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Abstract. The task of searching certain people in videos has seen
increasing potential in real-world applications, such as video organiza-
tion and editing. Most existing approaches are devised to work in an
offline manner, where identities can only be inferred after an entire video
is examined. This working manner precludes such methods from being
applied to online services or those applications that require real-time
responses. In this paper, we propose an online person search framework,
which can recognize people in a video on the fly. This framework main-
tains a multi-modal memory bank at its heart as the basis for person
recognition, and updates it dynamically with a policy obtained by rein-
forcement learning. Our experiments on a large movie dataset show that
the proposed method is effective, not only achieving remarkable improve-
ments over online schemes but also outperforming offline methods.

Keywords: Online person search · Multi-modality · Dynamic memory
bank · Uncertain instance cache · Reinforcement learning

1 Introduction

Person identification in videos can be specified into different forms and tasks.
Among them, person search with one portrait is especially related to real-
world applications, such as “intelligent fast forwards” on online video plat-
forms and multimedia-oriented web search, and can further benefit video sum-
marization and story understanding. This task is very challenging compared
with other person identification problems such as person Re-ID [6,8,41] and
person recognition in photo album [19,43], as the appearance, pose, and cloth-
ing of the characters may vary dramatically through the videos. To overcome
this difficulty, the research community has explored the use of various modal-
ities [1,3,5,11,16,25,34], such as face, lip motion, body, audio, subtitle, and
screenplay.
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Fig. 1. Illustration of the memory updating scheme of human movie watching expe-
rience. We select out instances of Elle Woods in movie Legally Blonde (2001) and
demonstrate how we update our memory about actress Reese Witherspoon with them.
The multi-modal memory stores face, body and audio information, which are closely
related to human identities

However, those methods are mainly offline, i.e. an instance is compared with
the rest to determine its identity, which leads to high computational complex-
ity. Additionally, for scenarios such as suspect discovery in real-time surveillance
videos and story understanding in live broadcasting, the offline approaches can-
not recognize the identities immediately. In this paper, we work on online person
search to meet the emerging requirement of timely inference.

Online search is very challenging, as decisions need to be made on the fly
based on limited memory. The key to this problem is to effectively update the
memory so that it can adapt to the changes as the video proceeds. Think about
how human tackle with online person search. Suppose we are watching the movie
Legally Blonde (2001), as shown in Fig. 1. When we see the figure of Elle Woods,
we compare it with previous images stored in our memories to infer the actress’s
name. There are two possibilities. 1) If the instance appears to be very simi-
lar to Reese Witherspoon, we recognize her name immediately, and update the
impression of Reese Witherspoon in our memories with the current looking of
Elle Woods. Similar processes are also carried out for other cast. When another
new instance comes, we continue to compare it with our dynamically updated
memory to judge his/her identity. 2) The other possible reaction is that we can-
not confirm her identity since her looking is quite different from any cast that
exists in our memories. In this case, we stay confused until she appears again and
again. We gradually build up our memories on Elle Woods and may be capable
of recognizing her as Reese Witherspoon in the future.

Inspired by this cognitive process, we propose an online multi-modal search-
ing machine (OMS). Specifically, to mimic how human recognize characters and
store representations in memory, a dynamic memory bank is developed to store
face, body and audio features of each cast. These multi-modal feature representa-
tions are closely related to human identities. The memory bank is dynamically
updated to capture the latest changes to the cast’s features as new instances
come in. To adapt to diverse movie contents and appearance changes, instead of
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interacting with the memory by a hand-crafted rule, we formulate the process as
a decision making problem and design a controller to learn the strategy of mem-
ory updating. Motivated by the second case we mentioned above, it is possible
that an instance cannot be recognized as any cast in list at the very beginning,
since the initial dynamic memory bank lacks adequate information. We develop
an uncertain instance cache to keep these temporarily confusing instances for
judgments later on. As the online process goes on, more and more instances are
recognized and the dynamic memory bank becomes more informative, we select
out instances in the cache and make a second decision for them.

Experiments are conducted on Cast Search in Movies dataset [16] to ver-
ify the effectiveness of our online multi-modal searching method. Thanks to the
adaptive multi-modal feature integration and reinforcement learning based mem-
ory updating strategy, our approach raises the mAP from 61.24% to 69.08% and
outperforms all the online methods. Surprisingly, it achieves better results than
offline methods and declines computational cost at the same time.

2 Related Work

Person Identification in Videos. In order to identify characters in videos,
frameworks using diverse features have been proposed. What commonly used
are visual features of face [1] and body [16,17], audio features of speaking
voice [25], text features of subtitle [3,11] and screenplay [5,34], and contextual
features of scene and social relation [15]. In [5,34], with the alignment of subtitles
and screenplay, time-stamped annotations are acquired to provide supervision
of character naming. Nagrani et al . [25] train face and voice classifiers in a
joint framework to recognize characters. With face and body features, Huang et
al . [16,17] propagate identity labels through visual and temporal links between
the instances. However, most previous studies work on an offline manner, i.e. all
the instances are compared with each other, and the corresponding identities are
inferred after an entire video is examined, which increases computational com-
plexity. In this paper, we propose an online framework that dynamically updates
the memory with features of newly identified instances to enable real-time infer-
ence. Since text information such as subtitles and screenplay is more difficult
to acquire compared with the internal features, we utilize face, body and audio
features to infer identities.

Multi-modal Fusion. In person identification methods, fusion of visual and
audio features can be classified into two categories: late integration [4,28] and
early integration [13,14,30,47]. Late integration methods design a specific clas-
sifier for each modality and combine decisions by voting or scoring, while early
integration merges features from different modalities by concatenation, weighted
summation, or learning joint presentations, etc., before decision. Erzin et al . [4]
determine the reliable modality combinations with a cascade of classifiers. Hu
et al . [14,30] propose a cross-modality weight sharing LSTM to capture cor-
relation of face and audio features for speaker identification. In this paper, the
strategy of multi-modal fusion is learnt implicitly in the decision making process.
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Memory Modelling. To strengthen the ability of conventional neural networks
in modelling long-range temporal dependencies, several memory models are pro-
posed. Graves et al . [9] design a Neural Turing Machine (NTM) which holds an
external memory to interact with the neural networks through attentional read-
ing and writing operations. While NTM focuses on problems of sorting, copying
and recall, Memory Networks [39] utilize large long-term static external mem-
ory and target to language and reasoning tasks. Sukhbaatar et al . [35] extend
the model to a continuous form to enable end-to-end training, making it more
generally applicable to tasks with less supervision. These memory models have
also been modified to different structures [18,33] and adopted in video-related
researches such as summarization [7,38], captioning [37], visual question answer-
ing [24] and object tracking [40]. In this paper, we utilize a dynamic memory
bank to store updated multi-modal features of cast in movies.

Reinforcement Learning. Reinforcement learning (RL) is a technique for solv-
ing decision making problems, aiming at learning a policy for the sequence of
state-action pairs to obtain maximal rewards [36]. In recent years, RL has been
applied in person Re-ID [20,26,44] and face recognition [29]. In [26,29,44], RL is
used to find the most representative frames in video sequences, while in [20], RL
guides an agent to select informative training samples which are used to finetune
a pre-trained Re-ID model. In this paper, we formulate the updating of memory
as a decision making problem, where we learn the strategy with RL to maximize
recognition accuracy.

3 Online Multi-modal Search

Given the portraits of a list of cast, our goal is to search them in a sequen-
tial movie with an online fashion following the human behaviors. To tackle this
challenging problem, we propose a novel online multi-modal searching machine
(OMS) as shown in Fig. 2. There are four key components in OMS, i.e. multi-
modal feature representations (MFR), a dynamic memory bank (DMB), an
uncertain instance cache (UIC) and a controller. Each instance is a tracklet and
is represented by multi-modal features. It is compared with the cast stored in the
memory bank to judge its identity. The controller then determines whether this
instance should be used to update memory or put into the uncertain instance
cache for later comparisons. The memory bank and the uncertain instance cache
are dynamically updated over time, with a strategy operated by the controller.
All these components together build an “intelligent machine” to watch a movie
and gradually recognize the characters like humans do.

3.1 Multi-modal Feature Representations

When watching a movie, we can identify a person based on various cues, e.g. facial
appearance, clothing, and even speech. These modalities are complementary to
each other. Therefore, it is necessary for us to capture the representations of dif-
ferent modalities for each instance in the movie. Specifically, we take face, body
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Fig. 2. Pipeline of inference in our proposed OMS. A dynamic memory bank stores
the multi-modal feature representations of each actor/actress. When a new instance
comes, we compare it with each candidate cast, then the trained agent decides whether
to update his memory with this instance or to put it into the uncertain instance cache

and audio information into consideration in our framework. Given an instance x,
we represent it with three feature vectors (ff (x), f b(x), fa(x)). Here ff ∈ R

d is
the face feature that comes from a face recognition model, f b ∈ R

d is the body
feature obtained by a Re-ID network, and fa ∈ R

d is the audio feature acquired
by a speech recognition model. These feature vectors are concatenated to form a
holistic representation f = [ff , f b, fa] ∈ R

3d.

3.2 Dynamic Memory Bank

A simple way to search cast is to calculate the similarity between the given
portrait and the detected instances by their face features. However, as the movie
proceeds, the appearance of a cast may change dramatically, and a clear face
is missing in many cases where the body is partially occluded or even blurred.
Humans can tackle this problem easily with the help of memory. Imagine that
when you watch a movie, you may not be able to recognize some of the people
at the beginning. However, with the playing of the video, you become more and
more familiar with the characters as more identified instances enter the memory.

Inspired by the above observation, we construct a dynamic memory bank
(DMB) Mt ∈ R

C×3d to store the most representative features of each person.
Here t ∈ [1, · · · , N ] represents the time when the t-th instance appears, N is
the total number of instances in a movie and C denotes the number of cast in
list. The memory bank is initialized with the features of the provided portrait of
each actor/actress. When an instance xt comes, we search for it in our memory
and then predict its identity. The procedure can be formulated as Eq. 1, where
ft is the multi-modal feature representation of xt.

pt = Mt · fT
t (1)
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As the movie goes by, the DMB keeps updating, with the strategy shown as
Eq. 2. Here μ ∈ [0, 1] is a pre-defined updating factor. G1

t,j ∈ {0, 1} is a gate of the
controller, the details of which will be introduced in Sect. 3.4, and j ∈ [1, · · · , C]
represents the j-th cast.

Mt+1,j = (1 − μG1
t,j)Mt,j + μG1

t,jft (2)

3.3 Uncertain Instance Cache

At the beginning of a movie, we are not familiar with the characters. Therefore, it
may be quite hard for us to recognize some of the tough samples. For example,
if a man appears in the first frame of the movie without a visible face, it is
impossible for us to identify him at that time. However, as the movie goes on,
we begin to know more about the story and the people. We may suddenly recall
the uncertain instance before and recognize him with our stronger knowledge.

Motivated by the fact described above, we build a novel module in our
machine to store the uncertain instances temporarily, which is named as uncer-
tain instance cache (UIC). We denote the cache as C ∈ R

k×3d. k is the size of the
cache, which dynamically changes as time goes on. Whether to place an instance
xt into the cache or not is also represented by a gate of the controller, denoted
as G2

t ∈ {0, 1}, which will be introduced in Sect. 3.4. The updating strategy can
be formulated as Eq. 3.

Ck = ft, k ← k + 1 if G2
t = 1 (3)

Whenever the DMB updates, we recall all the instances in the UIC to make
new predictions. Specifically, we compare each instance xi in the cache with the
updated memory bank Mt, as shown in Eq. 4. Ci (i ∈ [1, · · · , k]) is the multi-
modal feature representation of xi.

pi = Mt · CT
i (4)

The pi here is not the final prediction of the uncertain instance xi. Whether
xi can be confidently identified and removed from the cache is controlled by the
third gate G3

i ∈ {0, 1}, the details of which will also be introduced in Sect. 3.4.

3.4 Controller

As we mentioned before, there are three gates, i.e. G1
t,j ,G2

t ,G3
i ∈ {0, 1}, in our

framework. The three gates determine “whether to update the memory with
instance xt”, “whether to put xt into the uncertain cache”, and “whether to
remove xi from the cache”, respectively. In this section, we will provide details
on how to construct a controller with all these three gates.
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A Manual Controller. A simple way is to design the gates by setting thresholds
for the prediction, i.e. the similarity. Equation 5 shows such a manual controller,
where α, β and γ are three pre-defined thresholds. F(Δt) = τΔt is a regulariza-
tion function to control the size of the cache. Here Δt is the duration that an
instance is stored in the cache and τ is the weight.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

G1
t,j = sgn(pt,j − α)

G2
t =

C∏

j=1

sgn(β − pt,j)

G3
i = 1 −

C∏

j=1

sgn(γ − F(Δt)pi,j)

, sgn(x) =

{
1, if x >= 0,

0, otherwise
(5)

A Learnable Controller. Designing the gates according to some manually
designed rules will highly reduce the generality. Also, it is hard for us to search
for an optimal value of all the hyper parameters. To make our approach more
adaptable, we resort to reinforcement learning (RL) to get a learnable controller.
RL is characterized by an agent that continuously interacts and learns from the
environment through trial-and-error games. Its key characteristics include: 1)
lack of supervisor, 2) delayed feedback, 3) sequential decisions, and 4) actions
affect states, which accord with the peculiarities of our online memory learning
setting. Specifically, at each time step, we do not know if updating memory
can earn long-term benefits; we observe the instances and make the judgments
sequentially; and the updating of our memory will influence future judgments.
RL has the potential to find a better policy to replace naive threshold-based
strategy. Here, we take G1

t,j as an example for analysis.
Problem Formulation. The game we teach our agent to play is learning a
policy μθ(s) to decide whether to update the memory bank. For a new instance
xt with feature representation ft in the sequential movie, we compare it with
Mt, and repeat this procedure for each cast j ∈ {1, · · · , C}.
State. State space here is formulated as St = (Mt, ft).
Action. Action space here is a one-dimensional discrete space {0, 1}. If action
1 is taken, we update the memory as Eq. 2.
Reward. Denote the recognition reward at time step t as rt. If the action is
matched with the ground truth label, i.e. if xt is indeed the person j and action
1 is taken, or xt is not j and action 0 is taken, then the recognition reward
at the current time step is rt = 1. Since the effect of the update can only be
reflected in future decisions, we define the long-term reward for each action as
the cumulative recognition reward in the near future, Rt =

∑t+T
m=t rm. We use

deep Q-learning network (DQN) to find the improved policy.

The formulation of a learnable G2
t is similar to G1

t,j . Note that we do not
employ a learnable G3

i here. The reason is that G3
i is dependent on the samples

in the UIC, yet the cache size is quite small and unstable, with which we are not
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able to train an agent. Through our study, we find that the manual G3
i can work

well with the other two learned gates. An extensive analysis on the parameters
of G3

i is provided in the experiment section.

4 Experiments

4.1 Experimental Settings

Data. To validate the effectiveness of our approach, we conduct experiments
on the state-of-the-art large-scale Cast Search in Movies (CSM) dataset [16].
Extracted from 192 movies, CSM consists of a query set that contains the por-
traits of 1, 218 cast (the actors and actresses) and a gallery set that contains
127K instances (tracklets). The movies in CSM are split into training, valida-
tion and testing sets without any overlap of cast. The training set contains 115
movies with 739 cast and 79K instances, while the testing set holds 58 movies
with 332 cast and 32K instances, and the rest 19 movies are in the validation
set.

Evaluation. Given a query with the form of a portrait, our method should
present a ranking of all the instances in the gallery to suggest the corresponding
possibilities that the instances and the query share a same identity. Therefore, we
use mean Average Precision (mAP) to evaluate the performance. The training,
validation and testing are under the setting of “per movie”, i.e. given a query,
a ranking of instances from only the specific movie will be returned, which is
in accordance with real-world applications such as “intelligent fast forwards”.
Among the 192 movies in CSM, the average size of query and gallery for each
movie is 6.4 and 560.5, respectively.

4.2 Implementation Details

Multi-modal Feature Representations. For each instance in CSM, we col-
lect face, body and audio features to facilitate multi-modal person search. The
face and body features are extracted for each frame, and averaged to produce the
instance-level descriptors. For body feature, we utilize the IDE descriptor [45]
extracted by a ResNet-50 [12], which is pre-trained on ImageNet [32] and fine-
tuned on the training set of CSM. We detect face region [27,42] and extract
face feature with a ResNet-101 trained on MS-Celeb-1M [10]. NaverNet [2] pre-
trained with AVA-ActiveSpeaker dataset [31] is applied on the instances to align
the characters with their speech audio, which distinguishes a character’s voice
with the others’ as well as background noises. With the proper setting of sam-
pling rate and Mel-frequency cepstral coefficients (MFCC) [21] to reduce the
noises, ultimately, each speaking instance is assigned with an audio feature.

Memory Initialization and Update. Recall that the multi-modal memory
bank is M = {Mf ,Mb,Ma}, where Mf is initialized with the face features
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Table 1. Person search results on CSM under “per movie” setting

Methods Online mAP (%, ↑) Complexity * (↓)
Face matching � 61.24 O(NC)

TwoStep [22] (face+body) 64.79 O(NC)

TwoStep [22] (face+body+audio) 64.40 O(NC)

LP [46] 9.33 O(NC +N2)

PPCC [16] 67.99 O(NC +N2)

OMS (DMB w/ manual updating rule) � 63.83 O(NC)

OMS-R (DMB w/ RLC) � 64.39 O(NC)

OMS-RM (DMB w/ RLC+MFR) � 66.42 O(NC)

OMS-RMQ (DMB w/ RLC+MFR+UIC) � 69.08 O(NC + k̂NC)

* N : number of instances; C: number of cast; k̂: average size of UIC

extracted from the IMDb portrait of each actor/actress in the movie, and Mb,Ma

are void. The optimal μ in Eq. 2 is set to 0.01 through grid search.

RL Training. The DQN mentioned above is instantiated by a two-layer fully-
connected network. The training epoch is 100 with learning rate 0.001. Each
epoch is run on the whole movie list, with each movie taking 200 Q-learning
iterations. The future reward length is set to be 30. We run the framework on a
desktop with a TITAN X GPU.

4.3 Quantitative Results

We compare our method with five baselines: 1) Face matching (online):
The instances are sequentially compared with the cast portraits by face feature
similarity, without memory updating. 2) TwoStep (face+body): After com-
parisons between face features, instances with high recognition confidence are
assigned with identity labels, then a round of body feature comparisons is con-
ducted. 3) TwoStep (face+body+audio): The second step of comparisons
in 2) is based on the combination of body and audio features. 4) LP: The iden-
tities of labeled nodes are propagated to the unlabeled nodes with conventional
linear diffusion [46] through multi-modal feature links, where a node updates
its probability vector by taking a linear combination of vectors from the neigh-
bors [16]. In addition to face features, the body and audio features are combined
for matching, where the weights are 0.9 and 0.1, respectively. 5) PPCC [16]:
Based on the combination of visual and temporal links, the label propagation
scheme only spreads identity information when there is high certainty.

Moreover, four variants of our OMS method are compared to validate the
influences of different modules. For DMB with manual updating rule, only face
features are compared between instances and cast in the memory. When the face
similarity exceeds a fixed threshold, the memory is updated with the newly rec-
ognized instance. The RL-based controller, multi-modal feature representations
and UIC are added sequentially to form the other three variants.
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We compare different approaches in three aspects: (1) feasibility of online
inference; (2) effectiveness measured by mAP; and (3) computational complexity.

The results are presented in Table 1, from which we can see that: 1) Almost all
the previous works tackle this problem in an offline manner except for the simple
face matching baseline, while OMS can handle the online scenarios. 2) OMS is
quite effective, which can even outperform the offline methods significantly. 3)
The computational cost of OMS is low. Without UIC, OMS is as efficient as
the matching-based methods, e.g. face matching. Note that the cache size k̂
is usually smaller than N and C is less than 10 here. Therefore, even for the
complete version of OMS, i.e. OMS-RMQ, the complexity is still lower than the
popular propagation-based methods [16,46]. 4) The gradually added components
of OMS can continuously raise the performances, which proves the effectiveness
of the design for each module. All these results demonstrate that OMS is an
effective and efficient framework for person search.

4.4 Ablation Studies

What Is the Behavior of the Framework Along the Time? To discover
the behavior of our online framework, we study the development of UIC along the
time in our OMS-RMQ method. We select the movies with above 600 instances
and record their varied cache sizes at each time step during testing, and average
the results among all the movies. The result is presented in Fig. 3 (a). Each
time step represents that a decision is made to an instance, and the first 600
steps are shown. The “total size” denotes the cumulative number of uncertain
instances that have been put into the cache, while “current size” indicates the
number of existing instances therein. It is observed that as time goes, total
cache size increases gradually. After processing 600 instances, there are around
100 instances that have ever been put into the UIC. The current cache size
raises at the very beginning. After around 350 time steps, it drops gradually to
zero. It demonstrates that our DMB becomes better after absorbing informative
features to assist recognition, thus more and more uncertain instances get a
confident result and are popped out of the cache.

Additionally, we record the cumulative recall of instance identification results,
namely R@k, along the time. R@k means the fraction of instances where the
correct identity is listed within the top k results. The performance improves
gradually with time, as shown in Fig. 3 (b). The R@1 raises from 59% at the
beginning to 67%, which proves the effectiveness of our online design.

What Does RL Learn? Recall that in the manual rule setting, we update the
memory if the similarity between the memory and the instance is higher than a
given threshold. With RL, whether to update or not is decided by the trained
agent. To have a deeper understanding of how the RL agent makes the decision
and why the RL-trained strategy performs better than manual rules, during
testing with OMS-RMQ method, we record the similarity scores on different
modalities when an instance is used to update the memory. After regressing the
data points into Gaussian distributions as shown in Fig. 3 (c), the mean and
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Fig. 3. Ablation studies. (a) The variation of cache size along the time. (b) The devel-
opment of R@k performance along the time. (c) The distribution of similarity scores
of the instances that update the DMB

Fig. 4. t-SNE plot of instance features and evolution of memory in 6 movies. Each
cluster represents a cast. The “remembered” features in the memory are plotted by
light-colored dots, while the instances of a cast are in dark colors. We notice that all
the “remembered” features lie at the center of the spread instances. This indicates that
the memory absorbs reliable features and well represents the cast’s peculiarities (Color
figure online)

standard deviation of similarity scores on face, body and audio are 0.89, 0.025
(face), 0.64, 0.063 (body), and 0.46, 0.089 (audio), respectively. The RL agent
implicitly adjusts the thresholds of updating memory. Interestingly, the mean
values are almost the same with the thresholds we carefully designed before that
achieve the highest performance in the manual rule setting.

What Does Memory Learn? To prove the effectiveness of the DMB, we
visualize the features of a cast’s memory and all his/her ground-truth instances
in our OMS-RMQ method using t-SNE [23]. Figure 4 shows cast from 6 movies
who have at least 15 memory updates, where each cluster represents a cast.
We observe that the updated memory features lie at the center of the instance
cluster, which indeed provide typical representations of the cast. This shows
that our DMB can accurately capture the characteristics of all his/her possible
lookings.

How Do Different Modalities Work? To study how different modalities
contribute to the online multi-modal search, OMS using DMB with RLC and
UIC is taken as the baseline. The results are shown in Table 2. The performance
improves when we gradually add a new modality information in. We observe that
the introduction of body and audio features brings 3% and 0.5% improvement
to the baseline, respectively. With all these modalities together, OMS achieves a
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Table 2. Performances of OMS (DMB w/ RLC+UIC) based on different modalities

Method Face Body Audio mAP (%, ↑)

Face matching (online, w/o DMB) � 61.24

OMS (DMB w/ RLC+UIC) � 64.91

OMS (DMB w/ RLC+UIC) � � 67.93

OMS (DMB w/ RLC+UIC) � � 65.39

OMS (DMB w/ RLC+UIC) � � � 69.08

Table 3. Performances of OMS (DMB w/ RLC+MFR+UIC) with different cache sizes

Weight τ 0 0.04 0.08 0.12 0.16 0.20

mAP (%, ↑) 66.84 68.92 69.08 68.13 65.67 63.69

Mean cache size 199 158 96 63 40 16

4.2% enhancement in recognition precision, which validates that all the modali-
ties are complementary to each other and are informative to the online search.

What Is the Effect of Different UIC Sizes? As we mentioned above in
G3

i , F(Δt) = τΔt is the regularization function to control the cache size and
τ is the weight. A larger weight leads to a smaller cache, and vice versa. We
select different weights and show the corresponding performances provided by
OMS-RMQ in Table 3. Under each setting, we record the mean cache size of each
movie and average the values among all the movies. The average of mean cache
size drops from 199 to 16 as the weight raises from 0 to 0.20. The mAP achieves
the maximum 69.08% when the weight is 0.08. When the cache is too small, the
uncertain instances are not able to benefit from the gradually absorbed knowl-
edge, which causes inferior performance. Since a character is likely to appear
again in the movie before long, a medium-sized cache encourages the uncertain
instances to match with a neighboring confidently recognized one. Thus, when
the mean cache size is 96, the framework achieves the best result.

4.5 Qualitative Results

Which Instances Contribute to the Memory/Are Sent into the UIC?
In Fig. 5, we present some sample instances and the corresponding actions given
by the agent during inference. The samples demonstrate that person search with
one portrait is extremely challenging due to varied illumination, sizes, expres-
sions, poses and clothing. During inference, the trained agent successfully selects
informative instances which are mostly easier to recognize to update the memory
bank, while the instances that contain profile faces, back figures and occlusions
are sent into the UIC for later comparisons when more information is acquired.

Method Comparison. In the “per movie” setting, given a portrait as a query,
instances are ranked in descending order according to their similarity to the
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Fig. 5. The sample instances and their corresponding decision making results given
by the trained agent. Samples shown above the dash line with green boxes are well-
recognized and used to update memory, while those below the dash line with yellow
boxes are temporarily put into the UIC. (a) Movie IMDb ID: tt0250494, cast IMDb ID:
nm0205127. (b) Movie IMDb ID: tt0250494, cast IMDb ID: nm0000702 (Color figure
online)

cast. In Fig. 6, we show some searching results provided by our OMS-R and
OMS-RMQ methods. The green bounding boxes represent correct recognition,
while the red ones are mistakenly identified. It is shown that with the intro-
duction of UIC and multi-modal features, the recognition accuracy is evidently
improved, which is in accordance with the quantitative result that the mAP
raises from 64.39% to 69.08%. Even though the rankings of the samples pre-
sented are approaching the length of ground-truth instance list, i.e. 11-20/22
and 71-80/109, where instances are harder to recognize due to varied poses and
face sizes, OMS-RMQ still provides satisfying results.
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Fig. 6. Samples searched by different methods, ranked in descending order according
to similarity. The green bounding boxes represent correct recognition, and the red ones
are mistakenly identified. (a) The 11th–20th searching results of the actor’s portrait.
Movie IMDb ID: tt0072684, cast IMDb ID: nm0578527. (b) The 71th–80th searching
results of the actress’s portrait. Movie IMDb ID: tt0129387, cast IMDb ID: nm0000139
(Color figure online)

5 Conclusion

In this paper, we systematically study the challenging problem of person search
in videos with one portrait. To meet the demand of timely inference in real-world
video-related applications, we propose an online multi-modal searching machine.
Inspired by the cognitive process in movie watching experience, we construct a
dynamic memory bank to store multi-modal feature representations of the cast,
and develop a controller to determine the strategy of memory updating. An
uncertain instance cache is also introduced to temporarily keep unrecognized
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instances for further comparisons. Experiments show that our method provides
remarkable improvements over online schemes and outperforms offline methods.

Acknowledgment. This work is partially supported by the SenseTime Collaborative
Grant on Large-scale Multi-modality Analysis (CUHK Agreement No. TS1610626 &
No. TS1712093), the General Research Fund (GRF) of Hong Kong (No. 14203518
& No. 14205719), and Innovation and Technology Support Program (ITSP) Tier 2,
ITS/431/18F.

References

1. Arandjelovic, O., Zisserman, A.: Automatic face recognition for film character
retrieval in feature-length films. In: 2005 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 860–867 (2005)

2. Chung, J.S.: Naver at ActivityNet challenge 2019-task B active speaker detection
(AVA). arXiv preprint arXiv:1906.10555 (2019)

3. Cour, T., Sapp, B., Nagle, A., Taskar, B.: Talking pictures: temporal grouping
and dialog-supervised person recognition. In: 2010 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 1014–1021 (2010)

4. Erzin, E., Yemez, Y., Tekalp, A.M.: Multimodal speaker identification using an
adaptive classifier cascade based on modality reliability. IEEE Trans. Multimedia
7(5), 840–852 (2005)

5. Everingham, M., Sivic, J., Zisserman, A.: “Hello! my name is... Buffy”-automatic
naming of characters in TV video. In: 2006 British Machine Vision Conference
(BMVC), pp. 899–908 (2006)

6. Farenzena, M., Bazzani, L., Perina, A., Murino, V., Cristani, M.: Person re-
identification by symmetry-driven accumulation of local features. In: 2010 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2360–2367
(2010)

7. Feng, L., Li, Z., Kuang, Z., Zhang, W.: Extractive video summarizer with memory
augmented neural networks. In: 2018 ACM International Conference on Multime-
dia (MM), pp. 976–983 (2018)

8. Gheissari, N., Sebastian, T.B., Hartley, R.: Person reidentification using spatiotem-
poral appearance. In: 2006 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 1528–1535 (2006)

9. Graves, A., Wayne, G., Danihelka, I.: Neural turing machines. arXiv preprint
arXiv:1410.5401 (2014)

10. Guo, Y., Zhang, L., Hu, Y., He, X., Gao, J.: MS-Celeb-1M: a dataset and bench-
mark for large-scale face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M.
(eds.) ECCV 2016. LNCS, vol. 9907, pp. 87–102. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-46487-9 6

11. Haurilet, M., Tapaswi, M., Al-Halah, Z., Stiefelhagen, R.: Naming TV characters by
watching and analyzing dialogs. In: 2016 IEEE Winter Conference on Applications
of Computer Vision (WACV), pp. 1–9 (2016)

12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 770–778 (2016)

13. Hu, D., Li, X., Lu, X.: Temporal multimodal learning in audiovisual speech recog-
nition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 3574–3582 (2016)

http://arxiv.org/abs/1906.10555
http://arxiv.org/abs/1410.5401
https://doi.org/10.1007/978-3-319-46487-9_6
https://doi.org/10.1007/978-3-319-46487-9_6


Online Multi-modal Person Search in Videos 189

14. Hu, Y., Ren, J.S., Dai, J., Yuan, C., Xu, L., Wang, W.: Deep multimodal speaker
naming. In: 2015 ACM International Conference on Multimedia (MM), pp. 1107–
1110 (2015)

15. Huang, Q., Xiong, Y., Lin, D.: Unifying identification and context learning for
person recognition. In: 2018 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2217–2225 (2018)

16. Huang, Q., Liu, W., Lin, D.: Person search in videos with one portrait through
visual and temporal links. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss,
Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 437–454. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-01261-8 26

17. Huang, Q., Xiong, Y., Rao, A., Wang, J., Lin, D.: MovieNet: a holistic dataset for
movie understanding. In: 2020 European Conference on Computer Vision (ECCV)
(2020)

18. Li, D., Kadav, A.: Adaptive memory networks. In: 2018 International Conference
on Learning Representations Workshop (ICLRW) (2018)

19. Lin, D., Kapoor, A., Hua, G., Baker, S.: Joint people, event, and location recog-
nition in personal photo collections using cross-domain context. In: Daniilidis,
K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 243–256.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15549-9 18

20. Liu, Z., Wang, J., Gong, S., Lu, H., Tao, D.: Deep reinforcement active learning for
human-in-the-loop person re-identification. In: 2019 IEEE International Conference
on Computer Vision (ICCV), pp. 6121–6130 (2019)

21. Logan, B.: Mel frequency cepstral coefficients for music modeling. In: 2000 Inter-
national Symposium on Music Information Retrieval (ISMIR) (2000)

22. Loy, C.C., et al.: Wider face and pedestrian challenge 2018: methods and results.
arXiv preprint arXiv:1902.06854 (2019)

23. Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res.
9(Nov), 2579–2605 (2008)

24. Na, S., Lee, S., Kim, J., Kim, G.: A read-write memory network for movie
story understanding. In: 2017 IEEE International Conference on Computer Vision
(ICCV), pp. 677–685 (2017)

25. Nagrani, A., Zisserman, A.: From Benedict Cumberbatch to Sherlock Holmes: char-
acter identification in TV series without a script. In: 2017 British Machine Vision
Conference (BMVC), pp. 107.1–107.13 (2017)

26. Ouyang, D., Shao, J., Zhang, Y., Yang, Y., Shen, H.T.: Video-based person re-
identification via self-paced learning and deep reinforcement learning framework.
In: 2018 ACM International Conference on Multimedia (MM), pp. 1562–1570
(2018)

27. Rao, A., et al.: A unified framework for shot type classification based on subject
centric lens. In: 2020 European Conference on Computer Vision (ECCV) (2020)

28. Rao, A., et al.: A local-to-global approach to multi-modal movie scene segmen-
tation. In: 2020 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 10146–10155 (2020)

29. Rao, Y., Lu, J., Zhou, J.: Attention-aware deep reinforcement learning for video
face recognition. In: 2017 IEEE International Conference on Computer Vision
(ICCV), pp. 3951–3960 (2017)

30. Ren, J.S.J., et al.: Look, listen and learn - a multimodal LSTM for speaker identifi-
cation. In: 2016 AAAI Conference on Artificial Intelligence (AAAI), pp. 3581–3587
(2016)

31. Roth, J., et al.: AVA-active speaker: an audio-visual dataset for active speaker
detection. arXiv preprint arXiv:1901.01342 (2019)

https://doi.org/10.1007/978-3-030-01261-8_26
https://doi.org/10.1007/978-3-642-15549-9_18
http://arxiv.org/abs/1902.06854
http://arxiv.org/abs/1901.01342


190 J. Xia et al.

32. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J.
Comput. Vis. 115(3), 211–252 (2015)

33. Shen, Y., Tan, S., Hosseini, A., Lin, Z., Sordoni, A., Courville, A.C.: Ordered
memory. In: Advances in Neural Information Processing Systems, pp. 5037–5048
(2019)

34. Sivic, J., Everingham, M., Zisserman, A.: “Who are you?” - learning person specific
classifiers from video. In: 2009 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 1145–1152 (2009)

35. Sukhbaatar, S., Szlam, A., Weston, J., Fergus, R.: End-to-end memory networks.
In: Advances in Neural Information Processing Systems, pp. 2440–2448 (2015)

36. Sutton, R.S., Barto, A.G.: Reinforcement learning: an introduction. IEEE Trans.
Neural Netw. 9(5), 1054–1054 (1998)

37. Wang, J., Wang, W., Huang, Y., Wang, L., Tan, T.: Hierarchical memory modelling
for video captioning. In: 2018 ACM International Conference on Multimedia (MM),
pp. 63–71 (2018)

38. Wang, J., Wang, W., Wang, Z., Wang, L., Feng, D., Tan, T.: Stacked memory
network for video summarization. In: 2019 ACM International Conference on Mul-
timedia (MM), pp. 836–844 (2019)

39. Weston, J., Chopra, S., Bordes, A.: Memory networks. In: 2015 International Con-
ference on Learning Representations (ICLR) (2015)

40. Yang, T., Chan, A.B.: Learning dynamic memory networks for object tracking.
In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS,
vol. 11213, pp. 153–169. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-01240-3 10

41. Zajdel, W., Zivkovic, Z., Krose, B.J.A.: Keeping track of humans: have I seen this
person before? In: 2005 IEEE International Conference on Robotics and Automa-
tion (ICRA), pp. 2081–2086 (2005)

42. Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using
multitask cascaded convolutional networks. IEEE Signal Process. Lett. 23(10),
1499–1503 (2016)

43. Zhang, N., Paluri, M., Taigman, Y., Fergus, R., Bourdev, L.: Beyond frontal faces:
improving person recognition using multiple cues. In: 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 4804–4813 (2015)

44. Zhang, W., He, X., Lu, W., Qiao, H., Li, Y.: Feature aggregation with reinforcement
learning for video-based person re-identification. IEEE Trans. Neural Netw. Learn.
Syst. 30(12), 3847–3852 (2019)

45. Zheng, L., et al.: MARS: a video benchmark for large-scale person re-identification.
In: 2016 European Conference on Computer Vision (ECCV), pp. 868–884 (2016)

46. Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Schölkopf, B.: Learning with local
and global consistency. In: Advances in Neural Information Processing Systems,
pp. 321–328 (2003)

47. Zhou, H., Liu, Z., Xu, X., Luo, P., Wang, X.: Vision-infused deep audio inpainting.
In: 2019 IEEE International Conference on Computer Vision (ICCV), pp. 283–292
(2019)

https://doi.org/10.1007/978-3-030-01240-3_10
https://doi.org/10.1007/978-3-030-01240-3_10

	Online Multi-modal Person Search in Videos
	1 Introduction
	2 Related Work
	3 Online Multi-modal Search
	3.1 Multi-modal Feature Representations
	3.2 Dynamic Memory Bank
	3.3 Uncertain Instance Cache
	3.4 Controller

	4 Experiments
	4.1 Experimental Settings
	4.2 Implementation Details
	4.3 Quantitative Results
	4.4 Ablation Studies
	4.5 Qualitative Results

	5 Conclusion
	References




