apart from the standard links which form
the tree. The first four sets are inherited from the D2-Tree, while the fifth set is
a new one that contributes in establishing a better fault-tolerance mechanism.

– Links to its father and its children.
– Links to its adjacent nodes based on an in-order traversal of the tree.
– Links to nodes at the same level as v. The links are distributed in exponential

steps; the first link points to a node (if there is one) 20 positions to the left
(right), the second 21 positions to the left (right), and the i-th link 2i−1

positions to the left (right). These links constitute the routing table of v and
require O(log N) space per node.

– Links to leftmost and rightmost leaf of its subtree. These links accelerate
the search process and contribute to the structure’s fault tolerance when a
considerable number of nodes fail.

– For leaf nodes only, links to the buckets of the nodes in their routing tables.
The first link points to a bucket 20 positions left (right), the second 21 posi-
tions to the left (right) and the i-th link 2i−1 positions to the left (right).
These links require O(log N) space per node and keep the structure fault
tolerant, since each bucket has multiple links to the PBT.

2.4.2 Node Joins/Departures
When a node z makes a join request to v, v forwards the request to an adjacent
leaf u. If u is a PBT node, the request is forwarded to the left adjacent node,
w.r.t. the in-order traversal, which is definitely a leaf (unless v is a leaf itself).
In case v is a bucket node, the request is forwarded to the bucket representative,
which is a leaf. Then, node z is added to the doubly linked list of the bucket
represented by u. In node joins, a simplification is made, that the new node is
clear of elements and it is placed after the most loaded node of the bucket. Thus
the load is shared and the new node stores half of the elements of the most
loaded one.

When a node v leaves the network, it is replaced by an existing node, so
as to preserve the in-order adjacency. All navigation data are copied from the
departing node v to the replacement node, along with the elements of v. If v is
an internal PBT node, then it is replaced by the first node z in its bucket. If v
is a leaf, then it is directly replaced by z. Then v is free to depart.

2.4.3 Node Redistribution
Node redistribution guarantees that if there are z nodes in total in the y buckets
of the subtree of v, then after the redistribution each bucket maintains either
�z/y� or �z/y� + 1 nodes. The redistribution in the subtree v works as follows.

Scalable and Hierarchical Distributed Data Structures for Big Data 139

Assume that the subtree v at height h has K buckets. A traversal of all the
buckets is carried out to determine the exact value |v|, which denotes the number
of nodes in the buckets of the subtree of v. The redistribution starts from the
rightmost bucket b and it is performed in an in-order fashion so that elements
in the nodes remain unaffected. Assume that b has q extra nodes that must be
transferred to other buckets. Since bucket b maintains a link to the next bucket
on the left, b′, the extra nodes q are transferred there, while the internal nodes of
PBT are also updated (because the in-order traversal must remain untouched).
Finally, bucket b informs b′ to take over, and the same procedure applies again
with b′ as the source bucket. The case where q nodes must be transferred to
bucket b from b′ is symmetric. In the case that b′ does not have the q nodes that
b needs, b′ has to find them on the remaining buckets on the left, so it travels
towards the leftmost bucket of the subtree until q ≤ ∑s

i=1 |bi|, where |bi| is the
size of the i-th bucket on the left. Then, nodes of bs move towards b′ one bucket
at a time, until it goes to b′ and finally into b.

2.4.4 Load Balancing
The load balancing technique in a subtree v (with |v| nodes in the subtree) is
carried out as follows. A bottom-up calculation of the weights in all nodes of v
is performed, to find w(v) of v. The algorithm starts from the right most node
w of the rightmost bucket b and it is performed in an in-order fashion. Assume
that w has m extra elements which must be transferred to node w′.

– If w is a bucket node, w′ is its left node, unless w is the first node of the
bucket and then w′ is the bucket representative.

– If w is a leaf node, then w′ is the left in-order adjacent of w.
– If w is an internal binary node, then its left in-order adjacent is a leaf and w′

is the last node of its bucket.

The first m elements removed from w and are added to end of the element queue
of w′, in order to preserve the indexing structure of the tree. The ranges of both
w and w′ nodes are updated respectively. The case where m elements must be
transferred from w′ to w is symmetric. When w′ contains less elements than
the m elements that w needs, it travels towards the leftmost node of the subtree
following the in-order traversal, until m ≤ ∑s

i=1 e(ui), where e(ui) is the number
of elements of the i-th node on the left. Then the elements of us are transferred
to us−1, from us−1 to us−2 and so on, until the m elements are moved from w′

to w.

2.4.5 Fault Tolerance
When a node w discovers that v is unreachable, the network initiates a node
withdrawal procedure by reconstructing the routing tables of v, in order for v
to be removed smoothly, as if v was departing. If v belongs to a bucket, it is
removed from the structure and the links of its adjacent nodes are updated. In
case v is an internal binary node, its right adjacent node u is first located, in
order to replace v.

140 S. Sioutas et al.

If v is a leaf, then it should be replaced by the first node u in its bucket.
In the D2-Tree, if a leaf was found unreachable, contacting its bucket would be
infeasible, since the only link between v and its bucket would have been lost. This
weakness was eliminated in the D3-Tree, by maintaining multiple links towards
each bucket, distributed in exponential steps (in the same way as the horizontal
adjacency links). This way, when w is unable to contact v, it contacts directly
the first node of its bucket u and u replaces v. Regardless of node’s v position
in the structure, the elements stored in v are lost.

2.4.6 Queries
The search for an element a may be initiated from any node v at level l. If v
is a bucket node, then if its range contains a the search terminates, otherwise
the search is forwarded to the bucket representative, which is a binary node.
If v is a PBT node, then let z be the node with range of values containing a,
a ∈ [xz, x

′
z] and assume without loss of generality that x′

v < a. The opposite case
is completely symmetric. A horizontal binary search is performed at level l using
the routing tables of v. More specifically, the rightmost links of the routing tables
are followed until a node q is found, such that xq > a, or until the rightmost
node qr of level l is reached. If the first case holds, a is between q and the last
visited node in the left of q. The search continues to the left, decreasing the
travelling step by one. The algorithm continues travelling left and right while
gradually decreasing the travelling step until it finds a node u with sibling w (if
there is such sibling) such that x′

u < a and xw > a. If the second case holds,
then x′

qr < a and according to the in-order traversal, the search continues to the
right subtree of qr. If a is in the range of any of the visited nodes of level l, the
search terminates.

Having located nodes u and w, the horizontal search is terminated and a
vertical search is initiated. Node z will either be the common ancestor of u and
w, or it will be in the right subtree rooted at u, or in the left subtree rooted
at w. Node u contacts the rightmost leaf y of its subtree. If xy > a then an
ordinary top down search from node u will suffice to find z. Otherwise node z is
in the bucket of y, or in its right in-order adjacent node (this is also the common
ancestor of u and w), or in the subtree of w.

Overall, the search for an element a is carried out in O(log N) steps.
A range query [a, b] initiated at a node v, invokes a search operation for

element a. Node z that contains a returns to v all elements in its range. If
all elements of u are reported, then the range query is forwarded to the right
adjacent node (based on the in-order traversal) and continues until an element
larger than b is reached for the first time.

2.4.7 Queries with Node Failures
In a network with node failures, an unsuccessful search for element a refers to the
cases where either z (the node with range of values containing a, i.e., a ∈ [xz, x

′
z])

is unreachable, or there is a path to z but the search algorithm can not follow it
to locate z due to failures of intermediate nodes. D2-Tree provides a preliminary

Scalable and Hierarchical Distributed Data Structures for Big Data 141

fault-tolerant mechanism that succeeds only in the case of a few node failures.
That mechanism cannot deal with massive node failures (also known as churn)
i.e., its search algorithm may fail to locate a. The difference in D3-Tree is that
during the horizontal search, if the most distant right adjacent of v located in
position 2j is unreachable, v keeps contacting its right adjacent nodes by checking
positions 2j−1, 2j−2, . . . (i.e., by decreasing repeatedly the exponent by 1), until
it finds a node q which is reachable.

Fig. 12. Example of vertical search between u and unreachable w

In case x′
q < a the search continues to the right using the most distant right

adjacent of q. Otherwise, the search continues to the left and q contacts its most
distant left adjacent p which is in the right of v. If p is unreachable, q does
not decrease the exponent by 1, but contacts directly its nearest left adjacent
(at position 20) and asks it to search to the left. This improvement reduces the
number of messages that are meant to fail, because of the exponential positions
of nodes in routing tables and the nature of binary horizontal search.

A vertical search to locate z is always initiated between two siblings u and
w, which are either both active, or one of them is unreachable, as shown in
Fig. 12 where the left sibling u is active and w, the right one, is unreachable. In
both cases, the subtree of the active sibling is searched first, then the common
ancestor is contacted and then, if the other sibling is unreachable, the active
sibling tries to contact its corresponding child (right child for left sibling and
left child for right sibling). When the child is found the search is forwarded to
its subtree.

In general, when node u wants to contact the left (right) child of unreachable
node w, the contact is accomplished through the routing table of its own left
(right) child. If its child is unreachable (Fig. 12), then u contacts its father uf

and uf contacts the father of w, wf . Then wf contacts its grandchild through
its left and right adjacents and their grandchildren.

In the case where the initial node v is a bucket node, then if its range contains
a the search terminates, otherwise the search is forwarded to the bucket represen-
tative. If the bucket representative has failed, the bucket contacts its other repre-

142 S. Sioutas et al.

sentatives right or left, until it finds a representative that is reachable. Then the
procedure continues as described above for the case of a binary node.

2.4.8 Experimental Evaluation
In [16], an experimental evaluation was carried out in networks consisting from
1000 to 10000 nodes. For a size of network N , 1000 × N elements were inserted.
The number of passing messages between the nodes was used to measure the
performance of the system.

For Node Join/Departures. 2 × N nodes were updated. Figure 13 shows that
the D3-Tree update and redistribution mechanism achieves a better amortized
redistribution cost, compared to those of BATON, BATON* and P-Ring.

Cost of Queries with/without Node Failures. To measure the network perfor-
mance for the operation of single queries, experiments were conducted for each
N (1000 to 10000), performing 2M (M is the number of binary nodes) searches.
The search cost is shown in Fig. 14.

To measure the network performance for the operation of element search
with node failures, experiments were conducted for different percentages of node
failures: 10%, 20%, 30%, 40%, 50%, 75%. For each value of N considered (in
the range from 1000 to 10000) and node failure percentage, 2M searches were
performed. In order to get a better estimation of the search cost, a different set
of nodes was forced to fail each time. Figure 15 depicts the increase in search cost
when massive node failures take place in D3-Tree, BATON, different fanouts of
BATON* and P-Ring. The graph is irrelevant to N .

Fig. 13. Average messages for node updates

Scalable and Hierarchical Distributed Data Structures for Big Data 143

Fig. 14. Cost of queries without node failures

We observe that D3-Tree can withstand up to 50% node failure while keeping
the search cost low. P-Ring and BATON* (both of fanout/order 10) can with-
stand the same percentage of node failure, but the cost of search operation rises
above that of the D3-Tree after 30%. BATON can not handle the search oper-
ations after 20% of node failure, while BATON* (with fanout 6) can withstand
up to 40%.

Fig. 15. Cost of queries under node failure

144 S. Sioutas et al.

2.5 ART

The Autonomous Range Tree (ART) [18] is an exponential tree structure, which
remains unchanged with high probability (w.h.p.), and organizes a number of
fully dynamic buckets of nodes. The communication cost of query and update
operations is O(log2 b log N) hops, where b = 22

i

, i = 1, 2, 3... Moreover, ART is
a fully dynamic and fault-tolerant structure, which supports the join/leave node
operations in O(log log N) expected number of hops w.h.p.

2.5.1 Structure
One of the basic components of the ART structure is the Level Range Tree
(LRT). LRT will be called upon to organize collections of nodes at each level of
ART. LRT is built by grouping nodes having the same ancestor and organizing
them in a tree structure recursively. The innermost level of nesting (recursion)
will be characterized by having a tree in which no more than b nodes share
the same direct ancestor, where b is a double-exponentially power of two. Thus,
multiple independent trees are imposed on the collection of nodes. Figure 16
shows the LRT structure for b = 2.

The degree of the nodes at level i > 0 is d(i) = t(i), where t(i) indicates
the number of nodes at level i. It holds that d(0) = b and t(0) = 1. Let n be
w-bit keys. Each node with label i (where 1 ≤ i ≤ N) stores ordered keys that
belong in the range [(i − 1) ln n, i ln n − 1], where N = n/lnn is the number of
nodes. Each node is also equipped with a table named Left Spine Index (LSI),
which stores pointers to the nodes of the left-most spine. Furthermore, each
node of the left-most spine is equipped with a table named Collection Index
(CI), which stores pointers to the collections of nodes presented at the same
level (see pointers directed to collections of last level). Nodes having the same
father belong to the same collection.

Fig. 16. The LRT structure for b = 2

Scalable and Hierarchical Distributed Data Structures for Big Data 145

ART stores cluster of nodes only, each of which is structured as an inde-
pendent decentralized architecture (it can be BATON*, Chord, Skip-Graphs,
etc). The backbone-structure of ART is exactly the same with LRT. Moreover
instead of LSI, which reduces the robustness of the whole system, a Random
Spine Index routing table is introduced, which stores pointers to randomly cho-
sen cluster nodes.

2.5.2 Node Joins/Departures
The operation of join/leave of nodes inside a cluster-node is modelled as the
combinatorial game of balls in bins presented in [10]. In this way, for a random
sequence of join/leave node operations drawn from a distribution of density μ(·),
the expected load w.h.p. of each cluster-node never exceeds Θ(log N) in size and
never becomes zero. In skew sequences, though, the load of each cluster-node
may become Θ(N) in the worst case.

When a node wants to join the network, it is assumed that this node is
accompanied by a key, and that key designates the exact position in which
the new node must be inserted. If an empty node u makes a join request at a
particular node v (which is called entrance node) then there is no need to get to
a different cluster node than the one in which u belongs. Similarly, the algorithm
for the departure of a node u assumes that the departure can be made from any
node in the ART structure. This may not be desirable, and in many applications
it is assumed that the choice for departure of node u can be made only from this
node.

2.5.3 Fault Tolerance
In the ART structure, the overlay of cluster nodes remains unchanged in the
expected case w.h.p., so in each cluster node the algorithms for node failure and
restructuring are those inherited by the decentralized architecture used.

2.5.4 Queries
The search algorithm gets as input a node in which the query is initiated, and a
key to search. The first step of the algorithm is to locate the levels of the ART
where the desired cluster nodes are located. This is achieved by using the RSI
index. The next step is to locate the correct cluster node in the right level. The
first position of RSI (notated as RSI[1]) always points to the next cluster node
at the same level. Following RSI[1], the correct cluster node can be found at
the right level. The final step is to search inside the decentralized structure that
each cluster node holds to locate the key.

The Range search algorithm gets as input a node in which the query is
initiated and a range of keys [kl, kr]. It then calls the search algorithm on the
same node with key kl and by exploiting the order of the keys on each node it
performs a right linear scan until it finds a key K > kr.

146 S. Sioutas et al.

2.5.5 Experimental Evaluation
In [18] an experimental evaluation was carried out, including a detailed per-
formance comparison with BATON*. In particular, each cluster-node is imple-
mented as a BATON*. The network was tested with different number of nodes
ranging up to 500000. The data inserted was 2000 times the size of the network,
with numbers in the universe [1, ..., 1000000000] inserted in batches, following
beta, uniform and power law distributions. For each test, 1000 exact match
queries and 1000 range queries were executed, and the average costs of opera-
tions are calculated.

Fig. 17. Exact and range query times of BATON* and ART with b = 2, 16 for normal,
beta, uniform and power-law input distributions

We observe in Fig. 17 that except for the case where b = 2 (right part of
Fig. 17), the ART structure outperforms BATON* structure in both exact and
range queries by a wide margin.

2.6 ART+

ART+ [17] is similar to its predecessor ART, regarding the structure’s outer
level. Their difference, which introduces performance enhancements, lies in the
fact that each cluster-node of ART+ is structured as a D3-Tree.

2.6.1 Structure
The backbone structure of ART+ (cf. Fig. 18) is similar to the Level Range Tree
(LRT), in which some interventions have been made to improve its performance
and increase the robustness of the whole system. ART+ is built by grouping
cluster-nodes having the same ancestor and organizing them in a tree structure
recursively. A cluster-node is defined as a bucket of ordered nodes. The inner-
most level of nesting (recursion) will be characterized by having a tree in which

Scalable and Hierarchical Distributed Data Structures for Big Data 147

Fig. 18. ART+ structure

no more than b cluster-nodes share the same direct ancestor (where b = 22
i

,
i = 1, 2, 3..). Thus, multiple independent trees are imposed on the collection of
cluster-nodes. The height of ART+ is O(log logb N) in the worst case. The ART+

structure remains unchanged w.h.p.
Similarly to ART, the degree of the cluster-nodes at level i > 0 is d(i) = t(i),

where t(i) indicates the number of cluster-nodes at level i. It holds that d(0) = b
and t(0) = 1. At initialization step, the first node, the (lnn + 1)-th node, the
(2 · ln n + 1)-th node and so on are chosen as bucket representatives.

Let n be w-bit keys, N be the total number of nodes and N ′ be the total
number of cluster-nodes. Each node with label i (where 1 ≤ i′ ≤ N) of a random
cluster stores ordered keys that belong in the range [(i′ − 1) ln2 n, i′ ln2 n − 1],
where N ′ = n/ ln n. Each cluster-node with label i′ (where 1 ≤ i′ ≤ N ′) stores
ordered nodes with sorted keys belonging in the range [(i′ − 1) ln2 n, i′ ln2 n− 1],
where N ′ = n/ ln2 n or N ′ = N/ ln n is the number of cluster-nodes.

ART+ stores cluster-nodes only, each of which is structured as an indepen-
dent decentralized architecture, which changes dynamically after node join/leave
and element insert/delete operations inside it.

In contrast to its predecessor, ART, whose inner level was structured as a
BATON*, each cluster-node of ART+ is structured as a D3-Tree. Each cluster-
node is equipped with a routing table named Random Spine Index (RSI), which
stores pointers to cluster-nodes belonging to a random spine of the tree (instead
of the LSI of LRT which stores pointers to the nodes of the left-most spine,
decreasing this way the robustness of the structure). Moreover, instead of using
fat Collection Index (CI) tables, which store pointers to the collections of nodes
presented at the same level, the appropriate collection of cluster-nodes is accessed
by using a 2-level LRT structure.

148 S. Sioutas et al.

2.6.2 Node Joins/Departures
In ART+, the overlay of cluster-nodes remains unaffected in the expected case
w.h.p., when nodes join or leave the network.

A node u can make a join/leave request to a node v, which is located at
cluster node W . Since the expected size of W is w.h.p. O(logk N), for some
k = O(1), the node join/leave can be carried out in O(log log N) hops. The outer
structure of ART+ remains unchanged w.h.p. as mentioned before, but each D3-
Tree structure changes dynamically after node join/leave operations. According
to D3-Tree performance evaluation, the node join/leave can be carried out in
O(log log N) hops.

Similarly to ART, the operation of join/leave of nodes inside a cluster-node
is modelled as the combinatorial game of balls in bins presented in [10]. In
this way, for a random sequence of join/leave node operations drawn from a
distribution of density μ(·), the expected load w.h.p. of each cluster-node never
exceeds Θ(log N) in size and never becomes zero. In skew sequences, though, the
load of each cluster-node may become Θ(N) in worst case.

2.6.3 Fault Tolerance
In the ART+ structure, similarly to ART, the overlay of cluster-nodes remains
unchanged in the expected case w.h.p., so in each cluster-node the algorithms for
node failure and restructuring are those of the decentralized architecture used.
D3-Tree is a highly fault-tolerant structure, since it supports procedures for node
withdrawal and handles massive node failures efficiently.

2.6.4 Queries
Since the structure’s maximum number of nesting levels is O(logb log N) and
at each nesting level i the standard LRT structure has to be applied in N1/2i

collections, the whole searching process requires O(log2b log N) hops. Then, the
target node has to be located by searching the respective decentralized struc-
ture. Since there is a polylogarithmic load in each cluster node, the total query
complexity of O(log2b log N) follows.

By exploiting the order of the keys on each node, it turns out that a range
query requires O(log2b log N + |A|) hops, where |A| is the answer size.

2.6.5 Experimental Evaluation
In [17], the performance of ART+ was evaluated by experiments that ran on
different number of nodes N from 50000 to 500000. Each cluster node stores no
more than 0.75 log2 N nodes in smooth distributions (as proved in [18]) and no
more than 2.5 log2 N nodes in non-smooth distributions. Moreover, the elements
inserted were 2000 ·N which are numbers from the universe [1, .., 1.000.000.000].
The number of passing messages was used to measure the performance.

Scalable and Hierarchical Distributed Data Structures for Big Data 149

Fig. 19. Lookup Operations with Node Failures in ART and ART+

Cost of Queries under massive node failures. In case of massive node failures,
the search algorithm has to find alternative paths to overcome the unreachable
nodes. Thus, an increase in node failures results in an increase in search costs.
To evaluate the system in case of massive failures, the system was initiated with
10000 nodes and they were let to randomly fail without recovering. Since the
backbone of ART+ remains unaffected w.h.p., the search cost is restricted inside
a cluster-node (D3-Tree), meaning that parameter b does not affect the overall
expected cost. Figure 19 illustrates the effect of massive failures of ART and
ART+.

Cost of Load-Balancing Operations. To evaluate the cost of load-balancing, the
network was tested with a variety of distributions. For a network of N total
nodes, 2N node updates were performed. Both ART and ART+ remain unaf-
fected w.h.p., when nodes join or leave the network, thus the load-balancing
performance is restricted inside a cluster-node (BATON* for ART, and D3-Tree
for ART+), meaning that parameter b does not affect the overall cost. The load-
balancing cost is depicted in Fig. 20a. Both expected and worst case values are
depicted in the same graph.

Experiments confirm that ART+ has an O(log log N) load-balancing perfor-
mance, instead of the ART performance of O(m · logm log N). Thus, even in
the worst case scenario, the ART+ outperforms ART, since D3-Tree has a more
efficient load-balancing mechanism than BATON*; cf. Fig. 20b.

150 S. Sioutas et al.

Fig. 20. Cost of load-balancing operation.

2.7 SPark-based Interpolation Search Tree (SPIS)

Spark [21] is the successor of Hadoop [20], which is the open source implementa-
tion of the MapReduce model. In [14], the classic Interpolation Search Tree [13]
was integrated into Spark’s [21] distributed environment. Spark uses Resilient
Distributed Datasets (RDDs) as its fundamental data organization scheme. An
RDD is an immutable (i.e., read-only) distributed collection of objects. The
datasets are divided into partitions, which are further computed on different
nodes of the cluster. However, Data Frames (DFs) are also supported that pro-
vide more rich semantics and also provide additional optimizations for running
SQL queries over distributed data.

The classic Interpolation Search Tree (IST) has the following properties:

– It requires space O(n) for a data set of cardinality n.
– The amortized insertion and deletion cost is O(log log n)
– The expected search time on data sets with smooth probability density is

O(log log n)
– The worst case search time is O((log n)2).
– The data structure supports sequential access in linear time and operations

Predecessor, Successor, and Min in time O(1). In particular, it can be used
as a priority queue.

In [14], the Spark’s RDD API was used since the focus was in providing faster
search capabilities at the partition level. Since RDDs are immutable, insert-
ing (deleting) elements in (from) the tree (even though the tree supports such
actions) were not a concern, and the focus was on search and range queries.
Range search queries turned out to be faster than Spark’s built-in functions.
Figure 21 shows how the sorting and partitioning is done in Spark’s distributed
environment.

Scalable and Hierarchical Distributed Data Structures for Big Data 151

Fig. 21. Spark’s sorting procedure

2.7.1 Structure
The Interpolation Search Tree (IST) is a multi-way tree, where the degree of
a node depends on the cardinality of the set stored below it. It requires O(n)
space for an element set of cardinality n. More precisely, the degree of the root is
Θ(na), for some constant 0 < a < 1. The root splits the set into Θ(n1−a) subsets.
The children of the root have degree equal to Θ(n(1−a)a). An illustration of an
IST can be found in Fig. 22.

Fig. 22. Interpolation Search Tree

Each node u in the IST is associated with (i) a REPu array, which contains a
sample of the subset of elements that is stored below u; (ii) a variable Su, which
denotes the size of the subset; and (iii) a variable Cu, which counts how many
insertions/deletions have been performed since the last rebuilding (of the IST)
that involved u; cf. Fig. 22.

The idea is that on every partition of the RDD an IST is created that manages
the elements of that same partition. The Spark’s sorting function was used to
sort and partition the elements to the worker nodes. After sorting is completed,
each partition holds roughly the same number of sorted elements.

152 S. Sioutas et al.

The next step is to create an IST on each partition. Instead of using the
insertion algorithm to add the elements one by one in the tree, a bulk-insertion
is used to insert all sorted elements in the tree, and globally rebuild it from the
root.

This way, only one rebuilding is needed to create an ideal IST for each parti-
tion. Note that the IST object for the specific partition has to fit in the memory
of each worker. However, this issue can be resolved since the input dataset can
be split in a larger number of partitions if necessary.

2.7.2 Fault Tolerance
Spark operates on top of fault tolerant systems, like Hadoop Distributed File
System (HDFS), making all the RDDs fault tolerant. Since RDDs are immutable,
Spark keeps the lineage of the deterministic operations that were used on the
input dataset to create it. If due to a worker node failure any partition is lost,
then that partition can be recomputed to another worker node from the original
dataset using the lineage of operations.

2.7.3 Queries
The classic search algorithm performs interpolation search in the REP array of
every node of the tree, starting from the root, in order to locate the subset in
which the search should be continued. The expected search time is O(log log (n)).

In Spark, the search algorithm works as follows. Each partition is queried with
they key that has to be searched. If the key is inside the partition’s interval, the
search algorithm is performed on the IST of the same partition returning true
or false depending on whether the key exists in the structure or not. If the key is
not inside the partition’s interval, nothing is returned. Thus only one partition
executes the search algorithm for each key that is queried.

The algorithm for a range query in the interval [min,max] works in a similar
manner. Each partition is queried with min and max, and all elements with keys
between those values have to be returned.

Let xF
i denote the first item of the i-th partition and let xL

i denote the last
item of the i-th partition. The following algorithm is concurrently executed in
each partition i.

– If min is inside the i-th partition’s interval [xF
i ,xL

i], then the search algorithm
is performed and the corresponding element B is found.

• If max is inside the partition’s interval, then the search algorithm is
performed again and the corresponding element E is found. All elements
in-between B and E are returned.
• Else if max isn’t inside the partition’s interval, then E is assigned to
the last element of the partition (xL

i). All elements in-between B and E
are returned.

– Else if max is inside the i-th partition’s interval, then the search algorithm is
performed and the corresponding element E is found. B is assigned to the first
element of the partition (xF

i). All elements in-between B and E are returned.

Scalable and Hierarchical Distributed Data Structures for Big Data 153

– Else if min < xF
i and max > xL

i , the whole partition is returned.
– Else if none of the above happens, zero is returned.

Fig. 23. Dataset distribution for SPIS

2.7.4 Experimental Evaluation
In [14], an experimental evaluation was conducted on a cluster with 32 physical
computing machines running Hadoop 2.7 and Spark 2.1.0. Synthetic datasets
were used for the experimentation with different cardinalities. The dataset con-
tained one-dimensional values that were produced by a mixture of Gaussian
distributions. The selection of this dataset was based in the fact that many real-
world datasets contain clusters and are frequently modeled as Gaussian mixtures.
Figure 23 presents such a distribution in the two-dimensional space. In the exper-
iments, the projection in the x and y axis were used, in order to construct the
one-dimensional dataset for the performance evaluation.

Two kinds of experiments were performed. First a runtime performance test,
comparing three different algorithmic techniques, one using IST (A), and two
using Spark’s built-in features (F and M).

Technique A consists of the following steps.

– Create an RDD by referencing the dataset file. Map its contents to Float
numbers. Sort and partition the RDD to the workers.

– Generate an array of 5000 random float pairs in the interval [0, 1] to perform
range search queries. The array is created at the Driver node and broadcasted
to all workers in the cluster.

– Create an IST on each partition.
– Execute 5000 Range Queries on the IST of each partition using the pairs of

the array as input parameters, and monitor the total runtime.

154 S. Sioutas et al.

Technique M consists of the following steps.

– Create an RDD by referencing the dataset file. Map its contents to Float
numbers. Sort and partition the RDD to the Workers.

– Generate an array of 5000 random float pairs in the interval [0, 1] (to perform
range search queries).

– Using mapPartition and find functions, perform 5000 range queries on the
elements of each partition.

Technique F consists of the following steps.

– Create an RDD by referencing the dataset file. Map its content to Float
numbers.

– Generate an array of 100 random float pairs in the interval [0, 1] (to perform
range search queries).

– Filter the input RDD using the elements of the array as bounds.

Since the number of queries is different, it is only logical to compare the
elapsed time per query for all algorithmic techniques. The corresponding results
are given in Table 1. The runtime results correspond to 32 Spark Workers.

Table 1. Runtime performance comparison.

Input size ×106 Number of partitions A (ms) M (ms) F (s)

10 64 7.88 13.46 2.58

20 64 8.74 19.58 5.22

100 128 12.2 83.12 2.46

200 128 14.5 125.04 4.28

1000 512 56.54 507.14 15.10

We observe that algorithmic technique A is significantly faster than Spark’s
built-in techniques F and M . The difference is more evident for bigger datasets.

The second set of experiments was carried out in order to test the scalability
of the proposed organization scheme. Using an input dataset of ten million float
numbers, 5000 range queries were performed on the IST while gradually adding
more Workers to the cluster.

The total runtime also includes sorting time. Sorting is performed by three
Workers (note that the file is stored in three partitions in the HDFS) before being
split across the cluster. This is the reason behind the significant improvement
in the first three tests. After that, the runtime is steadily decreases which shows
the good scalability of the proposed approach; see Fig. 24.

3 Decentralized Ring-Based Structures

3.1 P-Ring

P-Ring [4] is implemented in the context of a modular framework that identifies
and separates the different functional components of an overlay index structure.

Scalable and Hierarchical Distributed Data Structures for Big Data 155

Fig. 24. Scalability performance

3.1.1 Structure
The P-Ring consists of the following four levels.

Fault Tolerant Ring: The Fault Tolerant Ring connects the nodes in the sys-
tem along a ring, and provides reliable connectivity among these nodes even in
the case of failures. For a node p, succ(p) (respectively, pred(p)) denotes the
node adjacent to p in a clockwise (resp., counter-clockwise) traversal of the ring.
The Ring provides methods to get the address of the successor or predecessor,
insert a new successor, join the ring or leave the ring (of course, a node can just
fail). The Ring also generates events such as newSuccessor, and newPredecessor-
Value that can be caught by higher layers and processed either synchronously
or asynchronously.

Data Store: The Data Store, built on top of the Fault Tolerant Ring, is respon-
sible for distributing the items to nodes. Ideally, the distribution should be uni-
form so that each node stores about the same number of items. The Data Store
provides API methods to insert and delete items into and from the system.

Content Router: The Content Router, built on top of the Data Store, is respon-
sible for efficiently routing messages to nodes that have items satisfying a given
predicate.

Replication Manager: The Replication Manager, built on top of the Data Store,
ensures that items assigned to a node are not lost if that node fails. The Repli-
cation Manager algorithms were used, where the items stored at a node are
replicated by its successors in the ring.

156 S. Sioutas et al.

P-Ring nodes are divided in owner nodes and helper nodes. Helper nodes are
not assigned any items. The rest are called owner nodes. The helpers change
over time and help with node joins/departures.

3.1.2 Load Balancing
The search key space is ordered on a ring, wrapping around the highest value.
The Data Store partitions this ring space into ranges and assigns each of these
ranges to a different node. The system is initiated with one owner node that owns
the entire indexing domain. All other nodes join the system as helper nodes, and
become owner nodes during load balancing.

Whenever the number of items in a node’s p Data Store becomes larger than
a bound u, an overflow occurs. Then, node p tries to split its assigned range and
its items with a helper node.

Whenever the number of items in p’s Data Store becomes smaller than a
bound l, an underflow occurs. Then, p tries to acquire a larger range and more
items from its successor in the ring. In this case, the successor either redistributes
its items with p, or gives up its entire range to p and becomes a helper node.

Let now discuss in detail the basic operations when an overflow or an under-
flow occurs.

A node p that overflows executes a split operation. During a split, node p tries
to find a helper p′ and transfer half of its items, and the corresponding range to p′,
After p′ is found, half of the items are removed from p and its range is split accord-
ingly. Then, p invites p′ to join the ring as its successor. Using the information
received from p, p′ initializes its index components and joins the ring.

If there is an underflow at node p, then a merge and redistribution is executed.
Node p invokes the merge function on its successor in the ring. The successor sends
back the action decided, merge or redistribute, a new range, and the list of items
that are to be re-assigned to p. Then, p appends the new range and the new items to
its own. The invoked node p′ = succ(p), checks whether a redistribution of items
is possible between the two “siblings”. If indeed, then it sends some of its items
and the corresponding range to p. If a redistribution is not possible, then p′ gives
up all its items and its range to p, and becomes a helper node.

3.1.3 Fault Tolerance
Node failures and insertions as well as splits and merges at the Data Store level,
disrupt the consistency of the Content Router. A simple Stabilization Process
is executed on each node periodically that repairs the inconsistencies of Content
Router. This process guarantees that the Content Router structure eventually
becomes fully consistent as long as the nodes remain connected at the ring level.

3.1.4 Experimental Evaluation
To evaluate the load balancing of the system and show that the P-Ring achieves
good load balance at low cost, a simulated environment and a real implementa-
tion were tested in [4].

Scalable and Hierarchical Distributed Data Structures for Big Data 157

Initially, 256 nodes were inserted, and no items. Then, items were randomly
inserted/deleted in three phases: insert only, insert and delete, and delete only.
In each phase 50000 operations are executed at the rate of 1 operation/second.
Three different distributions for the items inserted were tested: uniform, Zipf
0.5, and Zipf 1. The domain is [1, 65536]. The items to be deleted are chosen
uniformly at random from the existing items.

Fig. 25. P-Ring Imbalance (a) uniform, (b) Zipf 0.5, (c) Zipf 1

Figure 25 shows the imbalance measured every 60 simulated operations. The
three subfigures are very similar, showing that regardless of the data skew, the
system maintains its load balance. Next, the performance of the P-Ring Content
Router is investigated, where the search cost (number of messages required to
evaluate a range query, averaged over 100 random searches) is measured. The
main variable component in the cost of range queries is finding the item with
the smallest qualifying value, so only that cost is reported. P-Ring is compared
to BATON*, Chord and Skip Graphs [1].

Fig. 26. Search performance

158 S. Sioutas et al.

Figure 26 illustrates the search cost of P-Ring’s Content Router, Skip Graphs,
BATON* and Chord. It is clear that P-Ring’s cost is lower than the cost of Skip
Graphs and approximately equal to the cost of BATON* and Chord.

4 Comparison of Hierarchical Structures

In this Section we provide a comparison of the overlay structures presented in the
previous sections. Table 2 demonstrates the complexities of the overlay structures
for the operations of: Range Search, Insert/Delete Key, Maximum size of routing
tables, and Join/Depart Node.

Table 2. Time complexities of structures’ actions.

Structures Range search Insert/Delete key Max size of routing table Join/Depart node

BATON [9] O(logN) O(logN) O(logN) O(logN)

BATON* [8] O(logm N) O(m · logm N) O(m · logm N) O(m · logm N)

D2-Tree [3] O(logN) Õ(logN) O(logN) Õ(logN)

D3-Tree [16] O(logN) Õ(logN) O(logm N) Õ(logN)

ART [18] Ô(log2b logN) O(m · logm logN) O(N1/4/ logc N) O(m · logm logN)

ART+ [17] Ô(log2b logN) Õ(log logN) O(N1/4/ logc N) Õ(log logN)

P-Ring [4] O(logd N) Õ(d · logd N) O(logN) Õ(d · logd N)

SPIS [14] O(log log(n/N)) Õ(1) O((n/N)a) Õ(1)

N : number of nodes; n: number of elements with (N << n); m: fanout;
d: order of the ring; a: constant 0 < a < 1; ˜O: amortized bound; O: expected amortized bound.

In the case of node failure in the SPIS structure, a replica of the respective
partition is ready to be assigned to another worker, while in case of node join, a
simple repartition of the data is performed.

We notice that the SPIS solution is the fastest when it comes to Insert/Delete
Key and Join/Depart Node, since the actions on the RDDs (or Dataframes)
partitions of Spark Cluster, occur mostly in memory and in bulk processing
fashion. For this reason (bulk processing), the complexities of insert/delete key
and join/departure node operations are amortized.

As Table 2 shows, all the structures have different complexities on every oper-
ation. This means that there is no clear answer on which structure is the best
to use. It highly depends on the nature of the problem, the type of network,
and the application at hand that determines which operations uses more than
others.

5 Conclusions

In this work we focused on range query processing for big data. We presented and
reviewed state-of-the-art hierarchical (and not DHT-based) distributed overlay
structures for efficient big data management that exhibit stable scalability.

Scalable and Hierarchical Distributed Data Structures for Big Data 159

References

1. Aspnes, J., Shah, G.: Skip graphs. In: Proceedings 14th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), Baltimore, MD, pp. 384–393 (2003)

2. Barkai, D.: Technologies for sharing and collaborating on the net. In: 1st Inter-
national Conference on Peer-to-Peer Computing (P2P 2001), 27–29 August 2001,
Linköping, Sweden, pp. 13–28 (2001)

3. Brodal, G.S., Sioutas, S., Tsichlas, K., Zaroliagis, C.: D2-tree: a new overlay with
deterministic bounds. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010.
LNCS, vol. 6507, pp. 1–12. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-17514-5 1

4. Crainiceanu, A., Linga, P., Machanavajjhala, A., Gehrke, J., Shanmugasundaram,
J.: Load balancing and range queries in P2P systems using P-Ring. ACM Trans.
Internet Technol. 10(4), 1–30 (2011)

5. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

6. Ding, G., Wang, L., Wu, Q.: Big data analytics in future internet of things. CoRR,
abs/1311.4112 (2013)

7. Ganesan, P., Bawa, M., Garcia-Molina, H.: Online balancing of range-partitioned
data with applications to peer-to-peer systems. In: (e)Proceedings of the Thirtieth
International Conference on Very Large Data Bases, VLDB 2004, Toronto, Canada,
31 August–3 September 2004, pp. 444–455 (2004)

8. Jagadish, H.V., Ooi, B.C., Tan, K.-L., Vu, Q.H., Zhang, R.: Speeding up search
in peer-to-peer networks with a multi-way tree structure. In: Proceedings of the
ACM SIGMOD International Conference on Management of Data, Chicago, Illi-
nois, USA, 27–29 June 2006, pp. 1–12 (2006)

9. Jagadish, H.V., Ooi, B.C., Vu, Q.H.: BATON: a balanced tree structure for peer-
to-peer networks. In: Proceedings of the 31st Conference on Very Large Databases
(VLDB 2005), Trondheim, Norway, pp. 661–672 (2005)

10. Kaporis, A.C., Makris, C., Sioutas, S., Tsakalidis, A.K., Tsichlas, K., Zaroliagis,
C.D.: Improved bounds for finger search on a RAM. Algorithmica 66(2), 249–286
(2013)

11. Knuth, D.E.: The Art of Computer Programming, vol. III, 2nd edn. Addison-
Wesley, Redwood City (1998)

12. Liau, C.Y., Ng, W.S., Shu, Y., Tan, K.-L., Bressan, S.: Efficient range queries and
fast lookup services for scalable P2P networks. In: Ng, W.S., Ooi, B.-C., Ouksel,
A.M., Sartori, C. (eds.) DBISP2P 2004. LNCS, vol. 3367, pp. 93–106. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31838-5 7

13. Mehlhorn, K., Tsakalidis, A.K.: Dynamic interpolation search. In: Automata, Lan-
guages and Programming, 12th Colloquium, Nafplion, Greece, 15–19 July 1985,
Proceedings, pp. 424–434 (1985)

14. Papadopoulos, A.N., Sioutas, S., Zacharatos, S., Zaroliagis, C.: Efficient distributed
range query processing in apache spark. In: Proceedings of 19th IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Grid Computing - CCGRID 2019, pp.
569–575. IEEE Computer Society (2019)

15. Ratnasamy, S., Francis, P., Handley, M., Karp, R.M., Shenker, S.: A scalable
content-addressable network. In: SIGCOMM, pp. 161–172 (2001)

16. Sioutas, S., Sourla, E., Tsichlas, K., Zaroliagis, C.: D 3-tree: a dynamic determin-
istic decentralized structure. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS,
vol. 9294, pp. 989–1000. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48350-3 82

https://doi.org/10.1007/978-3-642-17514-5_1
https://doi.org/10.1007/978-3-642-17514-5_1
https://doi.org/10.1007/978-3-540-31838-5_7
https://doi.org/10.1007/978-3-662-48350-3_82
https://doi.org/10.1007/978-3-662-48350-3_82

160 S. Sioutas et al.

17. Sioutas, S., Sourla, E., Tsichlas, K., Zaroliagis, C.: ART+: a fault-tolerant decen-
tralized tree structure with ultimate sub-logarithmic efficiency. In: Karydis, I.,
Sioutas, S., Triantafillou, P., Tsoumakos, D. (eds.) ALGOCLOUD 2015. LNCS,
vol. 9511, pp. 126–137. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
29919-8 10

18. Sioutas, S., Triantafillou, P., Papaloukopoulos, G., Sakkopoulos, E., Tsichlas, K.:
Art: Sub-logarithmic decentralized range query processing with probabilistic guar-
antees. J. Distrib. Parallel Databases (DAPD) 31(1), 71–109 (2012)

19. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: a
scalable peer-to-peer lookup service for internet applications. SIGCOMM Comput.
Commun. Rev. 31(4), 149–160 (2001)

20. White, T.: Hadoop: The Definitive Guide. O’Reilly (2015)
21. Zaharia, M., et al.: Apache spark: a unified engine for big data processing. Com-

mun. ACM 59(11), 56–65 (2016)
22. Zhang, Y., Liu, L., Li, D., Liu, F., Lu, X.: DHT-based range query processing for

web service discovery. In: Proceedings of the IEEE International Conference on
Web Services (ICWS 2009), Los Angeles, CA, pp. 477–484, IEEE, July 2009

https://doi.org/10.1007/978-3-319-29919-8_10
https://doi.org/10.1007/978-3-319-29919-8_10

Author Index

Acikalin, Utku Umur 103

Belcastro, Loris 15

Cardellini, Valeria 77
Caskurlu, Bugra 103
Centelles, Roger Pueyo 42

Fard, Hamid Mohammadi 59
Freitag, Felix 42

James, Philip 25
Jha, Devki Nandan 25

Kochovski, Petar 1

Lo Presti, Francesco 77

Marozzo, Fabrizio 15

Nardelli, Matteo 77
Navarro, Leandro 42

Prodan, Radu 59
Puthal, Deepak 25

Ranjan, Rajiv 25
Rossi, Fabiana 77

Selimi, Mennan 42
Sioutas, Spyros 122
Stankovski, Vlado 1
Subramani, K. 103

Talia, Domenico 15
Thekkummal, Nipun Balan 25
Trunfio, Paolo 15

Vonitsanos, Gerasimos 122

Wolf, Felix 59

Zacharatos, Nikolaos 122
Zaroliagis, Christos 122

	Preface
	Organization
	New Horizons in IoT Workflows Provisioning in Edge and Cloud Datacentres for Fast Data Analytics (Keynote Talk)
	Contents
	Algorithms for a Smart Construction Environment
	1 Introduction
	2 Smart Application Scenarios
	3 Edge-to-Cloud Computing for Smart Environments
	3.1 Computing Layers for Smart Environments
	3.2 Summary of Requirements for Smart Applications

	4 Multi-objective Decision-Making for the Selection of Cloud Deployment Options
	4.1 Decision-Making Mechanisms Summary
	4.2 Markov Decision Process
	4.3 Probabilistic Decision-Making Evaluation

	5 Trust as a High-Level Requirement
	6 Conclusions
	References

	Developing a Cloud-Based Algorithm for Analyzing the Polarization of Social Media Users
	1 Introduction
	2 Related Work
	3 Algorithm Details
	3.1 Definition of Keywords K
	3.2 Data Preprocessing
	3.3 Tweet Polarization
	3.4 User Polarization
	3.5 Results Visualization

	4 Case Study and Results
	4.1 Statistical Significance of Analyzed Data
	4.2 Analysis Results

	5 Conclusion
	References

	Coordinated Data Flow Control in IoT Networks
	1 Introduction
	2 Background and Related Work
	2.1 Edge+Cloud IoT Architecture
	2.2 IoT Data Flow Challenges
	2.3 IoT Data Streams
	2.4 Computational Models for IoT Data Streams

	3 Architecture
	3.1 Edge GateKeeper (EGK)
	3.2 Adaptive Flow Controller (AFC)
	3.3 Model

	4 Implementation Details
	5 Evaluation
	5.1 Performance Baseline
	5.2 Stability Analysis
	5.3 Data Freshness and Backpressure Recovery Time with AFC

	6 Summary and Future Work
	References

	A Monitoring System for Distributed Edge Infrastructures with Decentralized Coordination
	1 Introduction
	2 Needs for Monitoring System and Use Cases
	2.1 Limitations of the Current Monitoring System
	2.2 Needs of a Billing and Economic Compensations System

	3 An Edge Monitoring System for Network Infrastructures
	3.1 Architecture
	3.2 Implementation

	4 Evaluation of the Assign Algorithm
	4.1 Assignment Policy 1 (min): Reach minMons per Network Device
	4.2 Assignment Policy 2 (max): Reach maxMons per Network Device
	4.3 Assignment Policy 3 (fair): Reach [minMons,maxMons] per Network Device
	4.4 Comparison of Policies

	5 Related Work
	6 Conclusions
	References

	A Container-Driven Approach for Resource Provisioning in Edge-Fog Cloud
	1 Introduction
	2 Containerization and Edge-Fog Cloud
	3 Related Work
	4 System Model
	4.1 Platform Model
	4.2 Application Model
	4.3 Problem Model

	5 Minimizing End-to-End Latency Algorithm
	5.1 Time Complexity Analysis

	6 Evaluation
	6.1 Containers Versus VMs
	6.2 Serverless Versus Containers

	7 Conclusion
	References

	Self-adaptive Container Deployment in the Fog: A Survey
	1 Introduction
	2 Fog Environment Challenges
	3 Approaches for Container-Based Application Deployment
	3.1 Deployment Goals
	3.2 Controlled Entities
	3.3 Adaptation Actions
	3.4 Methodologies
	3.5 Deployment Controllers

	4 Container Orchestration Tools
	5 Simulation Tools
	6 Open Challenges and Research Directions
	References

	Security-Aware Database Migration Planning
	1 Introduction
	2 Notations and Problem Formulation
	3 Computational Complexity Results
	3.1 Models with Timing Constraints

	4 Experimental Study
	4.1 Data Generation Process
	4.2 Mathematical Formulations
	4.3 Genetic Algorithms
	4.4 Experimental Setup
	4.5 Results and Analysis

	5 Conclusion
	References

	Scalable and Hierarchical Distributed Data Structures for Efficient Big Data Management
	1 Introduction
	2 Hierarchical Tree-Based Structures
	2.1 BATON
	2.2 BATON*
	2.3 D2-Tree
	2.4 D3-Tree
	2.5 ART
	2.6 ART+
	2.7 SPark-based Interpolation Search Tree (SPIS)

	3 Decentralized Ring-Based Structures
	3.1 P-Ring

	4 Comparison of Hierarchical Structures
	5 Conclusions
	References

	Author Index

