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Abstract. We present a model-agnostic post-processing scheme to
improve the boundary quality for the segmentation result that is gen-
erated by any existing segmentation model. Motivated by the empirical
observation that the label predictions of interior pixels are more reliable,
we propose to replace the originally unreliable predictions of boundary
pixels by the predictions of interior pixels. Our approach processes only
the input image through two steps: (i) localize the boundary pixels and
(ii) identify the corresponding interior pixel for each boundary pixel. We
build the correspondence by learning a direction away from the boundary
pixel to an interior pixel. Our method requires no prior information of
the segmentation models and achieves nearly real-time speed. We empir-
ically verify that our SegFix consistently reduces the boundary errors for
segmentation results generated from various state-of-the-art models on
Cityscapes, ADE20K and GTA5. Code is available at: https://github.
com/openseg-group/openseg.pytorch.

Keywords: Semantic segmentation · Instance segmentation ·
Boundary refinement · Model agnostic

1 Introduction

The task of semantic segmentation is formatted as predicting the semantic
category for each pixel in an image. Based on the pioneering fully convolu-
tional network [46], previous studies have achieved great success as reflected by
increasing the performance on various challenging semantic segmentation bench-
marks [7,16,68].

Y. Yuan and J. Xie—Equal contribution.

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-58610-2 29) contains supplementary material, which is
available to authorized users.

c© Springer Nature Switzerland AG 2020
A. Vedaldi et al. (Eds.): ECCV 2020, LNCS 12357, pp. 489–506, 2020.
https://doi.org/10.1007/978-3-030-58610-2_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58610-2_29&domain=pdf
https://github.com/openseg-group/openseg.pytorch
https://github.com/openseg-group/openseg.pytorch
https://doi.org/10.1007/978-3-030-58610-2_29
https://doi.org/10.1007/978-3-030-58610-2_29
https://doi.org/10.1007/978-3-030-58610-2_29


490 Y. Yuan et al.

Fig. 1. Qualitative analysis of the segmentation error maps. The 1st column presents
the ground-truth segmentation maps, and the 2nd/3rd/4th column presents the error
maps of DeepLabv3/HRNet/Gated-SCNN separately. These examples are cropped
from Cityscapes val set. We can see that there exist many errors along the thin bound-
ary for all three methods.

Most of the existing works mainly addressed semantic segmentation through
(i) increasing the resolution of feature maps [12,13,54], (ii) constructing more
reliable context information [23,27,28,39,62–65] and (iii) exploiting boundary
information [5,9,44,55]. In this work, we follow the 3rd line of work and focus on
improving segmentation result on the pixels located within the thinning bound-
ary1 via an effective model-agnostic boundary refinement mechanism.

Our work is mainly motivated by the observation that most of the existing
state-of-the-art segmentation models fail to deal well with the error predictions
along the boundary. We illustrate some examples of the segmentation error maps
with DeepLabv3 [12], Gated-SCNN [55] and HRNet [54] in Fig. 1. More specif-
ically, we illustrate the statistics on the numbers of the error pixels vs. the
distances to the object boundaries in Fig. 2. We can observe that, for all three
methods, the number of error pixels significantly decrease with larger distances
to the boundary. In other words, predictions of the interior pixels are more
reliable.

We propose a novel model-agnostic post-processing mechanism to reduce
boundary errors by replacing labels of boundary pixels with the labels of corre-
sponding interior pixels for a segmentation result. We estimate the pixel corre-
spondences by processing the input image (without exploring the segmentation
result) with two steps. The first step aims to localize the pixels along the object
boundaries. We follow the contour detection methods [2,4,21] and simply use a
convolutional network to predict a binary mask indicating the boundary pixels.
In the second step, we learn a direction away from the boundary pixel to an
interior pixel and identify the corresponding interior pixel by moving from the

1 In this paper, we treat the pixels with neighboring pixels belonging to different
categories as the boundary pixels. We use the distance transform to generate the
ground-truth boundary map with any given width in our implementation.
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(a) DeepLabv3 [12]
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(b) HRNet [54]
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(c) Gated-SCNN [55]

Fig. 2. Histogram statistics of errors: the number of error pixels vs. their (Euclidean)
distances to the boundaries on Cityscapes val based on DeepLabv3/HRNet/Gated-
SCNN. We can see that pixels with larger distance tend to be well-classified with
higher probability and there exist many errors distributing within ∼ 5 pixels width
along the boundary.

boundary pixel along the direction by a certain distance. Especially, our SegFix
can reach nearly real-time speed with high resolution inputs.

Our SegFix is a general scheme that consistently improves the performance
of various segmentation models across multiple benchmarks without any prior
information. We evaluate the effectiveness of SegFix on multiple semantic seg-
mentation benchmarks including Cityscapes, ADE20K and GTA5. We also
extend SegFix to instance segmentation task on Cityscapes. According to the
Cityscapes leaderboard, “HRNet + OCR + SegFix” and “PolyTransform + Seg-
Fix” achieve 84.5% and 41.2%, which rank the 1st and 2nd place on the semantic
and instance segmentation track separately by the ECCV 2020 submission dead-
line.

2 Related Work

Distance/Direction Map for Segmentation: Some recent work [3,25,56]
performed distance transform to compute distance maps for instance segmenta-
tion task. For example, [3,25] proposed to train the model to predict the trun-
cated distance maps within each cropped instance. The other work [6,10,17,51]
proposed to regularize the semantic or instance segmentation predictions with
distance map or direction map in a multi-task mechanism. Compared with the
above work, the key difference is that our approach does not perform any segmen-
tation predictions and instead predicts the direction map from only the image,
and then we refine the segmentation results of the existing approaches.

Level Set for Segmentation: Many previous efforts [8,31,50] have used the
level set approach to address the semantic segmentation problem before the era
of deep learning. The most popular formulation of level set is the signed distance
function, with all the zero values corresponding to predicted boundary positions.
Recent work [1,14,33,56] extended the conventional level-set scheme to deep
network for regularizing the boundaries of predicted segmentation map. Instead
of representing the boundary with a level set function directly, we implicitly
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Fig. 3. Illustrating the SegFix framework: In the training stage, we first send the input
image into a backbone to predict a feature map. Then we apply a boundary branch
to predict a binary boundary map and a direction branch to predict a direction map
and mask it with the binary boundary map. We apply boundary loss and direction loss
on the predicted boundary map and direction map separately. In the testing stage, we
first convert the direction map to offset map and then refine the segmentation results
of any existing methods according to the offset map.

encode the relative distance information of the boundary pixels with a boundary
map and a direction map.

DenseCRF for Segmentation: Previous work [11,41,58,67] improved their
segmentation results with the DenseCRF [36]. Our approach is also a kind of
general post processing scheme while being simpler and more efficient for usage.
We empirically show that our approach not only outperforms but also is com-
plementary with the DenseCRF.

Refinement for Segmentation: Extensive studies [22,24,29,37,38] have pro-
posed various mechanisms to refine the segmentation maps from coarse to fine.
Different from most of the existing refinement approaches that depend on the
segmentation models, to the best of our knowledge, our approach is the first
model-agnostic segmentation refinement mechanism that can be applied to refine
the segmentation results of any approach without any prior information.

Boundary for Segmentation: Some previous efforts [1,45,59,60] focused
on localizing semantic boundaries. Other studies [5,18–20,32,43,44,55] also
exploited the boundary information to improve the segmentation. For example,
BNF [5] introduced a global energy model to consider the pairwise pixel affini-
ties based on the boundary predictions. Gated-SCNN [55] exploited the duality
between the segmentation predictions and the boundary predictions with a two-
branch mechanism and a regularizer.

These methods [5,18,32,55] are highly dependent on the segmentation mod-
els and require careful re-training or fine-tuning. Different from them, SegFix
does not perform either segmentation prediction or feature propagation and we
instead refine the segmentation maps with an offset map directly. In other words,
we only need to train a single unified SegFix model once w/o any further fine-
tuning the different segmentation models (across multiple different datasets).
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We also empirically verify that our approach is complementary with the above
methods, e.g., Gated-SCNN [55] and Boundary-Aware Feature Propagation [18].

Guided Up-Sampling Network: The recent work [47,48] performed a seg-
mentation guided offset scheme to address boundary errors caused by the bi-
linear up-sampling. The main difference is that they do not apply any explicit
supervision on their offset maps and require re-training for different models,
while we apply explicit semantic-aware supervision on the offset maps and our
offset maps can be applied to various approaches directly without any re-training.
We also empirically verify the advantages of our approach.

3 Approach

3.1 Framework

The overall pipeline of SegFix is illustrated in Fig. 3. We first train a model
to pick out boundary pixels (with the boundary maps) and estimate their cor-
responding interior pixels (with offsets derived from the direction maps) from
only the image. We do not perform segmentation directly during training. We
apply this model to generate offset maps from the images and use the offsets to
get the corresponding pixels which should mostly be the more confident interior
pixels, and thereby refine segmentation results from any segmentation model.
We mainly describe SegFix scheme for semantic segmentation and we illustrate
the details for instance segmentation in the Appendix E.

Training Stage. Given an input image I of shape H × W × 3, we first use a
backbone network to extract a feature map X, and then send X in parallel to (1)
the boundary branch to predict a binary map B, with 1 for the boundary pixels
and 0 for the interior pixels, and (2) the direction branch to predict a direction
map D with each element storing the direction pointing from the boundary pixel
to the interior pixel. The direction map D is then masked by the binary map B
to yield the input for the offset branch.

For model training, we use a binary cross-entropy loss as the boundary loss
on B and a categorical cross-entropy loss as the direction loss on D separately.

Testing Stage. Based on the predicted boundary map B and direction map D,
we apply the offset branch to generate a offset map ΔQ. A coarse label map L
output by any semantic segmentation model will be refined as:

˜Lpi
= Lpi+Δqi

, (1)

where ˜L is refined label map, pi represents the coordinate of the boundary pixel
i, Δqi is the generated offset vector pointing to an interior pixel, which is indeed
an element of ΔQ. pi + Δqi is the position of the identified interior pixel.
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Coarse Label Map Offset Map

0 0 0 0 0
1 1 1 0 0
1 1 1 1 1
0 1 1 1 1
0 0 0 0 0

Refined Label Map
← ← → → 0 0 0 0 0
← ← → → 0 0 0 0 0
← ← ↗ ↗ 0 0 0 0 0
↓ ↓ ↑ ↗ ↗ 0 0 0 0
↓ ↙ ↓ ↗ ↗ ↑ ↑ ↑ ↑

0 ↙ ↓ ↗ ↑ ↑ ↑ ↑ ↑

0 ↙ ↓ ↓ ↓ ↓ ↓ ↓ ↓

0 0 ↙ ↓ ↓ ↓ ↓ ↓ ↓

0 0 0 0 0 0 0 0 0

Refinement

Fig. 4. Illustrating the refinement mechanism of our approach: we refine the coarse
label map based on the offset map by replacing the labels of boundary pixels with
the labels of (more) reliable interior pixels. We represent different offset vectors with
different arrows. We mark the error positions in the coarse label map with � and the
corresponding corrected positions in the refined label map with �. For example, the
top-most error pixel (class road) in the coarse label map is associated with a direction
→. We use the label (class car) of the updated position based on offset (1, 0) as the
refined label. Only one-step shifting based on the offset map already refines several
boundary errors.

Considering that there might be some “fake” interior pixels 2 when the
boundary is thick, we propose two different schemes as following: (i) re-scaling
all the offsets by a factor, e.g., 2. (ii) iteratively applying the offsets (of the
“fake” interior pixels) until finding an interior pixel. We choose (i) by default for
simplicity as their performance is close.

During testing stage, we only need to generate the offset maps on test set for
once, and could apply the same offset maps to refine the segmentation results
from any existing segmentation model without requiring any prior information.
In general, our approach is agnostic to any existing segmentation models.

3.2 Network Architecture

Backbone. We adopt the recently proposed high resolution network
(HRNet) [54] as backbone, due to its strengths at maintaining high resolution
feature maps and our need to apply full-resolution boundary maps and direc-
tion maps to refine full-resolution coarse label maps. Besides, we also modify
HRNet through applying a 4 × 4 deconvolution with stride 2 on the final out-
put feature map of HRNet to increase the resolution by 2×, which is similar
to [15], called Higher-HRNet. We directly perform the boundary branch and the
direction branch on the output feature map with the highest resolution. The
resolution is H

s × W
s × D, where s = 4 for HRNet and s = 2 for Higher-HRNet.

We empirically verify that our approach consistently improves the coarse seg-
mentation results for all variations of our backbone choices in Sect. 4.2, e.g.,
HRNet-W18 and HRNet-W32.

2 We use “fake” interior pixels to represent pixels (after offsets) that still lie on the
boundary when the boundary is thick. Notably, we identify an pixel as interior
pixel/boundary pixel if its value in the predicted boundary map B is 0/1.
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(a) Illustrating the directions → offsets.
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(b) Ground-truth generation procedure.

Fig. 5. (a) We divide the entire direction value range [0◦, 360◦) to m partitions or
categories (marked with different colors), For example, when m = 4, we have [0◦, 90◦),
[90◦, 180◦), [180◦, 270◦) and [270◦, 360◦) correspond to 4 different categories separately.
The above 4 direction categories correspond to offsets (1, 1), (−1, 1), (−1, −1) and
(1, −1) respectively. The situation for m = 8 is similar. (b) Binary maps → Distance
maps → Direction maps. The ground-truth binary maps are of category car, road
and side-walk. We first apply distance transform on each binary map to compute the
ground-truth distance maps. Then we use Sobel filter on the distance maps to com-
pute the ground-truth direction maps. We choose different colors to represent different
distance values or the direction values. (Color figure online)

Boundary Branch/Loss. We implement the boundary branch as 1×1 Conv →
BN → ReLU with 256 output channels. We then apply a linear classifier (1 ×
1 Conv) and up-sample the prediction to generate the final boundary map B of
size H ×W ×1. Each element of B records the probability of the pixel belonging
to the boundary. We use binary cross-entropy loss as the boundary loss.

Direction Branch/Loss. Different from the previous approaches [1,3] that per-
form regression on continuous directions in [0◦, 360◦) as the ground-truth, our
approach directly predicts discrete directions by evenly dividing the entire direc-
tion range to m partitions (or categories) as our ground-truth (m = 8 by default).
In fact, we empirically find that our discrete categorization scheme outperforms
the regression scheme, e.g., mean squared loss in the angular domain [3], mea-
sured by the final segmentation performance improvements. We illustrate more
details for the discrete direction map in Sect. 3.3.

We implement the direction branch as 1 × 1 Conv → BN → ReLU with 256
output channels. We further apply a linear classifier (1×1 Conv) and up-sample
the classifier prediction to generate the final direction map D of size H ×W ×m.
We mask the direction map D by multiplying by the (binarized) boundary map
B to ensure that we only apply direction loss on the pixels identified as boundary
by the boundary branch. We use the standard category-wise cross-entropy loss
to supervise the discrete directions in this branch.

Offset Branch. The offset branch is used to convert the predicted direction map
D to the offset map ΔQ of size H×W ×2. We illustrate the mapping mechanism
in Fig. 5 (a). For example, the “upright” direction category (corresponds to the
value within range [0◦, 90◦)) will be mapped to offset (1, 1) when m = 4.
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Table 1. Improvements with ground-truth boundary offset on Cityscapes val. We
report both the segmentation performance mIoU and the boundary performance
F-score (1px width).

Metric Method w/o SegFix w/ SegFix

m = 4 m = 8

mIoU DeepLabv3 (Our impl.) 79.5 82.6 (+3.1) 82.4 (+2.9)

HRNet-W48 (Our impl.) 81.1 84.1 (+3.0) 84.1 (+3.0)

Gated-SCNN (Our impl.) 81.0 84.2 (+3.2) 84.1 (+3.1)

F-score DeepLabv3 (Our impl.) 56.6 68.6 (+12.0) 68.4 (+11.8)

HRNet-W48 (Our impl.) 62.4 73.8 (+11.4) 73.8 (+11.4)

Gated-SCNN (Our impl.) 61.4 72.3 (+10.9) 72.3 (+10.9)

Last, we generate the refined label map through shifting the coarse label map
with the grid-sample scheme [30]. The process is shown in Fig. 4.

3.3 Ground-Truth Generation and Analysis

There may exist many different mechanisms to generate ground-truth for the
boundary maps and the direction maps. In this work, we mainly exploit the
conventional distance transform [34] to generate ground-truth for both semantic
segmentation task and the instance segmentation task.

We start from the ground-truth segmentation label to generate the ground-
truth distance map, followed by boundary map and direction map. Figure 5 (b)
illustrates the overall procedure.

Distance Map. For each pixel, our distance map records its minimum
(Euclidean) distance to the pixels belonging to other object category. We illus-
trate how to compute the distance map as below.

First, we decompose the ground-truth label into K binary maps associated
with different semantic categories, e.g., car, road, sidewalk. The kth binary map
records the pixels belonging to the kth semantic category as 1 and 0 otherwise.
Second, we perform distance transform [34]3 on each binary map independently
to compute the distance map. The element of kth distance map encodes the
distance from a pixel belonging to kth category to the nearest pixel belonging
to other categories. Such distance can be treated as the distance to the object
boundary. We compute a fused distance map through aggregating all the K
distance maps.

Note that the values in our distance map are (always positive) different from
the conventional signed distances that represent the interior/exterior pixels with
positive/negative distances separately.

3 We use scipy.ndimage.morphology.distance transform textttedt in implementa-
tion.
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Boundary Map. As the fused distance map represents the distances to the
object boundary, we can construct the ground-truth boundary map through
setting all the pixels with distance value smaller than a threshold γ as boundary4.
We empirically choose small γ value, e.g., γ = 5, as we are mainly focused on
the thin boundary refinement.

Direction Map. We perform the Sobel filter (with kernel size 9 × 9) on the K
distance maps independently to compute the corresponding K direction maps
respectively. The Sobel filter based direction is in the range [0◦, 360◦), and each
direction points to the interior pixel (within the neighborhood) that is furthest
away from the object boundary. We divide the entire direction range to m cat-
egories (or partitions) and then assign the direction of each pixel to the cor-
responding category. We illustrate two kinds of partitions in Fig. 5 (a) and we
choose the m = 8 partition by default. We apply the evenly divided direction
map as our ground-truth for training. Besides, we also visualize some examples
of direction map in Fig. 5 (b).

Empirical Analysis. We apply the generated ground-truth on the segmen-
tation results of three state-of-the-art methods including DeepLabv3 [12],
HRNet [54] and Gated-SCNN [55] to investigate the potential of our approach.
Specifically, we first project the ground-truth direction map to offset map and
then refine the segmentation results on Cityscapes val based on our generated
ground-truth offset map. Table 1 summarizes the related results. We can see that
our approach significantly improves both the overall mIoU and the boundary F-
score. For example, our approach (m = 8) improves the mIoU of Gated-SCNN
by 3.1%. We may achieve higher performance through re-scaling the offsets for
different pixels adaptively, which is not the focus of this work.

Discussion. The key condition for ensuring the effectiveness of our approach is
that segmentation predictions of the interior pixels are more reliable empirically.
Given accurate boundary maps and direction maps, we could always improve
the segmentation performance in expectation. In other words, the segmentation
performance ceiling of our approach is also determined by the interior pixels’
prediction accuracy.

4 Experiments: Semantic Segmentation

4.1 Datasets and Implementation Details

Cityscapes. [16] is a real-world dataset that consists of 2, 975/500/1, 525 images
with resolution 2048 × 1024 for training/validation/testing respectively, which
contains 19/8 semantic categories for semantic/instance segmentation task.

ADE20K. [68] is a very challenging benchmark consisting of around
20, 000/2, 000 images for training/validation respectively. The dataset contains
150 fine-grained semantic categories.
4 We define the boundary pixels and interior pixels based on their distance values.
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Table 2. Influence of backbones. The runtime is tested with an input image of reso-
lution 2048 × 1024 on a single V100 GPU (PyTorch1.4 + TensorRT). SegFix reaches
real-time speed with light-weight backbone, e.g., HRNet-W18 or HRNet-W32.

Backbone #param (M) Runtime (ms) Mask F-score Direction accuracy mIoU� F-score�
HRNet-W18 9.6 16 71.44 64.44 +0.8 +3.7

HRNet-W32 29.4 20 72.24 65.10 +0.9 +3.9

Higher-HRNet 47.3 69 73.67 66.87 +1.0 +4.4

GTA5. [52] is a synthetic dataset that consists of 12, 402/6, 347/6, 155 images
with resolution 1914 × 1052 for training/validation/testing respectively. The
dataset contains 19 semantic categories which are compatible with Cityscapes.

Implementation Details. We perform the same training and testing settings
on Cityscapes and GTA5 benchmarks as follow. We set the initial learning rate
as 0.04, weight decay as 0.0005, crop size as 512 × 512 and batch size as 16,
and train for 80K iterations. For the ADE20K benchmark, we set the initial
learning as 0.02 and all the other settings are kept the same as on Cityscapes.
We use “poly” learning rate policy with power = 0.9. For data augmentation, we
all apply random flipping horizontally, random cropping and random brightness
jittering within the range of [−10, 10]. Besides, we all apply syncBN [53] across
multiple GPUs to stabilize the training. We simply set the loss weight as 1.0 for
both the boundary loss and direction loss without tuning.

Notably, our approach does not require extra training or fine-tuning any
semantic segmentation models. We only need to predict the boundary mask and
the direction map for all the test images in advance and refine the segmentation
results of any existing approaches accordingly.

Evaluation Metrics. We use two different metrics including: mask F-score and
top-1 direction accuracy to evaluate the performance of our approach during the
training stage. Mask F-score is performed on the predicted binary boundary map
and direction accuracy is performed on the predicted direction map. Especially,
we only measure the direction accuracy within the regions identified as boundary
by the boundary branch.

To verify the effectiveness of our approach for semantic segmentation, we
follow the recent Gated-SCNN [55] and perform two quantitative measures
including: class-wise mIoU to measure the overall segmentation performance on
regions; boundary F-score to measure the boundary quality of predicted mask
with a small slack in distance. In our experiments, we measure the boundary
F-score using thresholds 0.0003, 0.0006 and 0.0009 corresponding to 1, 2 and 3
pixels respectively. We mainly report the performance with threshold as 0.0003
for most of our ablation experiments.
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Table 3. Influence of the boundary width and direction number. SegFix is robust to
boundary width and direction number. We choose γ = 5 and m = 8 according to their
F-scores.

Boundary width # directions

γ = 3 γ = 5 γ = 10 γ = ∞ m = 4 m = 8 m = 16

mIoU� +0.94 +0.96 +0.95 +0.84 +0.97 +0.96 +0.96

F-score� +4.1 +4.2 +4.1 +3.6 +4.1 +4.2 +4.2

Fig. 6. Qualitative results of our direction branch predictions. The 1st and 3rd columns
represent the ground-truth segmentation map. The 2nd and 4th columns illustrate the
predicted directions with the segmentation map of HRNet as the background. We mark
the directions that fix errors with blue arrow and directions that lead to extra errors
with red arrow. Our predicted directions addresses boundary errors for various object
categories such as bicycle, traffic light and traffic sign. (Better viewed zoom in) (Color
figure online)

4.2 Ablation Experiments

We conduct a group of ablations to analyze the influence of various factors within
SegFix. We report the improvements over the segmentation baseline DeepLabv3
(mIoU/F-score is 79.5%/56.6%) if not specified.

Backbone. We study the performance of our SegFix based on three differ-
ent backbones with increasing complexities, i.e., HRNet-W18, HRNet-W32 and
Higher-HRNet. We apply the same training/testing settings for all three back-
bones. According to the comparisons in Table 2, our SegFix consistently improves
both the segmentation performance and the boundary quality with different
backbone choices. We choose Higher-HRNet in the following experiments if not
specified as it performs best. Besides, we also report their running time in Table 2.

Boundary Branch. We verify that SegFix is robust to the choice of hyper-
parameter γ within the boundary branch and illustrate some qualitative results.

� Boundary Width: Table 3 shows the performance improvements based on
boundary with different widths. We choose different γ values to control the
boundary width, where smaller γ leads to thinner boundaries. We also report
the performance with γ = ∞, which means all pixels is identified as boundary.
We find their improvements are close and we choose γ = 5 by default.
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Table 4. Comparison with GUM [47]. SegFix not only outperforms GUM but also is
complementary with GUM.

Baseline GUM (Our impl.) SegFix GUM+SegFix

mIoU 79.5 79.8 (+0.3) 80.5 (+1.0) 80.6 (+1.1)

F-score 56.6 57.7 (+1.1) 60.9 (+4.3) 61.6 (+5.0)

Table 5. Comparison with DenseCRF [36]. SegFix achieves comparable F-score
improvements and much larger mIoU gains.

Baseline DenseCRF SegFix DenseCRF+SegFix

mIoU 79.5 79.7 (+0.2) 80.5 (+1.0) 80.5 (+1.0)

F-score 56.6 60.9 (+4.3) 61.0 (+4.4) 64.1 (+7.5)

Table 6. Comparison with Gated-
SCNN [55]. The result of Gated-SCNN
is based on multi-scale testing.

Gated-SCNN Gated-SCNN+SegFix

mIoU 81.0 81.5 (+0.5)

F-score 61.4 63.1 (+1.7)

Table 7. DeepLabv3 with SegFix on ADE20K
and GTA5. We all choose DeepLabv3 as the
baseline.

ADE20K GTA5

Baseline +SegFix Naseline +SegFix

mIoU 44.8 45.4(+0.6) 77.8 80.6(+2.8)

F-score 16.4 19.3(+2.9) 50.2 61.7(+11.5)

� Qualitative Results: We show the qualitative results with our boundary
branch in the Appendix G. We find that the predicted boundaries are of high
quality. Besides, we also compute the F-scores between the boundary computed
from the segmentation map of the existing approaches, e.g., Gated-SCNN and
HRNet, and the predicted boundary from our boundary branch. The F-scores
are around 70%, which (in some degree) means that their boundary maps are
well aligned and ensures that more accurate direction predictions bring larger
performance gains.

Direction Branch. We analyze the influence of the direction number m and
then present some qualitative results of our predicted directions.

� Direction Number: We choose different direction numbers to perform dif-
ferent direction partitions and control the generated offset maps that are used
to refine the coarse label map. We conduct the experiments with m = 4, m = 8
and m = 16. According to the reported results on the right 3 columns in Table 3,
we find different direction numbers all lead to significant improvements and we
choose m = 8 if not specified as our SegFix is less sensitive to the choice of m.

� Qualitative Results: In Fig. 6, we show some examples to illustrate that our
predicted boundary directions improve the errors. Overall, the improved pixels
(marked with blue arrow) are mainly distributed along the very thin boundary.

Comparison with GUM. We compare SegFix with the previous model-
dependent guided up-sampling mechanism [47,48] based on DeepLabv3 as the
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baseline. We report the related results in Table 4. It can be seen that our app-
roach significantly outperforms GUM measured by both mIoU and F-score. We
achieve higher performance through combining GUM with our approach, which
achieves 5.0% improvements on F-score compared to the baseline.

Comparison with DenseCRF. We compare our approach with the conven-
tional well-verified DenseCRF [36] based on the DeepLabv3 as our baseline. We
fine-tune the hyper-parameters of DenseCRF and set them empirically follow-
ing [11]. According to Table 5, our approach not only outperforms DenseCRF
but also is complementary with DenseCRF. The possible reasons for the limited
mIoU improvements of DenseCRF might be that it brings more extra errors on
the interior pixels.

Application to Gated-SCNN. Considering that Gated-SCNN [55] introduced
multiple components to improve the performance, it is hard to compare our
approach with Gated-SCNN fairly to a large extent. To verify the effectiveness
of our approach to some extent, we first take the open-sourced Gated-SCNN
(multi-scale testing) segmentation results on Cityscapes validation set as the
coarse segmentation maps, then we apply the SegFix offset maps to refine the
results. We report the results in Table 6 and SegFix improves the boundary F-
score by 1.7%, suggesting that SegFix is complementary with the strong baseline
that also focuses on improving the segmentation boundary quality. Besides, we
also report the detailed category-wise improvements measured by both mIoU
and boundary F-score in the Table 2 and Table 3 of Appendix.

4.3 Application to State-of-the-art

We generate the boundary maps and the direction maps in advance and apply
them to the segmentation results of various state-of-the-art approaches without
extra training or fine-tuning.

Cityscapes val: We first apply our approach on various state-of-the-art
approaches (on Cityscapes val) including DeepLabv3, Gated-SCNN and HRNet.
We report the category-wise mIoU improvements in Table 2 of Appendix. It can
be seen that our approach significantly improves the segmentation quality along
the boundaries of all the evaluated approaches. We provides some qualitative
examples of the improvements with our approach along the thin boundaries
based on both DeepLabv3 and HRNet in the Fig. 1 of Appendix.

Cityscapes Test: We further apply our approach on several recent state-of-the-
art methods on Cityscapes test including PSANet [66], DANet [23], BFP [18],
HRNet [54], Gated-SCNN [55], VPLR [69] and HRNet + OCR [61]. We directly
apply the same model that are trained with only the 2, 975 training images with-
out any other tricks, e.g., training with validation set or Mapillary Vistas [49],
online hard example mining.

Notably, the state-of-the-art methods have applied various advanced tech-
niques, e.g., multi-scale testing, multi-grid, performing boundary supervision
or utilizing extra training data such as Mapillary Vistas or Cityscapes video,
to improve their results. In Table 8, our model-agnostic boundary refinement
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Table 8. Results on Cityscapes Semantic Segmentation task. Category-wise improve-
ments of SegFix based on various state-of-the-art methods on Cityscapes test. Notably,
“HRNet + OCR + SegFix” ranks the first place on the Cityscapes semantic segmen-
tation leaderboard by the ECCV 2020 submission deadline.
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PSANet 98.7 87.0 93.5 58.9 62.5 67.8 76.0 80.0 93.7 72.6 95.4 86.9 73.0 96.2 79.3 91.2 84.9 71.1 77.9 81.4
+ SegFix 98.7 87.4 93.7 59.3 62.8 69.5 77.6 81.4 93.9 73.0 95.6 88.0 73.9 96.5 79.6 91.5 85.1 71.8 78.6 82.0
DANet 98.6 86.1 93.5 56.1 63.3 69.7 77.3 81.3 93.9 72.9 95.7 87.3 72.9 96.2 76.8 89.4 86.5 72.2 78.2 81.5
+ SegFix 98.7 86.6 93.7 56.5 63.5 71.4 78.7 82.4 94.1 73.2 95.9 88.2 73.7 96.5 77.0 89.7 86.8 72.8 78.8 82.0
BFP 98.7 87.0 93.5 59.8 63.4 68.9 76.8 80.9 93.7 72.8 95.5 87.0 72.1 96.0 77.6 89.0 86.9 69.2 77.6 81.4
+ SegFix 98.7 87.5 93.7 60.2 63.7 71.1 78.4 82.4 94.0 73.2 95.7 88.1 72.9 96.3 77.8 89.3 87.2 69.9 78.4 82.0
HRNet 98.8 87.5 93.7 55.6 62.3 71.8 79.3 81.8 94.0 73.1 95.8 88.5 76.1 96.5 72.2 86.5 84.7 73.8 79.4 81.8
+ SegFix 98.8 87.9 93.9 56.0 62.5 73.6 80.7 83.2 94.1 73.4 95.9 89.3 76.7 96.6 72.4 86.7 85.0 74.3 80.2 82.2
VPLR 98.8 87.8 94.2 64.1 65.0 72.4 79.0 82.8 94.2 74.0 96.1 88.2 75.4 96.5 78.8 94.0 91.6 73.8 79.0 83.5
+ SegFix 98.8 88.0 94.3 64.4 65.3 73.3 80.0 83.5 94.3 74.3 96.2 89.0 76.2 96.7 79.0 94.2 92.0 74.4 79.7 83.9
HRNet + OCR 98.9 88.3 94.3 66.8 66.6 73.6 80.3 83.7 94.3 74.4 96.0 88.7 75.4 96.6 82.5 94.0 90.8 73.8 79.7 84.2
+ SegFix 98.9 88.3 94.4 68.0 67.8 73.6 80.6 83.9 94.4 74.5 96.1 89.2 75.9 96.8 83.6 94.2 91.3 74.0 80.1 84.5

Table 9. Results on Cityscapes Instance Segmentation task. Our SegFix significantly
improves the mask AP of Mask-RCNN [26], PointRend [35], PANet [42] and Poly-
Transform [40] on Cityscapes test (w/ COCO pre-training). Notably, “PolyTransform
+ SegFix” ranks the second place on the Cityscapes instance segmentation leaderboard
by the ECCV 2020 submission deadline.
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Mask-RCNN 36.0 28.8 51.6 30.0 38.7 27.3 23.9 19.4 32.0
+ SegFix 37.9 30.3 54.1 31.0 40.0 27.9 25.1 20.5 33.3 (+1.3)
PointRend 36.6 29.7 53.7 29.9 40.4 33.3 23.6 19.6 33.3
+ SegFix 38.7 31.1 56.2 31.1 41.6 34.1 24.6 20.7 34.8 (+1.5)
PANet 41.5 33.6 58.2 31.8 45.3 28.7 28.2 24.1 36.4
+ SegFix 43.3 34.9 60.4 32.9 47.0 30.1 29.1 24.7 37.8 (+1.4)
PolyTransform 42.4 34.8 58.5 39.8 50.0 41.3 30.9 23.4 40.1
+ SegFix 44.3 35.9 60.5 40.5 51.2 41.6 31.7 24.1 41.2 (+1.1)

scheme consistently improves all the evaluated approaches. For example, with
our SegFix, “HRNet + OCR” achieves 84.5% on Cityscapes test. The improve-
ments of our SegFix is in fact already significant considering the baseline is
already very strong and the performance gap between top ranking methods is
just around 0.1%–0.3%. We believe that lots of other advanced approaches might
also benefit from our approach.

We also apply the SegFix scheme on two other challenging semantic segmen-
tation benchmarks including ADE20K and GTA5. Table 7 reports the results
and SegFix achieves significant performance improvements along the boundary
on both benchmarks. e.g., the boundary F-score of DeepLabv3 gains 2.9%/11.5%
on ADE20K val/GTA5 test separately. Besides, we propose a unified SegFix
model and compare our SegFix to model ensemble in Appendix C and D.

5 Experiments: Instance Segmentation

In Table 9, we illustrate the results of SegFix on Cityscapes instance segmenta-
tion task. We can find that the SegFix consistently improves the mean AP scores
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over Mask-RCNN [26], PANet [42], PointRend [35] and PolyTransform [40]. For
example, with SegFix scheme, PANet gains 1.4% points on the Cityscapes test
set. We also apply our SegFix on the very recent PointRend and PolyTransform.
Our SegFix consistently improves the performance of PointRend and PolyTrans-
form by 1.5% and 1.1% separately, which further verifies the effectiveness of our
method.

We use the public available checkpoints from Dectectron25 and PANet6 to
generate the predictions of Mask-RCNN, PointRend and PANet. Besides, we
use the segmentation results of PolyTransform directly. More training/testing
details of SegFix on Cityscapes instance segmentation task are illustrated in the
Appendix E. We believe that SegFix can be used to improve various other state-
of-the-art instance segmentation methods directly w/o any prior requirements.

Notably, the improvements on the instance segmentation tasks (+1.1%–
1.5%) are more significant than the improvements on semantic segmentation
task (+0.3%–0.5%). We guess the main reason is that the instance segmentation
evaluation (on Cityscapes) only considers 8 object categories without includ-
ing the stuff categories. The performance of stuff categories is less sensitive to
the boundary errors due to that their area is (typically) larger than the area
of object categories. In summary, our SegFix achieves larger improvements on
object categories than stuff categories.

6 Conclusion

In this paper, we have proposed a novel model-agnostic approach to refine the
segmentation maps predicted by an unknown segmentation model. The insight is
that the predictions of the interior pixels are more reliable. We propose to replace
the predictions of the boundary pixels using the predictions of the correspond-
ing interior pixels. The correspondence is learnt only from the input image. The
main advantage of our method is that SegFix generalizes well on various strong
segmentation models. Empirical results show that the effectiveness of our app-
roach for both semantic segmentation and instance segmentation tasks. We hope
our SegFix scheme can become a strong baseline for more accurate segmentation
results along the boundary.

Acknowledgement. This work is partially supported by Natural Science Foundation
of China under contract No. 61390511, and Frontier Science Key Research Project CAS
No. QYZDJ-SSW-JSC009.
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53. Rota Bulò, S., Porzi, L., Kontschieder, P.: In-place activated batchnorm for
memory-optimized training of DNNs. In: CVPR (2018)

54. Sun, K., et al.: High-resolution representations for labeling pixels and regions.
arXiv:1904.04514 (2019)

55. Takikawa, T., Acuna, D., Jampani, V., Fidler, S.: Gated-SCNN: gated shape CNNs
for semantic segmentation. In: ICCV (2019)

56. Wang, Z., Acuna, D., Ling, H., Kar, A., Fidler, S.: Object instance annotation with
deep extreme level set evolution. In: CVPR (2019)

57. Wu, Y., Kirillov, A., Massa, F., Lo, W.Y., Girshick, R.: Detectron2. https://github.
com/facebookresearch/detectron2 (2019)

58. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv
preprint arXiv:1511.07122 (2015)

59. Yu, Z., Feng, C., Liu, M.Y., Ramalingam, S.: CASENet: deep category-aware
semantic edge detection. In: CVPR (2017)

60. Yu, Z., et al.: Simultaneous edge alignment and learning. In: Ferrari, V., Hebert,
M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 400–417.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9 24

61. Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic seg-
mentation. arXiv preprint arXiv:1909.11065 (2019)

62. Yuan, Y., Wang, J.: OCNet: object context network for scene parsing.
arXiv:1809.00916 (2018)

63. Zhang, H., et al.: Context encoding for semantic segmentation. In: CVPR (2018)
64. Zhang, H., Zhang, H., Wang, C., Xie, J.: Co-occurrent features in semantic seg-

mentation. In: CVPR (2019)
65. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network (2017)
66. Zhao, H., et al.: PSANet: point-wise spatial attention network for scene parsing.

In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS,
vol. 11213, pp. 270–286. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-01240-3 17

67. Zheng, S., et al.: Conditional random fields as recurrent neural networks. In: ICCV
(2015)

68. Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing
through ade20k dataset. In: CVPR (2017)

69. Zhu, Y., et al.: Improving semantic segmentation via video propagation and label
relaxation. In: CVPR (2019)

https://doi.org/10.1007/978-3-030-01264-9_17
https://doi.org/10.1007/978-3-319-46475-6_7
https://doi.org/10.1007/978-3-319-46475-6_7
http://arxiv.org/abs/1904.04514
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
http://arxiv.org/abs/1511.07122
https://doi.org/10.1007/978-3-030-01219-9_24
http://arxiv.org/abs/1909.11065
http://arxiv.org/abs/1809.00916
https://doi.org/10.1007/978-3-030-01240-3_17
https://doi.org/10.1007/978-3-030-01240-3_17

	SegFix: Model-Agnostic Boundary Refinement for Segmentation
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Framework
	3.2 Network Architecture
	3.3 Ground-Truth Generation and Analysis

	4 Experiments: Semantic Segmentation
	4.1 Datasets and Implementation Details
	4.2 Ablation Experiments
	4.3 Application to State-of-the-art

	5 Experiments: Instance Segmentation
	6 Conclusion
	References




