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Abstract. We propose a neural rendering-based system that creates
head avatars from a single photograph. Our approach models a person’s
appearance by decomposing it into two layers. The first layer is a pose-
dependent coarse image that is synthesized by a small neural network.
The second layer is defined by a pose-independent texture image that
contains high-frequency details. The texture image is generated offline,
warped and added to the coarse image to ensure a high effective res-
olution of synthesized head views. We compare our system to analo-
gous state-of-the-art systems in terms of visual quality and speed. The
experiments show significant inference speedup over previous neural head
avatar models for a given visual quality. We also report on a real-time
smartphone-based implementation of our system.

Keywords: Neural avatars · Talking heads · Neural rendering · Head
synthesis · Head animation

1 Introduction

Personalized head avatars driven by keypoints or other mimics/pose representa-
tion is a technology with manifold applications in telepresence, gaming, AR/VR
applications, and special effects industry. Modeling human head appearance is a
daunting task, due to complex geometric and photometric properties of human
heads including hair, mouth cavity and surrounding clothing. For at least two
decades, creating head avatars (talking head models) was done with computer
graphics tools using mesh-based surface models and texture maps. The resulting
systems fall into two groups. Some [4] are able to model specific people with very
high realism after significant acquisition and design efforts are spent on those
particular people. Others [18] are able to create talking head models from as
little as a single photograph, but do not aim to achieve photorealism.
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Fig. 1. Our new architecture creates photorealistic neural avatars in one-shot mode
and achieves considerable speed-up over previous approaches. Rendering takes just 42
milliseconds on Adreno 640 (Snapdragon 855) GPU, FP16 mode.

In recent years, neural talking heads have emerged as an alternative to
classic computer graphics pipeline striving to achieve both high realism and
ease of acquisition. The first works required a video [25,38] or even multiple
videos [27,34] to create a neural network that can synthesize talking head view
of a person. Most recently, several works [12,16,32,32,35,36,40] presented sys-
tems that create neural head avatars from a handful of photographs (few-shot
setting) or a single photograph (one-shot setting), causing both excitement and
concerns about potential misuse of such technology.

Existing few-shot neural head avatar systems achieve remarkable results. Yet,
unlike some of the graphics-based avatars, the neural systems are too slow to
be deployed on mobile devices and require a high-end desktop GPU to run in
real-time. We note that most application scenarios of neural avatars, especially
those related to telepresence, would benefit highly from the capability to run in
real-time on a mobile device. While in theory neural architectures within state-
of-the-art approaches can be scaled down in order to run faster, we show that
such scaling down results in a very unfavourable speed-realism tradeoff.

In this work, we address the speed limitations of one-shot neural head avatar
systems, and develop an approach that can run much faster than previous mod-
els. To achieve this, we adopt a bi-layer representation, where the image of an
avatar in a new pose is generated by summing two components: a coarse image
directly predicted by a rendering network, and a warped texture image. While
the warping itself is also predicted by the rendering network, the texture is esti-
mated at the time of avatar creation and is static at runtime. To enable the
few-shot capability, we use the meta-learning stage on a dataset of videos, where
we (meta)-train the inference (rendering) network, the embedding network, as
well as the texture generation network.

The separation of the target frames into two layers allows us both to improve
the effective resolution and the speed of neural rendering. This is because we can
use off-line avatar generation stage to synthesize high-resolution texture, while at
test time both the first component (coarse image) and the warping of the texture
need not contain high frequency details and can therefore be predicted by a
relatively small rendering network. These advantages of our system are validated
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by extensive comparisons with previously proposed neural avatar systems. We
also report on the smartphone-based real-time implementation of our system,
which was beyond the reach of previously proposed models.

2 Related Work

As discussed above, methods for the neural synthesis of realistic talking head
sequences can be divided into many-shot (i.e. requiring a video or multiple videos
of the target person for learning the model) [20,25,27,38] and a more recent
group of few-shot/singe-shot methods capable of acquiring the model of a person
from a single or a handful photographs [16,32,35,36,39,40]. Our method falls
into the latter category as we focus on the one-shot scenario (modeling from a
single photograph).

Along another dimension, these methods can be divided according to the
architecture of the generator network. Thus, several methods [25,35,38,40] use
generators based on direct synthesis, where the image is generated using a
sequence of convolutional operators, interleaved with elementwise non-linearities,
and normalizations. Person identity information may be injected into such
architecture, either with a lengthy learning process (in the many-shot sce-
nario) [25,38] or by using adaptive normalizations conditioned on person embed-
dings [12,35,40]. The method [40] effectively combines both approaches by inject-
ing identity through adaptive normalizations, and then fine-tuning the resulting
generator on the few-shot learning set. The direct synthesis approach for human
heads can be traced back to [34] that generated lips of a famous person in the
talking head sequence, and further towards first works on conditional convolu-
tional neural synthesis of generic objects such as [10].

The alternative to the direct image synthesis is to use differentiable warp-
ing [21] inside the architecture. The X2Face approach [39] applies warping twice,
first from the source image to a standardized image (texture), and then to
the target image. The Codec Avatar system [27] synthesizes a pose-dependent
texture for a simplified mesh geometry. The MarioNETte system [16] applies
warping to the intermediate feature representations. The Few-shot Vid-to-Vid
system [36] combines direct synthesis with the warping of the previous frame in
order to obtain temporal continuity. The First Order Motion Model [32] learns to
warp the intermediate feature representation of the generator based on keypoints
that are learned from data. Beyond heads, differentiable warping/texturing have
recently been used for full body re-rendering [29,31]. Earlier, DeepWarp sys-
tem [13] used neural warping to alter the appearance of eyes for the purpose of
gaze redirection, and [42] also used neural warping for the resynthesis of generic
scenes. Our method combines direct image synthesis with warping in a new way,
as we obtain the fine layer by warping an RGB pose-independent texture, while
the coarse-grained pose-dependent RGB component is synthesized by a neural
network directly.
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Fig. 2. During training, we first encode a source frame into the embeddings, then we
initialize adaptive parameters of both inference and texture generators, and predict a
high-frequency texture. These operations are only done once per avatar. Target key-
points are then used to predict a low-frequency component of the output image and a
warping field, which, applied to the texture, provides the high-frequency component.
Two components are then added together to produce an output.

3 Methods

We use video sequences annotated with keypoints and, optionally, segmentation
masks, for training. We denote t-th frame of the i-th video sequence as xi(t),
corresponding keypoints as yi(t), and segmentation masks as mi(t) We will use
an index t to denote a target frame, and s – a source frame. Also, we mark all
tensors, related to generated images, with a hat symbol, ex. x̂i(t). We assume
the spatial size of all frames to be constant and denote it as H × W . In some
modules, input keypoints are encoded as an RGB image, which is a standard
approach in a large body of previous works [16,36,40]. In this work, we will call
it a landmark image. But, contrary to these approaches, at test-time we input
the keypoints into the inference generator directly as a vector. This allows us to
significantly reduce the inference time of the method.

3.1 Architecture

In our approach, the following networks are trained in an end-to-end fashion:

– The embedder network E
(
xi(s),yi(s)

)
encodes a concatenation of a source

image and a landmark image into a stack of embeddings {êik(s)}, which are
used for initialization of the adaptive parameters inside the generators.

– The texture generator network Gtex

({êik(s)}
)

initializes its adaptive param-
eters from the embeddings and decodes an inpainted high-frequency compo-
nent of the source image, which we call a texture X̂i(s).

– The inference generator network G
(
yi(t), {êik(s)}

)
maps target poses into a

predicted image x̂i(t). The network accepts vector keypoints as an input and
outputs a low-frequency layer of the output image x̂i

LF(t), which encodes
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basic facial features, skin color and lighting, and ω̂i(t) – a mapping between
coordinate spaces of the texture and the output image. Then, the high-
frequency layer of the output image is obtained by warping the predicted
texture: x̂i

HF(t) = ω̂i(t) ◦ X̂i(s), and is added to a low-frequency component
to produce the final image:

x̂i(t) = x̂i
LF(t) + x̂i

HF(t) . (1)

– Finally, the discriminator network D
(
xi(t),yi(t)

)
, which is a conditional [28]

relativistic [23] PatchGAN [20], maps a real or a synthesised target image,
concatenated with the target landmark image, into realism scores si(t).

During training, we first input a source image xi(s) and a source pose yi(s),
encoded as a landmark image, into the embedder. The outputs of the embedder
are K tensors êik(s), which are used to predict the adaptive parameters of the
texture generator and the inference generator. A high-frequency texture X̂i(s)
of the source image is then synthesized by the texture generator. Next, we input
corresponding target keypoints yi(t) into the inference generator, which predicts
a low-frequency component of the output image x̂i

LF(t) directly and a high-
frequency component x̂i

HF(t) by warping the texture with a predicted field ω̂i(t).
Finally, the output image x̂i(t) is obtained as a sum of these two components.

It is important to note that while the texture generator is manually forced
to generate only a high-frequency component of the image via the design of
the loss functions, which is described in the next section, we do not specifically
constrain it to perform texture inpainting for occluded head parts. This behavior
is emergent from the fact that we use two different images with different poses
for initialization and loss calculation.

3.2 Training Process

We use multiple loss functions for training. The main loss function responsible
for the realism of the outputs is trained in an adversarial way [15]. We also use
pixelwise loss to preserve source lightning conditions and perceptual [22] loss to
match the source identity in the outputs. Finally, a regularization of the texture
mapping adds robustness to the random initialization of the model.

Pixelwise and Perceptual Losses ensure that the predicted images match the
ground truth, and are respectively applied to low- and high-frequency compo-
nents of the output images. Since usage of pixelwise losses assumes independence
of all pixels in the image, the optimization process leads to blurry images [20],
which is suitable for the low-frequency component of the output. Thus the pixel-
wise loss is calculated by simply measuring mean L1 distance between the target
image and the low-frequency component:

LG
pix =

1
HW

||x̂i
LF(t) − xi(t)||1 . (2)
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On the contrary, the optimization of the perceptual loss leads to crisper and
more realistic images [22], which we utilize to train the high-frequency compo-
nent. To calculate the perceptual loss, we use the stop-gradient operator SG,
which allows us to prevent the gradient flow into a low-frequency component.
The input generated image is, therefore, calculated as following:

x̃i(t) = SG
(
x̂i
LF(t)

)
+ x̂i

HF(t). (3)

Following [16] and [40], our variant of the perceptual loss consists of two com-
ponents: features evaluated using an ILSVRC (ImageNet) pre-trained VGG19
network [33], and the VGGFace network [30], trained for face recognition. If we
denote the intermediate features of these networks as f ik,IN(t) and f ik,face(t), and
their spatial size as Hk × Wk, the objectives can be written as follows:

LG
IN =

1
K

∑

k

1
HkWk

||f̃ ik,IN(t) − f ik,IN(t)||1, (4)

LG
face =

1
K

∑

k

1
HkWk

||f̃ ik,face(t) − f ik,face(t)||1. (5)

Texture Mapping Regularization is proposed to improve the stability of the
training. In our model, the coordinate space of the texture is learned implicitly,
and there are two degrees of freedom that can mutually compensate each other:
the position of the face in the texture, and the predicted warping. If, after initial
iterations, the major part of the texture is left unused by the model, it can
easily compensate that with a more distorted warping field. This artifact of an
initialization is not fixed during training, and clearly is not the behavior we
need, since we want all the texture to be used to achieve the maximum effective
resolution in the outputs. We address the problem by regularizing the warping
in the first iterations to be close to an identity mapping:

LG
reg =

1
HW

||ωi(t) − I||1 . (6)

Adversarial Loss is optimized by both generators, the embedder and the dis-
criminator networks. Usually, it resembles a binary classification loss function
between real and fake images, which discriminator is optimized to minimize, and
generators – maximize [15]. We follow a large body of previous works [6,16,36,40]
and use a hinge loss as a substitute for the original binary cross entropy loss.
We also perform relativistic realism score calculation [23], following its recent
success in tasks such as super-resolution [38] and denoising [24]. Additionally, we
use PatchGAN [20] formulation of the adversarial learning. The discriminator is
trained only with respect to its adversarial loss LD

adv, while the generators and the
embedder are trained via the adversarial loss LG

adv, and also a feature matching
loss LFM [37]. The latter is introduced for better stability of the training.



530 E. Zakharov et al.

…
Backpropaga�on 

through M update steps
Backpropaga�on 
and stop-gradient

Source Target

Fig. 3. Texture enhancement network (updater) accepts the current state of the texture
and the guiding gradients to produce the next state. The guiding gradients are obtained
by reconstructing the source image from the current state of the texture and matching
it to the ground-truth via a lightweight updater loss. These gradients are only used
as inputs and are detached from the computational graph. This process is repeated
M times. The final state of the texture is then used to obtain a target image, which
is matched to the ground-truth via the same loss as the one used during training of
the main model. The gradients from this loss are then backpropagated through all M
copies of the updater network.

3.3 Texture Enhancement

To minimize the identity gap, [40] suggested to fine-tune the generator weights
to the few-shot training set. Training on a person-specific source data leads to
significant improvement in realism and identity preservation of the synthesized
images [40], but is computationally expensive. Moreover, when the source data is
scarce, like in one-shot scenario, fine-tuning may lead to over-fitting and perfor-
mance degradation, which is observed in [40]. We address both of these problems
by using a learned gradient descend (LGD) method [5] to optimize only the syn-
thesized texture X̂i(s). Optimizing with respect to the texture tensor prevents
the model from overfitting, while the LGD allows us to perform optimization
with respect to computationally expensive objectives by doing forward passes
through a pre-trained network.

Specifically, we introduce a lightweight loss function Lupd (we use a sum of
squared errors), that measures the distance between a generated image and a
ground-truth in the pixel space, and a texture updating network Gupd, that uses
the current state of the texture and the gradient of Lupd with respect to the
texture to produce an update ΔX̂i(s). During fine-tuning we perform M update
steps, each time measuring the gradients of Lupd with respect to an updated
texture. The visualization of the process can be seen in Fig. 3. More formally,
each update is computed as:

X̂i
m+1(s) = X̂i

m(s) + Gupd

(

X̂i
m(s),

∂Lupd

∂X̂i
m(s)

)

, (7)

where m ∈ {0, . . . , M −1} denotes an iteration number, with X̂i
0(s) ≡ X̂i(s).
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The network Gupd is trained by back-propagation through all M steps. For
training, we use the same objective LG

total that was used during the training of
the base model. We evaluate it using a target frame xi(t) and a generated frame

x̂i
M (t) = x̂i

LF(t) + ω̂i(t) ◦ X̂i
M (s). (8)

It is important to highlight that Lupd is not used for training of Gupd, but
simply guides the updates to the texture. Also, the gradients with respect to
this loss are evaluated using the source image, while the objective in Eq. 8 is
calculated using the target image, which implies that the network has to pro-
duce updates for the whole texture, not just a region “visible” on the source
image. Lastly, while we do not propagate any gradients into the generator part
of the base model, we keep training the discriminator using the same objective
LD
adv. Even though training the updater network jointly with the base generator

is possible, and can lead to better quality (following the success of model agnos-
tic meta-learning [11] method), we resort to two-stage training due to memory
constraints.

3.4 Segmentation

The presence of static background leads to a certain degradation of our model
for two reasons. Firstly, part of the capacity of the texture and the inference
generators has to be spent on modeling high variety of background patterns.
Secondly, and more importantly, the static nature of backgrounds in most train-
ing videos biases the warping towards identity mapping. We therefore, have
found it advantageous to include background segmentation into our model.

We use a state-of-the-art face and body segmentation model [14] to obtain
the ground truth masks. Then, we add the mask prediction output m̂i(t) to our
inference generator alongside with its other outputs, and train it via a binary
cross-entropy loss Lseg to match the ground truth mask mi(t). To filter out the
training signal, related to the background, we have explored multiple options.
Simple masking of the gradients that are fed into the generator leads to severe
overfitting of the discriminator. We also could not simply apply the ground truth
masks to all the images in the dataset, since the model [14] works so well that
it produces a sharp border between the foreground and the background, leading
to border artifacts that emerge after adversarial training.

Instead, we have found out that masking the ground truth images that are
fed to the discriminator with the predicted masks m̂i(t) works well. Indeed, these
masks are smooth and prevent the discriminator from overfitting to the lack of
background, or sharpness of the border. We do not backpropagate the signal
from the discriminator and from perceptual losses to the generator via the mask
pathway (i.e. we use stop gradient/detach operator SG

(
m̂i(t)

)
before applying

the mask). The stop-gradient operator also ensures that the training does not
converge to a degenerate state (empty foreground).
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3.5 Implementation Details

All our networks consist of pre-activation residual blocks [17] with LeakyReLU
activations. We set a minimum number of features in these blocks to 64, and a
maximum to 512. By default, we use half the number of features in the infer-
ence generator, but we also evaluate our model with full- and quater-capacity
inference part, with the results provided in the experiments section.

We use batch normalization [19] in all the networks except for the embedder
and the texture updater. Inside the texture generator, we pair batch normaliza-
tion with adaptive SPADE layers [36]. We modify these layers to predict pixel-
wise scale and bias coefficients using feature maps, which are treated as model
parameters, instead of being input from a different network. This allows us to
save memory by removing additional networks and intermediate feature maps
from the optimization process, and increase the batch size. Also, following [36],
we predict weights for all 1×1 convolutions in the network from the embeddings
{êik(s)}, which includes the scale and bias mappings in AdaSPADE layers, and
skip connections in the residual upsampling blocks. In the inference generator,
we use standard adaptive batch normalization layers [6], but also predict weights
for the skip connections from the embeddings.

We do simultaneous gradient descend on parameters of the generator net-
works and the discriminator using Adam [26] with a learning rate of 2 · 10−4.
We use 0.5 weight for adversarial losses, and 10 for all other losses, except for
the VGGFace perceptual loss (Eq. 5), which is set to 0.01. The weight of the
regularizer (Eq. 6) is then multiplicatively reduced by 0.9 every 50 iterations.
We train our models on 8 NVIDIA P40 GPUs with the batch size of 48 for the
base model, and a batch size of 32 for the updater model. We set unrolling depth
M of the updater to 4 and use a sum of squared errors as the lightweight objec-
tive. Batch normalization statistics are synchronized across all GPUs during
training. During inference they are replaced with “standing” statistics, similar
to [6], which significantly improves the quality of the outputs, compared to the
usage of running statistics. Spectral normalization is also applied in all linear
and convolutional layers of all networks.

Please refer to the supplementary material for a detailed description of our
model’s architecture, as well as the discussion of training and architectural fea-
tures that we have adopted.

4 Experiments

We perform evaluation in multiple scenarios. First, we use the original Vox-
Celeb2 [8] dataset to compare with state-of-the-art systems. To do that, we
annotated this dataset using an off-the-shelf facial landmarks detector [7]. Over-
all, the dataset contains 140697 videos of 5994 different people. We also use a
high-quality version of the same dataset, additionally annotated with the seg-
mentation masks (which were obtained using a model [14]), to measure how the
performance of our model scales with a dataset of a significantly higher quality.
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We obtained this version by downloading the original videos via the links pro-
vided in the VoxCeleb2 dataset, and filtering out the ones with low resolution.
This dataset is, therefore, significantly smaller and contains only 14859 videos
of 4242 people, with each video having at most 250 frames (first 10 s). Lastly,
we do ablation studies on both VoxCeleb2 and VoxCeleb2-HQ, and report on a
smartphone-based implementation of the method. For comparisons and ablation
studies we show the results qualitatively and also evaluate the following metrics:

– Learned perceptual image patch similarity [41] (LPIPS), which measures over-
all predicted image similarity to ground truth.

– Cosine similarity between the embedding vectors of a state-of-the-art face
recognition network [9] (CSIM), calculated using the synthesized and the
target images. This metric evaluates the identity mismatch.

– Normalized mean error of the head pose in the synthesized image (NME). We
use the same network [7], which was used for the annotation of the dataset,
to evaluate the pose of the synthesized image. We normalize the error, which
is a mean euclidean distance between the predicted and the target points, by
the distance between the eyes in the target pose, multiplied by 10.

– Multiply-accumulate operations (MACs), which measure the complexity of
each method. We exclude from the evaluation initialization steps, which are
calculated only once per avatar.

The test set in both datasets does not intersect with the train set in terms
of videos or identities. For evaluation, we use a subset of 50 test videos with
different identities (for VoxCeleb2, it is the same as in [40]). The first frame in
each sequence is used as a source. Target frames are taken sequentially at 1 FPS.

We only discuss most important results in the main paper. For additional
qualitative results and comparisons please refer to the supplementary materials.

4.1 Comparison with the State-of-the-art Methods

We compare against three state-of-the-art systems: Few-shot Talking Heads [40],
Few-shot Vid-to-Vid [36] and First Order Motion Model [32]. The first system is
a problem-specific model designed for avatar creation. Few-shot Vid-to-Vid is a
state-of-the-art video-to-video translation system, which has also been success-
fully applied to this problem. First Order Motion Model (FOMM) is a general
motion transfer system that does not use precomputed keypoints, but can also
be used as an avatar. We believe that these models are representative of the
most recent and successful approaches to one-shot avatar generation. We also
acknowledge the work of [16], but do not compare to them extensively due to
unavailability of the source code, pretrained models or pre-calculated results. A
small-scale qualitative comparison is provided in the supplementary materials.
Additionally, their method is limited to the usage of 3D keypoints, while our
method does not have such restriction. Lastly, since Few-shot Vid-to-Vid is an
autoregressive model, we use a full test video sequence for evaluation (25 FPS)
and save the predicted frames at 1 FPS.
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Fig. 4. In order to evaluate a quality against performance trade off, we train a family
of models with varying complexity for each of the compared methods. For quality
metrics, we have compared synthesized images to their targets using a perceptual image
similarity (LPIPS ↓), identity preservation metric (CSIM ↑), and a normalized pose
error (NME ↓). We highlight a model which was used for the comparison in Fig. 5 with
a bold marker. We observe that our model outperforms the competitors in terms of
identity preservation (CSIM) and pose matching (NME) in the settings, when models’
complexities are comparable. In order to better compare with FOMM, we did a user
study, where users have preferred the image generated by our model to FOMM 59.6%
of the time.

Importantly, the base models in these approaches have a lot of computational
complexity, so for each method we evaluate a family of models by varying the
number of parameters. The performance comparison for each family is reported
in Fig. 4 (with Few-shot Talking Heads being excluded from this evaluation,
since their performance is much worse than the compared methods). Overall,
we can see that our model’s family outperforms competing methods in terms of
pose error and identity preservation, while being, on average, up to an order of
magnitude faster. To better compare with FOMM in terms of image similarity,
we have performed a user study, where we asked crowd-sourced users which
generated image better matches the ground truth. In total, 361 users evaluated
1600 test pairs of images, with each one seeing on average 21 pairs. In 59.6% of
comparisons, the result of our medium model was preferred to a medium sized
model of FOMM.

Another important note is on how the complexity was evaluated. In Few-
shot Vid-to-Vid we have additionally excluded from the evaluation parts that
are responsible for the temporal consistency, since other compared methods are
evaluated frame-by-frame and do not have such overhead. Also, in FOMM we
have excluded the keypoints extractor network, because this overhead is shared
implicitly by all the methods via usage of the precomputed keypoints.

We visualize the results for medium-sized models of each of the compared
methods in Fig. 5. Since all methods perform similarly in case when source and
target images have marginal differences, we have shown the results where a source
and a target have different head poses. In this extrapolation setting, our method
has a clear advantage, while other methods either introduce more artifacts or
more blurriness.
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Source Target
Few-shot
T. Heads

Few-shot
Vid-to-Vid

FOMM Ours

Fig. 5. Comparison on a VoxCeleb2 dataset. The task is to reenact a target image,
given a source image and target keypoints. The compared methods are Few-shot
Talking Heads [40], Few-shot Vid-to-Vid [36], First Order Motion Model (FOMM) [32]
and our proposed Bi-layer Model. For each method, we used the models with a similar
number of parameters, and picked source and target images to have diverse poses and
expressions, in order to highlight the differences between the compared methods.

Evaluation on High-Quality Images. Next, we evaluate our method on the
high-quality dataset and present the results in Fig. 6. Overall, in this case, our
method is able to achieve a smaller identity gap, compared to the dataset with
the background. We also show the decomposition between the texture and a
low frequency component in Fig. 7. Lastly, in Fig. 8, we show that our texture
enhancement pipeline allows us to render small person-specific features like wrin-
kles and moles on out-of-domain examples. For more qualitative examples, as
well as reenactment examples with a driver of a different person, please refer to
the supplementary materials.

Smartphone-Based Implementation. We train our model using PyTorch [1]
and then port it to smartphones with Qualcomm Snapdragon chips. There are
several frameworks which provide APIs for mobile inference on such devices.
From our experiments, we measured the Snapdragon Neural Processing Engine
(SNPE) [2] to be about 1.5 times faster than PyTorch Mobile [1] and up to two
times faster than TensorFlow Lite [3]. The medium-sized model ported to the
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Source Pose Result Source Pose Result

Fig. 6. High quality synthesis results. We can see that our model is both capable
of viewpoint extrapolation and low identity gap synthesis. The architecture in this
experiment has the same number of parameters as the medium architecture in the
previous comparison.

Snapdragon 855 (Adreno 640 GPU, FP16 mode) takes 42 ms per frame, which
is sufficient for real-time performance, given that the keypoint tracking is being
run in parallel, e.g. on a mobile CPU.

Ablation Study. Finally, we evaluate the contribution of individual compo-
nents. First, we evaluate the contribution of adaptive SPADE layers in the tex-
ture generator (by replacing them with adaptive batch normalization and per-
pixel biases) and adaptive skip-connections in both generators. A model with
these features removed makes up our baseline. Lastly, we evaluate the contribu-
tion of the updater network. The results can be seen in Table 1 and Fig. 9. We
evaluate the baseline approach only on a VoxCeleb2 dataset, while the full mod-
els with and without the updater network are evaluated on both low- and high-
quality datasets. Overall, we see a significant contribution of each component
with respect to all metrics, which is particularly noticeable in the high-quality
scenario. In all ablation comparisons, medium-sized models were used.
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Source Texture LF Result

Fig. 7. Detailed results on the gener-
ation process of the output image. LF
denotes a low-frequency component.

Source Target Pose Ours

Fig. 8. Our method can preserve a lot
of details in the facial features, like the
famous Marylin’s mole.

Table 1. Ablation studies of our approach.
We first evaluate the baseline method with-
out AdaSPADE or adaptive skip connec-
tions. Then we add these layers, follow-
ing [36], and observe significant quality
improvement. Finally, our updater network
provides even more improvement across all
metrics, especially noticeable in the high-
quality scenario.

Method LPIPS ↓ CSIM ↑ NME ↓
VoxCeleb2

Baseline 0.377 0.547 0.447

Ours 0.370 0.595 0.441

+Updater 0.358 0.653 0.433

VoxCeleb2-HQ

Ours 0.313 0.432 0.476

+Updater 0.298 0.649 0.456

Source Pose Ours +Upd.

Fig. 9. Examples from the ablation
study on VoxCeleb2 (first two rows)
and VoxCeleb2-HQ (last two rows).

5 Conclusion

We have proposed a new neural rendering-based system that creates head avatars
from a single photograph. Our approach models person appearance by decom-
posing it into two layers. The first layer is a pose-dependent coarse image that
is synthesized by a small neural network. The second layer is defined by a pose-
independent texture image that contains high-frequency details and is gener-
ated offline. During test-time it is warped and added to the coarse image to
ensure high effective resolution of synthesized head views. We compare our sys-
tem to analogous state-of-the-art systems in terms of visual quality and speed.
The experiments show up to an order of magnitude inference speedup over
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previous neural head avatar models, while achieving state-of-the-art quality. We
also report on a real-time smartphone-based implementation of our system.
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