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Abstract. We tackle a new problem of semantic view synthesis—
generating free-viewpoint rendering of a synthesized scene using a seman-
tic label map as input. We build upon recent advances in semantic
image synthesis and view synthesis for handling photographic image
content generation and view extrapolation. Direct application of exist-
ing image/view synthesis methods, however, results in severe ghost-
ing/blurry artifacts. To address the drawbacks, we propose a two-step
approach. First, we focus on synthesizing the color and depth of the
visible surface of the 3D scene. We then use the synthesized color and
depth to impose explicit constraints on the multiple-plane image (MPI)
representation prediction process. Our method produces sharp contents
at the original view and geometrically consistent renderings across novel
viewpoints. The experiments on numerous indoor and outdoor images
show favorable results against several strong baselines and validate the
effectiveness of our approach.

1 Introduction

Visual content creation using generative models has been gaining increasing
attention. Driving by the advances in generative models, recent work has demon-
strated impressive performance on a wide range of tasks, including image gener-
ation from various contexts (e.g., noises [12,24], images [1,20,22,26,56], text [43,
51], and audio [28]), view interpolation and extrapolation [8,15,41,44,55], and
image editing [2,5,42]. These algorithms greatly help unleash human imagina-
tion and support creative processes. In this paper, we introduce a new form of
visual content creation task by integrating (1) semantic image synthesis and (2)
novel view synthesis.

Semantic image synthesis [3,35,37,46] is a specific form of image-to-image
translation task that aims to generate photorealistic images from semantic label
maps. Such an application is intuitive as users can easily draw and refine the
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Fig. 1. Semantic view synthesis. We introduce a new visual synthesis prob-
lem, semantic view synthesis—synthesizing a photorealistic image that supports free-
viewpoint rendering given a single semantic label map. To achieve such visual effects,
we build a two-step inference pipeline upon recent advances in semantic view synthesis
and novel view synthesis. We show that our model learns to generate scene representa-
tions for rendering geometrically consistent and semantically meaningful novel views.
We demonstrate the efficacy of our method using a wide variety of indoor (left) and
outdoor (right) scenes.

semantic map on a digital canvas and then use the algorithm to synthesize 2D
images with plausible appearances. As these algorithms produce only 2D out-
puts, it is challenging for users to manipulate the viewpoints of the synthesized
image in a geometrically consistent manner.

View synthesis, on the other hand, takes a sparse set of real images (cap-
tured at different viewpoints) as inputs and synthesizes novel views of the same
scene [7,15,41,44,55]. This is achieved by explicitly or implicitly modeling the
3D structure of the scene. However, these methods are applicable only to real
images.

In this paper, we propose to tackle a new problem: semantic view synthesis—
generating free-viewpoint rendering of a synthesized scene using a semantic label
map as input (Fig. 1). Compared to the existing semantic image synthesis task,
the semantic view synthesis problem offers two unique advantages (Fig. 2). First,
it allows the users to easily manipulate the viewpoints of the synthesized image
with minimal effort. Second, it supports temporally and geometrically consistent
rendering of 3D fly-through effects.

To enable this new application, we develop a two-step method, drawing inspi-
rations from the recent advances in semantic image synthesis and view synthesis
algorithms. First, given the input semantic label map, we leverage a state-of-the-
art image synthesis model, SPADE [35], to generate a photorealistic color image
and the corresponding disparity map. The synthesized color/disparity images
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Fig. 2. Application. The new problem of semantic view synthesis offers two advan-
tages over the existing semantic image synthesis task. (a) Faster editing of view-
points. (Left) To refine the viewpoint of a synthesized image, the users would have
to redraw the semantic layout of the scene and apply the image synthesis algorithm
on the new semantic layout again to produce the desired view. (Right) Taking a single
semantic layout as input, our method produces an MPI representation that naturally
supports fast, free-form novel view rendering. (b) Consistent rendering over view-
points. (Left) As novel view images are independently generated, the synthesized con-
tents may not be consistent. (Right) Our semantic view synthesis, in contrast, enables
3D fly-through effects with plausible motion parallax.

capture the appearance and structure of the visible surface of the scene. Sec-
ond, to handle the dis-occluded contents (which become visible at novel views),
we infer a multiplane images (MPI) representation [55] using the synthesized
color/disparity as constraints. The resulting output of our method is an MPI rep-
resentation that naturally supports view synthesis at any viewpoints. We conduct
extensive quantitative and visual comparisons on three datasets (ADE20K [53],
ADE20k-outdoor [37], and NYUv2 [33]) covering various indoor and outdoor
scenes. Our results demonstrate clear improvement over several strong baseline
methods and alternative designs.

In summary, we make the following contributions:

– We introduce a new semantic view synthesis task that aims to synthesize
images of free-viewpoint from semantic masks.

– We propose a novel two-step training and inference pipeline: (1) color and
disparity image synthesis for the visible surface and (2) MPI prediction with
explicit constraints from the first step (Sect. 3).

– We build several baseline approaches for this new problem and validate the
efficacy of our proposed framework on a wide variety of indoor and outdoor
scenes (Sect. 4).
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2 Related Work

Monocular depth prediction aims to estimate the depth of a scene from
a single-view RGB image. It is a challenging problem due to the difficulty of
obtaining explicit 3D cue from the single-view RGB image without additional
information (e.g., stereo pair). To conquer the problem, several supervised learn-
ing schemes [9,19,25,48] utilize the ground-truth depth notation in the RGB-D
dataset and train fully-convolutional networks (e.g., [31]) to capture the image
prior. However, these approaches require large and diverse annotated data for
the training. Numerous self-supervised approaches [10,11,49,54,59] have been
proposed to avoid the labor-intensive annotating process. For instances, train-
ing with stereo videos [10], monocular videos [11], incorporating the information
of camera poses or optical flow [49,54,58,59]. Nevertheless, these supervised
and unsupervised methods often train their models using data from specific
domains (e.g., driving scenes from the KITTI dataset) and therefore have diffi-
culty in generalizing to diverse scenes in the wild. On the other hand, a line of
approaches uses multi-view internet photos [30], MannequinChallenge [29] or 3D
movies [38,45] as the source of data. In particular, training with mixed datasets
from different sources achieves strong generality on unseen scenes. Our work
leverage the pre-trained single-view depth estimation model from MiDaS [38] to
obtain (pseudo) ground truth of depth/disparity maps for images in our training
dataset.

Novel view synthesis aims to generate novel views based on single or multiple
images. Earlier learning-based approaches [8,23] take multiple posed images as
input and produce the target views by blending the warped input images. Such
approaches, however, only interpolate among the given viewpoints and do not
handle dis-occlusions. Recent advances explore generating novel view through
a 3D scene representations, such as multi-plane images [7,32,41,44,55], layered
depth images [6], mesh representations [14,40], and point clouds [47]. The multi-
plane image representation [7,32,41,44,55] is a set of RGBA layers at discrete
disparity levels. The novel views are rendered by homographic projection and
alpha blending of the MPI layers. The layered depth image approach [6] repre-
sents 3D images as a foreground RGBD image and a background RGBD image.
To generate the novel views, the RGB image is warped by the depth image, then
composite by a predicted visibility mask. This approach requires supervision
of the background image and only works for synthetic scenes. 3D photography
[14,40] focuses on generating 3D effects for real-world photos; they represent 3D
images as a multi-layer 3D mesh. These methods generate scene representation
at the reference (original) viewpoint. The novel view images can be rendered by
projecting the scene representation to the desired viewpoint.

Our work also produces an MPI representation as our output for supporting
novel view synthesis. Our problem setting, however, differs significantly from
prior MPI-based methods. Prior methods often require (at least) two images as
inputs, which consist of the appearance of visible surfaces, cues of scene depth,
and some content of the occluded background. In contrast, the input to our
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method is one semantic label map. Our experimental results show that direct
application of prior MPI-based methods leads to severe blurry ghosting artifacts
when rendered at novel views. Our two-step approach substantially reduces these
artifacts via imposing explicit constraints on the MPI representation during
training and testing time.

Image-to-image translation Aims to learn the mapping between two image
domains [1,20,22,27,56,57]. These techniques demonstrate a wide range of
applications such as image inpainting, image super-resolution, domain adap-
tation [4,18], and semantic image synthesis [35,46]. In particular, semantic
image synthesis learns to generate photo-realistic images conditioned on seman-
tic label maps. Pix2pix [22] adopts a U-Net architecture to synthesize low-
resolution images from a semantic map. To operate in high-resolution settings,
Pix2pixHD [46] introduces the multi-scale generator and discriminator network
structure to enhance the quality of the generated images. SPADE [35] further
improves Pix2pixHD with the spatially-adaptive normalization layers. Different
from the semantic image synthesis frameworks, we aim to synthesize 3D repre-
sentation of a scene from a single-view semantic segmentation layout.

Cross-modal distillation Transfers the knowledge between different modal-
ities. Existing works [13,17] use learned representation from a large labeled
dataset of the source modality as a supervised signal to train tasks of target
modality with limited data. For example, the method in [13] utilize ImageNet-
pretrained model to train new representations for optical flow and depth images.
To address the problem of collecting a large indoor/outdoor dataset of semantic
map to depth image pairs, our work also incorporates the idea of cross-modal dis-
tillation. Specifically, We transfer the knowledge of monocular depth prediction
model (predicting depth maps from images) and semantic segmentation (predict-
ing semantic layouts from images) to our semantic depth synthesis (predicting
depth from semantic layouts). To this end, we present a two-branch version of
a SPADE network [35] to predict both color and depth from a single semantic
map.

3 Method

3.1 Overview

Our goal is to learn to synthesize novel-view color images from a given a seman-
tic label map. As shown in Fig. 3, our scene representation generation process
consists of (1) image and disparity generation module and (2) MPI prediction
module. With the generated MPI, we can project and blend the MPI to produce
the desired target views. In this section, we first describe the data prepara-
tion in Sect. 3.2. We then detail the training procedure of scene representation
generation including image and disparity generation and the MPI prediction
in Sect. 3.3. Finally, we introduce the novel view synthesis procedure at test
time in Sect. 3.4.
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Fig. 3. Method overview. Our method first produces an MPI-based scene repre-
sentation via a two-step approach (a) (b). (a) Our first step focuses on synthesizing
the color and disparity image from the given semantic label map as the visible sur-
face. Here, we present a Y-shaped network with partially shared color/depth decoder
architecture to ensure consistency between the synthesized color and depth maps. (b)
We then infer the MPI representation that captures the color and structure of both
the visible surface and the dis-occluded surfaces. With only one single RGB image as
input, it is challenging to learn MPI with high-quality view renderings. This is because
the network needs to predict both the appearances at multiple depth levels as well as
the alpha (transparency) maps. To address this issue, we directly generate the alpha
maps using the synthesized depth map from step (a), and we use the synthesized depth
map for modulating the activations in normalization layers [35] in our MPI generator.
Such an approach imposes effective constraints and results in improved MPI predic-
tion. (c) Given target camera poses, we can then project and blend the generated MPI
representation for rendering images at novel views. (Color figure online)

3.2 Data Preparation

We build a dataset from the RealEstate10K dataset [55], which consists of
80,000 indoor/outdoor YouTube video clips with camera poses for each frame.
To extract training pairs of the semantic layout and the corresponding disparity
map, we adopt the idea of cross-modal distillation (Fig. 5a). Specifically, we apply
PSPNet [52] (pretrained on the ADE20K [53]) to obtain segmentation map anno-
tation. Similar, we apply the pre-trained MiDaS [38] monocular depth estimation
network to estimate the corresponding disparity map. Since MiDaS predicts the
relative disparity with unknown scale/shift, we use the absolute depth prediction
from DPSNet [21] to estimate the scale and shift for each training image. The
relative disparity images are then transformed into absolute disparity images
that serve as the (pseudo) ground-truth images for training. We collect training
pairs from each frame in the RealEstate10K dataset. While existing Habitat [39]
framework also provides semantic layouts, disparity maps and multi-view images
with camera poses, we did not use it as the dataset contains indoor scenes only.
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Fig. 4. Sample results of depth synthesis. Comparing the prediction from
MiDaS [38] (computed from color images), our model produces plausible depth images
based on semantic label maps. (Color figure online)

3.3 Scene Representation Generation

We adopt a two-step prediction strategy due to the difficulty of predicting MPI
representation in one step. First, our image and disparity generator takes the
semantic layout l as input and learns to synthesize the corresponding color image
x̂s
FG and disparity image d̂s of the visible surface. Second, the MPI generator

uses the synthesized color image and the disparity as input and predicts an MPI
representation m̂s of the scene.

Image and Disparity Generation. Image and disparity generator aims to
synthesize the color x̂s

FG and disparity image d̂s of visible surface of the scene
(Fig. 5b). To this end, we modify the SPADE [35] model into two-stream gen-
erators (with the color generator Gx and the disparity generator Gd). The two-
stream generators Gx and Gd share the first three SPADE-style ResNet blocks.
Using the training pairs of semantic layout l and disparity image d, we use the
losses in SPADE [35] for training the color stream and an �1 reconstruction
loss for training the disparity stream. Figure 4 shows sample results of disparity
prediction from a semantic label map.

MPI Prediction. For simple scenes (e.g., there is no apparent occluded region
in the input image), using a single image with the associated disparity map will
suffice for modeling the 3D scene. However, synthesizing novel-view images with
only color and disparity map inevitably induce visible artifacts, particularly in
the dis-occluded regions, thereby failing to render general scenes where multiple
depth layers exist. We therefore use an MPI representation [55] for handling
the depth-complex scenarios. An MPI [55] m = {(xk, αk)}Kk=1 is a collection of
RGBA images, where K is the number of depth planes. Each layer k is an image
plane placed at a fixed depth with respect to a virtual reference camera. The
color images xk at each depth plane indicate the visible view, while the alpha
image αk represents the visibility, which has a range between 0 and 1.

However, we find that predicting the MPI using only a single color image
results in poor visual quality. The primary reason is that without depth cues
(e.g., stereo pair in [55]), it is challenging to predict accurate alpha (trans-
parency) maps for compositing multi-plane images. To tackle this issue, we
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Fig. 5. Training pipeline. Our model training process consists of the following
steps. (a) Cross-modal distillation: We generate pseudo training pairs for train-
ing the semantic image/depth generation by applying the pre-trained depth estimation
model [38] and semantic segmentation PSPNet [52] on training images. (b) Semantic
depth and image synthesis: Using the generated training pairs from the cross-modal
distillation step, we use a two-stream (color and disparity) SPADE network to generate
the visible surface. We train the color stream using the losses in [35] and the disparity
stream with an �1 loss (based on the normalized disparity values). (c) MPI predic-
tion: We use training pairs of source/target images with relative pose annotations
(provided by [55]). We train the MPI generator to produce colors at multiple depth
levels and use �1 and GAN loss to enforce the consistency between the projected image
and the target image. Note that the MPI generator does not need to predict the alpha
(transparency) maps. (Color figure online)

directly compute and constrain the alpha images from the synthesized disparity
map d̂s. Since the synthesized disparity map d̂s provides a strong prior for the
scene visibility at different depth layers, we transform it into the alpha images
{α̂s

k} in our MPI representation (Fig. 6). Specifically, we first transform the dis-
parity image into a one-hot representation with K disparity channels, according
to the inverse depth. Then, we apply a half Gaussian blur along the disparity
channel, which produces blurring effect only behind the predicted disparity and
has a peak value at the predicted disparity. The blurred one-hot disparity images
are then used as the alpha images in our MPI representation.
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Fig. 6. Alpha images. (a) Discretization: we first transform the disparity image to
a one-hot encoding image. (b) Gaussian blur: we then apply a half Gaussian blur
along the disparity channel, and use the result as our alpha images. The alpha images
shown here are 14 out of total 128 planes.

The alpha images generated by this simple process has three desired proper-
ties. First, the pixels at the predicted disparity level are fully visible, resulting
in sharp contents at the center view. Second, the blurred alpha images allow
the MPI generator to predict the BG colors and blending weights for handling
dis-occluded regions at novel views. Third, as the alpha images are generated
in a deterministic manner, the MPI generator can focus only on predicting the
color images at multiple planes.

To predict the color images, {x̂s
k} in the MPI representation, we use a

SPADE-based [35] MPI generator Gm that takes the color image of the visible
surface x̂s

FG as main input, and uses the disparity image d̂s for modulating the
activations in normalization layers. The MPI generator synthesizes a background
color image x̂s

BG and a set of blending weights {ŵk}. The color images {x̂s
k} are

calculated as the weighted sum of the foreground x̂s
FG and the background x̂s

BG:

x̂s
k = ŵk � x̂s

FG + (1 − ŵk) � x̂s
BG (1)

We refer the reader to Zhou et al. [55] for more details on synthesizing novel
view images using an MPI representation.

Training MPI Generator. Figure 5c illustrates the training process of MPI
prediction. We use the data sampling strategy in [55] to sample the training
image pair (xs, xn) = (xs

FG, xn) (note that xs is equivalent to xs
FG) with cor-

responding camera poses (ps, pn), as well as the disparity image ds, where the
notation s and n indicate the source and novel view, respectively. Our MPI
generator predicts the color images {x̂s

k} from the source color image xs
FG. We

transform the disparity image ds into alpha images {αs
k}.

With the predicted MPI representation m̂s = ({x̂s
k}, {αs

k}), we can use the
warped multi-plane images according to the relative pose pn−s between the
source pose ps and novel pose pn. Given the warped MPIs, we then use the
over-composited approach [36] to composite the novel view x̂n. We train the
MPI generator using an �1 loss and a GAN loss of weight 0.01 between the
generated and the ground-truth color image at the novel view xn.
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3.4 Novel View Synthesis

Similar to the training process, at test time, we follow the two-step approach for
generating an MPI. First, we generate color x̂s

FG and disparity image d̂s from
input semantic layout l. We then use both color x̂s

FG and disparity image d̂s

to predict the MPI representation m̂s = ({x̂s
k}, {α̂s

k}). Given a relative camera
pose, we can warp and over-composite the predicted MPI and obtain the novel
view image x̂n.

4 Experimental Results

4.1 Experimental Setup

Datasets. We validate our method on three datasets.
– ADE20K [53] is a dataset of diverse indoor and outdoor scenes. It consists

of 2,000 testing images with 150 semantic classes.
– ADE20K-outdoor [37] is a subset of outdoor scenes in ADE20K dataset.

It consists of 1,035 testing images with 150 semantic classes.
– NYU [33] is an indoor dataset. It consists of 249 testing images with 13

semantic classes.

Implementation Details. We implement our system in PyTorch and use the
Adam optimizer with β1 = 0, β2 = 0.9 for all network training. All the experi-
ments are conducted on an NVIDIA GTX 1080. The color module, the disparity
module and the MPI module are trained for 600k/300k/300k iterations respec-
tively. We use a batch size of one with a learning rate of 0.0002. We use K = 128
image planes for our MPI representations. We set the disparity of each alpha
map equally distributed from 0.01 m to 1 m, according to the inverse depth. The
Gaussian blur we use for the alpha images has a peak 1, window 31, and the σ
value of 10. We set the size of the target synthesized images as 384 × 384 for
all the models. Our source code and the pre-trained models are available on the
project website.

Baselines. We compare our methods with four baseline methods.
– (a) Direct (U-Net) synthesizes the multi-plane images directly from the

semantic layout using a fully-convolutional encoder-decoder architecture [55].
– (b) Direct (SPADE) also synthesizes the multi-plane images directly from

the semantic layout, but uses a generator with spatially-adaptive normaliza-
tion [35].

– (c) Cascade (MPI) first synthesizes a color image from the semantic layout
using SPADE [35], then apply an MPI predictor using the synthesized image
as input. Here, we modify the original MPI generation model in [55] so that
it takes a single image as input.

– (d) Cascade (KB) first synthesizes a color image from the semantic layout
using SPADE [35], then apply a recent single-image view synthesis method
(3D Ken Burns [34]).

Training and testing details of the baseline models can be found in the supple-
mentary material.
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Fig. 7. Quantitative evaluation. We compare the results of three alternative
approaches for semantic view synthesis and our model on the ADE20K, ADE20K-
outdoor, and NYU datasets. Each table shows the FID score of generated novel view
images at 7× 7 grids of target viewpoints. A lower FID score is better. Using Cascade
(MPI) and Direct (U-Net) MPI architectures is unable to produce sharp, photorealis-
tic contents (therefore high FID scores). The Direct (SPADE) method can synthesize
detailed contents at the center view due to the use of SPADE [35]. However, its perfor-
mance degrades rapidly when the camera viewpoints move away from the center view.
Our two-step generation preserves the detailed content in the front layer while main-
taining photorealism under novel views. We were not able to include Cascade (KB)
due to different camera movements.

4.2 Quantitative Evaluation

We use the Fréchet Inception Distance (FID) [16] to measure the distance
between the distribution of generated images and real images. We use ADE20K
images as real images. For measuring the realism of novel view synthesis, we
evaluate the FID scores of generating novel views at 7 × 7-grid viewpoints on
x-y planes with camera movement from −0.3 m to 0.3 m across both axes. The
center view with camera movement (0, 0) shows the performance of semantic
image synthesis. As shown in Fig. 7, all the baselines, and our model produce
the lowest FID score at the center view, and the FID score gradually increases
when the camera movement becomes larger. The trend is similar across different
datasets. We discuss the results based on the ADE20K dataset below.

Results at the Center View. Comparing methods directly synthesizing MPIs
from layouts, Direct (SPADE) performs better than Direct (U-Net) (102 vs. 128)
due to the use of the SPADE architecture. Comparing methods that both employ
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Fig. 8. Visual comparisons. We compare the generated novel view images of four
other baselines and our model among ADE20K and ADE20K-outdoor datasets. The
left column shows the input label at the center viewpoint.

the SPADE generator, Cascade (MPI) performs better than Direct (SPADE) (50
vs. 102), suggesting the difficulty of directly predicting MPI from semantic lay-
out. Our method achieves the same FID score 50 when compared with Cascade
(MPI) at the center view as the input (synthesized color image) is the same.

Results at the Novel Views. When evaluating the results at a novel view
(e.g., (0.3, 0.3) m away from the center), we observe that while the Cascade
(MPI) method performs well at the center view, it produces significantly inferior
to the methods that directly predict MPI. In contrast, our method produces
lowest FID scores among the competing baselines.

4.3 Visual Comparisons

Figure 8 compares the generated novel view images of four baselines and our
model. Two-step methods, Cascade (MPI), Cascade (3D Ken Burns) and Ours,
produce images with sharper contents. Direct (U-Net) and Direct (SPADE) tend
to produce blurry and less plausible contents. In particular, the results of Cascade
(MPI) suffer from blurry due to the difficulty of generating alpha images when
no depth cues (e.g., multiple images, plane sweep volume) are available. The
Cascade (KB) inpaints the dis-occluded region at only one novel viewpoint.
Such a method supports 3D Ken Burns effect with a simple camera trajectory
such as zooming in, but not free-viewpoint rendering.



604 H.-P. Huang et al.

Table 1. Ablation study. (a) FID scores under different numbers of depth layers.
(b) FID scores of replacing the MPI prediction with per-frame background inpainting.
We use NYU dataset for this experiment.

(a) Number of depth layers. (b) Handling dis-occlusion.

Camera movement
(0, 0) (0.1, 0.1) (0.2, 0.2)

128 188.83 191.04 207.70
64 190.70 193.71 210.06
32 190.60 194.73 205.59

Camera movement
(0, 0) (0.1, 0.1) (0.2, 0.2)

Ours 188.83 191.04 207.70
Diffusion 190.63 192.55 210.16
GatedConv 190.67 192.83 210.00

Fig. 9. Number of depth layers. Increasing the number of depth levels improves
the rendered quality.

Fig. 10. Disocclusion handling. The purple regions (left) are the dis-occluded
region. Diffusion and GatedConv produce artifacts. The 3D Ken Burns method [34]
generates blurry and unnatural dis-occluded contents. Our model hallucinates visually
appealing results. (Color figure online)

4.4 Ablation Study

Number of Depth Layers. Table 1a shows the results of having a different
number of depth layers in our MPI. At (0.2, 0.2), the model with K = 32 achieves
better FID. At (0, 0) and (0.1, 0.1), the model with K = 128 achieves better FID.
We conclude that more MPI planes lead to slightly blurrier results for large
camera movement. Figure 9 illustrates that the novel view synthesized with 32
depth layers show more artifacts than 64 or 128 depth layers.
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Background Inpainting. We explore alternative methods for handling the
dis-occluded regions when rendering at novel views. We use the standard back-
ward warping to project the synthesized color image using disparity image to
render the novel views. We then inpaint the missing pixels using either simple
diffusion (implemented in OpenCV) or a learning-based image inpainting model
(GatedConv [50]).

Table 1b shows that our method achieves lower FID scores at three view-
points. Note that as all the novel view images are processed independently, Dif-
fusion and GatedConv approaches do not retain the consistency across different
viewpoints. We refer the readers to the supplementary materials for video results.
Figure 10 shows that while our method produces slightly blurry foreground (due
to the over-composition of multi-plane images), our MPI representation halluci-
nates plausible dis-occluded regions.

4.5 User Study

Fig. 11. User study. We show the user
preference between the proposed method
and baselines.

We conducted a perceptual user study
to quantify the user preference over
the proposed method and the six
baseline approaches. For each test
during the study, we present two novel
view videos of the same scene gener-
ated by two different methods with
circular camera motion (in random-
ized order). We then ask the partici-
pant to select his/her preferred result.
There are 120 videos (60 pairwise
comparisons) generated from the layouts in ADE20K, ADE20K-outdoor, and
NYU datasets used. We conduct the study with 47 participants (2820 binary
votes). The results shown in Fig. 11 validate that the proposed method synthe-
sizes more realistic novel view videos compared to the baseline approaches.

5 Conclusions

We have introduced a new problem called semantic view synthesis. The problem
aims to generate a photorealistic image from a given semantic label map that
supports novel view rendering. The new form of visual content creation offers
significantly more immersive experience than the conventional 2D image syn-
thesis task. This is technically achieved by carefully integrating techniques from
semantic image synthesis and view synthesis. Our core idea is to model the 3D
scene by first modeling the visible surface then further inferring the full 3D scene
representation. We conduct an extensive experimental evaluation to validate our
model design and show favorable results over several baseline methods.
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