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Abstract A precise static data-flow analysis transforms the program into a context-
sensitive and field-sensitive approximation of the program. It is challenging to
design an analysis of this precision efficiently due to the fact that the analysis
is undecidable per se. Synchronized pushdown systems (SPDS) present a highly
precise approximation of context-sensitive and field-sensitive data-flow analysis.
This chapter presents some data-flow analyses that SPDS can be used for. Further
on, this chapter summarizes two other contributions of the thesis “Synchronized
Pushdown System for Pointer and Data-Flow Analysis” called BOOMERANG and
IDEal. BOOMERANG is a demand-driven pointer analysis that builds on top of
SPDS and minimizes the highly computational effort of a whole-program pointer
analysis by restricting the computation to the minimal program slice necessary
for an individual query. IDEal is a generic and efficient framework for data-flow
analyses, e.g., typestate analysis. IDEal resolves pointer relations automatically and
efficiently by the help of BOOMERANG. This reduces the burden of implementing
pointer relations into an analysis. Further on, IDEal performs strong updates, which
makes the analysis sound and precise.

1 Introduction

Our economy as well as our society more and more depends on software solutions.
In the era of digitalization almost every company hires software developers to build
new or integrate existing software solutions to improve workflows and thus the
company’s productivity, and to monitor processes or experiment with new business
models. The increase in demand also increases the amount of software code written.

Additionally, companies move their solutions to cloud resources and let them
exchange sensitive data between internal or external services and company
machines and desktop computers. The demand in cloud services simplifies cyber-
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attacks. The services are reachable from within a network. Therefore no service can
trust any user input, and security must be also taken care of at implementation level.

Spotting security bugs on the software implementation level, however, is a
cumbersome task and extremely challenging, even for experts. It is frequently a
chain of events within the software that attackers abuse to access the system. Take
for example a SQL injection attack; a SQL injection allows an attacker to read,
manipulate, or even delete contents of a database. First, this attack requires a hacker
to be able to manipulate external input data and second, the execution of a SQL
command that relies on the manipulated data. Therefore, it is the combination
of at least two lines of code that contribute to software being vulnerable to a
SQL injection attack. Modern software projects commonly consist of hundreds of
thousands to millions of lines of code [7, 19, 36], and finding the right sequence of
events manually is near to impossible, particularly because most parts of modern
software are third-party libraries that are developed externally.

This advocates for automated solutions to detect security bugs in code. Static
data-flow analysis is one automated technique. Apart from many applications
in compilers and bug detection [16, 31, 43], a static data-flow analysis has the
capability to detect SQL injections directly within the code base [27, 29]. In general,
static data-flow analysis reasons about the flow of program variables within the
software without executing it, which means static analysis can be applied and used
before the software is even tested. Static analysis can, at least in theory, trace all
data-flows along all potential execution paths within software and hereby provides
provable guarantees that the analysis does not miss a single pattern it is looking
for. This is a helpful property from a security perspective, where missing a single
security bug suffices for an attacker to take over the whole system.

However, the size of modern software applications not only challenge manual
inspection but even limit automated static data-flow analyses. Static analyses are
said to be imprecise and slow. They generate a large amount of false warnings and
take hours or days to complete. In all cases, neither developers nor security experts
are willing to use data-flow techniques on a daily basis [15].

There are various design dimensions of a static analysis fine-tuning its pre-
cision (i.e., reduce the false warnings). A data-flow analysis can be intra- or
interprocedural. In the former, effects of a call site on a data-flow are over-
approximated, while in the latter, effects are precisely modelled by analyzing the
called method(s). Additionally, an interprocedural data-flow analysis is precise if it
is context-sensitive, which means the data-flow analysis correctly models the call
stack and the data-flow returns to the same call site it enters the method. A design
dimension for the static analysis of object-oriented languages is field-sensitivity. A
field-sensitive data-flow analysis reasons precisely with data-flows in the case the
data escapes to the heap, i.e., when it is stored within a field of an object and loaded
later during execution again.

Apart from being precise, a static analysis is also expected to guarantee sound-
ness. For example, a compiler only applies a code optimization if the optimization
does not change the program’s behavior under any given user input. An analysis
detecting unchecked null pointer dereferences better finds all critical dereferences
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within the program, a single false negative, i.e., if the analysis misses reporting an
unchecked flow, may lead to a program crash.

In practice, no static analysis can find all optimizations, all bugs, or all vulnerabil-
ities within a program (no false negatives) and detect those with perfect precision (no
false positives). False positives and false negatives are the fundamental consequence
of Rice’s theorem [35], which states that checking any semantic properties of a
program is an undecidable problem. Consequently, any model for static analysis is
forced to over- or under-approximate the actual runtime semantics of the program.
Over-approximations add false positives to the result and reduce the precision of
the analysis, while under-approximations introduce false negatives and lower the
analysis’ recall.

Apart from the effect on precision and recall, the approximation is also the
influencing factor on the performance of a data-flow analysis. An interprocedural
data-flow is less efficient to compute in comparison to an intraprocedural analy-
sis. Adding context- or field-sensitivity to an interprocedural analysis introduces
additional complexity within the model and negatively affects the computational
effort. Therefore, balancing precision, recall, and performance of a static analysis is
a tedious task.

The core contribution of the thesis is a new approach to data-flow analyses
that balances precision and performance while retaining the analysis’ recall. The
solution, called synchronized pushdown systems (SPDS), models a context-, field-,
and flow-sensitive data-flow analysis taking the form of two pushdown systems [9].
One system models context-sensitivity, and the other one models field-sensitivity.
Synchronizing the data-flow results from both systems provides the final results of
the data-flow analysis. A context- and field-sensitive analysis is undecidable [32]
and forces SPDS to over-approximate. SPDS, though, are specifically designed to
expose false positives only in corner cases for which the thesis hypothesizes (and
confirms in the practical evaluation) that they are virtually non-existent in practice:
situations in which an improperly matched caller accesses relevant fields in the same
ways as the proper caller would.

2 Motivating Examples

In this section, we show several code flaws that a static data-flow analysis can detect.
We highlight null pointer dereference analysis, taint analysis, typestate analysis
and, an analysis that detects cryptographic misuses. Null pointer dereference
analysis is a classical code flaw regularly faced by developers. Taint analysis is
primarily used to detect security-related issues such as injection flaws or privacy
leaks. Typestate analysis detects misuses of stateful APIs. The research that the
thesis presents is fundamental, yet it applies to all these types of data-flow analyses.
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2.1 Null Pointer Analysis

Null pointer dereferences cause NullPointerExceptions, one of the most com-
mon exception faced by Java developers [18, 26]. A static null pointer analysis
detects statements in a program that dereference a potentially uninitialized variable.
In Java this typically occurs for fields that are neither initialized nor initialized with
null.

1 class Car{
2 Engine engine;
3
4 public class Car(){}
5
6 void drive(){
7 //throws a NullPointerException, if called on blueCar.
8 this.engine.start();
9 }

10
11 void setEngine(Engine e){
12 this.engine = e;
13 }
14
15 public static void main(String...args){
16 Car redCar = new Car();
17 redCar.setEngine(new Engine());
18 redCar.drive();
19
20 Car blueCar = new Car();
21 blueCar.drive();
22 }
23 }

Fig. 1 An application that crashes in a NullPointerException at runtime in line 8

Figure 1 showcases a program that throws a NullPointerException in line 8
when called from Car::main() in line 21. The program does allocate two Car

objects in line 16 and in line 20. For the second object, stored in variable blueCar,
no call to setEngine() is present and the field engine remains uninitialized.

Detecting this bug statically is challenging as the analysis needs to be context-
sensitive to give precise information when the null pointer exception may occur.
The analysis needs to distinguish the two objects and the two calling contexts of
drive() in line 21 and in line 18. Under the former, the program crashes, whereas
under the latter calling context, the program does not crash as setEngine() has
priorly been called.

A common approach to model context-sensitivity is the k-limited call-strings
approach, which limits the stack of calls by a fixed level of k. In practice, limits
of length 1 to 3 are standard to achieve scalable solutions [24, 28]. For object-
oriented program, these small values quickly lead to imprecise or unsound results,
depending on if the analysis designer choses to over- or under-approximate. SPDS
do not require to approximate the call stack.
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24 class Application{
25 Map<String,String> requestData = new TreeMap<>();
26 Connection conn = ...;
27
28 /** Entry point to the web application.
29 * The HttpServletRequest object contains the payload.
30 */
31 void doGet(HttpServletRequest req, ...){
32 String val = req.getParameter("data"); //Untrusted data
33 Map<String,String> map = this.requestData;
34 map.put("data", val);
35 }
36
37 /** Executes two SQL commands to store this.requestData to the database.
38 */
39 void writeToDatabase(){
40 Map<String,String> map = this.requestData;
41 Statement stmt = this.conn.createStatement();
42 for(Entry<String,String> entry : map.getEntries()){
43 String key = entry.getKey();
44 String value = entry.getValue();
45 String keyQuery = "INSERT INTO keys VALUES (" + key+ ");";
46 stmt.executeQuery(keyQuery);//No SQL injection
47 String keyValueQuery = "INSERT INTO " + key +
48 " VALUES (" + value + ");";
49 stmt.executeQuery(keyValueQuery); //SQL injection
50 }
51 }
52 }

Fig. 2 A web application vulnerable to a SQL injection attack

2.2 Taint Analysis

Injection flaws are the most predominant security vulnerabilities in modern soft-
ware. Injection flaws occur in a program when untrusted data reaches a statement
that executes a command (for instance, bash) or when the untrusted data is used
to construct a SQL query that is interpreted and executed. In 2017, OWASP1

lists Injections as the top category of vulnerabilities with the highest risk of
being exploited. A typical example of an injection attack for a database-backed
software system is a SQL injection. If a software system contains a SQL-injection
vulnerability, the database can be compromised and manipulated, and the system is
no longer trustworthy. An attacker can read, add, and even remove data from the
database.

A system is vulnerable to a SQL injection attack, if the system does not
properly sanitize user input and uses the input to execute a dynamically constructed
SQL command. Figure 2 demonstrates a minimal back-end of a web application
vulnerable to a SQL injection. The back-end maps each incoming request to a call
to doGet() within the application and hands over a HttpServletRequest object

1https://www.owasp.org/.

https://www.owasp.org/
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that represents the request with its parameter. Method doGet() loads the user-
controllable parameter "data" from the request object in line 32 and stores the
String as value into a TreeMap. The TreeMap is maintained as field requestData

of the Application object.
Assume the application to persist the map to the database at a later time of execu-

tion by calling writeToDatabase. The method writeToDatabase dereferences the
field this.requestData to variable map in line 40 and iterates over all entries of
map. For each entry, it constructs and executes two SQL queries (calls in line 46 and
in line 49). The first query string only includes a key of the map, whereas the second
query contains both, the key and the value of each map’s entry. As the value of the
map contains untrusted data, the application is vulnerable to a SQL injection attack
in line 49, which executes the query string contained in variable keyValueQuery.
With a correct sequence of characters, the attacker can end the SQL insert command
and execute any other arbitrary SQL command. For example, a command to delete
the whole database.

Static data-flow analysis is an effective technique in preventing such injection
flaws. However, detecting the SQL injection flaw in the example by means of a data-
flow analysis is challenging to implement efficiently if the analysis is required to be
precise and sound at the same time (i.e., no false positive and no false negatives). A
precise and sound abstraction for the heap is required to model the data-flow through
the map.

Injection flaws are detected by a static taint analysis, a special form of data-
flow analysis. In the case of a taint analysis for SQL injections, a taint is any user-
controllable (and hence also attacker-controllable and thus untrusted) input to the
program. Starting from these inputs, a taint analysis models program execution and
computes other aliased variables that are also tainted, i.e., transitively contain the
untrusted input. When a tainted variable reaches a SQL query, the analysis reports
a tainted flow. For the code example in Fig. 2, variable val in method doGet()

is tainted initially. To correctly flag the code as vulnerable, the static taint analysis
must model variable value in line 44 to be aliased to val.

A data-flow analysis trivially detects the alias relationship when the analysis
uses an imprecise model. For instance, the field-insensitive model taints the whole
TreeMap object when the tainted variable val is added to the map in line 34.
While field-insensitivity is trivial to model, the analysis results are highly imprecise.
Not only are the values of the map tainted, but also any key and the field-
insensitive analysis imprecisely marks the constructed SQL query in line 45 as
tainted. Therefore, a field-insensitive analysis reports a false positive, as it marks
line 46 to execute an unsanitized SQL query.

Field-sensitive data-flow analyses track data-flows through fields of objects and
are more precise than field-insensitive analyses. A field-sensitive analysis only
reports a single SQL injection for the example. However, the detection of the alias
relationship between the variables value and val is more than non-trivial for a field-
sensitive static analysis. The analysis must model the complete data-flow through
the map, which spans from the call to put() in line 34 to the call in line 44 and
involves several accesses to the heap. For instance, at the call to put() in line 34,
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1 public V put(K key, V value) {
2 TreeMap.Entry<K,V> parent = //complex computation done

earlier
3 TreeMap.Entry<K,V> e = new TreeMap.Entry<>(key, value,

parent);
4 fixAfterInsertion(e);
5 }
6 private void fixAfterInsertion(Entry<K,V> x) {
7 while (x != null && x != root && x.parent.color == RED) {
8 //removed many branches here...
9 x = parentOf(x);

10 rotateLeft(parentOf(parentOf(x)));
11 }
12 }
13 private void rotateLeft(TreeMap.Entry<K,V> p) {
14 if (p != null) {
15 TreeMap.Entry<K,V> r = p.right;
16 p.right = r.left;
17 if (l.right != null) l.right.parent = p;
18 //removed 8 lines with similar field accesses
19 r.left = p;
20 p.parent = r;
21 }
22 }

Listing 1 Excerpt code example of TreeMap which is difficult to analyze statically.

the value val escapes as second argument to the callee’s implementation of the
method put() of the class TreeMap.

Listing 1 shows an excerpt of the callee’s code taken from the Java 8 imple-
mentation2 of TreeMap. The class contains an inner class TreeMap.Entry that lists
three fields (parent, right, and left), each of type TreeMap.Entry. Method
put() creates a TreeMap.Entry that wraps the inserted element (value). The
TreeMap.Entry is then used to balance the tree (call to fixAfterInsertion() in
line 56). The method fixAfterInsertion() iterates over all parent entries and
calls rotateLeft() to shift around elements within the tree (line 62). The latter
method stores to and loads from the fields parent, right, and left of the class
TreeMap.Entry.

The field-sensitive static taint analysis tracks variable value, which is the
second parameter of method put(). To cope with heap-reachable data-flows,
field-sensitive analyses commonly propagate data-flow facts in the form of access
paths [1, 2, 4, 5, 6, 10, 14, 41, 42]. An access path comprises a local variable followed

2http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/eab3c09745b6/src/share/classes/java/util/TreeMap.
java.

http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/eab3c09745b6/src/share/classes/java/util/TreeMap.java
http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/eab3c09745b6/src/share/classes/java/util/TreeMap.java
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by a sequence of field accesses, and every field-store statement adds an element to
the sequence. The while-loop of fixAfterInsertion (line 59) in combination
with the three field stores (lines 68, 71, and 72) within the method rotateLeft()

represents a common code pattern3 that leads to the generation of access paths
of all combinations contained in the set T = {this.f1.f2. · · · .fn.value | fi ∈
{right, left, parent}, n ∈ N}. The data-flow analysis reports the variable value

of method writeToDatabase() to alias to variable val of method doGet() only if
the correct access path exists in the respective set T of the statements retrieving the
value from the map (getEntries() in line 42 and getValue() in line 44).

The set of data-flow facts T is unbounded. Because most static data-flow
algorithms require a finite data-flow domain, they typically use k-limiting to limit
the field sequence of the access paths to length k [6]. When an access path of
length larger than k is generated, the analysis conservatively over-approximates the
(k + 1)th field. Therefore, not only will the field value of a TreeMap.Entry of the
map be tainted, but any other field will be tainted as well. For example, any key

inserted into the map imprecisely is tainted as TreeMap.Entry has a field key. For
this particular example, infinitely long field sequences are generated and for any
value of k, k-limiting imprecisely reports key to alias to value.

Access graphs represent one approach that avoids k-limiting [13, 17]. They
model the “language” of field accesses using an automaton. Access graphs represent
the set T finitely and precisely. However, just as access paths, also access graphs
suffer from the state explosion we show in Listing 1. In the illustrated situation, the
flow-sensitive analysis must store a set similar to T (not necessarily the same) of
data-flow facts, i.e., access graphs, at every statement, and potentially every context
where a variable pointing to the map exists. Given the large size of T , computing
the data-flow fixed-point for all these statements is highly inefficient, and the use of
access graphs does not improve it.

The thesis presents the solution SPDS that does not suffer from the state
explosion, because a pushdown system efficiently represents millions and even
infinitely many access paths in one concise pushdown automaton holding data-flow
results for all statements.

2.3 Typestate Analysis

A typestate analysis is a static data-flow analysis used, for instance, to detect
misuses of Application Programming Interfaces (APIs) and is capable of detecting
erroneous API uses at compile time, i.e., before execution. Typestate analyses use
an API specification, mostly given in the form of a finite state machine (FSM)

3Recursive data structures, for instance LinkedList and HashMap, generate such patterns.
Additionally, using inner classes provokes these patterns as the compiler automatically stores the
outer class instance within a field of the inner class.
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encoding the intended usage protocol of the API. Based on the specification, the
analysis verifies the usage of the API within the code. For example, before an object
is destructed, it must be in a state marked as accepting state within the FSM.

The API of the type java.io.FileWriter shipped with the standard Java
Runtime is a textbook example4 of an API for which a typestate analysis is helpful
in preventing resource leaks. The API can be used to write data from the program
to a file on the disk.

To use the API, the developer must first construct a FileWriter by supplying
a File object that the FileWriter shall write to. Calling the method write on
the FileWriter object with the respective data as argument tells the FileWriter

which data shall be written into the File. Writing the content of a file to disk is
an expensive operation delegated to the operation system, and the API delays the
respective system calls to the close() method of the FileWriter object. The API
assumes the close() method to be called exactly once prior to the destruction of
the object. If the user of the API does not call close(), the file remains open. The
file resource is blocked by the process, and other processes may not read and write
the same file and the program has a resource leak. Additionally, data is never written
to the file as the output is only flushed to the file upon calling close().

Figure 3 shows the finite state machine that represents a correct usage pattern
for the API. The state labeled by I is the initial state. The transition into this state
is labeled by <init> and refers to the constructor of a FileWriter object. The
accepting states are the states I and C, the latter is the state in which the FileWriter

object is correctly closed. All transitions into the C state are labeled by close. The
state machine lists a third state (W) that the object switches into after a write call.
In this state, data has been written to the FileWriter object but not yet persisted to
the actual file on disk. Therefore, it is not an accepting state.

Fig. 3 The API usage pattern
encoded as finite state
machine for the class
java.io.FileWriter

I W C
<init> write close

close

write

The program in Fig. 4 shows a code snippet that uses the API. The code
constructs a FileWriter object and stores it into field writer of the Example

object. After method bar() is called, the field writer is loaded and the contained
FileWriter object is closed in line 81.

One challenge of a typestate analysis is to perform strong updates when the state
of an object changes. At the close() call in line 81, it is not clear which actual

4In Java 7, try-with-resources blocks were introduced to automatically close and release
file handles. We assume the developer does not use these syntax elements.
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Fig. 4 Simple, but
challenging program to
analysis for a typestate
analysis

75 class Example{
76 FileWriter writer;
77 public void foo() throws IOException {
78 File file = new File("Data.txt");
79 this.writer = new FileWriter(file);
80 bar();
81 this.writer.close();
82 }
83 }

object is closed. If method bar() allocates a new FileWriter and overwrites the
field writer, the FileWriter allocated in line 79 remains open and the typestate
analysis cannot strongly update the state of the latter object. If the analysis detects
only a single object to ever be pointed to by field writer at statement 81, a strong
update can be made. However, the typestate analysis suddenly requires precise
points-to information, which is notoriously challenging to obtain efficiently.

Points-to analysis computes points-to information. Despite much prior effort, it
is known that a precise points-to analysis does not scale for the whole program [25].
Instead, the typestate analysis only requires points-to information for a rather small
subset of all pointer variables, namely the variables pointing to objects that the
FileWriter is stored within.

The thesis presents BOOMERANG, a demand-driven, and hence efficient, points-
to analysis that computes results for a query given in the form of a pointer variable
at a statement. BOOMERANG is precise (context-, flow-, and field-sensitive). Based
on BOOMERANG, the thesis presents the data-flow framework IDEal , a framework
that is powerful enough to encode a typestate analysis that performs strong updates.

2.4 Cryptographic Misuses

Almost any software system processes, stores, or interacts with sensitive data.
Such data typically includes user credentials in the form of e-mail addresses and
passwords, as well as company data such as the company’s income, employee’s
health, and medical data. Cryptography is the field of computer science that develops
solutions to protect the privacy of data and to avoid malicious tampering.

Software developers should have a basic understanding of key concepts in
cryptography to build secure software systems. Prior studies [8, 30] have shown
that software developers commonly struggle to do so and as a result fail to
implement cryptographic5 tasks securely. While cryptography is a complex and
difficult-to-understand area, it also evolves quickly and software developers must
continuously remain informed about broken and out-dated cryptographic algorithms
and configurations.

5Hereafter, used interchangeably with crypto.



Applications of Synchronized Pushdown Systems 29

84 public class Encrypter{
85 private SecretKey key;
86 private int keyLength = 448;
87
88 public Encrypter(){
89 KeyGenerator keygen = KeyGenerator.getInstance("Blowfish");
90 keygen.init(this.keyLength);
91 this.key = keygen.generateKey();
92 }
93
94 public byte[] encrypt(String plainText){
95 Cipher cipher = Cipher.getInstance("AES");
96 //cipher.init(Cipher.ENCRYPT_MODE, this.key);
97 byte[] encText = cipher.doFinal(plainText.getBytes());
98 return encText;
99 }

100 }

Fig. 5 An example of a misuse of a cryptographic API

But it is not only the lack of education on the developer’s side, common crypto
APIs are also difficult to use correctly and securely. For instance, implementing
a data encryption with the Java Cryptographic Architecture6 (JCA), the standard
crypto API in Java, requires the developer to combine multiple low-level crypto
tasks such as secure key generation, choosing between symmetric or asymmetric
crypto algorithms in combination with matching block schemes and padding modes.
While the JCA design is flexible to accommodate any potential combination, it
yields to developers implementing crypto tasks insecurely by misusing the API.

Figure 5 demonstrates an example code that incorrectly uses some of the
JCA’s classes for encryption. At instantiation time of an Encrypter object, the
constructor generates a SecretKey for algorithm "Blowfish" (parameter to the
call to getInstance() in line 89) of size 448 (parameter to call in line 90). In
line 91, the key is stored to field key of the constructed Encrypter instance. The
Encrypter object’s public API offers a method encrypt(), which, when called,
creates a Cipher object in line 95. The Cipher object is configured to encrypt data
using the "AES" algorithm (parameter to the call to getInstance() in line 95).
The developer commented out line 96 that (1) initializes the algorithm’s mode and
(2) passes the SecretKey stored in field key to the Cipher object. The call to
doFinal() in line 97 performs the encryption operation and encrypts the content of
the plainText and stores it in the byte array encText.

There are four API misuses in this code example. First, the developer
commented-out a required call in line 96. Second, if the developer includes the
line in the comment, the generated key ("Blowfish") and the encryption cipher
("AES") do not match. Third, and related, the key length of 448 is not suitable for
the algorithm AES that expects a size of 128, 192, or 256. Fourth, depending on the

6https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html.

https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html
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crypto provider, AES is used with electronic codebook (ECB) mode. Using ECB
results in low entropy within the bytes of encText. The first three API misuses
throw exceptions at runtime that, using static analysis, could already be detected at
compile time. Using ECB, however, does not throw an exception and silently leads
to insecure code.

Such API misuses are found in real-world software artifacts. To cope with the
detection of such misuses, in [20], we present a domain-specific language (DSL),
called CrySL, for the specification of API usage rules. We designed a static analysis
compiler that, based on a set of CrySL rules, automatically generates a static
analysis. The analysis uses BOOMERANG and IDEal and hereby is able to detect
misuses even across data-flow constructs such as fields and callings contexts of
distinct objects.

3 Synchronized Pushdown Systems

Pushdown systems solve context-free language reachability and have been studied
intensively [3, 9, 21, 23, 34]. Synchronized Pushdown Systems (SPDS) [39] are one
of the core contributions of the dissertation.

SPDS combines two pushdown systems, the pushdown system of calls and
the fields-pushdown system. For each pushdown system, SPDS builds on existing
efficient algorithms. When both pushdown systems are synchronized, the results
yield a highly precise context- and field-sensitive data-flow analysis.

3.1 Calls-Pushdown System

The calls-pushdown system models the data-flow along the use-def chains of
variables and also models the data-flow of variables along call and return methods.

Definition 1 A pushdown system is a triple P = (P, Γ,Δ), where P and Γ

are finite sets called the control locations and the stack alphabet, respectively. A
configuration is a pair ⟪p,w⟫, where p ∈ P and w ∈ Γ ∗, i.e., a control location
with a sequence of stack elements. The finite set Δ is composed of rules. A rule has
the form ⟪p, γ⟫ → ⟪p′, w⟫, where p,p′ ∈ P , γ ∈ Γ , and w ∈ Γ ∗. The length
of w determines the type of the rule. A rule with |w| = 1 is called a normal rule,
one with length 2 a push rule, and a rule of length 0 a pop rule. If the length of w is
larger than 2, the rule can be decomposed into multiple push rules of length 2.

The rules of a pushdown system P define a relation ⇒: If there exists a rule
⟪p, γ⟫ → ⟪p′, w⟫, then ⟪p, γw′⟫ ⇒ ⟪p′, ww′⟫ for all w′ ∈ Γ ∗. Based on an
initial start configuration c, the transitive closure of the relation (⇒∗) defines a set
of reachable configuration post∗(c) = {c′ | c ⇒∗ c′}. The set post∗(c) is infinite
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101 main(){
102 A u = new A();
103 A v = u;
104 A w = foo(v);
105 }

Normal rule of S Transitive Data-Flow

u v w

106 foo(A a){
107 if(...){
108 return a;
109 }
110 b = foo(a);
111 return b;
112 }

a b

Fig. 6 Example of the data-flow within a recursive program
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ε

Fig. 7 The automat AS after saturation based on PS

but has a finite representation in the form of an automaton. The algorithm post∗
constructs this automaton based on a given pushdown system.

Example 1 Figure 6 shows a program that instantiates an object (o102). The object
is stored and loaded to and from the local variables u and v. The variable v is used
as argument to the call in 104. Next to the program, a directed graph represents the
rules of the pushdown system of calls (hereafter PS). Each edge represents a normal
rule of PS. Additionally, the pushdown system contains the push rule ⟪v, 103⟫→
⟪a, 106 · 104⟫ and the pop rule ⟪b, 111⟫→ ⟪w, ε⟫.

Based on the pushdown system PS and given an initial automaton accepting u at
102, the post∗ algorithms construct an automaton that encodes the reachability of the
object o102. Figure 7 depicts the saturated automaton that encodes the reachability
of the object o102.

The automaton also encodes the calling context under which each variable
reaches (or points-to) the initial object. For instance, variable a in line 110 points
to o102 under call stack 104. The program is recursive and there are potentially
infinitely many calls on the call stack. Accordingly, the automaton contains a loop
labeled by 110.
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3.2 Field-Pushdown System

The call-pushdown system models the calling contexts and its context-sensitivity;
however, it is designed field-insensitively and over-approximates access to fields.

Field store and load statements can also be modelled precisely as a pushdown
system. Hereby, a field store statement matches a push rule, and a load statement
resembles a pop rule. The fields-pushdown system overcomes the imprecision of
k-limiting and renders the analysis more efficient.

k-limited analyses with low values of k, e.g., k = 1, 2, 3, are efficient to compute
but quickly introduce imprecision into the results; higher values of k make the
analysis precise but also affect the analysis time exponentially. In our practical
evaluation, we compare our abstraction to k-limiting and show that pushdown
systems are as efficient as k = 1 while being as precise as k = ∞ [37].

Definition 2 The field-PDS is the pushdown system PF = (V × S,F ∪ {ε},ΔF).
A control location of this system is a pair of a variable and a statement. We use
x@s for an element (x, s) ∈ V × S. The notation emphasizes that fact x holds at
statement s. The pushdown system pushes and pops elements of F to and from the
stack. An empty stack is represented by the ε field.

We write a configuration of PF as ⟪x@s, f0 ·f1 · . . . fn⟫. The configuration reads
as follows: The data-flow at statement s is accessible via the access path x.f0 · f1 ·
. . . fn.

PS and PF have similar set of rules. The major differences are at field store and
load statements. A field store generates a push rule, a field load statement a pop rule.

113 foo(u, v, w){
114 v.f = u;
115 x = w.f;
116 if(...){
117 w.g = v;
118 } else {
119 w.h = v;
120 }
121 }

Automat F

ou@113

v@114f
u@113
u@114
u@115
u@116
u@117
u@118
u@119
u@120

w@119h
w@117g
v@114
v@115
v@116
v@117
v@118
v@119
v@120

w@119

w@118

w@120
εf

h

g

h

g

Fig. 8 Example code and AF automaton. The automaton AF is constructed based on the initial
configuration ⟪u@114, ε⟫ and saturated based on the rules provided in Table 1

Example 2 Figure 8 depicts a program code containing three field stores and one
field load statement. Table 1 lists the push and pop rules of PF. Given the initial
configuration ⟪u@114, ε⟫, algorithm post∗ computes the automaton given in Fig. 8.
This automaton contains field- and flow-sensitive data-flow results. For instance, the
automaton encodes that the object initially contained in variable u is also reachable
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Table 1 Push and pop rules contained in ΔF of PF for the program
code in Fig. 8. The wildcard (∗) of the push rules represents a rule for
any g ∈ F

Push Rules

⟪u@113, ∗⟫→ ⟪v@114,f · ∗⟫
⟪v@116, ∗⟫→ ⟪w@117,g · ∗⟫
⟪v@118, ∗⟫→ ⟪w@119,h · ∗⟫

Pop Rules

⟪w@114,f⟫→ ⟪w@115, ε⟫

via w.g.f and w.h.f. The automaton does not contain a node that references x,
which means variable x of the program does not point to the same object as u.

3.3 Synchronization of Call-PDS and Field-PDS

While the call-pushdown system is field-insensitive, the field-pushdown system is
context-insensitive. Synchronized pushdown systems overcome the weaknesses of
each system and yield context- and field-sensitive data-flow results. The key idea
is to synchronize the results of the saturated post∗ automaton of both pushdown
systems. Note, the synchronization is not an automaton intersection. Both automata
use different stack alphabets and encode different languages.

Definition 3 For the call-PDS PS = (V,S,ΔS) and the field-PDS PF = (V ×
S,F ∪ {ε},ΔF), the synchronized pushdown systems are the quintuple SPDS =
(V,S,F∪{ε},ΔF,ΔS). A configuration of SPDS extends from the configuration of
each system: A synchronized configuration is a triple (v, s, f ) ∈ V×S

+×F
∗, which

we denote as ⟪v.f1 · . . . ·fm@s
s1·...sn
0 ⟫ where s = s0 · s1 · . . . · sn and f = f1 · . . . fm.

For synchronized pushdown systems, we define the set of all reachable synchronized
configurations from a start configuration c = ⟪v.f1 · . . . · fm@s

s1·...sn
0 ⟫ to be

postSF(c) = {⟪w.g@t
t1·...tn
0 ⟫ |⟪w@t0, g⟫ ∈ post∗

F
(⟪v@s0, f ⟫)

∧ ⟪w, t⟫ ∈ post∗
S
(⟪v, s⟫)}. (1)

Hence, a synchronized configuration c is accepted if ⟪v, s0 · . . . · sn⟫ ∈ AS and
⟪v@s0, f1 · . . . ·fm⟫ ∈ AF, and postSF(c) can be represented by the automaton pair
(AS,AF), which we refer to as AF

S
.

Intuitively, a configuration SPDS is accepted, only if the field automaton and the
call automaton accept the configuration.

Example 3 Figure 9 shows an example of a program with a data-flow path of
interwined calling context and field accesses. A directed graph below the code
visualizes the data-flow. Vertical edges correspond to calling context (push rules
=̂ opening parentheses / pop rule =̂ closing parentheses), while horizontal edges
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Fig. 9 A code example for
and a representation of the
code as directed graph

122 bar(u, v){
123 v.h = u;
124 w = foo(v);
125 x = w.g;
126 y = x.f;
127 }

128 foo(p){
129 q.g = p;
130 return q;
131 }

bar u v w x y

foo p q

h

124

g

124

g f

correspond to field store and loads. A field label with a line on top, e.g., f , means the
field f is loaded. SPDS computes reachability within this graph.7 For the program,
SPDS computes variable y not to point to u@122. The word along the path from y

to u is h · (124·g·)124 · g · f .
The parentheses (124 and )124 are properly matched in the context-free language,

and the path is context-sensitively feasible. However, the path is not feasible in a
field-sensitive manner. The field store access g matches the field load access g,
however, the field store of h does not match the field load f .

Any context- and field-sensitive data-flow analysis is undecidable [32]. There-
fore, also SPDS must over-approximate. Indeed, it is possible to construct cases
in which the analysis returns imprecise results [37]. In the evaluation however, we
were not able to find such cases in practice.

4 Boomerang

A points-to set is a set of abstract objects (e.g., allocation statements) that a variable
may point-to at runtime. SPDS does not compute full points-to set, but only a subset
of the points-to set of a variable. Points-to analysis is a non-distributive problem [33,
40], SPDS, however, propagates distributive information and (intentionally) under-
approximates the points-to set of a variable. Field accesses allow indirect data-flows
that are non-distributive. BOOMERANG is a pointer analysis that builds on top of
SPDS and computes points-to and all alias sets. All parts that can be computed in a
distributive fashion using SPDS, non-distributive parts are handled as an additional
fixed point computation. BOOMERANG is demand driven and answers queries. A
query is a variable at a statement that BOOMERANG computes the points-to set for.
For each query, BOOMERANG carefully combines forward- and backward-directed

7SPDS computes the reachability within the two automata AS and AF. To keep the visualization
simple, the automata are omitted.
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132 foo(){
133 u = new;
134 v = u;
135 x = new;
136 u.f = x;
137 y = v.f;
138 }

Normal rule

Indirect Flow

Heap StoreS
Injection of Aliases

o133

vu

o135

u.fx v.f y

S

Fig. 10 Non-distributivity of pointer relations

data-flow analyses and focuses on the minimal program slice necessary to answer
each query.

Example 4 Figure 10 is a minimal example showing that pointer relations are non-
distributive. The program instantiates two objects o133 and o135 in lines 133 and
135. During runtime x and y both variable point to the object o135. The object is
stored to access path u.f in line 135, which at runtime, also changes the content of
access path v.f as u and v alias. Using only a single SPDS, the static analysis only
propagates the data-flow in line 135 from x to u.f but not to v.f. Therefore, a SPDS
does not deliver sound points-to information. BOOMERANG, however, instantiates
one SPDS per object allocation and uses an additional fixed-point iteration to
connect indirect data-flows across multiple SPDS. Figure 10 indicates such indirect
data-flow in form of the blue dashed arrow.

A single program frequently allocates several thousand of objects, and computing
data-flow for each of those object does not scale if the analysis is field- and context-
sensitive. Instead of starting at every allocation site, BOOMERANG uses a demand-
driven design. A backward analysis decides which object allocation is relevant for a
single forward query [40].

5 Typestate Analyses Based on IDEal

With IDEal the dissertation further extends SPDS and BOOMERANG. IDEal is a
general framework for data-flow analysis and can be used for typestate analysis or
API usage mining. IDEal lifts PS and associated a weight to each rule. The new idea
of IDEal is to use weights to carry additional information along each data-flow path,
for instance, to encode typestate information as motivated in Sect. 2.3.

For a typestate analysis, the weights carry the actual state the object resides in
at every program point. Previous research on typestate analysis [11, 12] encoded
the state of the object as additional information within the data-flow domain, which
unnecessarily increases the state space of the analysis and leads to state explosion.
With weights, IDEal separates alias information from typestate information and
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reduces the state space of the analysis domain, enabling additional performance
benefits.

As motivated in Sect. 2.3, in the case of typestate, also aliasing of variables plays
an important role and IDEal resorts to BOOMERANG to trigger on-demand queries
to perform strong updates of the states [38].

In several experiments presented within publications [38, 39] as well as in the
dissertation [37], we compare an IDEal-based typestate analysis to a state-of-the-art
typestate analysis, we show that the new concept of separating alias information and
weights for typestate yields additional performance benefits.

6 CogniCrypt

BOOMERANG, IDEal , and SPDS also form the base technology behind the static
analysis component of the tool CogniCrypt.8 CogniCrypt is an Eclipse plugin
and is part of CROSSING, an interdisciplinary collaborative research center at
the Technical University of Darmstadt. CogniCrypt supports software developers
in correctly using cryptographic APIs within their software implementations.
CogniCrypt accepts rules as input and automatically compiles them into an IDEal-
and BOOMERANG-based static analysis. The rules are written in a new domain-
specific language, called CrySL.

6.1 The CrySL Language

To detect such API misuses, Krüger et al. [20] designed CrySL, a domain-specific
language that allows the specification of crypto API uses. CrySL defines a whitelist
approach that specifies correct uses of an API. CryptoAnalysis is the component
that compiles a set of rules to a static analysis. Executing the static analysis on
program code reports parts of the code that deviate from the specification. We briefly
introduce the main semantics of the language in this section and discuss the basic
design of CryptoAnalysis. The language definition and CrySL rule specifications9

are not part of the dissertation.
With the CrySL specifications for the JCA, CryptoAnalysis is able to detect

all four crypto-related issues showcased in Fig. 5. We discuss the important syntax
elements of CrySL based on a minimal10 CrySL specification covering the misuses
in Fig. 5. We refer to the original work [20] for the definition of all syntax elements
of CrySL.

8https://www.eclipse.org/cognicrypt/.
9https://github.com/CROSSINGTUD/Crypto-API-Rules.
10The complete specification is found at https://github.com/CROSSINGTUD/Crypto-API-Rules.

https://www.eclipse.org/cognicrypt/
https://github.com/CROSSINGTUD/Crypto-API-Rules
https://github.com/CROSSINGTUD/Crypto-API-Rules
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141 SPEC javax.crypto.KeyGenerator
142 OBJECTS
143 int keySize;
144 javax.crypto.SecretKey key;
145 java.lang.String algorithm;
146 EVENTS
147 Get: getInstance(algorithm);
148 Inits: init(keySize);
149 GenerateKey: key = generateKey();
150 ORDER
151 Gets, Inits, GenerateKey
152 CONSTRAINTS
153 algorithm in {"AES", "Blowfish", ...};
154 keySize in {128, 192, 256};
155 ENSURES
156 generatedKey[key, algorithm];

(a)

157 SPEC javax.crypto.Cipher
158 OBJECTS
159 java.lang.String trans;
160 byte[] plainText;
161 java.security.Key key;
162 byte[] cipherText;
163 EVENTS
164 Get: getInstance(trans);
165 Init: init(_, key);
166 doFinal: cipherText = doFinal(plainText);
167 ORDER
168 Get, Init, (doFinal)+
169 CONSTRAINTS
170 part(0, "/", trans) in {"AES", "Blowfish", "DESede", ..., "RSA"};
171 part(0, "/", trans) in {"AES"} => part(1, "/", trans) in {"CBC"};
172 REQUIRES
173 generatedKey[key, part(0, "/", trans)];
174 ENSURES
175 encrypted[cipherText, plainText];

(b)

Fig. 11 Two simplified CrySL rules for the JCA. (a) CrySL rule for
javax.crypto.KeyGenerator . (b) CrySL rule for javax.crypto.Cipher
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A CrySL specification is comprised of multiple CrySL rules. Each CrySL rule
starts with SPEC clause specifying the type of the class that the CrySL rule is defined
for. Figure 11 depicts two CrySL rules for the classes javax.crypto.Cipher

and javax.crypto.KeyGenerator. The SPEC clause is followed by an OBJECTS

block that defines a set of rule members. The values of the rule members are
then constrained on within the CONSTRAINTS block. For instance, the CONSTRAINTS

for the rule to KeyGenerator restricts the rule member keySize in line 154 to
the values 128, 192, or 256. When using a KeyGenerator, the integer value for
keySize must be one of the listed values.

The EVENTS block defines labels (e.g., Get in line 147 and Inits in line 148),
each label is a set of events. An event is an invocation of a method and is defined
via the method signature. For example, label Inits is defined as the event of calling
the method with signature init(int keySize) (line 148). The parameter name
(keySize) matches the name of a rule member, and when the program calls the
event’s method, the value of the parameter of the call is bound to the rule member
keySize, which means that the parameter must satisfy the given constraint.

The labels defined within the EVENTS block are used in the ORDER block. The
ORDER clause lists a regular expression (inducing a finite state machine) over the
labels and defines the usage pattern (i.e., typestate property) of the specified type.
Each object of the specification is required to follow the defined usage pattern. For
instance, the specification for KeyGenerator expects each object of its type to call
any method of the label GetInstance prior to any of the Inits call followed by
a GenerateKey call. The ORDER specification for Cipher uses a + for the label
doFinal, indicating that the method doFinal() must be called at least once and
arbitrary additional calls of the method can follow.

The remaining two blocks are the REQUIRES and ENSURES block of a rule.
Each line of these blocks lists a predicate. A predicate is defined by a name
followed by a list of parameters. CrySL predicates cover the specification of the
interaction of multiple objects of different types. The KeyGenerator rule lists a
predicate generatedKey with two parameters key and algorithm in the ENSURES

block in line 156. When an object of type KeyGenerator is used according to the
specification in the CONSTRAINTS, ORDER, and REQUIRES block, the predicate listed
in the ENSURES block is generated for the object. Other CrySL rules that interact with
KeyGenerator objects can list the predicate in their REQUIRES block. For instance,
the CrySL rule Cipher lists the predicate generatedKey as a required predicate in
line 173.

6.2 Compiling CrySL to a Static Analysis

CryptoAnalysis is a static analysis compiler that transforms CrySL rules into
a static analysis. Internally, CryptoAnalysis is composed of three static sub-
analyses: (1) an IDEal-based typestate analysis, (2) a BOOMERANG instance with
extensions to extract String and int parameters on-the-fly and (3) an IDEal-based
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taint analysis (i.e., all weights are identity). The three static analyses deliver input
to a constraint solver that warns if any part of the CrySL specification is violated.

Example 5 We discuss a walk-through of CryptoAnalysis based on the
CrySL specification defined in Fig. 11, and the code snippet provided in
Fig. 5. CryptoAnalysis first constructs a call graph and computes call-graph
reachable allocation sites for in CrySL-specified types. Factory methods can also
serve as allocation sites. For example, the factory methods getInstance() of
Cipher and KeyGenerator internally create objects of the respective type, and
CryptoAnalysis considers these calls as allocations sites. In the code example in
Fig. 5 the allocation sites are the objects o89 and o95.

Starting at the allocation sites, CryptoAnalysis uses IDEal to check if the object
satisfies the ORDER clause of the rule. The call sequence on the KeyGenerator object
o89 satisfies the required typestate automaton defined as regular expression in the
ORDER block. Opposed to that, the Cipher object o95 does not satisfy the ORDER

clause, because the developer commented out line 96. CryptoAnalysis warns the
developer about the violation of this clause (line 168).

CryptoAnalysis also extracts String and int parameters of events (statements
that change the typestate) to bind the actual values to the rule members of a CrySL
rule. For instance, the getInstance("Blowfish") call in line 89 binds the value
"Blowfish" to the rule member algorithm of the CrySL rule for KeyGenerator.
In this example, the String value is easy to extract statically, but it might also
be defined elsewhere in the program. For example, the value binding for the rule
member keySize is the actual int value flowing to the init call in line 90 as a
parameter. The actual value is loaded from the heap, because it is the value of the
instance field keyLength of the Encrypter object. Therefore, CryptoAnalysis

triggers a BOOMERANG query for 90 to find the actual int value of the field.
To conclude, CryptoAnalysis infers that object o89 generates a SecretKey

for the algorithm "Blowfish" with a key length of 448 in line 91. The
KeyGenerator rule disallows the chosen key length (CONSTRAINTS in line 154),
and CryptoAnalysis warns the developer to choose an appropriate keySize.

Assume the developer to change the code to use an appropriate value for
keySize, and the KeyGenerator is used in compliance to its CrySL specification,
then CryptoAnalysis generates the predicate generatedKey for the SecretKey

object stored to field key of the Encrypter instance as expected.
If, additionally, the developer includes the init call on the cipher object in

line 96, (1) the ORDER clause of the CrySL rule for Cipher is satisfied and (2) the
generatedKey predicate flows via the field this.key to the Cipher object o95. As
the Cipher rule REQUIRES the predicate (line 173), the ORDER and REQUIRES blocks
for the object o95 are satisfied.

However, the CONSTRAINTS for object o95 are still not satisfied. Therefore,
CryptoAnalysis reports that (1) the key is generated for algorithm "Blowfish",
and this selection does not fit the algorithm chosen for Cipher ("AES") and (2)
when using algorithm "AES", one should use it in "CBC" mode (CONSTRAINTS in
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line 171). When the developer fixes these two mistakes, CryptoAnalysis reports
the code to correctly use the JCA with respect to the CrySL rule.

6.3 Evaluation on Maven Central

Maven Central is the most popular software repository to which developers can
publish their software artifacts. Publishing allows other developers to easily access
and include the software into their own projects. At the time the experiment was
conducted, over 2.7 million software artifacts were published at Maven Central.

The repository contains artifacts in different versions. For one experiment of the
thesis, we run CryptoAnalysis on all artifacts in their latest versions of Maven
Central, a total of 152.996 artifacts. For over 85.7% of all crypto-using Maven
artifacts, the analysis terminates in under 10 min, and on average each analysis
takes 88 s. Given that CryptoAnalysis performs a highly precise and sophisticated
static analysis, these results are promising. Unfortunately, we also discovered that
many artifacts use the JCA insecurely, and 68.7% of all crypto-using Maven artifacts
contain at least one misuse.

Example 6 We want to elaborate on one finding more closely, because it shows the
capability of the analysis. Listing 2 shows a code excerpt of an artifact that uses a
KeyStore object. A KeyStore stores certificates and is protected with a password.
A KeyStore object has a method load() whose second parameter is a password.
The API expects the password to be handed over as a char[] array. The KeyStore

API explicitly uses the primitive type instead of a String, because Strings are
immutable and cannot be cleared.11 However, many implementations convert the
password from a String and hereby introduce a security vulnerability; when not
yet garbage collected, the actual password can be extracted from memory, e.g., via
a memory dump.

CryptoAnalysis detects the two security vulnerabilities code presented in
Listing 2. First, the password is converted from a String object via a call to
toCharArray() to the actual array (line 199), i.e., during the execution of the code
the password is maintained in memory as String. Second, under some conditions
(lines 178, 182, and 189 must evaluate to true), the password is hard-coded.

CryptoAnalysis reports a CONSTRAINTS error on this example, because the
String pass (highlighted by the green box) in line 199 may contain the String

"changeit" as it is defined in line 179 (also highlighted). The data-flow corre-
sponding to the finding is non-trivial to detect manually; however, CryptoAnalysis

is able to do so by the support of BOOMERANG. CryptoAnalysis triggers a
BOOMERANG query for the second parameter of the load() call in line 199 and
finds the toCharArray() call. From that call, the analysis traces the variable pass

11https://docs.oracle.com/javase/7/docs/technotes/guides/security/crypto/CryptoSpec.html#
PBEEx.

https://docs.oracle.com/javase/7/docs/technotes/guides/security/crypto/CryptoSpec.html#PBEEx
https://docs.oracle.com/javase/7/docs/technotes/guides/security/crypto/CryptoSpec.html#PBEEx
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23 protected String getKeystorePassword(){
24 String keyPass = (String)this.attributes.get("keypass");
25 if (keyPass == null) {

26 keyPass = "changeit";

27 }
28 String keystorePass = (String)this.attributes.get("

keystorePass");
29 if (keystorePass == null) {
30 keystorePass = keyPass;
31 }
32 return keystorePass;
33 }
34 protected KeyStore getTrustStore(){
35 String truststorePassword = getKeystorePassword();
36 if (truststorePassword != null) {
37 ts = getStore(..., ..., truststorePassword);
38 }
39 return ts;
40 }
41 private KeyStore getStore(String type, String path, String

pass){
42 KeyStore ks = KeyStore.getInstance(type);
43 if ((!"PKCS11".equalsIgnoreCase(type)) && ...){
44 ...
45 }
46 ks.load(istream, pass .toCharArray());

47 return ks;
48 }

Listing 2 Simplified real-world code example with a hard-coded password

in method getStore() and finds it to be a parameter of getStore(), and the data-
flow propagation continues at invocations of the method. The method getStore()

is called in line 190, where BOOMERANG data-flow propagation follows the variable
truststorePassword. This variable is assigned the return value of the call site in
line 188. The backward data-flow analysis continues in line 185 and eventually finds
the allocation site "changeit" in the highlighted line with the line number 179.
Eventually, CryptoAnalysis reports that variable pass is of type String and that
it may contain the hard-coded password "changeit".
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7 Conclusion

Finding an acceptable balance between precision, recall, and performance of a static
analysis is a tedious task when designing and implementing a static analysis. With
SPDS, BOOMERANG, and IDEal , the dissertation presents new approaches to static
data-flow analysis that is demand-driven context-, field-, and flow-sensitive, or in
short precise and efficient.

In this chapter, we first motivate (Sect. 2) various applications ranging from null
pointer analysis to typestate analysis and next detail on the contributions SPDS,
BOOMERANG, and IDEal .

With SPDS (Sect. 3), we present a precise and efficient solution to a known to be
undecidable problem [32]. SPDS synchronizes the results of two pushdown systems,
one that models field-sensitivity, and a second that models context-sensitivity. SPDS
presents a theoretical as well a practical new model to data-flow analysis. The new
formal approach to data-flow analysis also enables a direction for future work, for
instance, to additionally summarize the pushdown systems [22].

The demand-driven pointer analysis BOOMERANG, presented in Sect. 4,
addresses pointer analysis, which is known to be hard to scale. BOOMERANG gains
efficiency as it separates the distributive parts of a non-distributive propagation into
efficiently SPDS-solvable sub-problems.

IDEal (Sect. 5) extends the ideas of the distributive propagations of
BOOMERANG and additionally propagates weights along the data-flow path. The
weights allow data-flow analyses to model typestate analyses. In an experiment
presented within the dissertation, we compare an IDEal-based typestate analysis to
a state-of-the-art typestate analysis and show the efficiency benefit of distributive
propagation.

Lastly, we showcase the application of SPDS, BOOMERANG, and IDEal within
the tool CogniCrypt. By the use of the domain-specific language CrySL, CogniCrypt
is able to statically detect cryptographic misuses.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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