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Abstract. Our ability to sample realistic natural images, particularly
faces, has advanced by leaps and bounds in recent years, yet our ability to
exert fine-tuned control over the generative process has lagged behind. If
this new technology is to find practical uses, we need to achieve a level of
control over generative networks which, without sacrificing realism, is on
par with that seen in computer graphics and character animation. To this
end we propose ConfigNet, a neural face model that allows for controlling
individual aspects of output images in semantically meaningful ways and
that is a significant step on the path towards finely-controllable neural
rendering. ConfigNet is trained on real face images as well as synthetic
face renders. Our novel method uses synthetic data to factorize the latent
space into elements that correspond to the inputs of a traditional render-
ing pipeline, separating aspects such as head pose, facial expression, hair
style, illumination, and many others which are very hard to annotate in
real data. The real images, which are presented to the network without
labels, extend the variety of the generated images and encourage realism.
Finally, we propose an evaluation criterion using an attribute detection
network combined with a user study and demonstrate state-of-the-art
individual control over attributes in the output images.

Keywords: Neural rendering · Face image manipulation · GAN

1 Introduction

Recent advances in generative adversarial networks (GANs) [5,17,18] have
enabled the production of realistic high resolution images of smooth organic
objects such as faces. Generating photorealistic human bodies, and faces in par-
ticular, with traditional rendering pipelines is notoriously difficult [26], requiring
hand-crafted 3D assets. However, once these assets have been generated we can
render the face from any direction and in any pose. In contrast, GANs can be
used to easily generate realistic head and face images without the need to author
expensive 3D assets, by training on curated datasets of 2D images of real human
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Fig. 1. ConfigNet learns a factorized latent space, where each part corresponds to
a different facial attribute. The first column shows images produced by ConfigNet for
certain points in the latent space. The remaining columns show changes to various parts
of the latent space vectors, where we can generate attribute combinations outside the
distribution of the training set like children or women with facial hair.

Real image encoder Decoder 

expression 
params

facial hair 
params

Synth data encoder 

AdaIN

Decoder 

shared w
eights

Real image discriminator 

AdaIN

Synth image discriminator 

Domain discriminator 

( )

Legend: MLPvector CNN

( )

Fig. 2. ConfigNet has two encoders ER and ES that encode real face images IR and
the parameters θ of synthetic face images IS . The encoders output latent space vectors
zR, zS . The shared decoder, G, generates both real and synthetic images. A domain
discriminator DDA ensures the latent distributions generated by ER and ES are similar.

faces. However, it is difficult to enable meaningful control over this generation
without detailed hand labelling of the dataset. Even when conditional models
are trained with detailed labels, they struggle to generalize to out-of-distribution
combinations of control parameters such as children with extensive facial hair
or young people with gray hair. In order for GAN based rendering techniques
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to replace traditional rendering pipelines they must enable a greater level of
control.

In this paper we present ConfigNet, one of the first methods to enable control
of GAN outputs using the same methods as traditional graphics pipelines. The
key idea behind ConfigNet is to train the generative model on both real and
synthetically generated face images. Since the synthetic images were generated
with a traditional graphics pipeline, the renderer parameters for those images
are readily available. We use those known correspondences to train a generative
model that uses the same input parametrization as the graphics pipeline used
to generate the synthetic data. This allows for independent control of various
face aspects including: head pose, hair style, facial hair style, expression and
illumination. By simultaneously training the model on unlabelled face images,
it learns to generate photorealistic looking faces, while enabling full control over
these outputs. Figure 1 shows example results produced by ConfigNet.

ConfigNet can be used to both sample novel images and to embed existing
ones, which can then be manipulated. The ability to embed face images sets
ConfigNet apart from traditional graphics pipelines, which would require person-
specific 3D assets to achieve similar results. The use of a parametrization derived
from a traditional graphics pipeline makes ConfigNet easy to use for people
familiar with digital character animation. For example, facial expressions are
controlled with blendshapes with values in (0, 1), head pose is controlled with
Euler angles and illumination can be set using an environment map.

Our main contributions are:

1. ConfigNet, a novel method for placing real and synthetic data into a sin-
gle factorized and disentangled latent space that is parametrized based on a
computer graphics pipeline.

2. A method for using ConfigNet to modify existing face images in a fine-grained
way that allows for changing parts of the latent space factors meaningfully.

3. Experiments showing our method generating realistic face images with
attribute combinations that are not present in the real images of the training
set. For example, a face of a child with extensive facial hair.

2 Related Work

Image Generation Driven by 3D Models. One of the uses of synthetic
data in image generation is the “synthetic to real” scenario, where the goal is
to generate realistic images that belong to a target domain based on synthetic
images, effectively increasing their realism. The methods that tackle this problem
[8,34,44] usually use a neural network with an adversarial and semantic loss to
push a synthetic image closer to the real domain. While those type of methods
can generate realistic images that are controllable through synthetic data, the
editing of existing images is difficult as it would require fitting the underlying
3D model to an existing image.

3D model parameters can also be a supervision signal for generative models
as shown in [20,33] and most recently StyleRig [36]. This group of methods
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shares the challenges of the synthetic to real scenario as they require fitting the
3D model to existing images.

PuppetGAN [40], is a method designed to edit existing images using synthetic
data of the same class of objects. It uses two encoder-decoder pairs, one for real
and one for synthetic images, which have a common latent space, part of which
is designated for an attribute of interest that can be controlled. An image can be
edited by encoding it with the real-data encoder, then swapping the attribute
of interest part of the latent space with one encoded from a synthetic image
and finally decoding with the real-data decoder. Due to the use of separate
decoders for real and synthetic data PuppetGAN struggles to decode images
where the attribute of interest is outside of the range seen in real data. The
method performs well for a single attribute. In contrast, ConfigNet demonstrates
disentanglement of multiple face attributes as well as generation of attribute
combinations that do not exist in the real training data.

Disentangled Representation Learning. Supervised disentanglement meth-
ods try to learn a factorised representation, parts of which correspond to some
semantically meaningful aspects of the generated images, based on labelled data
in the target domain (as opposed to the synthetic data domain). The major
limitation of these methods [7,24,29,43] is that they are only able to disentan-
gle factors of variations that are labelled in the training set. For human faces,
labels are easily obtainable for some attributes, such as identity, but the task
becomes more difficult with attributes like illumination and almost impossible
with attributes like hair style. This labelling problem also becomes more difficult
as the required fidelity of the labels increases (e.g. smile intensity).

Unsupervised disentanglement methods share the above goal but do not
require labelled data. Most methods in this family, such as β-VAE [12], Info-
GAN [6], ID-GAN [21], place constraints on the latent space that lead to dis-
entanglement. The fundamental problem with those approaches is that there is
little control over what factors get disentangled and which part of the latent
space corresponds to a given factor of variation. HoloGAN [27] separates the 3D
rotation of the object in the image from variation in its shape and appearance.
ConfigNet borrows the generator architecture of HoloGAN, while disentangling
many additional factors of variation and allowing existing images to be edited.

Detach and Adapt [22] is trained in a semi-supervised way on images from
two related domains, only one of which has labels. The resulting model allows
generating images in both domains with some control over the labelled attribute.

Face Video Re-enactment. Face video re-enactment methods aim to produce
a video of a certain person’s articulated face that is driven by a second video
of the same or a different person. The methods in [37,41,43] achieve some of
the most impressive face manipulation results seen to date. Face2Face [37] fits
a 3D face model and illumination parameters to a video of a person and then
re-renders the sequence with modified expression parameters that are obtained
from a different sequence. This approach potentially allows for modifying any
aspects of the rendered face that can be modelled, rendered and fitted to the
input video. In practice, due to limitations of existing 3D face models and fitting



CONFIG: Controllable Neural Face Image Generation 303

methods, this approach cannot modify complex face attributes like hair style or
attributes that require modelling of the whole head, like head pose.

Zakharov et al. [43] propose a video re-enactment method where the images
are generated by a neural network driven by face landmarks from a different video
sequence. The method produces impressive results given only a small number
of target frames. X2Face [41] uses one neural network to resample the source
image into a standard reference frame and a second network that resamples this
standardized image into a different head pose or facial expression, which can be
driven by images or audio signal. While these two methods produce convincing
results, the controllability is limited to head pose and expression.

3 Method

The key concept behind the proposed method is to factorize the latent space
into parts that correspond to separate and clearly-defined aspects of face images.
These factors can be individually swapped or modified (Sect. 3.6) to modify the
corresponding aspect of the output image. The factorization needs labels that
fully explain the image content, which would require laborious annotation for real
data, but are easily obtained for synthetic data. We thus propose a generative
model trained in a semi-supervised way, with labels that are known for synthetic
data only. Figure 2 outlines the proposed architecture.

Overview. Our approach is to treat the synthetic images IS and real images IR

as two different subsets of a larger set of all possible face images. Hence, the pro-
posed method consists of a decoder G and two encoders ER and ES that embed
real and synthetic data into a common factorized latent space z (Sect. 3.1). We
will refer to z predicted by ER and ES as zR and zS respectively. The real
data is supplied to its encoder as images IR ∈ IR, while the synthetic data is
supplied as vectors θ ∈ R

m that fully describe the content of the corresponding
image IS ∈ IS . To increase the realism of the generated images we employ two
discriminator networks DR and DS for real and synthetic data respectively.

We assume that the synthetic data is a reasonable approximation of the real
data so that IS ∩ IR �= ∅. Hence, it is desirable for ES(Θ) and ER(IR), where
Θ is the space of all θ, to also be overlapping. To do so, we introduce a domain
discriminator network DDA and train it with a domain adversarial loss [38] on
z, that forces zR and zS to be close. In Sect. 4.2 we show that this loss is crucial
for the method’s ability to control the attributes of the output images.

To accurately reproduce and modify existing images we employ one-shot
learning (Sect. 3.4) that improves reconstruction accuracy compared to embed-
ding using ER. To enable the sampling of novel images we train a latent GAN
that generates samples of z (Sect. 3.5). Finally, we propose a method for modi-
fying attributes of existing images in a fine-grained way that allows for changing
parts of individual factors of z meaningfully (Sect. 3.6).
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3.1 Factorized Latent Space

Each synthetic data sample θ is factorised into k parts θ1 to θk, such that:

θ ∈ R
m = R

m1 × R
m2 × . . . × R

mk . (1)

Each θi corresponds to semantically meaningful input of the graphics pipeline
used to generate IS . Examples of such inputs are: facial expression, facial hair
parameters, head shape, environment map, etc. The synthetic data encoder ES

maps each θi to zi, a part of z, which thus factorizes z into k parts.
The factorized latent space is a key feature of ConfigNet that allows for

easy modification of various aspects of the generated images. For example, one
might encode a real image into z using ER and then change the illumination by
swapping out the part of z that corresponds to illumination. Note that the part of
z that is swapped in might come from θi (encoded by ES), which is semantically
meaningful, or it may come from a different real face image encoded by ER.

3.2 Loss Functions

To ensure that the output image G(z) is close to the ground truth image IGT ,
we use the perceptual loss Lperc [15], which is the MSE between the activations
of a pre-trained neural network computed on G(z) and IGT . We use VGG-19
[35] trained on ImageNet [30] as the pre-trained network. We experimented with
using VGGFace [28] as base for the perceptual loss, but didn’t see improvement.

While the perceptual loss retains the overall content of the image well, it
struggles to preserve some small scale features. Because of that, we use an addi-
tional loss with the goal of preserving the eye gaze direction:

Leye = wM

∑
M ◦ (IGT − G(zs)) with wM = (1 + |M |1)−1, (2)

where M is a pixel-wise binary mask that denotes the iris, only available for IS .
Thanks to the accurate ground truth segmentation that comes with the synthetic
data, similar losses could be added for any part of the face if necessary.

We train the adversarial blocks with the non-saturating GAN loss [9]:

LGAND
(D,x, y) = log D(x) + log(1 − D(y)), (3)

LGANG
(D, y) = log(D(y)), (4)

where LGAND
is used for the discriminator and LGANG

is used for the generator,
D is the discriminator, x is a real sample and y is a network output.

3.3 Two-Stage Training Procedure

First Stage: We train all the sub-networks except ER, sampling zR ∼ N (0, I)
as there is no encoder for real data at this stage. At this stage ES and G are
trained with the following loss:

L1 = LGANG
(DR, G(zR)) + LGANG

(DDA, zS)
+ LGANG

(DS , G(zS)) + λeyeLeye + λpercLperc (G(zS), IS) , (5)
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where zS = ES(θ) and λ are the loss weights. The domain discriminator DDA

acts on ES to bring the distribution of its outputs closer to N (0, I) and so ES

effectively maps the distribution of each θi to N (0, I).

Second Stage: We add the real data encoder ER so that zR = ER(IR). The
loss used for training ES and G is then:

L2 = L1 + λpercLperc (G(zR), IR) + log(1 − DDA(zR)), (6)

where the goal of log(1 − DDA(zR)) is to bring the output distribution of ER

closer to that of ES . In the second stage we increase the weight of λperc, in the
first stage it is set to a lower value as otherwise the total loss for synthetic data
would overpower that for real data. Our experiments show that this two-stage
training improves controllability and image quality.

3.4 One-Shot Learning by Fine-Tuning

Our architecture allows for embedding face images into z using the real data
encoder ER, individual factors zi can then be modified to modify the corre-
sponding output image as explained in Sects. 3.1 and 3.6. We have found that
while G(ER(IR)) is usually similar to IR as a whole image, there is often an
identity gap between the face in IR and in the generated image. A similar find-
ing was made in [43], where the authors proposed to decrease the identity gap
by fine-tuning the generator on the images of a given person.

Similarly, we fine-tune our generator on IR by minimizing the following loss:

Lft = LGANG
(DR, G(ẑR)) + log(1 − DDA(ẑR))

+ λperc[Lperc (G(ẑR), IR) + Lface (G(ẑR), IR)], (7)

where Lface is a perceptual loss with VGGFace [28] as the pre-trained network.
We optimize over the weights of G as well as ẑR which is initialized with ER(IR).
The addition of a Lface improves the perceptual quality of the generated face
images. We believe that this improvement is visible here, but not in the main
training phase, as fine-tuning lacks the regularization provided by training on a
large number of images and can easily “fool” the single perceptual loss.

3.5 Sampling of z

While the proposed method allows for embedding existing face images into the
latent space, sometimes it might be desirable to sample the latent space itself.
Samples of the latent space can be used to generate novel images or to sample
individual factor zi. The sampled zi can then be used to generate additional
variations of an existing image that was embedded in z.

To do this, we use a latent GAN [1]. The latent GAN is trained to map
between its input w ∼ N (0, I) and the latent space z. This simple approach
allows for sampling the latent space without the constraints on z imposed by
VAEs that lead to reduced quality. The latent GAN is trained with the GAN
losses described above, both the discriminator and generator Glat are 3-layer
MLPs. Figure 18 in suppl. shows an outline of the method when used with Glat.
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3.6 Fine-Grained Control

Given an existing face image embedded into z, we can easily swap any part, zi,
of its embedding with one that is obtained from ES or ER. However, sometimes
we might want a finer level of control and only modify a single aspect of zi while
leaving the rest the same. If zi is a face expression, its single aspect might be the
intensity of smile, if zi is illumination, the brightness might be one aspect. These
aspects are controlled by individual elements of the corresponding θi vector.
However θi is unknown if z was generated by ER or Glat.

For this reason, we use an approximation θ̃i obtained by solving the mini-
mization problem minθ̃i

|zi − ESi
(θ̃i)|2 with gradient descent, where ESi

is the
part of ES that corresponds to θi. We incorporate constraints on θi into the
optimization algorithm. For example, our expression parameters lie in the con-
vex set [0, 1] and we use projected gradient descent to incorporate the constraint
into the minimization algorithm. Given θ̃i, e.g. a face expression vector, we can
modify the part of the vector responsible for an individual expression and use
ES to obtain a new latent code zi that generates images where only this indi-
vidual expression is modified. We use this approach to manipulate individual
expressions in Figs. 1 and 7 and combinations in Fig. 12 (supplementary). The
method described above is also outlined in Algorithm 1 in supplementary.

3.7 Implementation

The architecture of the decoder G is based on the generator used in HoloGAN
[27], explained in supplementary. We choose this particular architecture as it
decouples object rotation from z and it allows for specifying the rotation with
any parametrization. This lets us obtain the poses of the heads in IS in ConfigNet
parametrization and supply head pose directly, without an encoder.

The remaining k − 1 parts of θ are encoded with separate multi layer per-
ceptrons (MLPs) ESi

, each of which consists of 2 layers with number of hidden
units equal to the dimensionality of the corresponding θi. The real image encoder
ER is a ResNet-50 [10] pre-trained on ImageNet [30]. The domain discriminator
DDA is a 4-layer MLP. The two image discriminators DR and DS share the
same basic convolutional architecture. The supplementary material contains all
network details, source code is available at http://aka.ms/confignet.

4 Experiments

Datasets. We use the FFHQ [17] (60k images, 1Mpix each), and SynthFace
(30k images, 1Mpix each) datasets as a source of real and synthetic training
images. We align the face images from all datasets to a standard reference frame
using landmarks from OpenFace [2,4,42] and reduce the resolution to 256 × 256
pixels.

Our experiments use the 10k images in the validation set of FFHQ to evaluate
ConfigNet. The SynthFace dataset was generated using the method of [3] and

http://aka.ms/confignet
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Fig. 3. Images from SynthFace dataset, note the domain gap to real images.

Fig. 4. Left: G(z) trained using the two-stage method, where z is sampled from latent
GAN. Right: G(z) trained using the first stage only, where z is sampled from prior.
Note the large improvement in quality when second stage is added.

setting rotation limits for yaw and pitch to ±30◦ and ±10◦ to cover the typical
range of poses in face images. For SynthFace, θ has m = 304 dimensions, while
z has n = 145 dimensions, and is divided into k = 12 factors. Table 6 in the
supplementary provides the dimensionality of each factor in θ and z, Fig. 3 shows
sample SynthFace images.

4.1 Evaluation of ConfigNet

Our experiments evaluate ConfigNet key features: photorealism and control.

Photorealism. Figure 4 shows samples generated by the latent GAN (where
ER, G were trained using the two stage-procedure of Sect. 3.3) and a standard
GAN model trained only with the first-stage procedure. We observe a large
improvement in photorealism when the second stage of training is added. We
believe that the low-quality images produced by the standard GAN are caused
by the constraint z ∼ N (0, I), which is relaxed in our second-stage training thus
allowing real and synthetic data to co-exist in the same space.

We quantitatively measure the photorealism and coverage of the generated
images using the Frechet Inception Distance (FID) [11] in Table 1. The latent
GAN achieves scores that are close to those produced by sampling z through
ER, which is the upper limit of its performance. Training only the first stage and
sampling z ∼ N (0, I) results in poorer metrics. As expected, the raw synthetic
images give the worst result. To further evaluate how much of the photorealism
of the generated data is lost due to training on both real and synthetic data, we
train ConfigNet without synthetic data and the losses that require its presence.
We find that the resulting FID is very close to those produced by our standard
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Table 1. FID score for FFHQ, SynthFace, and images obtained with our decoder G
and latent codes from the real-image encoder ER and latent GAN Glat.

Method FID↓
G(ER(IR)) 33.41

Synthetic data IS 52.19

G(ER(IR)) trained without IS 33.49

G(Glat(w)), w ∼ N (0, (I)) 39.76

G(z), z ∼ N (0, (I)) no 2nd stage 43.05

training. This suggests that the photorealism of the results might be limited by
our network architecture rather then by the use of synthetic data. We speculate
that using a more powerful G and DR, for example the ones used in StyleGAN,
may lead to improved results.

Controllability. We evaluate ConfigNet’s controllability analysing how chang-
ing a specific attribute (e.g., hair colour) changes the output image: with perfect
control, the output image should only change with respect to that attribute.

Figures 1 and 6 show controllability qualitatively. Figure 1 shows that the
generator is able to modify individual attributes of faces embedded in its latent
space, while Fig. 6 shows that each attribute can take many different values while
only influencing certain aspects of the produced image. The second column of
Fig. 1 shows that we are able to set facial hair to faces of children and women,
demonstrating that the generator is not constrained by the distribution of the
real training data. Fine-grained control over individual expressions is shown in
Fig. 7 as well as Fig. 12 in the supplementary. The supplementary also includes
additional results of face attribute manipulation and interpolation, including a
video.

To evaluate if ConfigNet offers this ideal level of control quantitatively, we
propose the following experiment: We take a random image IR from the FFHQ
validation set, encode it into latent space z = ER(IR) and then swap the latent
factor zi that corresponds to a given attribute v (for example hair colour) with
a latent factor obtained with ES . For each attribute v we output two images:
I+ where the attribute is set to a certain value v+ (e.g. blond hair) and another
I− with the attribute takes a semantically opposite value v− (e.g., black hair)1.
This gives us image pairs (I+, I−) that should be identical except for the chosen
attribute v, where they should differ. We measure how and where these images
differ with an attribute predictor and a user study.

We train an attribute predictor Cpred on CelebA [23] to predict 38 face
attributes and use it with 1000 FFHQ validation images to estimate (1) if
v+ is present in each set of images pairs (I+, I−) and (2) if the other face
attributes change. Ideally, Cpred(I+) = 1, Cpred(I−) = 0 and the Mean Abso-
lute Difference (MD) for other face attributes should be 0. Figure 5a shows how

1 We choose the values of Θi for v+ and v− by manual inspection, details in suppl.
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(a) Evaluation of controllability and disentanglement with an attribute predictor.

(b) Evaluation of controllability and disentanglement with a user study.

Fig. 5. Evaluation of control and disentanglement of ConfigNet. Blue and orange bars
show the predicted values of given attribute for images with that attribute (I+, higher
better) and images with an opposite attribute (I−, lower better). The gray bars measure
differences of other attributes (MD and Cdiff , lower better). (Color figure online)

Cpred(I+) ≫ Cpred(I−) while the MD of other attributes is close to 0. The
best controllability is achieved for the mouth opening and smile attributes, with
Cpred(I+) approaching the ideal value of 1, while the poorest results are achieved
for the gray hair attribute. We believe those large differences are caused by bias
in CelebA, where certain attributes are not distributed evenly across age (for
example gray hair) or gender (for example moustache).

Our user study Cuser follows a similar evaluation protocol: 59 users evaluated
the presence of v+ in a total of 1771 images pairs I+ and I− on a 5-level scale
and gave a score Cdiff that measures whether, ignoring v, the images depict the
same person. Figure 5b shows the results of the controllability and disentangle-
ment metrics for the user study: users evaluate the controllability of the given
attribute higher than the feature predictor Cpred, with Cuser(I+) > Cpred(I+)
and Cuser(I+)−Cuser(I−) > Cpred(I+)−Cpred(I−) for all features except mouth
open, while the score Cdiff measuring whether I+ and I− show the same person
has low values indicating that features other than v+ remain close to constant.
This results support the result of the feature predictor and show a similar per-
formance for different attributes because user judgements do not suffer from the
bias of the attribute predictor trained on CelebA.

4.2 Ablation Study

We evaluate the importance of two stage training and the domain discriminator
DDA by training the neural network without them. Table 2 shows how each
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Table 2. Average controllability metrics for different variants of ConfigNet. DDA

denotes the domain discriminator. Ideally, Cpred(I+) = 1, Cpred(I−) = 0 and MD
should be 0. The mean difference Cpred(I+) − Cpred(I−) gives the dynamic range of a
given attribute, the higher it is the more controllable the attribute.

Method Cpred(I+) ↑ Cpred(I−) ↓ MD↓ Cpred(I+) − Cpred(I−) ↑
Base method 0.54 0.04 0.06 0.50

With fine-tuning 0.52 0.05 0.05 0.47

Without DDA 0.39 0.19 0.03 0.20

Without 1st stage 0.43 0.14 0.04 0.29

Fig. 6. Effects of fine tuning and attribute variety. The first 3 columns show the input
image, the results of the encoder embedding and fine tuning. The other columns show
different facial attributes controllable modifying ESi(θi).

of those procedures contributes to controllability of ConfigNet. Compared to
the base method, Cpred(I+) − Cpred(I−) decreases by 60% when the domain
adversarial loss is removed and by 42% when the first stage training is removed.
Quantitatively, the mean absolute difference of the non-altered attributes, MD, is
slightly larger for the base method. While this might seem a degradation caused
by two stage training and the domain discriminator, we attribute the lower MD
to the reduced capability of the network to modify the output image.

One worry with fine-tuning2 on a single image is that it will change the
decoder in a way that negatively affects controllability of the output image.
Our experiments show that fine tuning leads to a 6% reduction in Cpred(I+) −
Cpred(I−) and no increase of MD, which leads us to believe that the controllabil-
ity of the fine-tuned generator is not significantly affected. Figure 6 qualitatively
shows the effects of fine-tuning compared to embedding using ER.

An additional ablation study showing the influence of the eye gaze preserving
loss Leye is shown in Fig. 16 in the supplementary.

2 In all fine-tuning experiments we ran the fine-tuning procedure for 50 iterations.
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4.3 Comparison to State of the Art

In this section we compare to PuppetGAN [40], which is the most closely related
method, additional comparisons to CycleGAN [44] and Face-ID GAN [33] are in
the supplementary. For comparison to PuppetGAN we use a figure from [40] that
shows control over the degree of mouth opening on frames from several videos
from the 300-VW dataset [31]. To generate the figure, the authors of PuppetGAN
trained separate models on each of the videos and then demonstrated the ability
to change the degree of mouth opening in the frames of the same video.

Fig. 7. Comparison between ConfigNet (left) and PuppetGAN (right). Top row shows
the input, left column the desired level of mouth opening for each row. To facilitate
comparison, ConfigNet results are cropped to match PuppetGAN.

To generate similar results we use a model trained on FFHQ and fine-tune it
on the input frame using the method described in Sect. 3.4. We then use the fine-
grained control method (Sect. 3.6) to change only the degree of mouth opening.
The results of this comparison are shown in Fig. 7. At a certain level of mouth
opening PuppetGAN saturates and is not able to open the mouth more widely,
ConfigNet does so, while retaining a similar level of quality and disentanglement.
Both methods fail to close the mouth fully for some of the input images. We
believe that in case of ConfigNet this is an issue with the disentanglement of
the synthetic training set itself, we give further details and describe a solution in
supplementary materials. It is also worth noting that PuppetGAN uses hundreds
of training images of a specific person, while ConfigNet requires only a single
frame and it is able to modify many additional attributes.
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4.4 Failure Modes

One of the key issues we have identified is that the zi that corresponds to head
shape is often separated for real and synthetic data. For example, changing the
head shape of a real image embedded into z using ES(θi) results in the face
appearing closer to the synthetic image space and some of its features being
lost, see Fig. 8a for an example. This separation is placed in the head shape
space very consistently, we believe this is because head shape affects the whole
image in a significant way, so it’s easy for the generator to “hide” the difference
between real and synthetic images there.

Fig. 8. Failure modes. Left image pair: changing head shape to one obtained from θ
moves the appearance of the image closer to synthetic data. Central image pair: change
of zi corresponding to texture changes style of glasses. Right: frontal image generated
from an image IR with pose outside the supported range.

Another issue is that SynthFace does not model glasses, which leads to Con-
figNet hiding the representation of glasses in unrelated face attributes, most
commonly texture, head and eyebrow shape, as shown in Fig. 8b. Lastly, we
have found that when IR has a head pose that is out of the rotation range of
SynthFace, the encoder ER hides the rotation in other parts of z, as shown in
Fig. 8c. We believe this is a result of constraining the rotation output of ER to
the range seen in SynthFace (details in supplementary). Generating a synthetic
dataset with a wider rotation range would likely alleviate this issue.

5 Conclusions

We have presented ConfigNet, a novel face image synthesis method that allows
for controlling the output images to an unprecedented degree. Crucially, we show
the ability to generate realistic face images with attribute combinations that are
outside the distribution of the real training set. This unique ability brings neural
rendering closer to traditional rendering pipelines in terms of flexibility.

An open question is how to handle aspects of real face images not present in
synthetic data. Adding additional variables in the latent space to model these
aspects only for real data is an investigation that we leave to future work.

In the short term, we believe that ConfigNet could be used to enrich existing
datasets with samples that are outside of their data distribution or be applied
to character animation. In the long term, we hope that similar methods will
replace traditional rendering pipelines and allow for controllable, realistic and
person-specific face rendering.
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