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Abstract Nowadays, we have greater expectations of software than ever before.
This is followed by the constant pressure to run the same program on smaller and
cheaper machines. To meet this demand, the application’s performance has become
an essential concern in software development. Unfortunately, many applications still
suffer from performance issues: coding or design errors that lead to performance
degradation. However, finding performance issues is a challenging task: there is
limited knowledge on how performance issues are discovered and fixed in practice,
and current profilers report only where resources are spent, but not where resources
are wasted. In this chapter, we investigate actionable performance analyses that help
developers optimize their software by applying relatively simple code changes. We
focus on optimizations that are effective, exploitable, recurring, and out-of-reach for
compilers. These properties suggest that proposed optimizations lead to significant
performance improvement, that they are easy to understand and apply, applica-
ble across multiple projects, and that the compilers cannot guarantee that these
optimizations always preserve the original program semantics. We implement our
actionable analyses in practical tools and demonstrate their potential in improving
software performance by applying relatively simple code optimizations.

1 Introduction

Regardless of the domain, software performance is one of the most important
aspects of software quality: it is important to ensure an application’s responsiveness,
high throughput, efficient loading, scaling, and user satisfaction. Poorly performing
software wastes computational resources, affects perceived quality, and increases
maintenance cost. Furthermore, a web application that is perceived slow can result in
an unsatisfied customer who may opt for a competitor’s better performing product,
resulting in loss of revenue.
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To improve software performance, three kinds of approaches have been pro-
posed:

» Performance profiling. Developers conduct performance testing in the form
of CPU [16] and memory profiling [20] to identify code locations that use
the most resources. However, traditional profiling techniques have at least two
limitations: they show where the resources are spent, but not how to optimize the
program. Furthermore, they often introduce large overheads, which may affect
the software’s behavior and reduce the accuracy of the collected information.

* Compiler optimizations. Compiler optimizations [2] automatically transform a
program into a semantically equivalent, yet more efficient program. However,
many powerful optimization opportunities are beyond the capabilities of a typical
compiler. The main reason for this is that the compiler cannot ensure that a
program transformation preserves the semantics, a problem that is especially
relevant for hard-to-analyze languages, such as JavaScript.

* Manual tuning. Finally, developers often rely on manual performance tuning [19]
(e.g., manually optimizing code fragments or modifying software and hardware
configurations), which can be effective but it is time consuming and often
requires expert knowledge.

Limitations of existing performance analyses pose several research challenges and
motivate the need for techniques that provide advice on how to improve software
performance. This chapter addresses some of those limitations and proposes new
approaches to help developers optimize their code with little effort.

1.1 Terminology

In this work, we use the term actionable analysis to denote an analysis that
demonstrates the impact of implementing suggested optimization opportunities. In
particular, an actionable analysis provides evidence of performance improvement
(e.g., speedup in execution time or reduced memory consumption) or shows
additional compiler optimizations triggered by applying a suggested optimization.
Furthermore, the term optimization refers to a source code change that a developer
applies to improve the performance of a program, and compiler optimization refers
to an automatically applied transformation by a compiler.

1.2 Challenges and Motivation

To illustrate the potential of simple code transformations on software performance,
Fig. 1 illustrates a performance issue and an associated optimization reported in
Underscore, one of the most popular JavaScript utility libraries.
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_.map = function(obj, iterator, context) {
var results = [];
if (obj == null) return results;
_.each(obj, function(value, index, list) {
results.push(iterator(value, index, list));
b

return results;
};
(a)
_.map = function(obj, iterator, context) {

if (obj == null) return [];

var keys = _.keys(obj);

var length = keys.length, currentKey;

var results = Array(length);

for (var index = 0; index < length; index++) {
currentKey = keys[index];
results[index] = iterator(obj[currentKey], currentKey, obj);

}

return results;
};
(b)

Fig. 1 Performance issue from Underscore library (pull request 1708). (a) Performance issue. (b)
Optimized code

Figure 1 shows the initial implementation of the map method, which produces a
new array of values by mapping the value of each property in an object through
a transformation function iferator. To iterate over object properties, the method
uses an internal _.each function. However, a more efficient way is to first compute
the object properties using the keys function and then iterate through them with a
traditional for loop. The optimized version of the map method is shown in Fig. 1.
This optimization improves performance because JavaScript engines are able to
specialize the code in the for loop and execute it faster.

The optimization in Fig. 1 has four interesting properties. First, the optimization
is effective, that is, the optimized method is on average 20% faster than the original
one. Second, the optimization is exploitable, that is, the code transformation affects
few lines of code and is easy to apply. Third, the optimization is recurring, that
is, developers of real-world applications can apply the optimization across multiple
projects. Fourth, the optimization is out-of-reach for compilers, that is, due to the
dynamism of the JavaScript language, a compiler cannot guarantee that the code
transformation is always semantics-preserving.

Detecting such optimization opportunities in a fully automatic way poses at least
three challenges:

* Understanding performance problems and how developers address them. Despite
the overall success of optimizing compilers, developers still apply manual
optimizations to address performance issues in their code. The first step in
building actionable performance analyses is to understand the common root
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causes of performance issues and code patterns that developers use to optimize
their code.

* Analysis of program behavior to detect instances of performance issues. Based
on patterns of common performance issues, the next step is to develop techniques
to find code locations suffering from those issues and to suggest beneficial
optimizations.

* Exercising code transformations with enough input. Once the actionable anal-
ysis suggests an optimization opportunity, the next step is to ensure the per-
formance benefit of a code transformation by exercising the program with a
wide range of inputs. One approach is to use manually written tests to check
whether a code change brings a statistically significant improvement. However,
manual tests may miss some of the important cases, which can lead to invalid
conclusions. An alternative approach is to use automatically generated tests.

In this chapter, we show that it is possible to create actionable program analyses
that help developers significantly improve the performance of their software by
applying effective, exploitable, recurring, and out-of-reach for compilers’ optimiza-
tion opportunities. We propose novel automated approaches to support developers in
optimizing their programs. The key idea is not only to pinpoint where and why time
is spent but also to provide actionable advice on how to improve the application’s
performance.

1.3 Outline

The remaining sections of this chapter are organized as follows: Sect. 2 presents the
first empirical study on performance issues and optimizations in JavaScript projects.
Sections 3 and 4 present two actionable performance analyses that find reordering
opportunities and method inlining optimizations. Section 5 gives an overview of the
test generation approaches for higher-order functions in dynamic languages. Finally,
Sect. 6 discusses conclusions and directions for future work.

2 Performance Issues and Optimizations in JavaScript

The first step in developing actionable performance analyses is to understand real-
world performance issues that developers face in practice and how they address
those issues. In this section, we introduce an empirical study on performance
issues and optimizations in real-world JavaScript projects. We chose JavaScript
because it has become one of the most popular programming languages, used not
only for client-side web applications but also for server-side applications, mobile
applications, and even desktop applications.
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Despite the effectiveness of highly optimizing just-in-time (JIT) compilers [13,
23, 18, 9, 1], developers still manually apply optimizations to address performance
issues in their code. Furthermore, future improvements of JavaScript engines are
unlikely to completely erase the need for manual performance optimizations.

To find optimizations amenable for actionable performance analyses, we first
need to answer the following research questions:

* RQ 1: What are the main root causes of performance issues in JavaScript?

e RQ 2: How complex are the changes that developers apply to optimize their
programs?

* RQ 3: Are there recurring optimization patterns, and can they be applied
automatically?

2.1 Methodology

This section summarizes the subject projects we use in the empirical study, our
criteria for selecting performance issues, and our methodology for evaluating the
performance impact of the optimizations applied to address these issues.

2.2 Subject Projects

We study performance issues from widely used JavaScript projects that match the
following criteria:

* Project type. We consider both node.js projects and client-side frameworks and
libraries.

* Open source. We consider only open source projects to enable us and others to
study the source code involved in the performance issues.

* Popularity. For node.js projects, we select modules that are the most depended-
on modules in the npm repository.! For client-side projects, we select from the
most popular JavaScript projects on GitHub.

* Number of reported bugs. We focus on projects with a high number of pull
requests (> 100) to increase the chance to find performance-related issues.

Table 1 lists the studied projects, their target platforms, and the number of lines
of JavaScript code. Overall, we consider 16 projects with a total of 63,951 lines of
code.

Uhttps://www.npmjs.com/browse/depended.
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Table 1 Projects used for the study and the number of reproduced issues per project

Project Description Kind of platform LoC # issues
Angular.js MVC framework Client 7608 27
jQuery Client-side library Client 6348 9
Ember.js MVC framework Client 21,108 11
React Library for reactive user interfaces Client 10,552 5
Underscore Utility library Client and server 1110 12
Underscore.string  String manipulation Client and server 901 3
Backbone MVC framework Client and server 1131 5
EJS Embedded templates Client and server 354 3
Moment Date manipulation library Client and server 2359 3
NodeLruCache Caching support library Client and server 221 1
Q Library for asynchronous promises Client and server 1223 1
Cheerio jQuery implementation for server-side Server 1268 9
Chalk Terminal string styling library Server 78 3
Mocha Testing framework Server 7843 2
Request HTTP request client Server 1144 2
Socket.io Real-time application framework Server 703 2
Total 63,951 98

2.3 Selection of Performance Issues

We select performance issues from bug trackers as follows:

1.

Keyword-based search or explicit labels. One of the studied projects, Angular.js,
explicitly labels performance issues, so we focus on them. For all other projects,
we search the title, description, and comments of issues for performance-

related keywords, such as “performance,” “optimization,” “responsive,” “fast,”
and “slow.”

. Random selection or inspection of all issues. For the project with explicit

performance labels, we inspect all such issues. For all other projects, we
randomly sample at least 15 issues that match the keyword-based search, or we
inspect all issues if there are less than 15 matching issues.

. Confirmed and accepted optimizations. We consider an optimization only if it

has been accepted by the developers of the project and if it has been integrated
into the code repository.

. Reproducibility. We study a performance issue only if we succeed in executing a

test case that exercises the code location / reported to suffer from the performance
problem. We use of the following kinds of tests:

* A test provided in the issue report that reproduces the performance problem.
* A unit test published in the project’s repository that exercises /.
* A newly created unit test that calls an API function that triggers /.
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* A newly created microbenchmark that contains the code at/, possibly prefixed
by setup code required to exercise the location.

5. Split changes into individual optimizations. Some issues, such as complaints
about the inefficiency of a particular function, are fixed by applying multiple
independent optimizations. Because our study is about individual performance
optimizations, we consider such issues as multiple issues, one for each indepen-
dent optimization.

6. Statistically significant improvement. We apply the test that triggers the
performance-critical code location to the versions of the project before and
after applying the optimization. We measure the execution times and keep only
issues where the optimization leads to a statistically significant performance
improvement.

We create a new unit test or microbenchmark for the code location / only
if the test is not provided or published in the project’s repository. The rationale
for focusing on unit tests and microbenchmarks is twofold. First, JavaScript
developers extensively use microbenchmarks when deciding between different ways
to implement some functionality.” Second, most projects we study are libraries
or frameworks, and any measurement of application-level performance would
be strongly influenced by our choice of the application that uses the library or
framework. Instead, focusing on unit tests and microbenchmarks allows us to assess
the performance impact of the changed code while minimizing other confounding
factors.

In total, we select and study 98 performance issues, as listed in the last column
of Table 1.

2.4 Main Findings

In this section, we discuss the main findings and provide detailed answers on the
three research questions.

Root Causes of Performance Issues To address the first question, we identify
eight root causes that are common among the 98 studied issues, and we assign each
issue into one or more root causes. The most common root cause (52% of all issues)
is that an API provides multiple functionally equivalent ways to achieve the same
goal, but the API client does not use the most efficient way to achieve its goal.
Figure 2b further classifies these issues by the API that is used inefficiently. For
example, the most commonly misused APIs are reflection APIs, followed by string
and DOM APIs.

2For example, jsperf.com is a popular microbenchmarking website.
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Fig. 2 Root causes of performance issues. (a) Most prevalent root causes. (b) APIs that are used
inefficiently

Besides inefficient API usage, we identify seven other common causes of
performance issues as illustrated by Fig. 2. The full description of these causes can
be further found in [35], and some but not all of them have been addressed by
existing approaches for automatically finding performance problems [15, 38, 39].
However, our results suggest that there is a need for additional techniques to help
developers find and fix instances of other common performance issues.

Complexity of Changes To better understand to what degree optimizations influ-
ence the complexity of the source code of the optimized program, we measure
the number of statements in the program and the cyclomatic complexity [24]
of the program before and after each change. These metrics approximate the
understandability and maintainability of the code.

Figure 3a, b summarizes our results. The graphs show what percentage of
optimizations affect the number of statements and the cyclomatic complexity in
a particular range. We find that a large portion of all optimizations do not affect the
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Fig. 3 Effect of applying an optimization on the cyclomatic complexity. (a) Effect on the number
of statements. (b) Effect on cyclomatic complexity

number of statements and the cyclomatic complexity at all: 37.11% do not modify
the number of statements, and 47.42% do not modify the cyclomatic complexity. It is
also interesting to note that a non-negligible percentage of optimizations decreases
the number of statements (19.59%) and the cyclomatic complexity (14.43%).

These results challenge the common belief that optimizations come at the cost
of reduced code understandability and maintainability [22, 11]. We conclude from
these results that many optimizations are possible without increasing the complexity
of the optimized program.

Recurring Optimization Patterns To identify performance optimizations that
may apply in more than a single situation, we inspect all studied issues. First, we
identify optimizations that occur repeatedly within the study. Furthermore, since
some issues may not expose multiple instances of a pattern that would occur
repeatedly in a larger set, we also identify patterns that may occur repeatedly. To find
whether there are occurrences of the optimization patterns beyond the 98 studied
optimizations, we develop a simple, AST-based, static analysis for each pattern and
apply it to programs used in the study.

We find that the analyses cannot guarantee that the optimization patterns can be
applied in a fully automated way without changing the program’s semantics due to
the following features of JavaScript language:

* Dynamic types: the types of identifiers and variables can be dynamically changed.

* Dynamic changes of object prototypes: properties of object prototype can be
dynamically overridden.

* Dynamic changes of native methods: native or third-party functions can be
dynamically overridden.
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For example, in Fig.1, the obj identifier must always have Object type, the
hasOwnProperty property of Object .prototype must not be overridden, and both
hasOwnProperty () and keys () must be built-in JavaScript functions.

To check whether a match is a valid optimization opportunity, the analyses
also rewrite the program by applying the respective optimization pattern. We then
manually inspect the rewritten program and prune changes that would modify the
program’s semantics. In total, we find 139 new instances of recurring optimization
patterns, not only across single project but also across multiple projects. These
results motivate the research and the development of techniques that help developers
apply an already performed optimizations at other code locations, possibly along the
lines of existing work [26, 27, 3].

2.5 Practical Impact

The results of the empirical study can help improve JavaScript’s performance by
providing at least three kinds of insights. First, application developers benefit by
learning from mistakes made by others. Second, developers of performance-related
program analyses and profiling tools benefit from better understanding what kinds
of problems exist in practice and how developers address them. Third, developers of
JavaScript engines benefit from learning about recurring bottlenecks that an engine
may want to address and by better understanding how performance issues evolve
over time.

3 Performance Profiling for Optimizing Orders
of Evaluation

The previous section discusses the most common performance problems and
optimizations in JavaScript projects. It shows that many optimizations are instances
of relatively simple, recurring patterns that significantly improve the performance
of a program without increasing code complexity. However, automatically detecting
and applying such optimization opportunities are challenging due to the dynamic
features of the JavaScript language.

Reordering Opportunities In this section, we focus on a recurring and easy
to exploit optimization opportunity called reordering opportunity. A reordering
opportunity optimizes the orders of conditions that are part of a decision made
by the program. As an example, Fig. 4 shows an instance of reported reordering
optimization in a popular JavaScript project. The code in Fig.4 checks three
conditions: whether a regular expression matches a given string, whether the value
stored in match[3] is defined, and whether the value of arg is greater than or
equal to zero. This code can be optimized by swapping the first two expressions
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arg = (/[def]/.test(match[8]) && match[3] & arg >= 0 ? ’+’+ arg : arg);

(a)

arg = (match[3] && /[def]/.test(match[8]) && arg >= 0 ? ’+'+ arg : arg);

(b)

Fig. 4 Performance issues from Underscore.string (pull request 471). (a) Optimization opportu-
nity. (b) Optimized code

(Fig.4) because checking the first condition is more expensive than checking the
second condition. After this change, when match [3] evaluates to false, the overall
execution time of evaluating the logical expression is reduced by the time needed to
perform the regular expression matching.

Once detected, such opportunities are easy to exploit by reordering the conditions
so that the cost of overall evaluation has the least possible cost. At the same time,
such a change often does not sacrifice readability or maintainability of the code.
Beyond the examples in Fig. 4, we found various other reordering optimizations in
real-world code,? including several reported by us to the respective developers.*

3.1 An Analysis for Detecting Reordering Opportunities

Challenges Even though the basic idea of reordering conditions is simple, detect-
ing reordering opportunities in real-world programs turns out to be non-trivial. We
identify three challenges.

* Measuring the cost and likelihood of conditions. To identify reorderings of
conditions that reduce the overall cost of evaluations, we must assess the cost of
evaluating individual expressions and the likelihood that an expression evaluates
to true. The most realistic way to assess computational cost is to measure
the actual execution time. However, short execution times cannot be measured
accurately. To compute the optimal evaluation order, we require an effective
measure of computational cost, which should be a good predictor of actual
execution time while being measurable with reasonable overhead.

* Analyze all conditions. To reason about all possible reorderings, we must
gather cost and likelihood information for all conditions. However, dynamically
analyzing all conditions may not be necessary in a normal execution. For
example, consider that the first condition in Fig. 4 evaluates to £alse. In this case,

3For example, see jQuery pull request #1560.
“4For example, see Underscore pull request #2496 and Moment pull request #3112,
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Fig. 5 Overview of
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» Side effect-free evaluation of condition. Evaluating conditions may have side
effects, such as modifying a global variable or an object property. Therefore,
naively evaluating all conditions, even though they would not be evaluated in
the normal program execution, may change the program’s semantics. To address
this issue, we need a technique for evaluating individual expressions without
permanently affecting the state of the program.

DecisionProf: An Overview To address the aforementioned challenges, we pro-
pose DecisionProf, a profiling approach that automatically finds reordering oppor-
tunities at runtime and proposes them to the developer. Figure 8 gives an overview of
the approach. The input to DecisionProf is an executable program and the output is
the list of reordering opportunities. The first step of the profiler is a dynamic analysis
that identifies optimization candidates. In the second step, for each candidate, the
approach applies the optimization via source-to-source transformation. Finally, for
the modified version of the program, DecisionProf checks whether an optimization
reduces the execution time of a program. If and only if the changes lead to
statistically significant performance improvement, the approach suggests them as
reordering opportunities to the developer (Fig. 5).

3.2 Dynamic Analysis

The main component of DecisionProf is the runtime analysis that collects two
pieces of information about every dynamic occurrence of a condition: the com-
putational cost of evaluating the condition and the value, i.e., whether the Boolean
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expression evaluates to true or false. DecisionProf gathers these runtime data in
two steps. At first, it statically preprocesses the source code of the analyzed program.
More details on a preprocessing step can be found in [34]. After collecting runtime
data, the approach associates with each condition a cost-value history:

Definition 1 (Cost-Value Histories) The cost-value history /# of a condition is a
sequence of tuples (c, v), where v denotes the value of the condition and ¢ represents
the cost of evaluating the condition. The cost-value histories of all conditions are
summarized in a history map # that assigns a history to each condition.

To gather cost-value histories, the analysis reacts to particular runtime events:

* When the analysis observes a beginning of a new conditional statement, it
pushes the upcoming evaluation onto a stack evaluations of currently evaluated
statement.

* When the analysis observes new condition, it pushes the condition that is going
to be evaluated onto a stack conditions of currently evaluated conditions.
Furthermore, the analysis initializes the cost ¢ of the upcoming evaluation to
one.

* When reaching a branching point, the analysis increments the cost counter ¢ of
each condition in conditions. We use the number of executed branching points
as a proxy measure for wall clock execution time, avoiding the challenges of
reliably measuring short-running code.

* When the analysis observes the end of conditional evaluation, it pops the
corresponding condition from conditions. Furthermore, the analysis appends
(c,v) to h, where h is the cost-value history of the condition as stored in
the history map H of top(evaluations), c is the cost of the current condition
evaluation, and v is the Boolean outcome.

* When reaching the end of conditional statements, the analysis pops the corre-
sponding statement from evaluations.

The reason for using stacks to represent the currently evaluated conditions is
that they may be nested. For example, consider a logical expressiona() || b (),
where the implementation of a contains another complex logical expression.

Our approach refines the described analysis in two ways. First, the analysis
monitors runtime exceptions that might occur during the evaluation of the Boolean
expression. If an exception is thrown, the analysis catches the error, restores the
program state, and excludes the expression from further analysis. Such exceptions
typically occur because the evaluation of one condition depends on the evaluation
of another condition. Second, the analysis considers switch statements with case
blocks that are not terminated with a break or return statement. For such case
blocks, the analysis merges conditions corresponding to the cases that are evaluated
together into a single condition.

Based on cost-value histories obtained through dynamic analysis, DecisionProf
computes an optimal order of conditions for each executed conditional statement
in the program. The computed order is optimal in the sense that it minimizes the
overall cost of the analyzed executions.
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Table 2 Cost-value histories from executions of Fig. 4

Execution
Check First Second Third
/ [def]/.test (match[8]) (3, true) (3, true) (3, false)
match[3] (1, true) (1, false) (1, false)
arg (1, true) (1, true) (1, true)

To illustrate the algorithm for finding the optimal order of conditions, consider
Table 2 that shows a cost-value history gathered from three executions of the logical
expression in Fig.4. For example, when the logical expression was executed for
the first time, the check /[def]/.test (match[8]) was evaluated to true and
obtaining this value imposed a runtime cost of 3. Based on these histories, the
algorithm computes the optimal cost of the first, innermost logical expression,
/[def]/.test (match[8]) && match[3]. The costs in the three executions with
the original order are 4, 4, and 3. In contrast, the costs when swapping the
conditions are 4, 1, and 1. That is, swapping the subexpressions reduces the
overall cost. Therefore, the optimal order for the first subexpression is math[3]
&& /[defl/.test (match[8]). Next, the algorithm moves up in the expression
tree and optimizes the order of math[3] && /[def]l/.test (match([8]) and arg.
Comparing their costs shows that swapping these subexpressions is not beneficial,
so the algorithm computes the history of the subexpression, and finally it returns
math[3] && /[defl/.test(match[8]) && arg as the optimized expression.

3.3 Experimental Evaluation

We evaluate the effectiveness and efficiency of DecisionProf by applying it to 43
JavaScript projects: 9 widely used libraries and 34 benchmark programs from the
JetStream suite, which is commonly used to assess JavaScript performance. To
execute the libraries, we use their test suites, which consist mostly of unit-level tests.
We assume for the evaluation that these inputs are representative for the profiled
code base. The general problem of finding representative inputs to profile a given
program [17, 5, 10] is further discussed in Sect. 5.

Table 3 illustrates the libraries and benchmarks used in the evaluation. In total,
DecisionProf detects 52 reordering opportunities. The column “Optimizations” in
Table 3 shows how many optimizations the approach suggests in each project and
function-level performance improvements after applying these optimizations. To
the best of our knowledge, none of the optimizations detected by DecisionProf
have been previously reported. Furthermore, after manually inspecting all suggested
optimizations, we find that all of them are semantics-preserving, i.e., the approach
has no false positives in our evaluation. Further details on detected opportunities,
examples, and their performance impact can be found in [34].
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Table 3 Projects used for the evaluation of DecisionProf

Project Tests LoC Optimizations Perf. improvements (%)
Libraries

Underscore 161 1110 2 3.7-14
Underscore.string 56 905 1 3-5.8
Moment 441 2689 1 3-14.6
Minimist 50 201 1 4.2-6.5
Semver 28 863 5 3.5-10.6
Marked 51 928 1 344
EJS 72 549 2 5.6-6.7
Cheerio 567 1396 9 6.2-40
Validator 90 1657 3 3-10.9
Total 1516 10, 928 23

Benchmarks

float-m 3972 3 2.5
crypto-aes 295 3 5.2
deltablue 483 2 6.5
gbemu 9481 18 5.8

Total 14, 231 26

Reported Optimizations To validate our hypothesis that developers are interested
in optimizations related to the order of checks, we reported a small subset of all
detected reordering opportunities. Three out of seven reported optimizations got
confirmed and fixed within a very short time, confirming our hypothesis.

4 Cross-Language Optimizations in Big Data Systems

Sections 2 and 3 illustrate how relatively small code changes can significantly
improve the execution time of JavaScript applications. While this is true for
JavaScript-based web applications, frameworks, and libraries, the question is
whether similar findings hold for complex, distributed applications that run simul-
taneously on multiple machines.

In this section, we demonstrate the potential of the method inlining code
optimization in a large-scale data processing system. Method inlining is a simple
program transformation that replaces a function call with the body of the function.
We search for method inlining opportunities in programs written in SCOPE [7],
a language for big data processing queries that combines SQL-like declarative
language with C# expressions.

To demonstrate the effectiveness of method inlining, Fig. 6 illustrates two
semantically equivalent SCOPE programs that interleave relational logic with C#
expressions. Figure 6a shows the situation where the user implements the predicate
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Fig. 6 Examples of SCOPE data = SELECT *

programs. (a) Predicate FROM inputStream
invisible to optimizer. (b) WHERE M(A, B);
Predicate visible to optimizer
#CS
bool M(string x, string y) {
return !String.IsNullOrEmpty(x) && y == "Keyl";
}
#ENDCS
(a)
data = SELECT *
FROM inputStream
WHERE !String.IsNullOrEmpty(A) AND B == "Keyl";
(b)

in the WHERE clause as a separate C#* method. Unfortunately, the presence of non-
relational code blocks the powerful relational optimizations in the SCOPE compiler.
As a result, the predicate is executed in a C# virtual machine. On the other hand,
Fig. 6 shows a slight variation where the user inlines the method body in the WHERE
clause. Now, the predicate is amenable to two potential optimizations:

1.

The optimizer may choose to promote one (or both) of the conjuncts to an earlier
part of the script, especially if either A or B is the column used for partitioning the
data. This can dramatically reduce the amount of data needed to be transferred
across the network.

. The SCOPE compiler has a set of methods that it considers to be intrinsic. An

intrinsic is a .NET method for which the SCOPE runtime has a semantically
equivalent native function, i.e., implemented in C++. For instance, the method
String.isNullOrEmpty checks whether its argument is either null or else
the empty string. The corresponding native method is able to execute on the
native data encoding, which does not involve creating any .NET objects or
instantiating the .NET virtual machine.

The resulting optimizations improve the throughput of the SCOPE program by

90% percent.

4.1 Performance Issues in SCOPE Language

SCOPE [7] is a big data query language, and it combines a familiar SQL-like
declarative language with the extensibility and programmability provided by C#
types and the C# expression language. In addition to C# expressions, SCOPE allows
user-defined functions (UDF's) and user-defined operators (UDOs). Each operator,
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however, must execute either entirely in C# or in C++: mixed code is not provided
for. Thus, when possible, the C++ operator is preferred because the data layout in
stored data uses C++ data structures. But when a script contains a C# expression that
cannot be converted to a C++ function, such as in Fig. 6a, the .NET runtime must be
started and each row in the input table must be converted to a C# representation.

Data conversions to and from .NET runtime poses a significant cost in the overall
system. To alleviate some of these inefficiencies, the SCOPE runtime contains
C++ functions that are semantically equivalent to a subset of the .NET framework
methods that are frequently used; these are called intrinsics. Wherever possible,
the SCOPE compiler emits calls to the (C++) intrinsics instead of C# functions.
However, the optimization opportunity presented in Fig. 6 is outside the scope of
SCOPE compiler: user-written functions are compiled as a black box: no analysis
or optimization is performed at this level.

4.2 Static Analysis to Find Method Inlining Opportunities

SCOPE jobs run on a distributed computing platform, called Cosmos, designed for
storing and analyzing massive data sets. Cosmos runs on five clusters consisting of
thousands of commodity servers [7]. Cosmos is highly scalable and performant: it
stores exabytes of data across hundreds of thousands of physical machines. Cosmos
runs millions of big data jobs every week and almost half a million jobs every day.

Finding optimization opportunities in such a large number of diverse jobs is
a challenging problem. We can hope to find interesting conclusions only if our
analysis infrastructure is scalable. To achieve this, we analyze the following artifacts
that are produced after the execution of each SCOPE program:

* Job Algebra The job algebra is a graph representation of the job execution plan.
Each vertex in a graph contains operators that run either inside native (C++) or
.NET runtime.

* Runtime Statistics The runtime statistics provide information on the CPU time
for every job vertex and every operator inside the vertex.

* Generated Code The SCOPE compiler generates both C# and C++ codes for
every job. An artifact containing the C++ code has for every vertex a code region
containing a C++ implementation of the vertex and another code region that
provides class names for every operator that runs as C#. An artifact containing
the C# code includes implementations of non-native operators and user-written
classes and functions defined inside the script.

The first step of the analysis is to extract the names of each job vertex, which
serves as a unique identifier for the vertex. Then, for each vertex, the analysis parses
the generated C++ to find the class containing the vertex implementation. If in the
class the list of C# operators is empty, we conclude that the entire vertex runs as C++
code. Otherwise, the analysis outputs class names that contain C# operators. Then, it
parses C# code to find definition and implementation for every class name. For a non-
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native operator, there are two possible sources of C# code: generated code, which
we whitelist and skip in our analysis and the user-written code. After analyzing user
code, the final sources of C# code are .NET framework calls, user-written functions,
and user-written operators.

To find method inlining opportunities, we are particularly interested in the second
category. Among user-written functions, we find inlineable ones as per the following
definition:

Definition 2 (Inlineable Method) Method m is inlineable if it has the following
properties:

It contains only calls to intrinsics methods

It does not contain loops and try-catch blocks

It does not contain any assignment statements.

It does not contain any references to the fields of an object.

e For all calls inside the method, arguments are passed by value (i.e., no out
parameters or call-by-reference parameters).

By optimizing inlineable methods, the SCOPE compiler is now able to run the
operator contains the method completely in native runtime. In the next section, we
further discuss the empirical results of performance improvements due to method
inlining opportunities. The complete description of our analysis infrastructure can
be found in [33].

4.3 Experimental Evaluation

To understand the potential of method inlining opportunities, we analyze over
3,000,000 SCOPE jobs over a period of six days that run on five data centers at
Microsoft. To quantify the amount of CPU time that can be optimized by applying
method inlinings, we consider job vertices that have as the only source of managed
code an inlineable method. By optimizing such a method, we expect an entire vertex
to run as native code, which should significantly improve the vertex execution time.
Figure 7 shows the proportion of CPU time of optimizable vertices relative to data
center time and total time spent in .NET runtime. We observe that with the current
list of intrinsics, we can optimize a relatively small proportion of both, data center
time and non-native time. For example, in cosmos9 that runs the most expensive
jobs, we can optimize at most 0.01% of data center time. The situation is slightly
better in cosmos14 or cosmos15, where we can optimize up to 0.15% of data center
time. However, taking into account the scale of big data processing at Microsoft,
this percentage amounts to almost 40,000 h of optimizable time.

The crucial observation is that the results illustrate only the time in data centers
that can be affected by inlining method calls. To measure the actual performance
improvement, it is necessary to rerun every optimized job.
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Fig. 7 Execution time affected by method inlining

Table 4 Summary of case studies. The reported changes are percentage of improvements in CPU
time and throughput

CPU time
Job name C++ translation Job cost Vertex change Job change Throughput
A Yes Medium  59.63% 23.00% 30%
B Yes Medium  No change No change No change
C Yes Low 41.98% 25.00% 38%
D No - - - -
E Yes High 7.22% 4.79% 5%
F Yes Low No change No change 115%

4.3.1 Case Studies

In order to quantify the effects of optimizing the SCOPE scripts through method
inlining, we performed several case studies. We reported jobs that have optimizable
vertices, meaning that the job owner can optimize the script by inlining a method
that calls only intrinsics.

Because the input data for each job are not available, we had to contact the job
owners and ask them to rerun the job with a manually inlined version of their script.
We were able to have 6 jobs rerun by their owners, categorized by their total CPU
time: short, medium, and long.

In total, we looked at 6 rerun jobs, summarized in Table 4. For one job (D),
the optimization did not trigger C++ translation of an inlined operator because
the operator called to a non-intrinsic method that we mistakenly thought was an
intrinsic. After detecting this problem, we fix the set of intrinsics and use the new
set to obtain data presented in this section.

For jobs A and B, we were able to perform the historical study over a period of
18 days. Both jobs are medium-expensive jobs, run daily, and contain exactly one
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optimizable vertex due to user-written functions. In both cases, inlining the function
resulted in the entire vertex being executed in C++. The values are normalized by
the average of the unoptimized execution times; the optimized version of the job A
saves approximately 60% of the execution time. In similar fashion, we find that the
normalized vertex CPU time in Job B does not show any consistent improvement.
Closer analysis of the vertex shows that the operator which had been in C# accounted
for a very tiny percentage of the execution time for the vertex. This is in line with
our results for Job A, where the operator had essentially been 100% of the execution
time of the vertex.

We also optimized Job F, a very low-cost job. It only runs a few times a month,
so we were able to obtain timing information for only a few executions. The vertex
containing the optimized operator accounted for over 99% of the overall CPU time
for the entire job. We found the CPU time to be highly variable; perhaps, this is
because the job runs so quickly, so it is more sensitive to the batch environment in
which it runs. However, we found the throughput measurements to be consistent: the
optimized version provided twice the throughput for the entire job (again, compared
to the average of the unoptimized version).

Finally, for jobs C and E, we were not able to perform the same kind of
historical study: instead, we have just one execution of the optimized scripts. For
this execution, we found improvements in both vertex and job CPU times.

By presenting six case studies of big data processing tasks, we show that method
inlinig is a promising optimization strategy for triggering more generation of native
code in SCOPE programs, which yields significant performance improvements.

S Test Generation of Higher-Order Functions in Dynamic
Languages

In Sect. 3, we present DecisionProf, a dynamic analysis for optimizing inefficient
orders of evaluations. To find reordering opportunities, DecisionProf relies on
inputs provided by test suites. Similarly, other dynamic analyses are applied with
manually written tests or by manually exploring the program. However, such inputs
are often not sufficient to cover all possible program paths or to trigger behavior that
is of interest to the dynamic analysis.

To address the problem of insufficient test inputs, a possible solution is to use test
generation in combination with dynamic analysis. Automatically generated tests can
either extend manual tests or serve as the sole driver to execute applications during
dynamic analysis. Existing test generation uses a wide range of techniques, includ-
ing feedback-directed random testing [29, 30], symbolic execution [21, 6], concolic
execution [ 14, 37], bounded exhaustive testing [4], evolutionary test generation [12],
Ul-level test generation [25, 28, 34], and concurrency testing [31, 32].

For dynamic analysis to be precise, test generation must provide high-quality
test cases. This means that generated tests should exercise as many execution paths
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as possible and achieve good code coverage. However, despite their effectiveness
in identifying programming errors, current test generation approaches have limited
capabilities in generating structurally complex inputs [40]. In particular, they do not
consider higher-order functions that are common in functional-style programming,
e.g., the popular map or reduce APIs, and in dynamic languages, e.g., methods that
compose behavior via synchronous or asynchronous callbacks.

Testing a higher-order function requires the construction of tests that invoke the
function with values that include callback functions. To be effective, these callback
functions must interact with the tested code, e.g., by manipulating the program’s
state. Existing test generators do not address the problem of higher-order functions
at all or pass very simple callback functions that do not implement any behavior or
return random values [8].

The problem of generating higher-order functions is further compounded for
dynamically typed languages, such as JavaScript, Python, and Ruby. For these
languages, in addition to the problem of creating an effective callback function,
a test generator faces the challenge of determining where to pass a function as
an argument. Addressing this challenge is non-trivial in the absence of static type
signatures.

In this section, we give a brief overview of LambdaTester, a novel framework for
testing higher-order functions in dynamic languages. The complete details of the
framework and proposed solution can be found in [36].

5.1 Overview of the Framework

In the LambdaTester framework, test generation proceeds in two phases. The
discovery phase is concerned with discovering, for a given method under test m, at
which argument position(s) the method expects a callback function. To this end, the
framework generates tests that invoke m with callback functions that report whether
or not they are invoked. Then, the test generation phase creates tests that consist of
a sequence of calls that invoke m with randomly selected values, including function
values at argument positions where the previous phase discovered that functions
are expected. The test generation phase uses a form of feedback-directed, random
testing [29] to incrementally extend and execute tests. We augment feedback-
directed, random testing with four techniques to create callback arguments. Both
phases take as input setup code that creates a set of initial values, which are used as
receivers and arguments in subsequently generated calls.
The basic ingredient of generated tests is method calls:

Definition 3 (Method Call) A method call ¢ is a tuple (m, varyec, vargrgr - -
Varargn, Varremm), Where m is a method name, vary is the name of the variable used
as the receiver object of the call, var, g1, ..., vary gr are the names of variables
used as arguments, and var,..,, is the name of the variable to which the call’s return
value is assigned.
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Fig. 8 Overview of LambdaTester

Finally, the overall goal of the approach is to generate tests:

Definition 4 (Test) A test zest is a sequence (setup, ¢;, . . ., c,), where setup is the
setup code and ¢, . . ., ¢, are generated method calls.

Figure 8 illustrates the process of test generation. For each method under test,
the approach attempts to infer the positions of callback arguments. Afterward,
the approach repeatedly generates new method calls and executes the growing
test. During each test execution, the approach collects feedback that guides the
generation of the next method call. Finally, the approach stores the generated tests,
which can then be used as an input to the dynamic analysis or for bug finding [36].

5.2 Callback Generation Approaches

The key idea of LambdaTester is a feedback-directed test generation with a novel
generation of callback inputs. Our framework currently supports four techniques for
generating callback functions, which we present below.

Empty Callbacks The most simple approach for creating callbacks is to simply
create an empty function that does not perform any computation and does not
explicitly return any value. Figure 9 gives an example of an empty callback.

Callbacks by QuickCheck QuickCheck [8] is a state-of-the-art test genera-
tor originally designed for functional languages. To test higher-order functions,
QuickCheck is capable of generating functions that return random values, but the
functions that it generates do not perform additional computations and do not
modify the program state. Figure 9 gives an example of a callback generated by
QuickCheck.

Existing Callbacks Given the huge amount of existing code written in popular
languages, another way to obtain callback functions is to extract them from already
written code. To find existing callbacks for a method m, the approach statically
analyzes method calls in a corpus of code and extracts function expressions passed
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function callback() { function callback() {
}; return 17;
b
(a) (b)
function callback() { function callback(a,b) {
return Math.floor(10.8) + receiver.foo = "abc"
Math.floor(20.4) + b = null;
Math.min(3, 5); return {x: 23};
1 };
(© (d)

Fig. 9 Examples of generated callbacks. (a) Empty callback (“Cb-Empty”). (b) Callback gener-
ated by QuickCheck (“Cb-QuickCheck”). (¢) Callback mined from existing code (“Cb-Mined”).
(d) Callback generated based on dynamically analyzing the method under test (“Cb-Writes™)

to methods with a name equal to m. For example, to test the map function of arrays
in JavaScript, we search for callback functions given to map. The rationale for
extracting callbacks specifically for a each method m is that callbacks for a specific
API method may follow common usage patterns, which may be valuable for testing
these API methods.

Callbacks Generation Based on Dynamic Analysis The final and most sophisti-
cated technique to create callbacks uses a dynamic analysis of the method under test
to guide the construction of a suitable callback function. The technique is based on
the observation that callbacks are more likely to be effective for testing when they
interact with the tested code. To illustrate this observation, consider the following
method under test:

function testMe (callbackFn, bar)
// code before calling the callback

// calling the callback
var ret = callbackFn();

// code after calling the callback

if (this.foo) { ... }
if (bar) { ...}
if (ret) { ... }

}

To effectively test this method, the callback function should interact with the
code executed after invoking the callback. Specifically, the callback function should
modify the values stored in this.foo, ret, and bar. The challenge is how to
determine the memory locations that the callback should modify.



136 M. Selakovic

We address this challenge through a dynamic analysis of memory locations that
the method under test reads after invoking the callback. We apply the analysis
when executing tests and feed the resulting set of memory locations back to the
test generator to direct the generation of future callbacks. The basic idea behind
the dynamic analysis is to collect all memory locations that (i) are read after the
first invocation of the callback function and (ii) are reachable from the callback
body. The reachable memory locations include memory reachable from the receiver
object and the arguments of the call to the method under test, the return value of the
callback, and any globally reachable state.

For the above example, the set of dynamically detected memory locations is
{ receiver.foo, arg2, ret }.

Based on detected memory locations, LambdaTester generates a callback body
that interacts with the function under test. To this end, the approach first infers
how many arguments a callback function receives. Then, LambdaTester generates
callback functions that write to the locations read by the method under test and that
are reachable from the callback body. The approach randomly selects a subset of
the received arguments and of the detected memory locations and assigns a random
value to each element in the subset.

Figure 9 shows a callback function generated for the above example, based on the
assumption that the callback function receives two arguments. As illustrated by the
example, the feedback from the dynamic analysis allows LambdaTester to generate
callbacks that interact with the tested code by writing to memory locations that are
relevant for the method under test.

As further discussed in [36], all callback generation techniques are more effective
in finding programming errors than state-of-the-art test generation approaches that
do not consider the generation of function inputs. Moreover, among proposed
techniques, generating callbacks that modify program state in non-obvious ways
is more effective in triggering non-trivial executions than other callback generation
techniques.

6 Conclusions

In this chapter, we present actionable program analyses to improve software
performance. More concretely, we focus on an empirical study of the most common
performance issues in JavaScript programs (Sect.2), analyses to find reordering
opportunities (Sect. 3) and method inlining opportunities (Sect.4), and a novel test
generation technique for higher-order functions in dynamic languages (Sect.5).
These approaches aim to reduce manual effort by suggesting only beneficial
optimization opportunities that are easy to understand and applicable across multiple
projects.
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6.1 Summary of Contributions

We show that it is possible to automatically suggest effective, exploitable, recurring,
and out-of-reach for compilers’ optimization opportunities. In particular,

* By empirically studying performance issues and optimizations in real-world
software, we show that most issues are addressed by optimizations that modify
only a few lines of code, without significantly affecting the complexity of the
source code. Furthermore, we observe that many optimizations are instances of
patterns applicable across projects. These results motivate the development of
performance-related techniques that address relevant performance problems.

* Applying these optimizations in a fully automatic way is a challenging task:
they are subject to preconditions that are hard to check or can be checked
only at runtime. We propose two program analyses that prove to be powerful
in finding optimization opportunities in complex programs. Even though our
approaches do not guarantee that code transformations are semantics-preserving,
the experimental results illustrate that suggested optimizations do not change
program behavior.

* Reliably finding optimization opportunities and measuring their performance
benefits require a program to be exercised with sufficient inputs. One possible
solution to this problem is to use automated test generation techniques. We
complement existing testing approaches by addressing the problem of test
generation for higher-order functions. Finally, we show that generating effective
tests for higher-order functions triggers behaviors that are usually not triggered
by state-of-the-art testing approaches.

6.2 Future Research Directions

Assessing Performance Impact Across Engines Reliably assessing the perfor-
mance benefits of applied optimizations is a challenging task, especially if a
program runs in multiple environments. Optimization strategies greatly differ across
different engines and also across different versions of the same engine. To make
sure that optimizations lead to positive performance improvements in all engines,
future work should focus on techniques that monitor the performance effects of
code changes across multiple execution environments.

Automatically Identifying Optimization Patterns Existing approaches that
address performance bottlenecks either look for general performance properties,
such as hot functions, or for specific patterns of performance issues. As already
shown in Sects. 3 and 4, finding and applying specific optimization opportunities
can lead to significant performance improvements. However, this requires manually
identifying optimization patterns and hard-coding them into the respective
analysis. Manually studying instances of inefficient code and finding recurring
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patterns are challenging tasks that often require significant human effort. Even
though we studied a significant number of performance problems and drew
interesting conclusions in Chap. 2, the next interesting research question is How fo
automatically find optimization patterns that have significant performance benefits
and are applicable across multiple projects?

Analyses to Find Other Optimization Opportunities We propose approaches
that address two different types of optimizations: reordering opportunities and
method inlining. However, in Sect. 2, we discuss many optimization patterns that
have the same properties as those we address. Therefore, it is an important research
direction to propose novel approaches that address other kinds of performance issues
and provide actionable advices to developers.
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