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Abstract. Informative features play a crucial role in the single image
super-resolution task. Channel attention has been demonstrated to be
effective for preserving information-rich features in each layer. However,
channel attention treats each convolution layer as a separate process that
misses the correlation among different layers. To address this problem,
we propose a new holistic attention network (HAN), which consists of a
layer attention module (LAM) and a channel-spatial attention module
(CSAM), to model the holistic interdependencies among layers, channels,
and positions. Specifically, the proposed LAM adaptively emphasizes
hierarchical features by considering correlations among layers. Mean-
while, CSAM learns the confidence at all the positions of each chan-
nel to selectively capture more informative features. Extensive experi-
ments demonstrate that the proposed HAN performs favorably against
the state-of-the-art single image super-resolution approaches.

Keywords: Super-resolution · Holistic attention · Layer attention ·
Channel-spatial attention

1 Introduction

Single image super-resolution (SISR) is an important task in computer vision and
image processing. Given a low-resolution image, the goal of super-resolution (SR)
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is to generate a high-resolution (HR) image with necessary edge structures and
texture details. The advance of SISR will immediately benefit many application
fields, such as video surveillance and pedestrian detection.

SRCNN [3] is an unprecedented work to tackle the SR problem by learning
the mapping function from LR input to HR output using convolutional neu-
ral networks (CNNs). Afterwards, numerous deep CNN-based methods [26,27]
have been proposed in recent years and generate a significant progress. The
superior reconstruction performance of CNNs based methods are mainly from
deep architecture and residual learning [7]. Networks with very deep layers have
larger receptive fields and are able to provide a powerful capability to learn a
complicated mapping between the LR input and the HR counterpart. Due to
the residual learning, the depth of the SR networks are going to deeper since
residual learning could efficiently alleviate the gradient vanishing and exploding
problems.

Though significant progress have been made, we note that the texture details
of the LR image often tend to be smoothed in the super-resolved result since most
existing CNN-based SR methods neglect the feature correlation of intermediate
layers. Therefore, generating detailed textures is still a non-trivial problem in the
SR task. Although the results obtained by using channel attention [2,40] retain
some detailed information, these channel attention-based approaches struggle in
preserving informative textures and restoring natural details since they treat the
feature maps at different layers equally and result in lossing some detail parts
in the reconstructed image.

To address these problems, we present a novel approach termed as holistic
attention network (HAN) that is capable of exploring the correlations among
hierarchical layers, channels of each layer, and all positions of each channel.
Therefore, HAN is able to stimulate the representational power of CNNs. Specifi-
cally, we propose a layer attention module (LAM) and a channel-spatial attention
module (CSAM) in the HAN for more powerful feature expression and correla-
tion learning. These two sub-attention modules are inspired by channel attention
[40] which weighs the internal features of each layer to make the network pay
more attention to information-rich feature channels. However, we notice that
channel attention cannot weight the features from multi-scale layers. Especially
the long-term information from the shallow layers are easily weakened. Although
the shallow features can be recycled via skip connections, they are treated equally
with deep features across layers after long skip connection, hence hindering the
representational ability of CNNs. To solve this problem, we consider exploring
the interrelationship among features at hierarchical levels, and propose a layer
attention module (LAM). On the other hand, channel attention neglects that
the importance of different positions in each feature map varies significantly.
Therefore, we also propose a channel-spatial attention module (CSAM) to col-
laboratively improve the discrimination ability of the proposed SR network.

Our contributions in this paper are summarized as follows:

• We propose a novel super-resolution algorithm named Holistic Attention Net-
work (HAN), which enhances the representational ability of feature represen-
tations for super-resolution.
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• We introduce a layer attention module (LAM) to learn the weights for hier-
archical features by considering correlations of multi-scale layers. Meanwhile,
a channel-spatial attention module (CSAM) is presented to learn the channel
and spatial interdependencies of features in each layer.

• The proposed two attention modules collaboratively improve the SR results
by modeling informative features among hierarchical layers, channels, and
positions. Extensive experiments demonstrate that our algorithm performs
favorably against the state-of-the-art SISR approaches.

2 Related Work

Numerous algorithms and models have been proposed to solve the problem of
image SR, which can be roughly divided into two categories. One is the tradi-
tional algorithm [11,12,35], the other one is the deep learning model based on
neural network [4,15,16,19,22,30,31,41]. Due to the limitation of space, we only
introduce the SR algorithms based on deep CNN.

Deep CNN for Super-Resolution. Dong et al. [3] proposed a CNN architec-
ture named SRCNN, which was the pioneering work to apply deep learning to
single image super-resolution. Since SRCNN successfully applied deep learning
network to SR task, various efficient and deeper architectures have been pro-
posed for SR. Wang et al. [33] combined the domain knowledge of sparse coding
with a deep CNN and trained a cascade network to recover images progressively.
To alleviate the phenomenon of gradient explosion and reduce the complexity of
the model, DRCN [16] and DRRN [30] were proposed by using a recursive con-
volutional network. Lai et al. [19] proposed a LapSR network which employs a
pyramidal framework to progressively generate ×8 images by three sub-networks.
Lim et al. [22] modified the ResNet [7] by removing batch normalization (BN)
layers, which greatly improves the SR effect.

In addition to above MSE minimizing based methods, perceptual constraints
are proposed to achieve better visual quality [28]. SRGAN [20] uses a generative
adversarial networks (GAN) to predict high-resolution outputs by introducing
a multi-task loss including a MSE loss, a perceptual loss [14], and an adversar-
ial loss [5]. Zhang et al. [42] further transferred textures from reference images
according to the textural similarity to enhance textures. However, the aforemen-
tioned models either result in the loss of detailed textures in intermediate features
due to the very deep depth, or produce some unpleasing artifacts or inauthen-
tic textures. In contrast, we propose a holistic attention network consists of a
layer attention and a channel-spatial attention to investigate the interaction of
different layers, channels, and positions.

Attention Mechanism. Attention mechanisms direct the operational focus
of deep neural networks to areas where there is more information. In short,
they help the network ignore irrelevant information and focus on important
information [8,9]. Recently, attention mechanism has been successfully applied
into deep CNN based image enhancement methods. Zhang et al. [40] proposed a
residual channel attention network (RCAN) in which residual channel attention
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Fig. 1. Network architecture of the proposed holistic attention network (HAN). Given
a low-resolution image, the first convolutional layer of the HAN extracts a set of shallow
feature maps. Then a series of residual groups further extract deeper feature represen-
tations of the low-resolution input. We propose a layer attention module (LAM) to
learn the correlations of each output from RGs and a channel-spatial attention module
(CSAM) to investigate the interdependencies between channels and pixels. Finally, an
upsampling block produces the high-resolution image

blocks (RCAB) allow the network to focus on the more informative channels.
Woo et al. [34] proposed channel attention (CA) and spatial attention (SA)
modules to exploit both inter-channel and inter-spatial relationship of feature
maps. Kim et al. [17] introduced a residual attention module for SR which is
composed of residual blocks and spatial channel attention for learning the inter-
channel and intra-channel correlations. More recently, Dai et al. [2] presented
a second-order channel attention (SOCA) module to adaptively refine features
using second-order feature statistics.

However, these attention based methods only consider the channel and spatial
correlations while ignore the interdependencies between multi-scale layers. To
solve this problem, we propose a layer attention module (LAM) to exploit the
nonlinear feature interactions among hierarchical layers.

3 Holistic Attention Network (HAN) for SR

In this section, we first present the overview of HAN network for SISR. Then we
give the detailed configurations of the proposed layer attention module (LAM)
and channel-spatial attention module (CSAM).

3.1 Network Architecture

As shown in Fig. 1, our proposed HAN consists of four parts: feature extraction,
layer attention module, channel-spatial attention module, and the final recon-
struction block.

Features Extraction. Given a LR input ILR, a convolutional layer is used to
extract the shallow feature F0 of the LR input

F0 = Conv(ILR). (1)
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Then we use the backbone of the RCAN [40] to extract the intermediate features
Fi of the LR input

Fi = HRBi
(Fi−1), i = 1, 2, ..., N, (2)

where HRBi
represents the i-th residual group (RG) in the RCAN, N is the

number of the residual groups. Therefore, except FN is the final output of RCAN
network backbone, all other feature maps are intermediate outputs.

Holistic Attention. After extracting hierarchical features Fi by a set of residual
groups, we further conduct a holistic feature weighting, which includes: i) layer
attention of hierarchical features, and ii) channel-spatial attention of the last
layer of RCAN.

The proposed layer attention makes full use of features from all the preceding
layers and can be represented as

FL = HLA(concatenate(F1, F2, ..., FN )), (3)

where HLA represents the LAM which learns the feature correlation matrix of all
the features from RGs’ output and then weights the fused intermediate features
Fi capitalized on the correlation matrix (see Sect. 3.2). As a results, LAM enables
the high contribution feature layers to be enhanced and the redundant ones to
be suppressed.

In addition, channel-spatial attention aims to modulate features for adap-
tively capturing more important information of inter-channel and intra-channel
for the final reconstruction, which can be written as

FCS = HCSA(FN ), (4)

where HCSA represents the CSAM to produce channel-spatial attention for dis-
criminately abtaining feature information, FCS denotes the filtered features after
channel-spatial attention (details can be found in Sect. 3.3). Although we can fil-
ter all the intermediate features of Fi using CSAM, we only modulate the last
feature layer of FN as a trade-off between accuracy and speed.

Image Reconstruction. After obtaining features from both LAM and CSAM,
we integrate the layer attention and channel-spatial attention units by element-
wise summation. Then, we employ the sub-pixel convolution [29] as the last
upsampling module, which converts the scale sampling with a given magnifica-
tion factor by pixel translation. We perform the sub-pixel convolution operation
to aggregate low-resolution feature maps and simultaneously impose projection
to high dimensional space to reconstruct the HR image. We formulate the process
as follows

ISR = U↑(F0 + FL + FCS), (5)

Where U↑ represents the operation of sub-pixel convolution, and ISR is the recon-
structed SR result. The long skip connection is introduced in HAN to stabilize
the training of the proposed deep network, i.e., the sub-pixel upsampling block
takes F0 + FL + FCS as input.
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Fig. 2. Architecture of the proposed layer attention module

Loss Function. Since we employ the RCAN network as the backbone of the
proposed method, only L1 distance is selected as our loss function as in [40] for
a fair comparison

L(Θ) =
1
m

m∑

i=1

∥∥HHAN (IiLR) − IiHR

∥∥
1

=
1
m

m∑

i=1

∥∥IiSR − IiHR

∥∥
1
, (6)

Where HHAN , Θ, and m denote the function of the proposed HAN, the learned
parameter of the HAN, and the number of training pairs, respectively. Note that
we do not use other sophisticated loss functions such as adversarial loss [5] and
perceptual loss [14]. We show that simply using the naive image intensity loss
L(Θ) can already achieve competitive results as demonstrated in Sect. 4.

3.2 Layer Attention Module

Although dense connections [10] and skip connections [7] allow shallow infor-
mation to be bypassed to deep layers, these operations do not exploit interde-
pendencies between the different layers. In contrast, we treat the feature maps
from each layer as a response to a specific class, and the responses from different
layers are related to each other. By obtaining the dependencies between features
of different depths, the network can allocate different attention weights to fea-
tures of different depths and automatically improve the representation ability
of extracted features. Therefore, we propose an innovative LAM that learns the
relationship between features of different depths, which automatically improve
the feature representation ability.

The structure of the proposed layer attention is shown in Fig. 2. The input of
the module is the extracted intermediate feature groups FGs, with the dimen-
sion of N×H×W×C, from N residual groups. Then, we reshape the feature
groups FGs into a 2D matrix with the dimension of N × HWC, and apply
matrix multiplication with the corresponding transpose to calculate the correla-
tion Wla = wN

i,j=1 between different layers

wi,j = δ(ϕ(FG)i · (ϕ(FG))Tj ), i, j = 1, 2, ..., N, (7)

where δ(·) and ϕ(·) denote the softmax and reshape operations, wi,j represents
the correlation index between i-th and j-th feature groups. Finally, we multiply
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the reshaped feature groups FGs by the predicted correlation matrix with a
scale factor α, and add the input features FGs

FLj
= α

N∑

i=1

wi,jFGi + FGj , (8)

where α is initialized to 0 and is automatically assigned by the network in the
following epochs. As a result, the weighted sum of features allow the main parts
of network to focus on more informative layers of the intermediate LR features.

3.3 Channel-Spatial Attention

The existing spatial attention mechanisms [17,34] mainly focuse on the scale
dimension of the feature, with little uptake of channel dimension information,
while the recent channel attention mechanisms [2,40,41] ignore the scale infor-
mation. To solve this problem, we propose a novel channel-spatial attention
mechanism (CSAM) that contains responses from all dimensions of the feature
maps. Note that although we can perform the CSAM for all the feature groups
FGs extracted from RCAN, we only modulate the last feature group of FN for
a trade-off between accuracy and speed as shown in Fig. 1.

The architecture of the proposed CSAM is shown in Fig. 3. Given the last
layer feature maps FN ∈ RH×W×C , we feed FN to a 3D convolution layer [13]
to generate correlation matrix by capturing joint channel and spatial features.
We operate the 3D convolution via convolving 3D kernels with the cube con-
structed from multiple neighboring channels of FN . Specifically, we perform 3D
convolutions with kernel size of 3 × 3 × 3 with step size of 1 (i.e., three groups
of consecutive channels are convolved with a set of 3D kernels respectively),
resulting in three groups of channel-spatial correlation matrix Wcsa. By doing
so, our CSAM can extract powerful representations to describe inter-channel and
intra-channel information in continuous channels.

In addition, we perform element-wise multiplication with the correlation
matrix Wcsa and the input feature FN . Finally, multiply the weighted result
by a scale factor β, and then add the input feature FN to obtain the weighted
features

FCS = βσ(Wcsa) � FN + FN , (9)
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HR Bicubic VDSR[15] EDSR[22] RDN[41] RCAN[40] SRFBN[21] SAN[2] HAN(our)

PSNR/SSIM 24.18/0.678 25.63/0.763 27.66/0.849 27.12/0.832 27.95/0.857 27.43/0.843 27.99/0.857 28.05/0.859

PSNR/SSIM 22.97/0.636 24.59/0.741 24.00/0.695 24.00/0.698 24.26/ 0.711 24.13/0.706 24.20/0.709 24.87/ 0.710

PSNR/SSIM 25.71/0.680 26.62/0.725 27.96/0.795 27.53/0.782 28.63/0.805 27.74/0.789 28.40/0.800 28.67/0.805

PSNR/SSIM 21.32/0.686 23.07/0.783 26.33/0.895 25.62/0.880 26.46/0.897 26.57/0.897 26.87/0.900 26.98/0.900

Fig. 4. Visual comparison for 4× SR with BI degradation model on the Urban100
datasets. The best results are highlighted. Our method obtains better visual quality
and recovers more image details compared with other state-of-the-art SR methods

where σ(·) is the sigmoid function, � is the element-wise product, the scale fac-
tor β is initialized as 0 and progressively improved in the follow iterations. As a
results, FCS is the weighted sum of all channel-spatial position features as well
as the original features. Compared with conventional spatial attention and chan-
nel attention, our CSAM adaptively learns the inter-channel and intra-channel
feature responses by explicitly modelling channel-wise and spatial feature inter-
dependencies.

4 Experiments

In this section, we first analyze the contributions of the proposed two attention
modules. We then compare our HAN with state-of-the-art algorithms on five
benchmark datasets. The implementation code will be made available to the
public. Results on more images can be found in the supplementary material.
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Table 1. Effectiveness of the proposed LAM and CSAM for image super-resolution

Baseline w/o CSAM w/o LAM Ours

PSNR/SSIM 31.22/0.9173 31.38/0.9175 31.28/0.9174 31.42/0.9177

Table 2. Ablation study about using different numbers of RGs

Set5 Set14 B100 Urban100 Manga100

RCAN 32.63 28.87 27.77 26.82 31.22

HAN 3RGs 32.63 28.89 27.79 26.82 31.40

HAN 6RGs 32.64 28.90 27.79 26.84 31.42

HAN 10RGs 32.64 28.90 27.80 26.85 31.42

4.1 Settings

Datasets. We selecte DIV2K [32] as the training set as like in [2,22,40,41]. For
the testing set, we choose five standard datasets: Set5 [1], Set14 [36], B100 [23],
Urban100 [11], and Manga109 [24]. Degraded data was obtained by bicubic inter-
polation and blur-downscale degradation model. Following [40], the reconstruct
RGB results by the proposed HAN are first converted to YCbCr space, and
then we only consider the luminance channel to calculate PSNR and SSIM in
our experiments.

Implementation Details. We implement the proposed network using PyTorch
platform and use the pre-trained RCAN (×2), (×3), (×4), (×8) model to initial-
ize the corresponding holistic attention networks, respectively. In our network,
patch size is set as 64 × 64. We use ADAM [18] optimizer with a batch size 16
for training. The learning rate is set as 10−5. Default values of β1 and β2 are
used, which are 0.9 and 0.999, respectively, and we set ε = 10−8. We do not use
any regularization operations such as batch normalization and group normaliza-
tion in our network. In addition to random rotation and translation, we do not
apply other data augmentation methods in the training. The input of the LAM
is selected as the outputs of all residual groups of RCAN, we use N = 10 residual
groups in out network. For all the results reported in the paper, we train the
network for 250 epochs, which takes about two days on an Nvidia GTX 1080Ti
GPU.

4.2 Ablation Study About the Proposed LAM and CSAM

The proposed LAM and CSAM ensure that the proposed SR method generate
the feature correlations between hierarchical layers, channels, and locations. One
may wonder whether the LAM and CSAM help SISR. To verify the performance
of these two attention mechanisms, we compare the method without using LAM
and CSAM in Table 1, where we conduct experiments on the Manga109 dataset
with the magnification factor of ×4.
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Table 3. Quantitative results with BI degradation model. The best and second best
results are highlighted in bold and underlined

Methods Scale Set5 Set14 B100 Urban100 Manga109
PSNRSSIM PSNRSSIM PSNRSSIM PSNRSSIM PSNRSSIM

Bicubic
SRCNN [3]
FSRCNN [4]
VDSR [15]
LapSRN [19]
MemNet [31]
EDSR [22]
SRMDNF [38]
D-DBPN [6]
RDN [41]
RCAN [40]
SRFBN [21]
SAN [2]
HAN(ours)
HAN+(ours)

×2
×2
×2
×2
×2
×2
×2
×2
×2
×2
×2
×2
×2
×2
×2

33.66
36.66
37.05
37.53
37.52
37.78
38.11
37.79
38.09
38.24
38.27
38.11
38.31
38.27
38.33

0.9299
0.9542
0.9560
0.9590
0.9591
0.9597
0.9602
0.9601
0.9600
0.9614
0.9614
0.9609
0.9620
0.9614
0.9617

30.24
32.45
32.66
33.05
33.08
33.28
33.92
33.32
33.85
34.01
34.12
33.82
34.07
34.16
34.24

0.8688
0.9067
0.9090
0.9130
0.9130
0.9142
0.9195
0.9159
0.9190
0.9212
0.9216
0.9196
0.9213
0.9217
0.9224

29.56
31.36
31.53
31.90
31.08
32.08
32.32
32.05
32.27
32.34
32.41
32.29
32.42
32.41
32.45

0.8431
0.8879
0.8920
0.8960
0.8950
0.8978
0.9013
0.8985
0.9000
0.9017
0.9027
0.9010
0.9028
0.9027
0.9030

26.88
29.50
29.88
30.77
30.41
31.31
32.93
31.33
32.55
32.89
33.34
32.62
33.10
33.35
33.53

0.8403
0.8946
0.9020
0.9140
0.9101
0.9195
0.9351
0.9204
0.9324
0.9353
0.9384
0.9328
0.9370
0.9385
0.9398

30.80
35.60
36.67
37.22
37.27
37.72
39.10
38.07
38.89
39.18
39.44
39.08
39.32
39.46
39.62

0.9339
0.9663
0.9710
0.9750
0.9740
0.9740
0.9773
0.9761
0.9775
0.9780
0.9786
0.9779
0.9792
0.9785
0.9787

Bicubic
SRCNN [3]
FSRCNN [4]
VDSR [15]
LapSRN [19]
MemNet [31]
EDSR [22]
SRMDNF [38]
RDN [41]
RCAN [40]
SRFBN [21]
SAN [2]
HAN(ours)
HAN+(ours)

×3
×3
×3
×3
×3
×3
×3
×3
×3
×3
×3
×3
×3
×3

30.39
32.75
33.18
33.67
33.82
34.09
34.65
34.12
34.71
34.74
34.70
34.75
34.75
34.85

0.8682
0.9090
0.9140
0.9210
0.9227
0.9248
0.9280
0.9254
0.9296
0.9299
0.9292
0.9300
0.9299
0.9305

27.55
29.30
29.37
29.78
29.87
30.00
30.52
30.04
30.57
30.65
30.51
30.59
30.67
30.77

0.7742
0.8215
0.8240
0.8320
0.8320
0.8350
0.8462
0.8382
0.8468
0.8482
0.8461
0.8476
0.8483
0.8495

27.21
28.41
28.53
28.83
28.82
28.96
29.25
28.97
29.26
29.32
29.24
29.33
29.32
29.39

0.7385
0.7863
0.7910
0.7990
0.7980
0.8001
0.8093
0.8025
0.8093
0.8111
0.8084
0.8112
0.8110
0.8120

24.46
26.24
26.43
27.14
27.07
27.56
28.80
27.57
28.80
29.09
28.73
28.93
29.10
29.30

0.7349
0.7989
0.8080
0.8290
0.8280
0.8376
0.8653
0.8398
0.8653
0.8702
0.8641
0.8671
0.8705
0.8735

26.95
30.48
31.10
32.01
32.21
32.51
34.17
33.00
34.13
34.44
34.18
34.30
34.48
34.80

0.8556
0.9117
0.9210
0.9340
0.9350
0.9369
0.9476
0.9403
0.9484
0.9499
0.9481
0.9494
0.9500
0.9514

Bicubic
SRCNN [3]
FSRCNN [4]
VDSR [15]
LapSRN [19]
MemNet [31]
EDSR [22]
SRMDNF [38]
D-DBPN [6]
RDN [41]
RCAN [40]
SRFBN [21]
SAN [2]
HAN(ours)
HAN+(ours)

×4
×4
×4
×4
×4
×4
×4
×4
×4
×4
×4
×4
×4
×4
×4

28.42
30.48
30.72
31.35
31.54
31.74
32.46
31.96
32.47
32.47
32.63
32.47
32.64
32.64
32.75

0.8104
0.8628
0.8660
0.8830
0.8850
0.8893
0.8968
0.8925
0.8980
0.8990
0.9002
0.8983
0.9003
0.9002
0.9016

26.00
27.50
27.61
28.02
28.19
28.26
28.80
28.35
28.82
28.81
28.87
28.81
28.92
28.90
28.99

0.7027
0.7513
0.7550
0.7680
0.7720
0.7723
0.7876
0.7787
0.7860
0.7871
0.7889
0.7868
0.7888
0.7890
0.7907

25.96
26.90
26.98
27.29
27.32
27.40
27.71
27.49
27.72
27.72
27.77
27.72
27.78
27.80
27.85

0.6675
0.7101
0.7150
0.0726
0.7270
0.7281
0.7420
0.7337
0.7400
0.7419
0.7436
0.7409
0.7436
0.7442
0.7454

23.14
24.52
24.62
25.18
25.21
25.50
26.64
25.68
26.38
26.61
26.82
26.60
26.79
26.85
27.02

0.6577
0.7221
0.7280
0.7540
0.7560
0.7630
0.8033
0.7731
0.7946
0.8028
0.8087
0.8015
0.8068
0.8094
0.8131

24.89
27.58
27.90
28.83
29.09
29.42
31.02
30.09
30.91
31.00
31.22
31.15
31.18
31.42
31.73

0.7866
0.8555
0.8610
0.8870
0.8900
0.8942
0.9148
0.9024
0.9137
0.9151
0.9173
0.9160
0.9169
0.9177
0.9207

Bicubic
SRCNN [3]
FSRCNN [4]
SCN [33]
VDSR [15]
LapSRN [19]
MemNet [31]
MSLapSRN[19]
EDSR [22]
D-DBPN [6]
RCAN [40]
SAN [2]
HAN(ours)
HAN+(ours)

×8
×8
×8
×8
×8
×8
×8
×8
×8
×8
×8
×8
×8
×8

24.40
25.33
20.13
25.59
25.93
26.15
26.16
26.34
26.96
27.21
27.31
27.22
27.33
27.47

0.6580
0.6900
0.5520
0.7071
0.7240
0.7380
0.7414
0.7558
0.7762
0.7840
0.7878
0.7829
0.7884
0.7920

23.10
23.76
19.75
24.02
24.26
24.35
24.38
24.57
24.91
25.13
25.23
25.14
25.24
25.39

0.5660
0.5910
0.4820
0.6028
0.6140
0.6200
0.6199
0.6273
0.6420
0.6480
0.6511
0.6476
0.6510
0.6552

23.67
24.13
24.21
24.30
24.49
24.54
24.58
24.65
24.81
24.88
24.98
24.88
24.98
25.04

0.5480
0.5660
0.5680
0.5698
0.5830
0.5860
0.5842
0.5895
0.5985
0.6010
0.6058
0.6011
0.6059
0.6075

20.74
21.29
21.32
21.52
21.70
21.81
21.89
22.06
22.51
22.73
23.00
22.70
22.98
23.20

0.5160
0.5440
0.5380
0.5571
0.5710
0.5810
0.5825
0.5963
0.6221
0.6312
0.6452
0.6314
0.6437
0.6518

21.47
22.46
22.39
22.68
23.16
23.39
23.56
23.90
24.69
25.14
25.24
24.85
25.20
25.54

0.6500
0.6950
0.6730
0.6963
0.7250
0.7350
0.7387
0.7564
0.7841
0.7987
0.8029
0.7906
0.8011
0.8080
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HR Bicubic VDSR [15] DBPN [6] EDSR [22] RCAN [40] SRFBN [21] DBPNLL [6] HAN(our)

PSNR/SSIM 21.22/ 0.737 21.20/0.733 24.92/ 0.881 24.54/0.873 25.08/0.886 24.26/0.866 25.25 0.889 25.78/0.902

PSNR/SSIM 22.88/0.768 24.86/0.845 27.52/0.913 27.01/0.900 27.56/0.914 26.69/0.893 27.75/0.918 27.77/0.935

PSNR/SSIM 20.09/0.525 21.07/0.523 23.79/0.700 23.47/0.688 23.87/0.703 23.12/ 0.673 24.00/0.708 24.24/0.746

Fig. 5. Visual comparison for 8× SR with BI model on the Manga109 dataset. The
best results are highlighted

Table 1 shows the quantitative evaluations. Compared with the baseline
method which is identical to the proposed network except for the absence of
these two modules LAM and CSAM. CSAM achieves better results by up to
0.06 dB in terms of PSNR, while LAM promotes 0.16 dB on the test dataset. In
addition, the improvement of using both LAM and CSAM is significant as the
proposed algorithm improves 0.2 dB, which demonstrates the effectiveness of the
proposed layer attention and channel-spatial attention blocks. Figure 4 further
shows that using the LAM and CSAM is able to generate the results with clearer
structures and details.

4.3 Ablation Study About the Number of Residual Group

We conduct an ablation study about feeding different numbers of RGs to the pro-
posed LAM. Specifically, we apply severally three, six, and ten RGs to the LAM,
and we evaluate our model on five standard datasets. As shown in Table 2, we
compare our three models with RCAN, although using fewer RGs, our algorithm
still generates higher PSNR values than the baseline of RCAN. This ablation
study demonstrates the effectiveness of the proposed LAM.
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HR Bicubic VDSR [15] EDSR [22] RCAN [40] SRFBN [21] SAN [2] HAN(our) HAN+(our)

PSNR/SSIM 27.70/ 0.774 30.10/0.854 30.64/0.878 36.39/0.951 30.75/.879 34.31/0.930 36.44/ 0.955 36.62/0.956

PSNR/SSIM 22.17/0.674 23.39/ 0.747 24.19/0.785 27.18/0.882 24.20/0.788 26.56/0.873 27.40/0.889 27.67/0.893

PSNR/SSIM 19.93/0.425 20.66/ 0.508 20.89/0.531 22.34/ 0.675 20.92/ 0.534 22.07/0.656 22.35/.677 22.49/0.681

PSNR/SSIM 20.85/0.590 21.92/0.671 22.17/ 0.692 24.26/ 0.814 23.98/ 0.802 24.20/ 0.805 24.28/0.819 24.65/0.828

Fig. 6. Visual comparison for 3× SR with BD model on the Urban100 dataset. The
best results are highlighted

4.4 Ablation Study About the Number of CSAM

In the paper, the channel-spatial attention module (CSAM) can extract powerful
representations to describe inter-channel and intra-channel information in con-
tinuous channels. We conduct an ablation study about using different numbers
of CSAM. We use one, three, five, and ten CSAMs in RGs. As shown in Table 4,
with the increase of CSAM, the values of PSNR are increasing on the testing
datasets. This ablation study demonstrates the effectiveness of the proposed
CSAM.

Table 4. Ablation study about using different numbers of CSAMs

Set5 Set14 B100 Urban100 Manga100

HAN(1 CSAM) 32.64 28.90 27.80 26.85 31.42

HAN(3 CSAM) 32.67 28.91 27.80 26.89 31.46

HAN(5 CSAM) 32.69 28.91 27.80 26.89 31.43

HAN(10 CSAM) 32.67 28.91 27.80 26.89 31.43
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Table 5. Quantitative results with BD degradation model. The best and second best
results are highlighted in bold and underlined

Method Scale Set5 Set14 B100 Urban100 Manga109
PSNRSSIM PSNRSSIM PSNRSSIM PSNRSSIM PSNRSSIM

Bicubic
SPMSR [25]
SRCNN [3]
FSRCNN [4]
VDSR [15]
IRCNN [37]
SRMDNF [38]
RDN [41]
RCAN [40]
SRFBN [21]
SAN [2]
HAN(ours)
HAN+(ours)

×3
×3
×3
×3
×3
×3
×3
×3
×3
×3
×3
×3
×3

28.78
32.21
32.05
26.23
33.25
33.38
34.01
34.58
34.70
34.66
34.75
34.76
34.85

0.8308
0.9001
0.8944
0.8124
0.9150
0.9182
0.9242
0.9280
0.9288
0.9283
0.9290
0.9294
0.9300

26.38
28.89
28.80
24.44
29.46
29.63
30.11
30.53
30.63
30.48
30.68
30.70
30.79

0.7271
0.8105
0.8074
0.7106
0.8244
0.8281
0.8364
0.8447
0.8462
0.8439
0.8466
0.8475
0.8487

26.33
28.13
28.13
24.86
28.57
28.65
28.98
29.23
29.32
29.21
29.33
29.34
29.41

0.6918
0.7740
0.7736
0.6832
0.7893
0.7922
0.8009
0.8079
0.8093
0.8069
0.8101
0.8106
0.8116

23.52
25.84
25.70
22.04
26.61
26.77
27.50
28.46
28.81
28.48
28.83
28.99
29.21

0.6862
0.7856
0.7770
0.6745
0.8136
0.8154
0.8370
0.8582
0.8647
0.8581
0.8646
0.8676
0.8710

25.46
29.64
29.47
23.04
31.06
31.15
32.97
33.97
34.38
34.07
34.46
34.56
34.87

0.8149
0.9003
0.8924
0.7927
0.9234
0.9245
0.9391
0.9465
0.9483
0.9466
0.9487
0.9494
0.9509

4.5 Results with Bicubic (BI) Degradation Model

We compare the proposed algorithm with 11 state-of-the-art methods:
SRCNN [3], FSRCNN [4], VDSR [15], LapSRN [19], MemNet [31],
SRMDNF [38], D-DBPN [6], RDN [41], EDSR [22], SRFBN [21] and SAN [2].
We provide more comparisons in supplementary material. Following [2,22,40],
we also propose self-ensemble model and donate it as HAN+.

Quantitative Results. Table 3 shows the comparison of 2×, 3×, 4×, and 8× SR
quantitative results. Compared to existing methods, our HAN+ performs best
on all the scales of reconstructed test datasets. Without using self-ensemble, our
network HAN still obtains great gain compared with the recent SR methods.
In particular, our model is much better than SAN which also uses the same
backbone network of RCAN and has more computationally intensive attention
module. Specifically, when we compare the reconstruction results at ×8 scale on
the Set5 dataset, the proposed HAN advances 0.11 dB in terms of PSNR than
the competitive SAN.

To further evaluate the proposed HAN, we conduct experiments on the large
test sets of B100, Urban100, and Manga109. Our algorithm still performs favor-
ably against the state-of-the-art methods. For example, the super-resolved results
by the proposed HAN is 0.06 dB and 0.35 dB higher than the very recent work
of SAN for the 4× and 8× scales, respectively.

Visual Results. We also show visual comparisons of various methods on the
Urban100 dataset for 4× SR in Fig. 4. As shown, most compared SR networks
cannot recover the grids of buildings accurately and suffer from unpleasant blur-
ring artifacts. In contrast, the proposed HAN obtains clearer details and recon-
structs sharper high-frequency textures.

Take the first and fourth images in Fig. 4 as example, VDSR and EDSR fail to
generate the clear structures. The results generated by the recent work of RCAN,
SRFBN, and SAN still contain noticeable artifacts caused by spatial aliasing. In
contrast, our approach effectively suppresses such artifacts through the proposed
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two attention modules. As shown, our method accurately reconstructs the grid
patterns on windows in the first row and the parallel straight lines on the building
in the fourth image.

For 8× SR, we also show the super-resolved results by different SR methods in
Fig. 5. As show, it is challenging to predict HR images from bicubic-upsampled
input by VDSR and EDSR. Even the state-of-the-art methods of RCAN and
SRFBN cannot super-resolve the fine structures well. In contrast, our HAN
reconstructs high-quality HR images for 8× results by using cross-scale layer
attention and channel-spatial attention modules on the limited information.

4.6 Results with Blur-Downscale Degradation (BD) Model

Quantitative Results. Following the protocols of [37,38,41], we further com-
pare the SR results on images with blur-downscale degradation model. We com-
pare the proposed method with nine state-of-the-art super-resolution methods:
SPMSR [25], SRCNN [3], FSRCNN [4], VDSR [15], IRCNN [37], SRMD [39],
RDN [41], RCAN [40],SRFBN [21] and SAN [2]. Quantitative results on the
3× SR are reported in Table 5. As shown, both the proposed HAN and HAN+
perform favorably against existing methods. In particular, our HAN+ yields the
best quantitative results and HAN obtains the second best scores for all the
datasets, 0.06–0.2 dB PSNR better than the attention-based methods of RCAN
and SAN and 0.2–0.8 dB better than the recently proposed SRFBN.

Visual Quality. In Fig. 6, we show visual results on images from the Urban
100 dataset with blur-downscale degradation model by a scale factor of 3. Both
the full images and the cropped regions are shown for comparison. We find that
our proposed HAN is able to recover structured details that were missing in the
LR image by properly exploiting the layer, channel, and spatial attention in the
feature space.

As shown, VDSR and EDSR suffer from unpleasant blurring artifacts and
some results even are out of shape. RCAN alleviate it to a certain extent, but
still misses some details and structures. SRFBN and SAN also fail to recover
these structured details. In contrast, our proposed HAN effectively suppresses
artifacts and exploits the scene details and the internal natural image statistics
to super-resolve the high-frequency contents.

5 Conclusions

In this paper, we propose a holistic attention network for single image super-
resolution, which adaptively learns the global dependencies among different
depths, channels, and positions using the self-attention mechanism. Specifically,
the layer attention module captures the long-distance dependencies among hier-
archical layers. Meanwhile, the channel-spatial attention module incorporates
the channel and contextual information in each layer. These two attention mod-
ules are collaboratively applied to multi-level features and then more informative
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features can be captured. Extensive experimental results on benchmark datasets
demonstrate that the proposed model performs favorably against the state-of-
the-art SR algorithms in terms of accuracy and visual quality.
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