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Abstract. Modern multiple object tracking (MOT) systems usually fol-
low the tracking-by-detection paradigm. It has 1) a detection model for
target localization and 2) an appearance embedding model for data asso-
ciation. Having the two models separately executed might lead to effi-
ciency problems, as the running time is simply a sum of the two steps
without investigating potential structures that can be shared between
them. Existing research efforts on real-time MOT usually focus on the
association step, so they are essentially real-time association methods but
not real-time MOT system. In this paper, we propose an MOT system
that allows target detection and appearance embedding to be learned in
a shared model. Specifically, we incorporate the appearance embedding
model into a single-shot detector, such that the model can simultane-
ously output detections and the corresponding embeddings. We further
propose a simple and fast association method that works in conjunc-
tion with the joint model. In both components the computation cost is
significantly reduced compared with former MOT systems, resulting in
a neat and fast baseline for future follow-ups on real-time MOT algo-
rithm design. To our knowledge, this work reports the first (near) real-
time MOT system, with a running speed of 22 to 40 FPS depending on
the input resolution. Meanwhile, its tracking accuracy is comparable to
the state-of-the-art trackers embodying separate detection and embed-
ding (SDE) learning (64.4% MOTA v.s. 66.1% MOTA on MOT-16 chal-
lenge). Code and models are available at https://github.com/Zhongdao/
Towards-Realtime-MOT.
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1 Introduction

Multiple object tracking (MOT), which aims at predicting trajectories of multi-
ple targets in video sequences, underpins critical application significance ranging
from autonomous driving to smart video analysis.

The dominant strategy to this problem, i.e., tracking-by-detection [6,24,40]
paradigm, breaks MOT down to two steps: 1) the detection step, in which tar-
gets in single video frames are localized; and 2) the association step, where
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Fig. 1. Comparison between (a) the Separate Detection and Embedding (SDE) model,
(b) the two-stage model and (c) the proposed Joint Detection and Embedding (JDE).

detected targets are assigned and connected to existing trajectories. It means
the system requires at least two compute-intensive components: a detector and
an embedding (re-ID) model. We term those methods as the Separate Detection
and Embedding (SDE) methods for convenience. The overall inference time,
therefore, is roughly the summation of the two components, and will increase as
the target number increases. The characteristics of SDE methods bring critical
challenges in building a real-time MOT system, an essential demand in practice.

In order to save computation, a feasible idea is to integrate the detector and
the embedding model into a single network. The two tasks thus can share the
same set of low-level features, and re-computation is avoided. One choice for joint
detector and embedding learning is to adopt the Faster R-CNN framework [28],
a type of two-stage detectors. Specifically, the first stage, the region proposal
network (RPN), remains the same with Faster R-CNN and outputs detected
bounding boxes; the second stage, Fast R-CNN [11], can be converted to an
embedding model by replacing the classification supervision with the metric
learning supervision [36,39]. In spite of saving some computation, this method
is still limited in speed due to its two-stage design and usually runs at fewer
than 10 frames per second (FPS), far from real-time. Moreover, the runtime of
the second stage also increases as target number increases like SDE methods.

This paper is dedicated to the improving efficiency of an MOT system. We
introduce an early attempt that Jointly learns the Detector and Embedding
model (JDE) in a single-shot deep network. In other words, the proposed JDE
employs a single network to simultaneously output detection results and the cor-
responding appearance embeddings of the detected boxes. In comparison, SDE
methods and two-stage methods are characterized by re-sampled pixels (bound-
ing boxes) and feature maps, respectively. Both the bounding boxes and feature
maps are fed into a separate re-ID model for appearance feature extraction.
Figure 1 briefly illustrates the difference between the SDE methods, the two-
stage methods and the proposed JDE. Our method is near real-time while being
almost as accurate as the SDE methods. For example, we obtain a running time
of 20.2 FPS with MOTA = 64.4% on the MOT-16 test set. In comparison, Faster
R-CNN + QAN embedding [40] only runs at <6 FPS with MOTA = 66.1% on
the MOT-16 test set.
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To build a joint learning framework with high efficiency and accuracy, we
explore and deliberately design the following fundamental aspects: training data,
network architecture, learning objectives, optimization strategies, and validation
metrics. First, we collect six publicly available datasets on pedestrian detection
and person search to form a unified large-scale multi-label dataset. In this uni-
fied dataset, all the pedestrian bounding boxes are labeled, and a portion of the
pedestrian identities are labeled. Second, we choose the Feature Pyramid Net-
work (FPN) [21] as our base architecture and discuss with which type of loss
functions the network learns the best embeddings. Then, we model the training
process as a multi-task learning problem with anchor classification, box regres-
sion, and embedding learning. To balance the importance of each individual
task, we employ task-dependent uncertainty [16] to dynamically weight the het-
erogenous losses. A simple and fast association algorithm is proposed to further
improve efficiency. Finally, we employ the following evaluation metrics. The aver-
age precision (AP) is employed to evaluate the performance of the detector. The
retrieval metric True Accept Rate (TAR) at certain False Alarm Rate (FAR) is
adopted to evaluate the quality of the embedding. The overall MOT accuracy is
evaluated by the CLEAR metrics [2], especially the MOTA score. This paper also
provides new settings and baselines for joint detection and embedding learning,
which we believe will facilitate research towards real-time MOT.

The contributions of our work are summarized as follows,

– We introduce JDE, a single-shot framework for joint detection and embed-
ding learning. It runs in (near) real-time and is comparably accurate to the
separate detection + embedding (SDE) state-of-the-art methods.

– We conduct thorough analysis and experiments on how to build such a joint
learning framework from multiple aspects including training data, network
architecture, learning objectives and optimization strategy.

– Experiments with the same training data show the JDE performs as well as
a range of strong SDE model combinations and achieves the fastest speed.

– Experiments on MOT-16 demonstrate the advantage of our method over
state-of-the-art MOT systems considering the amount of training data, accu-
racy and speed.

2 Related Work

Recent progresses on multiple object tracking can be primarily categorized into
the following aspects:

1) Ones that model the association problem as certain form of optimization
problem on graphs [17,37,42].

2) Ones that make efforts to model the association process by an end-to-end
neural network [32,49].

3) Ones that seek novel tracking paradigm other than tracking-by-detection [1].



110 Z. Wang et al.

Among them, the first two categories have been the prevailing solution to
MOT in the past decade. In these methods, detection results and appearance
embeddings are given as input, and the only problem to be solved is data associ-
ation. A standard formulation is using a graph, where nodes represent a detected
targets, and edges indicate the possibility of linkages among nodes. Data asso-
ciation thus can be solved by minimizing some fixed [15,26,43] or learned [19]
cost, or by more complex optimization such as multi-cuts [35] and minimum
cliques [42]. Some recent works attempt to model the association problem using
graph networks [4,20], so that end-to-end association can be achieved. Graph-
based association shows good tracking accuracy especially in hard cases such as
large occlusions, but their efficiency is always a problem. Although some meth-
ods [6] claim to be able to attain real-time speed, the runtime of the detector is
excluded, such that the overall system still has some distance from the claim. In
contrast, in this work, we consider the runtime of the entire MOT system rather
than the association step only. Achieving efficiency on the entire system is more
practically significant.

The third category attempts to explore novel MOT paradigms, for instance,
incorporating single object trackers into the detector by predicting the spatial
offsets [1]. These methods are appealing owning to their simplicity, but tracking
accuracy is not satisfying unless an additional embedding model is introduced.
As such, the trade-off between performance and speed still needs improvement.

The spirit of our approach, that learning auxiliary associative embeddings
simultaneously with the main task, also shows good performance in many other
vision tasks, such as person search [39], human pose estimation [25], and point-
based object detection [18].

3 Joint Learning of Detection and Embedding

3.1 Problem Settings

The objective of JDE is to simultaneously output the location and appearance
embeddings of targets in a single forward pass. Formally, suppose we have a
training dataset {I,B,y}N

i=1. Here, I ∈ R
c×h×w indicates an image frame, and

B ∈ R
k×4 represents the bounding box annotations for the k targets in this

frame. y ∈ Z
k denotes the partially annotated identity labels, where −1 indicates

targets without an identity label. JDE aims to output predicted bounding boxes
B̂ ∈ R

k̂×4 and appearance embeddings F̂ ∈ R
k̂×D, where D is the dimension of

the embedding. The following objectives should be satisfied.

– B∗ is as close to B as possible.
– Given a distance metric d(·), ∀(kt, kt+Δt, k

′
t+Δt) that satisfy ykt+Δt

= ykt
and

yk′
t+Δt

�= ykt
, we have d(fkt

, fkt+Δt
) < d(fkt

, fk′
t+Δt

), where fkt
is a row vector

from F̂t and fkt+Δt
, fk′

t+Δt
are row vectors from F̂t+Δt, i.e., embeddings of

targets in frame t and t + Δt, respectively,
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Fig. 2. Illustration of (a) the network architecture and (b) the prediction head. Predic-
tion heads are added upon multiple FPN scales. In each prediction head the learning
of JDE is modeled as a multi-task learning problem. We automatically weight the het-
erogeneous losses by learning a set of auxiliary parameters, i.e., the task-dependent
uncertainty.

The first objective requires the model to detect targets accurately. The second
objective requires the appearance embedding to have the following property. The
distance between observations of the same identity in consecutive frames should
be smaller than the distance between different identities. The distance metric
d(·) can be the Euclidean distance or the cosine distance. Technically, if the
two objectives are both satisfied, even a simple association strategy, e.g., the
Hungarian algorithm, would produce good tracking results.

3.2 Architecture Overview

We employ the architecture of Feature Pyramid Network (FPN) [21]. FPN makes
predictions from multiple scales, thus bringing improvement in pedestrian detec-
tion where the scale of targets varies a lot. Figure 2 briefly shows the neural
architecture used in JDE. An input video frame first undergoes a forward pass
through a backbone network to obtain feature maps at three scales, namely,
scales with 1

32 , 1
16 and 1

8 down-sampling rate, respectively. Then, the feature map
with the smallest size (also the semantically strongest features) is up-sampled
and fused with the feature map from the second smallest scale by skip connec-
tion, and the same goes for the other scales. Finally, prediction heads are added
upon fused feature maps at all the three scales. A prediction head consists of
several stacked convolutional layers and outputs a dense prediction map of size
(6A + D) × H × W , where A is the number of anchor templates assigned to this
scale, and D is the dimension of the embedding. The dense prediction map is
divided into three parts (tasks):

1) the box classification results of size 2A × H × W ;
2) the box regression coefficients of size 4A × H × W ;
3) the dense embedding map of size D × H × W .

In the following sections, we will detail how these tasks are trained.

3.3 Learning to Detect

In general the detection branch is similar to the standard RPN [28], but with
two modifications. First, we redesign the anchors in terms of numbers, scales,
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and aspect ratios to be able to adapt to the targets, i.e., pedestrian in our case.
Based on the common prior, all anchors are set to an aspect ratio of 1 : 3. The
number of anchor templates is set to 12 such that A = 4 for each scale, and the
scales (widths) of anchors range from 11 ≈ 8 × 21/2 to 512 = 8 × 212/2. Second,
we note that it is important to select proper values for the dual thresholds used
for foreground/background assignment. By visualization we determine that an
IOU> 0.5 w.r.t. the ground truth approximately ensures a foreground, which is
consistent with the common setting in generic object detection. On the other
hand, those boxes that have an IOU< 0.4 w.r.t. the ground truth should be
regarded as background in our case rather than 0.3 used in generic scenarios.
Our preliminary experiment indicates that these thresholds effectively suppress
false alarms, which usually happens under heavy occlusions.

The learning objective of detection has two loss functions, namely the fore-
ground/background classification loss Lα, and the bounding box regression loss
Lβ . Lα is formulated as a cross-entropy loss and Lβ as a smooth-L1 loss. The
regression targets are encoded in the same manner as [28].

3.4 Learning Appearance Embeddings

The second objective is a metric learning problem, i.e., learning a embedding
space where instances of the same identity are close to each other while instances
of different identities are far apart. To achieve this goal, an effective solution is
to use the triplet loss [29]. The triplet loss has also been used in previous MOT
works [36]. Formally, we use triplet loss Ltriplet = max(0, f�f− − f�f+), where
f� is an instance in a mini-batch selected as an anchor, f+ represents a positive
sample w.r.t. f�, and f− is a negative sample. The margin term is neglected
for convenience. This naive formulation of the triplet loss has several challenges.
The first is the huge sampling space in the training set. In this work we address
this problem by looking at a mini-batch and mining all the negative samples and
the hardest positive sample in this mini-batch, such that,

Ltriplet =
∑

i

max
(
0, f�f−

i − f�f+
)
, (1)

where f+ is the hardest positive sample in a mini-batch.
The second challenge is that training with the triplet loss can be unstable

and the convergence might be slow. To stabilize the training process and speed
up convergence, it is proposed in [31] to optimize over a smooth upper bound of
the triplet loss,

Lupper = log
(
1 +

∑

i

exp
(
f�f−

i − f�f+
))

. (2)

Note that this smooth upper bound of triplet loss can be also written as,

Lupper = − log
exp(f�f+)

exp(f�f+) +
∑

i exp(f�f−
i )

. (3)
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It is similar to the formulation of the cross-entropy loss,

LCE = − log
exp(f�g+)

exp(f�g+) +
∑

i exp(f�g−
i )

, (4)

where we denote the class-wise weight of the positive class (to which the anchor
instance belongs) as g+ and weights of negative classes as g−

i . The major ditinc-
tions between Lupper and LCE are two-fold. First, the cross-entropy loss employs
learnable class-wise weights as proxies of class instances rather than using the
embeddings of instances directly. Second, all the negative classes participate in
the loss computation in LCE such that the anchor instance is pulled away from
all the negative classes in the embedding space. In contrast, in Lupper, the anchor
instance is only pulled away from the sampled negative instances.

In light of the above analysis, we speculate the performance of the three
losses under our case should be LCE > Lupper > Ltriplet. Experimental result in
the experiment section confirms this. As such, we select the cross-entropy loss
as the objective for embedding learning (hereinafter referred to as Lγ).

Specifically, if an anchor box is labeled as the foreground, the correspond-
ing embedding vector is extracted from the dense embedding map. Extracted
embeddings are fed into a shared fully-connected layer to output the class-wise
logits, and then the cross-entropy loss is applied upon the logits. In this man-
ner, embeddings from multiple scales shares the same space, and association
across scales is feasible. Embeddings with label −1, i.e., foregrounds with box
annotations but without identity annotations, are ignored when computing the
embedding loss.

3.5 Automatic Loss Balancing

The learning objective of each prediction head in JDE can be modeled as a
multi-task learning problem. The joint objective can be written as a weighted
linear sum of losses from every scale and every component,

Ltotal =
M∑

i

∑

j=α,β,γ

wi
jLi

j , (5)

where M is the number of prediction heads and wi
j , i = 1, ...,M, j = α, β, γ are

loss weights. A simple way to determine loss weights are described below.

1. Let wi
α = wi

β , as suggested in [28]
2. Let w1

α/γ/β = ... = wM
α/γ/β .

3. Search for the remaining two independent loss weights for the best perfor-
mance.

Searching loss weights with this strategy can yield decent results within
several attempts. However, the reduction of searching space also brings strong
restrictions on the loss weights, such that the resulting loss weights might be far



114 Z. Wang et al.

from optimal. Instead, we adopt an automatic learning scheme for loss weights
proposed in [16] by using the concept of task-independent uncertainty. Formally,
the learning objective with automatic loss balancing is written as,

Ltotal =
M∑

i

∑

j=α,β,γ

1
2

(
1

esi
j

Li
j + si

j

)
, (6)

where si
j is the task-dependent uncertainty for each individual loss and is mod-

eled as learnable parameters. We refer readers to [16] for more detailed derivation
and discussion.

3.6 Online Association

Table 1. Comparison between our associ-
ation method and SORT. Inputs are the
same.

Method Density FPS MOTA IDF-1

SORT [3] Low 44.1 66.9 55.8

Ours Low 46.2 67.5 67.6

SORT [3] High 26.4 35.0 32.4

Ours High 33.9 35.4 35.5

Although the association algorithm is
not the focus of this work, here we
introduce a simple and fast online
association strategy to work in con-
junction with JDE. Specifically, a
tracklet is described with an appear-
ance state ei and a motion state mi =
(x, y, γ, h, ẋ, ẏ, γ̇, ḣ), where x, y indi-
cate the bounding box center position,
h indicates the bounding box height
and γ indicates the aspect ratio, and ẋ indicates the velocity along x direction.
The tracklet appearance ei is initialized with the appearance embedding of the
first observation f0

i . We maintain a tracklet pool containing all the reference
tracklets that observations are probable to be associated with. For an incoming
frame, we compute the pair-wise motion affinity matrix Am and appearance affin-
ity matrix Ae between all the observations and the traklets from the pool. The
appearance affinity is computed using cosine similarity, and the motion affinity
is computed using Mahalanobis distance. Then we solve the linear assignment
problem by Hungarian algorithm with cost matrix C = λAe + (1 − λ)Am. The
motion state mi of all matched tracklets are updated by the Kalman filter, and
the appearance state ei is updated by

et
i = αet−1

i + (1 − α)f t
i (7)

Where f t
i is the appearance embedding of the current matched observation,

α = 0.9 is a momentum term. Finally observations that are not assigned to any
tracklets are initialized as new tracklets if they consecutively appear in 2 frames.
A tracklet is terminated if it is not updated in the most current 30 frames.

Note this association method is simpler than the cascade matching strategy
proposed in SORT [3], since we only apply association once for one frame and
resort to a buffer pool to deal with those shortly lost tracklets. Moreover, we also
implement a vectorized version of the Kalman filter and find it critical for high
FPS, especially when the model is already fast. A comparison between SORT



Towards Real-Time MOT 115

and our association method, based on the same JDE model, is shown in Table 1.
We use MOT-15 [24] for testing the low density scenario and CVPR-19-01 [7]
for high density. It can be observed that our method outperforms SORT in both
accuracy and speed, especially under the high-density case.

4 Experiments

4.1 Datasets and Evaluation Metrics

Table 2. Statistics of the joint training set.

Dataset ETH CP CT M16 CS PRW Total

# img 2K 3K 27K 53K 11K 6K 54K

# box 17K 21K 46K 112K 55K 18K 270K

# ID – – 0.6K 0.5K 7K 0.5K 8.7K

Performing experiments on small
datasets may lead to biased results
and conclusions may not hold when
applying the same algorithm to
large-scale datasets. Therefore, we
build a large-scale training set by
putting together six publicly available datasets on pedestrian detection, MOT
and person search. These datasets can be categorized into two types: ones that
only contain bounding box annotations, and ones that have both bounding box
and identity annotations. The first category includes the ETH dataset [9] and
the CityPersons (CP) dataset [44]. The second category includes the CalTech
(CT) dataset [8], MOT-16 (M16) dataset [24], CUHK-SYSU (CS) dataset [39]
and PRW dataset [47]. Training subsets of all these datasets are gathered to
form the joint training set, and videos in the ETH dataset that overlap with the
MOT-16 test set are excluded for fair evaluation. Table 2 shows the statistics
of the joint training set.

For validation/evaluation, three aspects of performance need to be evaluated:
the detection accuracy, the discriminative ability of the embedding, and the
tracking performance of the entire MOT system. To evaluate detection accuracy,
we compute average precision (AP) at IOU threshold of 0.5 over the Caltech
validation set. To evaluate the appearance embedding, we extract embeddings of
all ground truth boxes over the validation sets of the Caltech dataset, the CUHK-
SYSU dataset and the PRW dataset, apply 1 : N retrieval among these instances
and report the true positive rate at false accept rate 0.1 (TPR@FAR=0.1).
To evaluate the tracking accuracy of the entire MOT system, we employ the
CLEAR metric [2], particularly the MOTA metric that aligns best with human
perception. In validation, we use the MOT-15 training set with duplicated
sequences with the training set removed. During testing, we use the MOT-16
test set to compare with existing methods.

4.2 Implementation Details

We employ DarkNet-53 [27] as the backbone network in JDE. The network is
trained with standard SGD for 30 epochs. The learning rate is initialized as 10−2

and is decreased by 0.1 at the 15th and the 23th epoch. Several data augmenta-
tion techniques, such as random rotation, random scale and color jittering, are
applied to reduce overfitting. Finally, the augmented images are adjusted to a
fixed resolution. The input resolution is 1088 × 608 if not specified.
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4.3 Experimental Results

Table 3. Comparing different embedding losses and loss
weighting strategies. TPR is short for TPR@FAR=0.1
on the embedding validation set, and IDs means times
of ID switches on the tracking validation set. ↓ means
the smaller the better; ↑ means the larger the better. In
each column, the best result is in bold, and the second
best is underlined.

Embed. Loss Weighting strategy Det Emb MOT

AP↑ TPR↑ MOTA↑ IDs↓
Ltriplet App.Opt 81.6 42.2 59.5 375

Lupper App.Opt 81.7 44.3 59.8 346

LCE App.Opt 82.0 88.2 64.3 223

LCE Uniform 6.8 94.8 36.9 366

LCE MGDA-UB 8.3 93.5 38.3 357

LCE Loss.Norm 80.6 82.1 57.9 321

LCE Uncertainty 83.0 90.4 65.8 207

Comparison of the three
loss functions for appear-
ance embedding learn-
ing. We first compare
the discriminative abil-
ity of appearance embed-
dings trained with the
cross-entropy loss, the triplet
loss and its upper bound
variant, described in the
previous section. For mod-
els trained with Ltriplet

and Lupper, B/2 pairs
of temporal consecutive
frames are sampled to
form a mini-batch with
size B. This ensures that
there always exist posi-
tive samples. For models
trained with LCE , images are randomly sampled to form a mini-batch. Table 3
presents comparisons of the three loss functions.

As expected, LCE outperforms both Ltriplet and Lupper. Surprisingly, the
performance gap is large (+46.0/+43.9 TAR@FAR=0.1). A possible reason
for the large gap is that the cross-entropy loss requires the similarity between
one instance and its positive class be higher than the similarities between this
instance and all negative classes. This objective is more rigorous than the triplet
loss family, which exerts constraints merely in a sampled mini-batch. Considering
its effectiveness and simplicity, we adopt the cross-entropy loss in JDE.

Comparison of Different Loss Weighting Strategies. The loss weighting
strategy is crucial to learn good joint representation for JDE. In this paper,
three loss weighting strategies are implemented. The first is a loss normalization
method (named “Loss.Norm”), where the losses are weighted by the reciprocal
of their moving average magnitude. The second is the “MGDA-UB” algorithm
proposed in [30] and the last is the weight-by-uncertainty strategy described in
Sect. 3.5. Moreover, we have two baselines. The first trains all the tasks with iden-
tical loss weights, named as “Uniform”. The second, referred to as “App.Opt”,
uses a set of approximate optimal loss weights by searching under the two-
independent-variable assumption as described in Sect. 3.5. Table 3 summarizes
the comparisons of these strategies. Two observations are made.

First, the Uniform baseline produces poor detection results, and thus the
tracking accuracy is not good. This is because the scale of the embedding loss
is much larger than the other two losses and dominates the training process.
Once we set proper loss weights to let al.l tasks learn at a similar rate, as in



Towards Real-Time MOT 117

the “App.Opt” baseline, both the detection and embedding tasks yield good
performance.

Second, results indicate that the “Loss.Norm” strategy outperforms the “Uni-
form” baseline but is inferior to the “App.Opt” baseline. The MGDA-UB algo-
rithm, despite being the most theoretically sound method, fails in our case
because it assign too large weights to the embedding loss, such that its per-
formance is similar to the Uniform baseline. The only method that outperforms
the App.Opt baseline is the weight-by-uncertainty strategy.

Comparison with SDE Methods. To demonstrate the superiority of JDE to
the Separate Detection and Embedding (SDE) methods, we implemented several
state-of-the-art detectors and person re-id models and compare their combina-
tions with JDE in terms of both tracking accuracy (MOTA) and runtime (FPS).
The detectors include JDE with ResNet-50 and ResNet-101 [13] as backbone,
Faster R-CNN [28] with ResNet-50 and ResNet-101 as backbone, and Cascade
R-CNN [5] with ResNet-50 and ResNet-101 as backbone. The person re-id mod-
els include IDE [46], Triplet [14] and PCB [33]. In the association step, we use the
same online association approach described in Sect. 3.6 for all the SDE models.
For fair comparison, all the training data are the same as used in JDE.

In Fig. 3, we plot the MOTA metric and the IDF-1 score against the runtime
for SDE combinations of the above detectors and person re-id models. Runtime
of all models are tested on a single Nvidia Titan xp GPU. Figure 3 (a) and (c)
show comparisons on the MOT-15 train set, in which the pedestrian density
is low, e.g., less than 20. In contrast, Fig. 3 (b) and (d) show comparisons on
a video sequence that contains crowd in high-density (CVPR19-01 from the
CVPR19 MOT challenge datast, with density 61.1). Several observations can be
made.

First, cosidering the MOTA metric, the proposed JDE produces competitive
tracking accuracy meanwhile runs much faster than strong SDE combinations,
reaching the best trade-off between accuracy and speed in both low-density and
high-density cases. Specifically, JDE with DarkNet-53 (JDE-DN53) runs at 22
FPS and produces tracking accuracy nearly as good as the combination of the
Cascade RCNN detector with ResNet-101 (Cascade-R101) + PCB embedding
(65.8% v.s. 66.2%), while the latter only runs at ∼6 FPS. In the other hand,
Considering the IDF-1 score which reflects the association performance, our
JDE is also competitive with strong SDE combinations in the low-density case.
Specifically, JDE with DarkNet-53 presents 66.2% IDF-1 score at 22 FPS, while
Cascade RCNN with ResNet-101 + PCB presents 69.6% IDF-1 score at 7.6 FPS.
In the high-density crowd case, performance of all methods rapidly degrades, and
we observe that IDF-1 score of JDE degrades slightly more than strong SDE
combinations. We find the major reason is that, in the crowd case, pedestrian
often overlap with each other, and since JDE employs a single-stage detector
the detected boxes often drift in such case. The misalignment of boxes brings
ambiguity in the embedding, so that ID switches increase and IDF-1 score drops.
Figure 3 shows an example of such failure case.
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Fig. 3. Comparing JDE and various SDE
combinations in terms of tracking accuracy
(MOTA/IDF-1) and speed (FPS). (a) and (c)
show comparisons under the case where the pedes-
trian density is low (MOT-15 train set), (b) and
(d) show comparisons under the crowded sce-
nario (MOT-CVPR19-01). Different colors rep-
resent different embedding models, and differ-
ent shapes denote different detectors. We clearly
observe that the proposed JDE method (JDE
Embedding + JDE-DN53) has the best time-
accuracy trade-off. Best viewed in color. (Color
figure online)

Second, the tracking accu-
racy of JDE is very close to
the combinations of JDE+IDE,
JDE+Triplet and JDE+PCB
(see the cross markers in Fig. 3).
With other components fixed,
JDE even outperforms the JDE+
IDE combination. This strongly
suggests the jointly learned
embedding is almost as discrim-
inative as the separately learned
embedding.

Finally, comparing the run-
time of a same model between
Fig. 3 (a) and (b), it can be
observed that all the SDE mod-
els suffer a significant speed
drop under the crowded case.
This is because the runtime of
the embedding model increases
with the number of detected
targets. This drawback does
not exist in JDE because
the embedding is computed
together with the detection
results. As such, the runtime
difference between JDE under
the usual case and the crowded case is much smaller (see the red markers).
In fact, the speed drop of JDE is due to the increased time in the association
step, which is positively related to the target number.

Comparison with the State-of-the-Art MOT Systems. Since we train
JDE using additional data instead of the MOT-16 train set, we compare JDE
under the “private data” protocol of the MOT-16 benchmark. State-of-the-art
online MOT methods under the private protocol are compared, including Deep-
SORT 2 [38], RAR16wVGG [10], TAP [48], CNNMTT [23] and POI [40]. All
these methods employ the same detector, i.e., Faster-RCNN with VGG-16 as
backbone, which is trained on a large private pedestrian detection dataset. The
main differences among these methods reside in their embedding models and the
association strategies. For instance, DeepSORT 2 employs Wide Residual Net-
work (WRN) [41] as the embedding model and uses the MARS [45] dataset to
train the appearance embedding. RAR16withVGG, TAP, CNNMTT and POI
use Inception [34], Mask-RCNN [12], a 5-layer CNN, and QAN [22] as their
embedding models, respectively. Training data of these embedding models also
differ from each other. For clear comparison, we list the number of training data
for all these methods in Table 4. Accuracy and speed metrics are also presented.
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Table 4. Comparison with the state-of-the-art online MOT systems under the private
data protocol on the MOT-16 benchmark. The performance is evaluated with the
CLEAR metrics, and runtime is evaluated with three metrics: frames per second of
the detector (FPSD), frame per second of the association step (FPSA), and frame per
second of the overall system (FPS). ∗ indicates estimated timing. We clearly observe
our method has the best efficiency and a comparable accuracy.

Method #box #id MOTA↑ IDF1↑ MT↑ ML ↓ IDs ↓ FPSD ↑ FPSA ↑ FPS ↑
DeepSORT 429K 1.2k 61.4 62.2 32.8 18.2 781 <15∗ 17.4 <8.1

RAR16 429K - 63.0 63.8 39.9 22.1 482 <15∗ 1.6 <1.5

TAP 429K - 64.8 73.5 40.6 22.0 794 <15∗ 18.2 <8.2

CNNMTT 429K 0.2K 65.2 62.2 32.4 21.3 946 <15∗ 11.2 <6.4

POI 429K 16K 66.1 65.1 34.0 21.3 805 <15∗ 9.9 <6

JDE864 270K 8.7K 62.1 56.9 34.4 16.7 1,608 34.3 259.8 30.3

JDE1088 270K 8.7K 64.4 55.8 35.4 20.0 1,544 24.5 236.5 22.2

Considering the overall tracking accuracy, e.g., the MOTA metric, JDE is
generally comparable. Our result is higher than DeepSORT 2 by +3.0% and is
lower than POI by 1.7%. In terms of running speed, it is not feasible to directly
compare these methods because their runtimes are not all reported. Therefore,
we re-implemented the VGG-16 based Faster R-CNN detector and benchmark
its running speed, and then estimate the running speed upper bounds of the
entire MOT system for these methods. Note that for some methods the runtime
of the embedding model is not taken into account, so the speed upper bounds
are far from being tight. Even with such relaxed upper bound, the proposed
JDE runs at least 2–3× faster than existing methods, reaching a near real-time
speed, i.e., 22.2 FPS at an image resolution of as high as 1088 × 608. When we
down-sample the input frames to a lower resolution of 864 × 408, the runtime of
JDE can be further sped up to 30.3 FPS with only a minor performance drop
(Δ = −2.6% MOTA).

Visualization. To show the discrimination of the joint learned embedding intu-
itively, we perform a simple retrieval experiment and visualize the results in
Fig. 4. We extract the feature of a pedestrian in one video frame as a query and
compute pixel-wise cosine similarity with the feature map of another frame. We
compare the retrieval results between using detection feature map as the feature
and using the dense embedding as the feature, and it is clearly observed the
dense embedding results in better correspondence between the query and the
target.

Analysis and Discussions. One may notice that JDE has a lower IDF1 score
and more ID switches than existing methods. At first we suspect the reason is
that the jointly learned embedding might be weaker than a separately learned
embedding. However, when we replace the jointly learned embedding with the
separately learned embedding, the IDF1 score and the number of ID switches
remain almost the same. Finally we find that the major reason lies in the inac-
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Fig. 4. Visualization of the retrieval performance of the detection feature map and the
dense embedding. Similarity maps are computed as the cosine similarity between the
query feature and the target feature map. The joint learned dense embedding presents
good correspondence between the query and the target.

curate detection when multiple pedestrians have large overlaps with each other.
Such inaccurate boxes introduce lots of ID switches, and unfortunately, such ID
switches often occur in the middle of a trajectory, hence the IDF1 score is lower.
In our future work, it remains to be solved how to improve JDE to make more
accurate boxes predictions when pedestrian overlaps are significant.

5 Conclusion

In this paper, we introduce JDE, an MOT system that allows target detection
and appearance features to be learned in a shared model. Our design signifi-
cantly reduces the runtime of an MOT system, making it possible to run at
a (near) real-time speed. Meanwhile, the tracking accuracy of our system is
comparable with the state-of-the-art online MOT methods. Moreover, we have
provided thorough analysis, discussions and experiments about good practices
and insights in building such a joint learning framework. In the future, we will
investigate deeper into the time-accuracy trade-off issue.
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