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Abstract. Understanding crowd motion dynamics is critical to real-
world applications, e.g., surveillance systems and autonomous driving.
This is challenging because it requires effectively modeling the socially
aware crowd spatial interaction and complex temporal dependencies.
We believe attention is the most important factor for trajectory predic-
tion. In this paper, we present STAR, a Spatio-Temporal grAph tRans-
former framework, which tackles trajectory prediction by only attention
mechanisms. STAR models intra-graph crowd interaction by TGConv, a
novel Transformer-based graph convolution mechanism. The inter-graph
temporal dependencies are modeled by separate temporal Transform-
ers. STAR captures complex spatio-temporal interactions by interleav-
ing between spatial and temporal Transformers. To calibrate the tempo-
ral prediction for the long-lasting effect of disappeared pedestrians, we
introduce a read-writable external memory module, consistently being
updated by the temporal Transformer. We show that with only atten-
tion mechanism, STAR achieves the state-of-the-art performance on 5
commonly used real-world pedestrian prediction datasets (code available
at https://github.com/Majiker/STAR).

Keywords: Trajectory prediction · Transformer · Graph neural
networks

1 Introduction

Crowd trajectory prediction is of fundamental importance to both the computer
vision [1,16,21,22,52] and robotics [33,34] community. This task is challenging
because 1) human-human interactions are multi-modal and extremely hard to
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Fig. 1. STAR successfully models spatio-temporal crowd dynamics with only a strong
Transformer-based attention mechanism. STAR produces more accurate prediction tra-
jectories compared to the state-of-the-art model, SR-LSTM.

Fig. 2. (a) People decide their future motions by paying different attentions (light yel-
low for less attention and dark red for more attention) to the potential future motions
of their neighbors up to a certain time interval (Δt). (b) STAR models the crowd as
a graph and learns spatio-temporal interaction of the crowd motion by interleaving
between a graph-based spatial Transformer and a temporal Transformer. An exter-
nal read-writable graph memory module is applied to improve the smoothness of the
temporal predictions.

capture, e.g., strangers would avoid intimate contact with others, while fellows
tend to walk in group [52]; 2) the complex temporal prediction is coupled with
the spatial human-human interaction, e.g., humans condition their motions on
the history and future motion of their neighbors [21].

Classic models capture human-human interaction by handcrafted energy-
functions [18,19,34], which require significant feature engineering effort and nor-
mally fail to build crowd interactions in crowded spaces [21]. With the recent
advances in deep neural networks, Recurrent Neural Networks (RNNs) have been
extensively applied to trajectory prediction and demonstrated promising perfor-
mance [1,16,21,22,52]. RNN-based methods capture pedestrian motion by their
latent state and model the human-human interaction by merging latent states
of spatially proximal pedestrians. Social-pooling [1,16] treat pedestrians in a
neighborhood area equally and merge their latent state by a pooling mechanism.
Attention mechanisms [21,22,52] relax this assumption and weigh pedestrians
according to a learned function, which encodes unequal importance of neighbor-
ing pedestrians for trajectory prediction. However, existing predictors have two
shared limitations: 1) the attention mechanisms used are still simple, which fails
to fully model the human-human interaction, 2) RNNs normally have difficulty
modeling complex temporal dependencies [43] (Fig. 1).
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Recently, Transformer networks have made ground-breaking progress in Nat-
ural Language Processing domains (NLP) [10,26,43,49,51]. Transformers dis-
card the sequential nature of language sequences and model temporal depen-
dencies with only the powerful self-attention mechanism. The major benefit of
Transformer architecture is that self-attention significantly improves temporal
modeling, especially for horizon sequences, compared to RNNs [43]. Neverthe-
less, Transformer-based models are restricted to normal data sequences and it is
hard to generalize them to more structured data, e.g., graph sequences.

In this paper, we introduce the Spatio-Temporal grAph tRansformer (STAR)
framework, a novel framework for spatio-temporal trajectory prediction based
purely on self-attention mechanism. We believe that learning the temporal, spa-
tial and temporal-spatial attentions is the key to accurate crowd trajectory pre-
diction, and Transformers provide a neat and efficient solution to this task.
STAR captures the human-human interaction with a novel spatial graph Trans-
former. In particular, we introduce TGConv, a Transformer-based graph convo-
lution mechanism. TGConv improves the attention-based graph convolution [44]
by self-attention mechanism with Transformers and can capture more complex
social interactions. Specifically, TGConv tends to improve more on datasets
with higher pedestrian densities (ZARA1, ZARA2, UNIV). We model pedestrian
motions with separate temporal Transformers, which better captures temporal
dependencies compared to RNNs. STAR extracts spatio-temporal interaction
among pedestrians by interleaving between spatial Transformer and temporal
Transformer, a simple yet effective strategy. Besides, as Transformers treat a
sequence as a bag of words, they normally have problem modeling time series
data where strong temporal consistency is enforced [29]. We introduce an addi-
tional read-writable graph memory module that continuously performs smooth-
ing over the embeddings during prediction. An overview of STAR is given by
Fig. 2(b)

We experimented on 5 commonly used real-world pedestrian trajectory pre-
diction datasets. With only attention mechanism, STAR achieves the state-of-
the-art on all 5 datasets. We conduct extensive ablation studies to better under-
stand each proposed component.

2 Background

2.1 Self-Attention and Transformer Networks

Transformer networks have achieved great success in the NLP domain, such as
machine translation, sentiment analysis, and text generation [10]. Transformer
networks follow the famous encoder-decoder structure widely used in the RNN
seq2seq models [3,6].

The core idea of Transformer is to replace the recurrence completely by
multi-head self-attention mechanism. For embeddings {ht}Tt=1, the self-attention
of Transformers first learns the query matrix Q = fQ({ht}Tt=1), key matrix
K = fK({ht}Tt=1) and a corresponding value matrix V = fV ({ht}Tt=1) of all
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embeddings from t = 1 to T . It computes the attention by

Att(Q,K, V ) =
Softmax(QKT)√

dk
V (1)

where dk is the dimension of each query. The 1/
√

dk implements the scaled-
dot product term for numerical stability for attentions. By computing the self-
attention between embeddings across different time steps, the self-attention
mechanism is able to learn temporal dependencies over long time horizon, in
contrast to RNNs that remember the history with a single vector with limited
memory. Besides, decoupling attention into the query, key and value tuples allows
the self-attention mechanism to capture more complex temporal dependencies.

Multi-head attention mechanism learns to combine multiple hypotheses when
computing attentions. It allows the model to jointly attend to information from
different representations at different positions. With k heads, we have

MultiHead(Q,K, V ) = fO([headi]
k
i=1)

where headi = Atti(Q,K, V ) (2)

where fO is a fully connected layer merging the output from k heads and
Atti(Q,K, V ) denote the self-attention of the i-th head. Additional positional
encoding is used to add positional information to the Transformer embeddings.
Finally, Transformer outputs the updated embeddings by a fully connected layer
with two skip connections.

However, one major limitation of current Transformer-based models is they
only apply to non-structured data sequences, e.g., word sequences. STAR extends
Transformers to more structured data sequences, as a first step, graph sequences,
and apply it to trajectory prediction.

2.2 Related Works

Graph Neural Networks. Graph Neural Networks (GNNs) are powerful deep
learning architectures for graph-structured data. Graph convolutions [9,15,24,
27,47] have demonstrated significant improvement on graph machine learning
tasks, e.g., modeling physical systems [4,28], drug prediction [31] and social rec-
ommendation systems [11]. In particular, Graph Attention Networks (GAT) [44]
implement efficient weighted message passing between nodes and achieved state-
of-the-art results across multiple domains. From the sequence prediction per-
spective, temporal graph RNNs allow learning spatio-temporal relationship in
graph sequences [8,17]. Our STAR improves GAT with TGConv, a transformer
boosted attention mechanism and tackles the graph spatio-temporal modeling
with transformer architecture.

Sequence Prediction. RNNs and its variants, e.g., LSTM [20] and GRU [7],
have achieved great success in sequence prediction tasks, e.g., speech recogni-
tion [39,46], robot localization [14,36], robot decision making [23,37], and etc.
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RNNs have been also successfully applied to model the temporal motion pattern
of pedestrians [1,16,21,22,52]. RNNs-based predictors make predictions with a
Seq2Seq structure [41]. Additional structure, e.g., social pooling [1,16], attention
mechanism [22,45,48] and graph neural networks [21,52], are used to improve
the trajectory prediction with social interaction modeling.

Transformer networks have dominated Natural Language Processing domains
in recent years [10,26,43,49,51]. Transformer models completely discard the
recurrence and focus on the attention across time steps. This architecture allows
long-term dependency modeling and large-batch parallel training. Transformer
architecture has also been applied to other domains with success, e.g., stock pre-
diction [30], robot decision making [12] etc. STAR applies the idea of Transformer
to the graph sequences. We demonstrate it on a challenging crowd trajectory pre-
diction task, where we consider crowd interaction as a graph. STAR is a general
framework and could be applied to other graph sequence prediction tasks, e.g.,
event prediction in social networks [35] and physical system modeling [28]. We
leave this for future study.

Crowd Interaction Modeling. As the pioneering work, Social Force mod-
els [19,32], has been proven effective in various applications, e.g., crowd anal-
ysis [18] and robotics [13]. They assume the pedestrians are driven by virtual
forces for goal navigation and collision avoidance. Social Force models work well
on interaction modeling while performing poorly on trajectory prediction [25].
Geometry based methods, e.g., ORCA [42] and PORCA [34], consider the geom-
etry of the agent and convert the interaction modeling into an optimization prob-
lem. One major limitation of classic approaches is that they rely on hand-crafted
features, which is non-trivial to tune and hard to generalize.

Deep learning based models achieve automatic feature engineering by directly
learning the model from data. Behavior CNNs [50] capture crowd interaction by
CNNs. Social-Pooling [1,16] further encodes the proximal pedestrian states by
a pooling mechanism that approximates the crowd interaction. Recent works
consider crowd as a graph and merge information of the spatially proximal
pedestrians with attention mechanisms [22,45,48]. Attention mechanism models
pedestrians with importance compared to the pooling methods. Graph neural
networks are also applied to address crowd modeling [21,52]. Explicit message
passing allows the network to model more complex social behaviors.

3 Method

3.1 Overview

In this section, we introduce the proposed spatio-temporal graph Transformer
based trajectory prediction framework, STAR. We believe attention is the most
important factor for effective and efficient trajectory prediction.

STAR decomposes the spatio-temporal attention modeling into temporal
modeling and spatial modeling. For temporal modeling, STAR considers each



512 C. Yu et al.

self-attention

F
C

(a) Temporal Transformer (b) Spatial Transformer

Fig. 3. STAR has two main components, Temporal Transformer and Spatial Trans-
former. (a) Temporal Transformer treats each pedestrians independently and extracts
the temporal dependencies by Transformer model (h is the embedding of pedestrian
positions, Q, K and V are the query, key, value matrix in Transformers). (b) Spatial
Transformer models the crowd as a graph, and applies TGConv, a Transformer-based
message passing graph convolution, to model the social interactions (mi→j is the mes-
sage from node i to j represented by Transformer attention)

pedestrian independently and applies a standard temporal Transformer network
to extract the temporal dependencies. The temporal Transformer provides a
better temporal dependency modeling protocol compared to RNNs, which we
validate in our ablation studies. For spatial modeling, we introduce TGConv,
a Transformer-based message passing graph convolution mechanism. TGConv
improves the state-of-the-art graph convolution methods with a better attention
mechanism and gives a better model for complex spatial interactions. In particu-
lar, TGConv tends to improve more on datasets with higher pedestrian densities
(ZARA1, ZARA2, UNIV) and complex interactions. We construct two encoder
modules, each including a pair of spatial and temporal Transformers, and stack
them to extract spatio-temporal interactions.

3.2 Problem Setup

We are interested in the problem of predicting future trajectories starting at
time step Tobs + 1 to T of total N pedestrians involved in a scene, given the
observed history during time steps 1 to Tobs. At each time step t, we have a
set of N pedestrians {pit}Ni=1, where pit = (xi

t, y
i
t) denotes the position of the

pedestrian in a top-down view map. We assume the pedestrian pairs (pit, p
j
t )

with distance less than d would have an undirected edge (i, j). This leads to an
interaction graph at each time step t: Gt = (Vt, Et), where Vt = {pit}Ni=1 and
Et = {(i, j) | i, j is connected at time t}. For each node i at time t, we define its
neighbor set as Nb(i, t), where for each node j ∈ Nb(i, t), et(i, j) ∈ Et.

3.3 Temporal Transformer

The temporal Transformer block in STAR uses a set of pedestrian trajectory
embeddings {hi

1}Ni=1, {hi
2}Ni=1, . . . , {hi

t}Ni=1 as input, and output a set of updated
embeddings {h′i

1}Ni=1, {h′i
2}Ni=1, . . . , {h′i

t}Ni=1 with temporal dependencies as out-
put, considering each pedestrian independently.
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The structure of a temporal Transformer block is given by Fig. 3(a). The
self-attention block first learns the query matrices {Qi}Ni=1, key matrix {Ki}Ni=1

and the value matrix {V i}Ni=1 given the inputs. For i-th pedestrian, we have

Qi = fQ({hi
j}tj=1), Ki = fK({hi

j}tj=1), V i = fV ({hi
j}tj=1) (3)

where fQ, fK and fV are the corresponding query, key and value functions
shared by pedestrians i = 1, . . . , N . We could parallel the computation for all
pedestrians, benefiting from the GPU acceleration.

We compute the attention for each single pedestrian separately, following
Eq. 1. Similarly, we have the multi-head attention (k heads) for pedestrian i
represented as

Att(Qi,Ki, V i) =
Softmax(QiKiT)√

dk
V i (4)

MultiHead(Qi,Ki, V i) = fO([headj ]
k
j=1) (5)

where headj = Attj(Qi,Ki, V i) (6)

where fO is a fully connected layer that merges the k heads and Attj indexes
the j-th head. The final embedding is generated by two skip connections and a
final fully connected layers, as shown in Fig. 3(a).

The temporal Transformer is a simple generalization of Transformer networks
to a data sequence set. We demonstrate in our experiment that Transformer
based architecture provides better temporal modeling.

3.4 Spatial Transformer

The spatial Transformer block extracts the spatial interaction among pedestri-
ans. We propose a novel Transformer based graph convolution, TGConv, for
message passing on a graph.

Our key observation is that the self-attention mechanism can be regarded as
message passing on an undirected fully connected graph. For a feature vector
hi of feature set {hi}ni=1, we can represent its corresponding query vector as
qi = fQ(hi), key vector as ki = fK(hi) and value vector as vi = fV (hi). We
define the message from node j to i in the fully connected graph as

mj→i = qTi kj (7)

and the attention function (Eq. 1) can be rewritten as

Att(Q,K, V ) =
Softmax

([
mj→i

]
i,j=1:n

)
√

dk
[vi]

n
i=1 (8)

Built upon the above insight, we introduce Transformer-based Graph Con-
volution (TGConv). TGConv is essentially an attention-based graph convolu-
tion mechanism, similar to GATConv [44], but with a better attention mech-
anism powered by Transformers. For an arbitrary graph G = (V,E) where
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Fig. 4. Network structure of STAR with application to trajectory prediction. In STAR,
trajectory prediction is achieved completely by attention mechanisms. STAR inter-
leaves spatial Transformer and temporal Transformer in two encoder blocks to extract
spatio-temporal pedestrian dependencies. An external read-writable graph memory
module helps to smooth the graph embeddings and improve the consistency of tem-
poral predictions. The prediction at Tobs + 1 is added back to history to predict the
pedestrian poses at Tobs + 2.

V = {1, 2, . . . , n} is the node set and E = {(i, j) | i, j is connected}. Assume
each node i is associated with an embedding hi and a neighbor set Nb(i). The
graph convolution operation for node i is written as

Att(i) =
Softmax

([
mj→i

]
j∈Nb(i)

⋃{i}
)

√
dk

[vj ]
T
j∈Nb(i)

⋃{i} + hi (9)

h′
i = fout(Att(i)) + Att(i) (10)

where fout is the output function, in our case, a fully connected layer, and h′
i is

the updated embedding of node i by TGConv. We summarize the TGConv func-
tion for node i by TGConv(hi). In a Transformer structure, we would normally
apply layer normalization [2] after each skip connection in the above equations.
We ignored them in the equations for a clean notation.

The spatial Transformer, as shown in Fig. 3(b), can be easily implemented
by the TGConv. A TGConv with shared weights is applied to each graph Gt

separately. We believe TGConv is general and can be applied to other tasks and
we leave it for future study.

3.5 Spatio-Temporal Graph Transformer

In this section, we introduce the Spatio-Temporal grAph tRansformer (STAR)
framework for pedestrian trajectory prediction.

Temporal transformer can model the motion dynamics of each pedestrian
separately, but fails to incorporate spatial interactions; spatial Transformer tack-
les crowd interaction with TGConv but can be hard to generalize to temporal
sequences. One major challenge of pedestrian prediction is modeling coupled
spatio-temporal interaction. The spatial and temporal dynamics of a pedestrian
is tightly dependent on each other. For example, when one decides her next
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action, one would first predict the future motions of her neighbors, and choose
an action that avoids collision with others in a time interval Δt.

STAR addresses the coupled spatio-temporal modeling by interleaving the
spatial and temporal Transformers in a single framework. Figure 4 shows the net-
work structure of STAR. STAR has two encoder modules and a simple decoder
module. The input to the network is the pedestrian position sequences from
t = 1 to t = Tobs, where the pedestrian positions at time step t is denoted by
{pit}Ni=1 with pit = (xi

t, y
i
t). In the first encoder, we embed the positions by two

separate fully connected layers and pass the embeddings to spatial Transformer
and Temporal Transformer, to extract independent spatial and temporal infor-
mation from the pedestrian history. The spatial and temporal features are then
merged by a fully connected layer, which gives a set of new features with spatio-
temporal encodings. To further model spatio-temporal interaction in the feature
space, we perform post-processing of the features with the second encoder mod-
ule. In encoder 2, spatial Transformer models spatial interaction with temporal
information; the temporal Transformer enhances the output spatial embeddings
with temporal attentions. STAR predicts the pedestrians positions at t = Tobs+1
using a simple fully connected layer with the t = Tobs embeddings from the sec-
ond temporal Transformer as input, concatenated with a random Gaussian noise
to generate various future predictions [21]. We construct GTobs+1 by connecting
the nodes with distance smaller than d according to the predicted positions. The
prediction is added to the history for the next step prediction.

The STAR architecture significantly improves the spatio-temporal modeling
ability compared to naively combining spatial and temporal Transformers.

3.6 External Graph Memory

Although Transformer networks improve long-horizon sequence modeling by self-
attention mechanism, it would potentially have difficulties handling continuous
time-series data which requires a strong temporal consistency [29]. Temporal
consistency, however, is a strict requirement for trajectory prediction, because
pedestrian positions normally would not change sharply during a short period.

We introduce a simple external graph memory to tackle this dilemma.
A graph memory M1:T is read-writable and learnable, where Mt(i) has the
same size with hi

t and memorizes the embeddings of pedestrian i. At time
step t, in encoder 1, the temporal Transformer first reads from memory M
the past graph embeddings with function {h̃i

1, h̃
i
2, . . . , h̃

i
t−1}Ni=1 = fread(M)

and concatenate it with the current graph embedding {hi
t}Ni=1. This allows

the Temporal Transformers to condition current embeddings on the previ-
ous embedding for a consistent prediction. In encoder 2, we write the output
{h′i

1, h
′i
2, . . . , h

′i
t}Ni=1 of Temporal Transformer to the graph memory by func-

tion M ′ = fwrite({h′i
1, h

′i
2, . . . , h

′i
t}Ni=1,M), which performs a smoothing over

the time series data. For any t′ < t, the embeddings will be updated by the
information from t′′ > t, which gives temporally smoother embeddings for a
more consistent trajectory.
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For implementing fread and fwrite, many potential function forms could be
adopted. In this paper, we only consider a very simple strategy

{h̃i
1, h̃

i
2, . . . , h̃

i
t−1}Ni=1 = fread(M) = {M1(i),M2(i), . . . , Mt−1(i)}Ni=1 (11)

M ′ = fwrite({h′i
1, h

′i
2, . . . , h

′i
t}Ni=1,M) = {h′i

1, h
′i
2, . . . , h

′i
t}Ni=1 (12)

that is, we directly replace the memory with the embeddings and copy the mem-
ory to generate the output. This simple strategy works well in practice. More
complicated functional form of fread and fwrite could be considered, e.g., fully
connected layers or RNNs. We leave this for future study.

4 Experiments

In this section, we first report our results on five pedestrian trajectory datasets
which serve as the major benchmark for the task of trajectory prediction: ETH
(ETH and HOTEL) and UCY (ZARA1, ZARA2, and UNIV) datasets. We com-
pare STAR to 9 trajectory predictors, including the SOTA model, SR-LSTM [52].
We follow the leave-one-out cross-validation evaluation strategy which is com-
monly adopted by previous works. We also perform extensive ablation studies
to understand the effect of each proposed component and try to provide deeper
insights for model design in the trajectory prediction task.

As a brief conclusion, we show that: 1) STAR outperforms the SOTA model
on 4 out of 5 datasets and have a comparable performance to the SOTA model on
the other dataset; 2) the spatial Transformer improves crowd interaction mod-
eling compared to existing graph convolution methods; 3) the temporal Trans-
former generally improves the LSTM; 4) the graph memory gives a smoother
temporal prediction and a better performance.

4.1 Experiment Setup

We follow the same data prepossessing strategy as SR-LSTM [52] for our method.
The origin of all the input is shifted to the last observation frame. Random
rotation is adopted for data augmentation.

– Average Displacement Error (ADE): the mean square error (MSE) overall
estimated positions in the predicted trajectory and ground-truth trajectory.

– Final Displacement Error (FDE): the distance between the predicted final
destination and the ground-truth final destination.

We take 8 frames (3.2s) as an sequence and 12 frames(4.8s) as the target sequence
for prediction to have a fair comparison with all the existing works.
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4.2 Implementation Details

Coordinates as input would be first encoded into a vector in size of 32 by a
fully connected layer followed with ReLU activation. The dropout ratio at 0.1
is applied when processing the input data. All the transformer layers accept
input with feature size at 32. Both spatial transformer and temporal transformer
consists of encoding layers with 8 heads. We performed a hyper-parameter search
over the learning rate, from 0.0001 to 0.004 with interval 0.0001 on a smaller
network and choose the best-performed learning rate (0.0015) to train all the
other models. As a result, we train the network using Adam optimizer with a
learning rate of 0.0015 and batch size 16 for 300 epochs. Each batch contains
around 256 pedestrians in different time windows indicated by an attention mask
to accelerate the training and inference process.

4.3 Baselines

We compare STAR with a wide range of baselines, including: 1) LR: A simple
temporal linear regressor; 2) LSTM: a vanilla temporal LSTM; 3) S-LSTM [1]:
each pedestrian is modeled with an LSTM, and the hidden state is pooled with
neighbors at each time-step; 4) Social Attention [45]: it models the crowd as
a spatio-temporal graph and uses two LSTMs to capture spatial and temporal
dynamics; 5) CIDNN [48]: a modularized approach for spatio-temporal crowd
trajectory prediction with LSTMs; 6) SGAN [16]: a stochastic trajectory predic-
tor with GANs; 7) SoPhie [40]: one of the SOTA stochastic trajectory predictors
with LSTMs. 8) TrafficPredict [38]: LSTM-based motion predictor for heteroge-
neous traffic agents. Note that TrafficPredict in [38] reports isometrically nor-
malized results. We scale them back for a consistent comparison; 9) SR-LSTM:
the SOTA trajectory predictor with motion gate and pair-wise attention to refine
the hidden state encoded by LSTM to obtain social interactions.

4.4 Quantitative Results and Analyses

We compare STAR with state-of-the-art approaches as mentioned in Sect. 4.3. All
the stochastic method samples 20 times and reports the best-performed sample.

The main results are presented in Table 1. We observe that STAR-D outper-
forms SOTA deterministic models on the overall performance, and the stochastic
STAR significantly outperforms all SOTA models by a large margin.

One interesting finding is that the simple model LR significantly outperforms
many deep learning approaches including the SOTA model, SR-LSTM, in the
HOTEL scene, which mostly contains straight-line trajectories and is relatively
less crowded. This indicates that these complex models might overfit to those
complex scenes like UNIV. Another example is that STAR significantly outper-
forms SR-LSTM on ETH and HOTEL, but is only comparable to SR-LSTM on
UNIV, where the crowd density is high. This can potentially be explained by
that SR-LSTM has a well-designed gated-structure for message passing on the
graph, but has a relatively weak temporal model, a single LSTM. The design of
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SR-LSTM potentially improves spatial modeling but might also lead to overfit-
ting. In contrast, our approach performs well in both simple and complex scenes.
We then will further demonstrate this in Sect. 4.5 with visualized results.

Table 1. Comparison with baselines models. STAR-D denotes the deterministic version
of STAR. †: The results marked with † are calculated on 20 samples since they are
stochastic models. ∗: SoPhie takes extra image input.

Deterministic Performance (ADE/FDE)

ETH HOTEL ZARA1 ZARA2 UNIV AVERAGE

LR 1.33/2.94 0.39/0.72 0.62/1.21 0.77/1.48 0.82/1.59 0.79/1.59

LSTM 1.13/2.39 0.69/1.47 0.64/1.43 0.54/1.21 0.73/1.60 0.75/1.62

S-LSTM [1] 0.77/1.60 0.38/0.80 0.51/1.19 0.39/0.89 0.58/1.28 0.53/1.15

CIDNN [48] 1.25/2.32 1.31/1.86 0.90/1.28 0.50/1.04 0.51/1.07 0.89/1.73

SocialAttention [45] 1.39/2.39 2.51/2.91 1.25/2.54 1.01/2.17 0.88/1.75 1.41/2.35

TrafficPredict [38] 5.46/9.73 2.55/3.57 4.32/8.00 3.76/7.20 3.31/6.37 3.88/6.97

SR-LSTM [52] 0.63/1.25 0.37/0.74 0.41/0.90 0.32/0.70 0.51/1.10 0.45/0.94

STAR-D 0.56/1.11 0.26/0.50 0.41/0.90 0.31/0.71 0.52/1.15 0.41/0.87

Stochastic ETH HOTEL ZARA1 ZARA2 UNIV AVERAGE

SGAN† [16] 0.81/1.52 0.72/1.61 0.34/0.69 0.42/0.84 0.60/1.26 0.58/1.18

SoPhie*† [40] 0.70/1.43 0.76/1.67 0.30/0.63 0.38/0.78 0.54/1.24 0.54/1.15

STGAT† [21] 0.65/1.12 0.35/0.66 0.34/0.69 0.29/0.60 0.52/1.10 0.43/0.83

STAR† 0.36/0.65 0.17/0.36 0.26/0.55 0.22/0.46 0.31/0.62 0.26/0.53

4.5 Qualitative Results and Analyses

We present our qualitative results in Fig. 5 and Fig. 6.

– STAR is able to predict temporally consistent trajectories. In Fig. 5(a), STAR
successfully captures the intention and velocity of the single pedestrian, where
no social interaction exists.

– STAR successfully extracts the social interaction of the crowd. We visualize
the attention values of the second spatial Transformer in Fig. 6. We notice
that pedestrians are paying high attention to themselves and the neighbors
who might potentially collide with them, e.g., Fig. 6(c) and (d); less attention
is paid to spatially far away pedestrians and pedestrians without conflict of
intentions, e.g., Fig. 6(a) and (b).

– STAR is able to capture spatio-temporal interaction of the crowd. In Fig. 5(b),
we can see that the prediction of pedestrian considers the future motions of
their neighbors. In addition, STAR better balances the spatial modeling and
temporal modeling, compared to SR-LSTM. SR-LSTM potentially overfits on
the spatial modeling and often tends to predict curves even when pedestrians
are walking straight. This also corresponds to our findings in the quantitative
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Fig. 5. Trajectory visualization. STAR successfully models the spatio-temporal inter-
action of the crowd and makes better predictions than the SOTA model, SR-LSTM.
(a) STAR accurately extracts the temporal dynamics of the agent; (b, c, d) STAR is
able to model crowd interaction and spatio-temporal interactions.

(a) (b) (c) (d)

Fig. 6. Attention visualization of the spatial Transformer in encoder 2. We visualize
the attention of all pedestrians with respect to the red dotted pedestrian. The size
of circles represents the attention value and bigger circles indicate higher attention.
STAR learns reasonable spatial attention, the pedestrians have higher attentions over
themselves and their neighbors.

analyses section, that deep predictors overfits onto complex datasets. STAR
better alleviates this issue with the spatial-temporal Transformer structure.

– Auxiliary information is required for more accurate trajectory prediction.
Although STAR achieves the SOTA results, prediction can be still inaccu-
rate occasionally, e.g., Fig. 5(d). The pedestrian takes a sharp turn, which
makes it impossible to predict future trajectory purely based on the history
of locations. For future work, additional information, e.g., environment setup
or map, should be used to provide extra information for prediction.

4.6 Ablation Studies

We conduct extensive ablation studies on all 5 datasets to understand the influ-
ence of each STAR component. Specifically, we choose deterministic STAR to
remove the influence of random sample and focus on the effect of the proposed
components. The results are presented in Table 2.

– The temporal Transformer improves the temporal modeling of pedestrian
dynamics compared to RNNs. In (4) and (5), we remove the graph mem-
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Table 2. Ablation Study on SR-LSTM. We replace components in STAR with existing
works. SP denotes spaital encoder. TP denotes temporal encoder. GM denotes Graph
Memory. GAT denotes Graph Attention Network [44], MHA denotes Multi-Head
Additive attention [5].STAR denotes components in original STAR. VSTAR denotes
simplified STAR without encoder2.

Components Performance (ADE/FDE)

SP TP GM ETH HOTEL ZARA1 ZARA2 UNIV AVG

(1) GCN STAR � 3.06/5.57 0.99/1.80 2.49/4.58 1.37/2.52 1.38/2.47 1.86 /3.34

(2) GAT STAR � 0.64/1.25 0.34/0.72 0.47/1.09 0.37/0.86 0.55/1.19 0.48/1.02

(3) MHA STAR � 0.58/1.15 0.25/0.48 0.50/0.98 0.35/0.76 0.60/1.24 0.56/0.92

(4) STAR LSTM - 0.66/1.29 0.34/0.68 0.45/0.96 0.34/0.74 0.60/1.29 0.48/0.99

(5) STAR STAR × 0.60/1.18 0.28/0.60 0.53/1.13 0.36/0.76 0.57/1.20 0.47/0.97

(6) VSTAR VSTAR � 0.61/1.18 0.29/0.56 0.48/1.00 0.36/0.76 0.58/1.24 0.46/0.95

(7) STAR STAR � 0.56/1.11 0.26/0.50 0.41/0.90 0.31/0.71 0.52/1.15 0.41/0.87

ory and fix the STAR for spatial encoding. The temporal prediction ability
of these two models is only dependent on their temporal encoders, LSTM for
(4) and STAR for (5). We observe that the model with temporal Transformer
encoding outperforms LSTM in its overall performance, which suggests that
Transformers provide a better temporal modeling ability compared to RNNs.

– TGConv outperforms the other graph convolution methods on crowd motion
modeling. In (1), (2), (3) and (7), we change the spatial encoders and compare
the spatial Transformer by TGConv (7) with the GCN [24], GATConv [44]
and the multi-head additive graph convolution [5]. We observe that TGConv,
under the scenario of crowd modeling, achieves higher performance gain com-
pared to the other two alternative attention-based graph convolutions.

– Interleaving spatial and temporal Transformer is able to better extract spatio-
temporal correlations. In (6) and (7), we observe that the two encoder struc-
tures proposed in the STAR framework (7), generally outperforms the single
encoder structure (6). This empirical performance gain potentially suggests
that interleaving the spatial and temporal Transformers is able to extract
more complex spatio-temporal interactions of pedestrians.

– Graph memory gives a smoother temporal embedding and improves perfor-
mance. In (5) and (7), we verify the embedding smoothing ability of the graph
memory module, where (5) is the STAR variant without GM. We first noticed
that graph memory improves the performance of STAR on all datasets. In
addition, we noticed that on ZARA1, where the spatial interaction is sim-
ple and temporal consistency prediction is more important, graph memory
improves (6) to (7) by the largest margin. According to the empirical evi-
dence, we can conclude that the embedding smoothing of graph memory is
able to improve the overall temporal modeling for STAR.
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5 Conclusion

We have introduced STAR, a framework for spatio-temporal crowd trajectory
prediction with only attention mechanisms. STAR consists of two encoder mod-
ules, composed of spatial Transformers and temporal Transformers. We also
have introduced TGConv, a novel powerful Transformer based graph convolu-
tion mechanism. STAR, using only attention mechanisms, achieves SOTA per-
formance on 5 commonly used datasets.

STAR makes prediction only with the past trajectories, which might fail to
detect the unpredictable sharp turns. Additional information, e.g., environment
configuration, could be incorporated into the framework to solve this issue.

STAR framework and TGConv are not limited to trajectory prediction. They
can be applied to any graph learning task. We leave it for future study.
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