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Abstract. This paper focuses on learning transferable adversarial
examples specifically against defense models (models to defense adversar-
ial attacks). In particular, we show that a simple universal perturbation
can fool a series of state-of-the-art defenses.

Adversarial examples generated by existing attacks are generally hard
to transfer to defense models. We observe the property of regional homo-
geneity in adversarial perturbations and suggest that the defenses are less
robust to regionally homogeneous perturbations. Therefore, we propose
an effective transforming paradigm and a customized gradient trans-
former module to transform existing perturbations into regionally homo-
geneous ones. Without explicitly forcing the perturbations to be univer-
sal, we observe that a well-trained gradient transformer module tends
to output input-independent gradients (hence universal) benefiting from
the under-fitting phenomenon. Thorough experiments demonstrate that
our work significantly outperforms the prior art attacking algorithms
(either image-dependent or universal ones) by an average improvement
of 14.0% when attacking 9 defenses in the transfer-based attack setting.
In addition to the cross-model transferability, we also verify that region-
ally homogeneous perturbations can well transfer across different vision
tasks (attacking with the semantic segmentation task and testing on the
object detection task). The code is available here: https://github.com/
LiYingwei/Regional-Homogeneity.

Keywords: Transferable adversarial example · Universal attack

1 Introduction

Deep neural networks are demonstrated vulnerable to adversarial examples [66],
crafted by adding imperceptible perturbations to clean images. The variants of
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Fig. 1. Illustration of region homogeneity property of adversarial perturbations by
white-box attacking naturally trained models (top row) and adversarially trained mod-
els (bottom row). The adversarially trained models are acquired by (a) vanilla adversar-
ial training [48,75], (b) adversarial training with feature denoising [75], (c) universal
adversarial training [60], and (d) adversarial training for medical image segmenta-
tion [41]

adversarial attacks [3,5,9,12,20,21,30,32,33,55,62,63,79] cast a security threat
when deploying machine learning systems. To mitigate this, large efforts have
been devoted to adversarial defense [7,34,47,71], via adversarial training [42,48,
67,68,73,75,76], randomized transformation [14,26,45,74] etc..

The focus of this work is to attack defense models, especially in the
transfer-based attack setting where models’ architectures and parameters remain
unknown to attackers. In this case, the adversarial examples generated for one
model, which possess the property of “transferability”, may also be misclassified
by other models. To the best of our knowledge, learning transferable adversarial
examples for attacking defense models is still an open problem.

Our work stems from the observation of regional homogeneity on adversarial
perturbations in the white-box setting. As Fig. 1(a) shows, we plot the adver-
sarial perturbations generated by attacking a naturally trained Resnet-152 [28]
model (top) and an representative defense one (i.e., an adversarially trained
model [48,75]). It suggests that the patterns of two kinds of perturbations
are visually different. Concretely, the perturbations of defense models reveal
a coarser level of granularity, and are more locally correlated and more struc-
tured than that of the naturally trained model. The observation also holds when
attacking different defense models (e.g ., adversarial training with feature denois-
ing [75], Fig. 1(b)), generating different types of adversarial examples (image-
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dependent or universal perturbations [60], Fig. 1(c)), or tested on different data
domains (CT scans [57], Fig. 1(d)).

Motivated by this observation, we suggest that regionally homogeneous per-
turbations are strong in attacking defense models, which is especially helpful
to learn transferable adversarial examples in the transfer-based attack setting.
Hence, we propose to transform the existing perturbations (those derive from
differentiating naturally trained models) to the regionally homogeneous ones.
To this end, we develop a novel transforming paradigm (Fig. 2) to craft region-
ally homogeneous perturbations, and accordingly a gradient transformer module
(Fig. 3), to encourage local correlations within the pre-defined regions.

The proposed gradient transformer module is quite light-weight, with only
12 + 2K trainable parameters in total, where a 3 × 3 convolutional layer (bias
enabled) incurs 12 parameters and K is the number of region partitions. Accord-
ing to our experiments, it leads to under-fitting (large bias and small variance) if
the module is trained with a large number of images. In general vision tasks, an
under-fitting model is undesirable. However in our case, once the gradient trans-
former module becomes quasi-input-independent (i.e., aforementioned large bias
and small variance), it will output a nearly fixed pattern whatever the input is.
Then, our work is endowed with a desirable property, i.e., seemingly training
to generate image-dependent perturbations, yet get the universal ones. We note
our mechanism is different from other universal adversarial generations [50,54]
as we do not explicitly force the perturbation to be universal.

Comprehensive experiments are conducted to verify the effectiveness of the
proposed regionally homogeneous perturbation (RHP). Under the transfer-based
attack setting, RHP successfully attacks 9 latest defenses [26,35,42,48,68,74,75]
and improves the top-1 error rates by 21.6% in average, where three of them
are the top submissions in the NeurIPS 2017 defense competition [39] and the
Competition on Adversarial Attacks and Defenses 2018. Compared with the
state-of-the-art attack methods, RHP not only outperforms universal adversar-
ial perturbations (e.g ., UAP [50] by 19.2% and GAP [54] by 15.6%), but also
outperforms image-dependent perturbations (FGSM [23] by 12.9%, MIM [16]
by 12.6% and DIM [16,77] by 9.58%). The achievement over image-dependent
perturbations is especially valuable as it is known that image-dependent pertur-
bations generally perform better as they utilized information from the original
images. Since it is universal, RHP is more general (natural noises are not related
to the target image), more efficient (without additional computational power),
and more flexible (e.g ., without knowing the target image, people can stick a
pattern on the lens to attack artificial intelligence surveillance cameras).

Moreover, we also evaluate the cross-task transferability of RHP and demon-
strate that RHP generalizes well in cross-task attack, i.e., attacking with the
semantic segmentation task and testing on the object detection task.
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2 Related Work

Transfer-Based Attacks. Practically, attackers cannot easily access the inter-
nal information of target models (including its architecture, parameters and out-
puts). A typical solution is to generate adversarial examples with strong transfer-
ability. Szegedy et al . [66] first discuss the transferability of adversarial examples
that the same input can successfully attack different models. Liu et al . [46] then
develop a stronger attack to successfully circumvent an online image classification
system with ensemble attacks, which is later analysed by [44]. Based on one of
the most well-known attack methods, Fast Gradient Sign Method (FGSM) [23]
and its iteration-based version (I-FGSM) [38], many follow-ups are then pro-
posed to further improve the transferability by adopting momentum term [16],
smoothing perturbation [80], constructing diverse inputs [77], augmenting ghost
models [40] and smoothing gradient [17], respectively. Recent works [4,49,52–
54,72] also suggest to train generative models for creating adversarial examples.
Besides transfer-based attacks, query-based [5,8,11,25,78] attacks are also very
popular black-box attack settings.

Fig. 2. Illustration of the transforming paradigm, where I is an original image with
the corresponding label y, and the gradient g is computed from the naturally trained
model θ. Our work learns a mapping to transform gradient from g to ĝ

Universal Adversarial Perturbations. Above are all image-dependent per-
turbation attacks. Moosavi-Dezfooli et al . [50] craft universal perturbations
which can be directly added to any test images to fool the classifier with a
high success rate. Poursaeed et al . [54] propose to train a neural network for
generating adversarial examples by explicitly feeding random noise to the net-
work during training. After obtaining a well-trained model, they use a fixed
input to generate universal adversarial perturbations. Researchers also explore
to produce universal adversarial perturbations by different methods [36,51] or
on different tasks [29,54]. All these methods construct universal adversarial per-
turbations explicitly or data-independently. Unlike them, we provide an implicit
data-driven alternative to generate universal adversarial perturbations.

Defense Methods. Xie et al . [74] and Guo et al . [26] break transferability by
applying input transformation such as random padding/resizing [74], JPEG com-
pression [18], and total variance minimization [59]. Injecting adversarial exam-
ples during training improves the robustness of deep neural network, termed as
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adversarial training. These adversarial examples can be pre-generated [42,68]
or generated on-the-fly during training [35,48,75]. Adversarial training is also
applied to universal adversarial perturbations [1,60].

Normalization. To induce regionally homogeneous perturbations, our work
resorts to a new normalization strategy. This strategy appears similar to some
normalization techniques, such as batch normalization [31], layer normaliza-
tion [2], instance normalization [69], group normalization [70], etc.. While these
techniques aim to help the model converge faster and speed up the learning pro-
cedure for different tasks, the goal of our proposed region norm is to explicitly
enforce the region structure and build homogeneity within regions.

3 Regionally Homogeneous Perturbations

As shown in Sect. 1, regionally homogeneous perturbations appear to be strong in
attacking defense models. To acquire regionally homogeneous adversarial exam-
ples, we propose a gradient transformer module to generate regionally homo-
geneous perturbations from existing regionally non-homogeneous perturbations
(e.g ., perturbations in the top row of Fig. 1). In the following, we detail the
transforming paradigm in Sect. 3.1 and the core component called gradient
transformer module in Sect. 3.2, respectively. In Sect. 3.3, we observe an under-
fitting phenomenon and illustrate that the proposed gradient transformer module
becomes quasi-input-independent, which benefits crafting universal adversarial
perturbations.

Fig. 3. Structure of the gradient transformer module, which has a newly proposed
Region Norm (RN) layer, 1×1 convolutional layer (bias enabled) and identity mapping.
We insert four probes (a, b,c and d) to assist analysis in Sect. 3.3 and Sect. 4.2

3.1 Transforming Paradigm

To learn regionally homogeneous adversarial perturbations, we propose to use a
shallow network T , which we call gradient transformer module, to transform the
gradients that are generated by attacking naturally trained models.

Concretely, we consider Fast Gradient Sign Method (FGSM) [23] which gen-
erates adversarial examples by

Iadv = I + ε · sign (∇IL(I, y; θ)) , (1)
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where L is the loss function of the model θ, and sign(·) denotes the sign function.
y is the ground-truth label of the original image I. FGSM ensures that the
generated adversarial example Iadv is within the ε-ball of I in the L∞ space.

Based on FGSM, we build pixel-wise connections via the additional gradient
transformer module T , so that we may have regionally homogeneous perturba-
tions. Therefore, Eq. (1) becomes

Iadv = I + ε · sign (T (∇IL(I, y; θ); θT )) , (2)

where θT is trainable parameter of gradient transformer module T , and we omit
θT where possible for simplification. The challenge we are facing now is how
to train the gradient transformer module T (·) with the limited supervision. We
address this by proposing a new transforming paradigm illustrated in Fig. 2.
It consists of four steps, as we 1) compute the gradient g = ∇IL(I, y; θ) by
attacking the naturally trained model θ; 2) get the transformed gradient ĝ =
T (g; θT ) via the gradient transformer module; 3) construct the adversarial image
Î by adding the transformed perturbation to the clean image I, forward Î to
the same model θ, and obtain the classification loss L(Îadv, y; θ); and 4) freeze
the clean image I and the model θ, and update the parameters θT of T (·; θT ) by
maximizing L(Îadv, y; θ). The last step is implemented via stochastic gradient
ascent (e.g ., we use the Adam optimizer [37] in our experiments).

With the new transforming paradigm, one can potentially embed desirable
properties via using the gradient transformer module T (·), and in the mean-
time, keep a high error rate on the model θ. As we will show below, T (·) is
customized to generate regionally homogeneous perturbations specially against
defense models. Meanwhile, since we freeze the most part of the computation
graph and leave a limited number of parameters (that is θT ) to optimize, the
learning procedure is very fast.

3.2 Gradient Transformer Module

With the transforming paradigm aforementioned, we introduce the architecture
of the core module, termed as gradient transformer module. The gradient trans-
former module aims at increasing the correlation of pixels in the same region,
therefore inducing regionally homogeneous perturbations. As shown in Fig. 3,
given a loss gradient g as the input, the gradient transformer module T (·) is

ĝ = T (g; θT ) = RN (conv(g)) + g, (3)

where conv(·) is a 1×1 convolutional layer and RN(·) is the newly proposed region
norm layer. θT is the module parameters, which goes to the region norm layer
(γ and β below) and the convolutional layer. A residual connection [28] is also
incorporated. Since RN(·) is initialized as zero [24], the residual connection allows
us to insert the gradient transformer module into any gradient-based attack
methods without breaking its initial behavior (i.e., the transformed gradient
ĝ initially equals to g). Since the initial gradient g is able to craft stronger
adversarial example (compared with random noises), the gradient transformer
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module has a proper initialization. The region norm layer consists of two parts,
including a region split function and a region norm operator.

Region Split Function splits an image (or equivalently, a convolutional fea-
ture map) into K regions. Let r(·, ·) denote the region split function. The
input of r(·, ·) is a pixel coordinate while the output is an index of the region
which the pixel belongs to. With a region split function, we can get a partition
{P1, P2, ..., PK} of an image, where Pk = {(h,w) | r(h,w) = k, 1 ≤ k ≤ K}.

In Fig. 4, we show 4 representatives of region split functions on a toy
6 × 6 image, including 1) vertical partition (h,w) = w, 2) horizontal partition
r(h,w) = h, 3) grid partition r(h,w) = �h/3� + 2�w/3�, and 4) slash partition
(parallel to an increasing line with the slope equal to 0.5).

Region Norm Operator links pixels within the same region Pk, defined as

yi = γkx̄i + βk, x̄i =
1
σk

(xi − μk), (4)

where xi and yi are the i-th input and output, respectively. And i = (n, c, h, w)
is a 4D vector indexing the features in (N,C,H,W ) order, where N is the batch
axis, C is the channel axis, and H and W are the spatial height and width axes.
We define Sk as a set of pixels that belong to the region Pk, that is, r(h,w) = k.

μk and σk in Eq. (4) are the mean and standard deviation (std) of the kth

region, computed by

μk =
1

mk

∑

j∈Sk

xj ,

σk =
√

1
mk

∑

j∈Sk

(xj − μk)2 + const,
(5)

Fig. 4. Toy examples of region split functions, including (a) vertical partition, (b)
horizontal partition, (c) grid partition, and (d) slash partition. (e) illustrates the region
norm operator with the region split function (a), where C is the channel axis, H and
W are the spatial axes. Each pixel indicates an N -dimensional vector, where N is the
batch size
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where const is a small constant for numerical stability. mk is the size of Sk. Here
mk = NC|Pk| and | · | is the cardinality of a given set. In the testing phase, the
moving mean and moving std during training are used instead. Since we split
the image to regions, the trainable scale γ and shift β in Eq. (4) are also learned
per-region.

We illustrate the region norm operator in Fig. 4(e). To analyze the benefit,
we compute the derivatives as

∂L

∂βk
=

∑

j∈Sk

∂L

∂yj
,

∂L

∂γk
=

∑

j∈Sk

∂L

∂yj
x̄j ,

∂L

∂xi
=

1
mkσk

(mk
∂L

∂x̄i
−

∑

j∈Sk

∂L

∂x̄j
− x̄i

∑

j∈Sk

∂L

∂x̄j
x̄j),

(6)

where L is the loss to optimize, and ∂L
∂x̄i

= ∂L
∂yi

· γk. It is not surprising that the
gradient of γ or β is computed by all pixels in the related region. However, the
gradient of a pixel with an index i is also computed by all pixels in the same
region. More significantly in Eq. (6), the second term,

∑
j∈Sk

∂L
∂x̄j

, and the third
term, x̄i

∑
j∈Sk

∂L
∂x̄j

x̄j , are shared by all pixels in the same region. Therefore, the
pixel-wise connections within the same region are much denser after inserting
the region norm layer.

Comparison with Other Normalizations. Compared with existing normal-
izations (e.g ., Batch Norm [31], Layer Norm [2], Instance Norm [69] and Group
Norm [70]), which aims to speed up learning, there are two main difference: 1)
the goal of Region Norm is to generate regionally homogeneous perturbations,
while existing methods mainly aim to stabilize and speed up training; 2) the
formulation of Region Norm is splitting an image to regions and normalize each
region individually, while other methods do not split along spatial dimension.

3.3 Universal Analysis

By analyzing the magnitude of four probes (a, b, c, and d) in Fig. 3, we observe
that |b| >> |a| and |c| >> |d| in a well-trained gradient transformer module
(more results in Sect. 4.2). Consequently, such a well-trained module becomes
quasi-input-independent, i.e., the output is nearly fixed and less related to the
input. Note that the output is still a little bit related to the input which is the
reason why we use “quasi-”.

Here, we first build the connection between that observation and under-fitting
to explain the reason. Then, we convert the quasi-input-independent module to
an input-independent module for generating universal adversarial perturbations.

Under-Fitting and the Quasi-Input-Independent Module. People figure
out the trade-off between bias and variance of a model, i.e., the price for achiev-
ing a small bias is a large variance, and vice versa [6,27]. Under-fitting occurs
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when the model shows low variance (but inevitable bias). An extremely low vari-
ance function gives a nearly fixed output whatever the input, which we term as
quasi-input-independent. Although in the most machine learning situation peo-
ple do not expect this case, the quasi-input-independent function is desirable for
generating universal adversarial perturbation.

Therefore, to encourage under-fitting, we go to the opposite direction of pre-
venting under-fitting suggestions in [22]. On the one hand, to minimize the model
capacity, our gradient transformer module only has (12+2K) parameters, where
a 3×3 convolutional layer (bias enabled) incurs 12 parameters and K is the num-
ber of region partitions. On the other hand, we use a large training data set D
(5k images or more) so that the model capacity is relatively small. We then will
have a quasi-input-independent module.

From Quasi-Input-Independent to Input-Independent. According to the
analysis above, we already have a quasi-input-independent module. To generate
a universal adversarial perturbation, following the post-process strategy of Pour-
saeed et al . [54], we use a fixed vector as input of the module. Then following
FGSM [23], the final universal perturbation will be u = ε · sign(T (z)), where z
is a fixed input. Recall that sign(·) denotes the sign function, and T (·) denotes
the gradient transformer module.

4 Experiments

In this section, we demonstrate the effectiveness of the proposed regionally homo-
geneous perturbation (RHP) by attacking a series of defense models. The code
is made publicly available.

4.1 Experimental Setup

Dataset and Evaluation Metric. Without loss of generality, we randomly
select 5000 images from the ILSVRC 2012 [15] validation set to access the trans-
ferability of attack methods. For the evaluation metric, we use the improvement
of top-1 error rate after attacking, i.e., the difference between the error rate of
adversarial images and that of clean images.

Table 1. The error rates (%) of defense methods on our dataset which contains 5000
randomly selected ILSVRC 2012 validation images

Defenses TVM HGD R& P Incens3 Incens4 IncResens PGD ALP FD

Error Rate 37.4 18.6 19.9 25.0 24.5 21.3 40.9 48.6 35.1
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Attack Methods. For performance comparison, we reproduce five representa-
tive attack methods, including fast gradient sign method (FGSM) [23], momen-
tum iterative fast gradient sign method (MIM) [16], momentum diverse inputs
iterative fast gradient sign method (DIM) [16,77], universal adversarial pertur-
bations (UAP) [50], and the universal version of generative adversarial pertur-
bations (GAP) [54]. If not specified otherwise, we follow the default parameter
setup in each method respectively.

To keep the perturbation quasi-imperceptible, we generate adversarial exam-
ples in the ε-ball of original images in the L∞ space. The maximum perturba-
tion ε is set as 16 or 32. The adversarial examples are generated by attacking
a naturally trained network, Inception v3 (IncV3) [65], Inception v4 (IncV4) or
Inception Resnet v2 (IncRes) [64]. We use IncV3 and ε = 16 in default.

Defense Methods. As our method is to attack defense models, we repro-
duce nine defense methods for performance evaluation, including input transfor-
mation [26] through total variance minimization (TVM), high-level representa-
tion guided denoiser (HGD) [42], input transformation through random resizing
and padding (R&P) [74], three ensemble adversarially trained models (Incens3,
Incens4 and IncResens) [68], adversarial training with project gradient descent
white-box attacker (PGD) [48,75], adversarial logits pairing (ALP) [35], and
feature denoising adversarially trained ResNeXt-101 (FD) [75].

Among them, HGD [42] and R&P [74] are the rank-1 submission and rank-2
submission in the NeurIPS 2017 defense competition [39], respectively. FD [75] is
the rank-1 submission in the Competition on Adversarial Attacks and Defenses
2018. The top-1 error rates of these methods on our dataset are shown in Table 1.

Implementation Details. To train the gradient transformer module, we ran-
domly select another 5000 images from the validation set of ILSVRC 2012 [15]
as the training set. Note that the training set and the testing set are disjoint.

For the region split function, we choose r(h,w) = w as default, and will dis-
cuss different region split functions in Sect. 4.4. We train the gradient transformer
module for 50 epochs. When testing, we use a zero array as the input of the gradi-
ent transformer module to get universal adversarial perturbations, i.e. the fixed
input z = 0.

4.2 Under-Fitting and Universal

To verify the connections between under-fitting and universal adversarial per-
turbations, we change the number of training images so that the models are
supposed to be under-fitting (due to the model capacity becomes low compared
to large dataset) or not. Specifically, we select 4, 5k or 45k images from the
validation set of ILSVRC 2012 as the training set. We insert four probes a, b, c,
and d in the gradient transformer module as shown in Fig. 3 and compare their
values in Fig. 5 with respect to the training iterations.
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Fig. 5. Universal analysis of RHP. In (a), we plot the ratio of the number of variables
in probe pairs (a, b) satisfying that |b| > 10|a| to the total number of variables when
training with 4, 5k or 45k images. In (b), we plot the case of |c| > 10|d|

When the gradient transformer module is well trained with 5k or 45k images,
we observe that: 1) c overwhelms d, indicating the residual learning branch
dominates the final output, i.e., ĝ ≈ c; and 2) b overwhelms a, indicating the
output of the convolutional layer is less related to the input gradient g. Based
on the two observations, we conclude that the gradient transformer module is
quasi-input-independent when the module is under-fitted by a large number of
training images in this case. Such a property is beneficial to generate universal
adversarial perturbations (see Sect. 3.3).

When the number of training images is limited (say 4 images), we observe
that b does not overwhelm a, indicating the output of the conv layer is related
to the input gradient g, since a small training set cannot lead to under-fitting.

This conclusion is further supported by Fig. 6(a): when training with 4
images, the performance gap between universal inference (use a fixed zero as
the input of the gradient transformer module) and image dependent inference
(use the loss gradient as the input) is quite large. The gap is reduced when using
more data for training.

To provide a better understanding of our implicit universal adversarial per-
turbation generating mechanism, we present an ablation study by comparing our
method with other 3 strategies of generating universal adversarial perturbation
with the same region split function. The compared includes 1) RP: Randomly
assigns the Perturbation as +ε and −ε for each region; 2) OP: iteratively Opti-
mizes the Perturbation to maximize classification loss on the naturally trained
model (the idea of [50]); 3) TU: explicitly Trains a Universal adversarial pertur-
bations. The only difference between TU and our proposed RHP is that random
noises take the place of the loss gradient g in Fig. 2 (following [54]) and are fed
to the gradient transformer module. RHP is our proposed implicitly method,
and the gradient transformer module becomes quasi-input-independent without
taking random noise as the training input.
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Fig. 6. (a) Performance comparison of universal (denoted by -U) inference and image
dependent inference (denoted by -I) by varying the number of training images (4, 5k
or 45k). (b) Performance comparison among four split functions, including vertical
partition, horizontal partition, grid partition and slash partition

We evaluate above four settings on IncResens, the error rates increase by
14.0%, 19.4%, 19.3%, and 24.6% for RP, OP, TU, and RHP respectively. Since
our implicit method has a proper initialization (Sect. 3.2), we observe that our
implicit method constructs stronger universal adversarial perturbations.

4.3 Transferability Toward Defenses

We first conduct the comparison in Table 2 when the maximum perturbation
ε = 16 and 32, respectively.

A first glance shows that compared with other representatives, the proposed
RHP provides much stronger attack toward defenses. For example, when attack-
ing HGD [42] with ε = 16, RHP outperforms FGSM [23] by 24.0%, MIM [16]
by 19.5%, DIM [16,77] by 14.9%, UAP [50] by 24.9%, and GAP [54] by 25.5%,
respectively. Second, universal methods generally perform worse than image-
dependent methods as the latter can access and utilize the information from the
clean images. Nevertheless, RHP, as a universal method, still beats those image-
dependent methods by a large margin. At last, we observe that our method gains
more when the maximum perturbation ε becomes larger.

The performance comparison is also done when generating adversarial exam-
ples by attacking IncV4 or IncRes. Here we do not report the performance of
GAP, because the official code does not support generating adversarial examples
with IncV4 or IncRes. As shown in Table 3 and Table 4, RHP still keeps strong
against defense models. Meanwhile, it should be mentioned that when the model
for generating adversarial perturbations is changed, RHP still generates univer-
sal adversarial examples. The only difference is that the gradients used in the
training phase are changed, which then leads to a different set of parameters in
the gradient transformer module.
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Table 2. The increase of error rates (%) after attacking. The adversarial examples
are generated with IncV3. In each cell, we show the results when the maximum per-
turbation ε = 16/32, respectively. The left 3 columns (FGSM, MIM and DIM) are
image-dependent methods while the right 3 columns are (UAP, GAP and RHP) are
universal methods

Methods FGSM [23] MIM [16] DIM [16,77] UAP [50] GAP [54] RHP (ours)

TVM 21.9/45.3 18.2/37.1 21.9/41.0 4.78/12.1 18.5/50.1 33.0/56.9

HGD 2.84/20.7 7.30/18.7 11.9/32.1 1.94/11.3 1.34/37.9 26.8/57.5

R& P 6.80/13.9 7.52/13.7 12.0/21.9 2.42/6.66 3.52/26.9 23.3/56.1

Incens3 10.0/17.9 11.4/17.3 16.7/26.1 1.00/7.82 5.48/33.3 32.5/60.8

Incens4 9.34/15.9 10.9/16.5 16.2/25.0 1.80/8.34 4.14/29.4 31.6/58.7

IncResens 6.86/13.3 7.76/13.6 10.8/19.6 1.88/5.60 3.76/22.5 24.6/57.0

PGD 1.90/12.8 1.36/6.86 1.84/7.70 0.04/1.04 1.28/10.2 2.40/25.8

ALP 17.0/32.3 15.3/24.4 15.5/24.7 7.98/11.5 15.6/30.0 17.8/39.4

FD 1.62/13.3 1.00/7.48 1.34/8.22 -0.1/0.40 0.56/11.1 2.38/24.5

Table 3. The increase of error rates (%) after attacking. The adversarial examples
are generated with IncV4. In each cell, we show the results when the maximum per-
turbation ε = 16/32, respectively. The left 3 columns (FGSM, MIM and DIM) are
image-dependent methods while the right 2 columns are (UAP and RHP) are univer-
sal methods

Methods FGSM [23] MIM [16] DIM [16,77] UAP [50] RHP (ours)

TVM 22.4/46.3 20.1/40.4 22.7/42.9 6.28/18.2 37.1/58.4

HGD 4.00/21.1 10.0/23.9 16.3/37.1 1.42/9.94 23.4/59.8

R& P 8.68/15.1 10.2/17.4 14.7/25.0 2.42/6.52 20.2/57.6

Incens3 10.1/18.3 13.4/20.3 18.7/28.6 2.08/7.68 27.5/60.3

Incens4 9.72/17.4 13.1/19.0 17.9/26.5 1.94/6.92 26.7/62.5

IncResens 7.58/14.7 9.96/16.6 13.6/22.1 2.34/6.78 21.2/58.5

PGD 2.02/12.8 1.50/7.54 1.82/8.02 0.28/2.12 2.20/29.7

ALP 17.3/32.1 14.8/25.1 15.2/24.8 10.1/15.9 20.3/42.1

FD 1.42/13.4 1.24/8.18 1.62/8.74 0.16/1.18 1.90/31.8

4.4 Region Split Functions

In this section, we discuss the choice of region split functions, i.e., vertical par-
tition, horizontal partition, grid partition and slash partition (parallel to an
increasing line with the slope equal to 0.5). Figure 6(b) shows the transferabil-
ity to the defenses, which demonstrates that different region split functions are
almost equivalently effective and all are stronger than our strongest baseline
(DIM). Moreover, we observe an interesting phenomenon as presented in Fig. 7.
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Table 4. The increase of error rates (%) after attacking. The adversarial examples
are generated with IncRes. In each cell, we show the results when the maximum per-
turbation ε = 16/32, respectively. The left 3 columns (FGSM, MIM and DIM) are
image-dependent methods while the right 2 columns are (UAP and RHP) are univer-
sal methods

Methods FGSM [23] MIM [16] DIM [16,77] UAP [50] RHP (ours)

TVM 20.6/44.1 20.3/39.4 24.6/44.0 7.10/24.7 37.1/57.4

HGD 5.34/22.3 15.0/28.1 23.7/44.1 2.14/10.6 26.9/62.1

R& P 10.1/15.8 13.4/22.1 22.5/34.5 2.50/8.36 25.1/61.4

Incens3 11.7/19.4 17.4/24.6 25.8/37.1 1.88/8.28 29.7/62.3

Incens4 10.5/17.2 15.1/22.5 22.4/33.7 1.74/7.22 29.8/63.3

IncResens 10.4/16.3 13.6/22.6 20.2/32.5 1.96/8.18 26.8/62.8

PGD 2.06/13.8 1.84/8.80 2.36/9.26 0.40/3.78 2.20/28.3

ALP 17.5/32.6 12.3/25.9 12.6/25.9 7.12/17.0 22.8/43.5

FD 1.72/14.7 1.62/9.48 1.78/10.1 -0.1/3.06 2.20/32.2

Fig. 7. Four universal adversarial perturbations generated by different region split
functions, and the corresponding top-3 target categories

In each row of Fig. 7, we exhibit the universal adversarial perturbation gener-
ated by a certain kind of region split functions, followed by the top-3 categories to
which the generated adversarial examples are most likely to be misclassified. For
each category, we show a clean image as an exemplar. Note that our experiments
are about the non-targeted attack, indicating the target class is undetermined
and solely relies on the region split function.

As can be seen, the regionally homogeneous perturbations with different
region split functions seem to be targeting at different categories, with an inher-
ent connection between the low-level cues (e.g ., texture, shape) they share. For
example, when using grid partition, the top-3 target categories are quilt, shower
curtain, and container ship, respectively, and one can observe that images in the
three categories generally have grid-structured patterns.

Motivated by these qualitative results, we have a preliminary hypothesis that
the regionally homogeneous perturbations tend to attack the low-level part of a
model. The claim is not supported by a theoretical proof, however, it inspires us
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Table 5. Comparison of cross-task transferability. We attack segmentation model and
test on the detection model Faster R-CNN, and report the value of mAP (lower is
better for attacking methods). “–” denotes the baseline performance without attacks

Attacks – FGSM MIM DIM RHP (ours)

mAP 69.2 43.1 41.6 36.2 31.6

to test the cross-task transferability of RHP. As it is a common strategy to share
the low-level CNN architecture/information in multi-task learning systems [58],
we conjecture that RHP can well transfer between different tasks (see below).

4.5 Cross-Task Transferability

To demonstrate the cross-task transferability of RHP, we attack with the seman-
tic segmentation task and test on the object detection task.

In more detail, we attack a semantic segmentation model (an Xception-65 [13]
based deeplab-v3+ [10]) on the Pascal VOC 2012 segmentation val [19], and
obtain the adversarial examples. Then, we take a VGG16 [61] based Faster-
RCNN model [56], trained on MS COCO [43] and VOC2007 trainval, as the
testing model. To avoid testing images occurred in the training set of detection
model, the testing set is the union of VOC2012 segmentation val and VOC2012
detection trainval, then we remove the images in VOC2007 dataset. The base-
line performance of the clean images is mAP 69.2. Here mAP score is the average
of the precisions at different recall values.

As shown in Table 5, RHP reports the lowest mAP with object detection,
which demonstrates the stronger cross-task transferability than the baseline
image-dependent perturbations, i.e., FGSM [23], MIM [16], and DIM [16,77].

5 Conclusion

By white-box attacking naturally trained models and defense models, we observe
the regional homogeneity of adversarial perturbations. Motivated by this obser-
vation, we propose a transforming paradigm and a gradient transformer mod-
ule to generate the regionally homogeneous perturbation (RHP) specifically for
attacking defenses. RHP possesses three merits, including 1) transferability: we
demonstrate that RHP well transfers across different models (i.e., transfer-based
attack) and different tasks; 2) universal: taking advantage of the under-fitting of
the gradient transformer module, RHP generates universal adversarial examples
without explicitly enforcing the learning procedure towards it; 3) strong: RHP
successfully attacks 9 representative defenses and outperforms the state-of-the-
art attacking methods by a large margin.

Recent studies [42,75] show that the mechanism of some defense models can
be interpreted as a “denoising” procedure. Since RHP is less like noise compared
with other perturbations, it would be interesting to reveal the property of RHP
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from a denoising perspective in future works. Meanwhile, although evaluated
with the non-targeted attack, RHP is supposed to be strong targeted attack as
well, which requires further exploration and validation.
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