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Abstract. We present an autoencoder-based semi-supervised approach
to classify perceived human emotions from walking styles obtained from
videos or motion-captured data and represented as sequences of 3D poses.
Given the motion on each joint in the pose at each time step extracted
from 3D pose sequences, we hierarchically pool these joint motions in a
bottom-up manner in the encoder, following the kinematic chains in the
human body. We also constrain the latent embeddings of the encoder to
contain the space of psychologically-motivated affective features under-
lying the gaits. We train the decoder to reconstruct the motions per joint
per time step in a top-down manner from the latent embeddings. For the
annotated data, we also train a classifier to map the latent embeddings to
emotion labels. Our semi-supervised approach achieves a mean average
precision of 0.84 on the Emotion-Gait benchmark dataset, which con-
tains both labeled and unlabeled gaits collected from multiple sources.
We outperform current state-of-art algorithms for both emotion recog-
nition and action recognition from 3D gaits by 7%-23% on the absolute.
More importantly, we improve the average precision by 10%-50% on the
absolute on classes that each makes up less than 25% of the labeled part
of the Emotion-Gait benchmark dataset.

1 Introduction

Humans perceive others’ emotions through verbal cues such as speech [29,53],
text [12,63], and non-verbal cues such as eye-movements [57], facial expres-
sions [19], tone of voice, postures [4], walking styles [34], etc. Perceiving others’
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emotions shapes people’s interactions and experiences when performing tasks
in collaborative or competitive environments [6]. Given this importance of per-
ceived emotions in everyday lives, there has been a steady interest in developing
automated techniques for perceiving emotions from various cues, with applica-
tions in affective computing, therapy, and rehabilitation [55], robotics [7,46],
surveillance [3,52], audience understanding [66], and character generation [62].

While there are multiple non-verbal modalities for perceiving emotions, in
our work, we only observe people’s styles of walking or their gaits, extracted
from videos or motion-captured data. Perceived emotion recognition using any
non-verbal cues is considered to be a challenging problem in both psychology and
Al primarily because of the unreliability in the cues, arising from sources such
as “mock” expressions [17], expressions affected by the subject’s knowledge of an
observer [20], or even self-reported emotions in certain scenarios [47]. However,
gaits generally require less conscious initiation from the subjects and therefore
tend to be more reliable cues. Moreover, studies in psychology have shown that
observers were able to perceive the emotions of walking subjects by observing
features such as arm swinging, stride lengths, collapsed upper body, etc. [34,42].

Gaits have been widely used in computer vision for many applications, includ-
ing action recognition [37,59,69] and perceiving emotions [9,43,50,51]. However,
there are a few key challenges in terms of designing machine learning methods
for emotion recognition using gaits:

e Methods based on hand-crafted biomechanical features extracted from human
gaits often suffer from low prediction accuracy [15,64].

e Fully deep-learned methods [9,50] rely heavily on sufficiently large sets of
annotated data. Annotations are expensive and tedious to collect due to the
variations in scales and motion trajectories [2], as well as the inherent subjec-
tivity in perceiving emotions [9]. The benchmark dataset for emotion recog-
nition, Emotion-Gait [9], has around 4,000 data points of which more than
53% are unlabeled.

e Conditional generative methods are useful for data augmentation, but cur-
rent methods can only generate data for short time periods [26,32] or with
relatively low diversity [9,49,68,70].

On the other hand, acquiring poses from videos and MoCap data is cheap and
efficient, leading to the availability of large-scale pose-based datasets [1,11,28,
58]. Given the availability of these unlabeled gait datasets and the sparsity of
gaits labeled with perceived emotions, there is a need to develop automatic
methods that can utilize these datasets for emotion recognition.

Main Contributions: We present a semi-supervised network that accepts 3D
pose sequences of human gaits extracted from videos or motion-captured data
and predicts discrete perceived emotions, such as happy, angry, sad, and neu-
tral. Our network consists of an unsupervised autoencoder coupled with a super-
vised classifier. The encoder in the unsupervised autoencoder hierarchically pools
attentions on parts of the body. It learns separate intermediate feature repre-
sentations for the motions on each of the human body parts (arms, legs, and
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torso) and then pools these features in a bottom-up manner to map them to the
latent embeddings of the autoencoder. The decoder takes in these embeddings
and reconstructs the motion on each joint of the body in a top-down manner.
We also perform affective mapping: we constrain the space of network-learned
features to subsume the space of biomechanical affective features [54] expressed
from the input gaits. These affective features contain useful information for dis-
tinguishing between different perceived emotions. Lastly, for the labeled data,
our supervised classifier learns to map the encoder embeddings to the discrete
emotion labels to complete the training process. To summarize, we contribute:

e A semi-supervised network, consisting of an autoencoder and a classifier,
that are trained together to predict discrete perceived emotions from 3D pose
sequences of gaits of humans.

e A hierarchical attention pooling module on the autoencoder to learn
useful embeddings for unlabeled gaits, which improves the mean average pre-
cision (mAP) in classification by 1-17% on the absolute compared to state-
of-the-art methods in both emotion recognition and action recognition from
3D gaits on the Emotion-Gait benchmark dataset.

e Subsuming the affective features expressed from the input gaits in the
space of learned embeddings. This improves the mAP in classification by
7-23% on the absolute compared to state-of-the-art methods.

We observe the performance of our network improves linearly as more unlabeled
data is used for training. More importantly, we report a 10-50% improvement
on average precision on the absolute for emotion classes that have fewer than
25% labeled samples in the Emotion-Gait dataset [9)].

2 Related Work

We briefly review prior work in classifying perceived emotions from gaits, as well
as the related task of action recognition and generation from gaits.

Detecting Perceived Emotions from Gaits. Experiments in psychology
have shown that observers were able to identify sadness, anger, happiness, and
pride by observing gait features such as arm swinging, long strides, erect posture,
collapsed upper body, etc. [34,39,42,44]. This, in turn, has led to considerable
interest from both the computer vision and the affective computing communi-
ties in detecting perceived emotions from recorded gaits. Early works exploited
different gait-based affective features to automatically detect perceived emo-
tions [15,16,31,64]. More recent works combined these affective features with
features learned from recurrent [50] or convolutional networks [9] to significantly
improve classification accuracies.

Action Recognition and Generation. There are large bodies of recent work
on both gait-based supervised action recognition [13,37,59-61,67,69,72], and
gait-based unsupervised action generation [26,49,68,70]. These methods make
use of RNNs or CNNs, including GCNs, or a combination of both, to achieve
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high classification accuracies on benchmark datasets such as Human3.6M [28],
Kinetics [11], NTU RGB-D [58], and more. On top of the deep-learned networks,
some methods have also leveraged the kinematic dependencies between joints
and bones [59], dynamic movement-based features [60], and long-range temporal
dependencies [37], to further improve performance. A comprehensive review of
recent methods in kinect-based action recognition is available in [65].

RNN and CNN-based approaches have been extended to semi-supervised
classification as well [24, 30,48, 71]. These methods have also added constraints on
limb proportions, movement constraints, and exploited the autoregressive nature
of gait prediction to improve their generative and classification components.

Generative methods have also exploited full sequences of poses to directly
generate full test sequences [10,70]. Other approaches have used constraints on
limb movements [2], action-specific trajectories [26], and the structure and kine-
matics of body joints [49], to improve the naturalness of generated gaits.

In our work, we learn latent embeddings from gaits by exploiting the kine-
matic chains in the human body [5] in a hierarchical fashion. Inspired by prior
works in emotion perception from gaits, we also constrain our embeddings to
contain the space of affective features expressed from gaits, to improve our aver-
age precision, especially on the rarer classes.

3 Approach

Given both labeled and unlabeled 3D pose sequences for gaits, our goal is classify
all the gaits into one or more discrete perceived emotion labels, such as happy,
sad, angry, etc. We use a semi-supervised approach to achieve this, by combining
an autoencoder with a classifier, as shown in Fig. 2. We denote the set of trainable
parameters in the encoder, decoder, and classifier with 8, v, and ¢ respectively.
We first extract the rotation per joint from the first time step to the current time
step in the input sequences (details in Sect.3.2). We then pass these rotations
through the encoder, denoted with fy (-), to transform the input rotations into
features in the latent embedding space. We pass these latent features through the
decoder, denoted with fy (-), to generate reconstructions of the input rotations.
If training labels are available, we also pass the encoded features through the
fully-connected classifier network, denoted with fy (-), to predict the probabilities
of the labels. We define our overall loss function as

C(0,0,¢) = f:féi)CCL (y(i)affﬁoe (D(i))) +Car (D(i),fwoa (D(i)» , (1)
i=1

where fpoq (+) := fo (fa (+)) denotes the composition of functions, Ly) is an indi-
cator variable denoting whether the i*" data point has an associated label y(*),
M is the number of gait samples, Coy, denotes the classifier loss detailed in
Sect. 3.3, and C4 g denotes the autoencoder loss detailed in Sect. 3.4. For brevity
of notation, we will henceforth use § := fyop (D) and D := fyo (DD).
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3.1 Representing Emotions

The Valence-Arousal-Dominance (VAD) model [41] is used for representing emo-
tions in a continuous space. This model assumes three independent axes for
valence, arousal, and dominance values, which collectively indicate an observed
emotion. Valence indicates how pleasant (vs. unpleasant) the emotion is, arousal
indicates how much the emotion is tied to high (vs. low) physiological inten-
sity, and dominance indicates how much the emotion is tied to the assertion of
high (vs. low) social status. For example, discrete emotion terms such as happy
indicate high valence, medium arousal, and low dominance, angry indicate low
valence, high arousal, and high dominance, and sad indicate low valence, low
arousal, and low dominance.

Table 1. Affective Features. List of the 18 pose
affective features that we use to describe the affec-
tive feature space for our network.

Angles Shoulders at lower back

between Hands at root

Left shoulder and hand at elbow
Right shoulder and hand at elbow

ﬁ::\‘e:i Head and left shoulder at neck

13 Left Shoulder Head and right shoulder at neck

Right Shoulder 17

Spine 10
ht Elb /’ Lower Back Head and left knee at root
Right Elbow 18
9 / 14 Left Elbow Head and right knee at root
Right Hand Base 19 5/

Left toe and right toe at root

15 Left Hand Base .
16 Left Hand Index Left hip and toe at knee
Right hip and toe at knee

/1

Right Hand Index 20/
|

Right Hip “

Right Knee 6 «\
\

Left Hip
2 Left Knee Distance |Left hand index (LHI) to neck and LHI to root

ratios Right-hand index (RHI) to neck and RHI to
: between root
Right Heel 3 Left Heel
Right Toe 8 Left Toe LHI to RHI and neck to root

Left toe to right toe and neck to root
Fig. 1. 3D pose model. The names Area (A) | A shoulders to lower back and A shoulders to
and numbering of the 21 joints in r2ti°s root

between A hands to lower back and A hands to root
the pose follow the nomenclature

in the ELMD dataset [23].

A hand indices to neck and A toes to root

On the other hand, these discrete emotion terms are easily understood by
non-expert annotators and end-users. As a result, most existing datasets for
supervised emotion classification consist of discrete emotion labels, and most
supervised methods report performance on predicting these discrete emotions.
In fact, discrete emotions can actually be mapped back to the VAD space through
various known transformations [25,40]. Given these factors, we choose to use dis-
crete emotion labels in our work as well. We also note that human observers have
been reported to be most consistent in perceiving emotions varying primarily on
the arousal axis, such as happy, sad, and angry [22,56]. Hence we work with the
four emotions, happy, sad, angry, and neutral.
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3.2 Representing the Data

Given the 3D pose sequences for gaits, we first obtain the rotations per joint

per time step. We denote a gait as G = {( J,yj, 5)};‘151,13:1’
3D positions of J joints across 1" time steps. We denote the rotation of joint
j from the first time step to time step t as R§ € SO (3). We represent these
rotations as unit quaternions q;f € H c R*, where H denotes the space of unit
4D quaternions. As stated in [49], quaternions are free of the gimbal-lock prob-
lem, unlike other common representations such as Euler angles or exponential
maps [21]. We enforce the additional unit norm constraints for these quaternions

when training our autoencoder. We represent the overall input to our network
as DO .= {qj} C1i=1 € H/*T,

consisting of the

3.3 Using Perceived Emotions and Constructing Classifier Loss

Observers’ perception of emotions in others depends heavily influenced by their
own personal, social, and cultural experiences, making emotion perception an
inherently subjective task [34,56]. Consequently, we need to keep track of the
differences in the perceptions of different observers. We do this by assigning
multi-hot emotion labels to each input gait.

We assume that the given labeled gait dataset consists of C' discrete emotion
classes. The raw label vector L(Y) for the i*" gait is a probability vector where
the I*" element denotes the probability that the corresponding Cgalt is perceived
to have the {*" emotion. Specifically, we assume L) € [0,1]7 to be given as
L = [pl P2 ...pc}T, where p; denotes the probability of the I*" emotion and
l=1,2,...C. In practice, we compute the probability of each emotion for each
labeled gait in a dataset as the fraction of annotators who labeled the gait with
the corresponding emotion. To perform classification, we need to convert each
element in L® to an assignment in {0,1}, resulting in the multi-hot emotion
label y() € {0, 1}0. Taking into account the subjectivity in perceiving emotions,
we set an element [ in y(*) to 1 if p; > %, i.e., the I*" perceived emotion has more
than a random chance of being reported, and 0 otherwise. Since our classification
problem is multi-class (typically, C > 2) as well as multi-label (as we use multi-
hot labels), we use the weighted multi-class cross-entropy loss

Cer (y(‘ ) Zwl ()™ 1og (1) (2)

for our classifier loss, where (y;)” and () denote the I** components of ¥
and §(?), respectively. We also add per-class weights w; = e ?' to make the
training more sensitive to mistakes on the rarer samples in the labeled dataset.

3.4 Using Affective Features and Constructing Autoencoder Loss

Our autoencoder loss consists of three constraints: affective loss, quaternion loss,
and angle loss.
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Affective Loss. Prior studies in psychology report that a person’s perceived
emotions can be represented by a set of scale-independent gait-based affective
features [15]. We consider the poses underlying the gaits to be made up of J = 21
joints (Fig. 1). Inspired by [50], we categorize the affective features as follows:

e Angles subtended by two joints at a third joint. For example, between the
head and the neck (used to compute head tilt), the neck, and the shoulders
(to compute slouching), root and thighs (to compute stride lengths), etc.

e Distance ratios between two pairs of joints. For example, the ratio between
the distance from the hand to the neck, and that from the hand to the root
(to compute arm swings).

e Area ratios formed by two triplets of joints. For example, the ratio of the
area formed between the elbows and the neck and the area formed between
the elbows and the root (to compute slouching and arm swings). Area ratios
can be viewed as amalgamations of the angle- and the distance ratio-based
features used to supplement observations from these features.

We present the full list of the A = 18 affective features we use in Table 1.
We denote the set of affective features across all time steps for the i*" gait
with a® € RAXT. We then constrain a subset of the embeddings learned by
our encoder to map to these affective features. Specifically, we construct our
embedding space to be RE*T such that £ > A. We then constrain the first
A x T dimensions of the embedding, denoted with a() for the i*" gait, to match
the corresponding affective features a?). This gives our affective loss constraint:
. . . 12
Logt (a(w? &(n) — Ham _ 4@ (3)
We use affective constraints rather than providing affective features as input
because there is no consensus on the universal set of affective features, espe-
cially due to cross-cultural differences [18,56]. Thus, we allow the encoder of our
autoencoder to learn an embedding space using both data-driven features and
our affective features, to improve generalizability.

Quaternion Loss. The decoder for our autoencoder returns rotations per joint

per time step as quaternions ((j}f) @ We then constrain these quaternions to have

unit norm:
Lo ((@)7) = (| @) 1) (@)

We apply this constraint instead of normalizing the decoder output, since indi-
vidual rotations tend to be small, which leads the network to converge all its
estimates to the unit quaternion.

Angle Loss. This is the reconstruction loss for the autoencoder. We obtain it
by converting the input and the output quaternions to the corresponding Euler
angles and computing the mean loss between them:

ENOIIE

Lang (D“),f)(“) = H(DX,Dy,DZ)“) - (Dx,f)y,DZ) (5)

F
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. PN ()]
where (Dx,Dy,Dz)" € [0,27*”*" and (DX,Dy,DZ) e [0, 27
denotes the set of Euler angles for all the joints across all the time steps for
input D and output D respectively, and ||-||» denotes the Frobenius norm.
Combining Egs. 3, 4 and 5, we write the autoencoder loss Cag (-, -) as

CAE (D(’L)y lA)u)) = ‘cang (D(L)7 D(Z)) + /\quat‘cquat + )\affﬁaff (6)

where Aquat and A,g are the regularization weights for the quaternion loss con-
straint and the affective loss constraint, respectively. To keep the scales of Lgyat
and L,g consistent, we also scale all the affective features to lie in [0, 1].

GRU  Jlinearlayers  Sum Linearlayers Sum 7@ e {0’1}0 tinear Layers tJLmearLayers GRU for GRU for next

Pooling  perchain  Pooling Repeat  per chain Repea onestep T-lsteps ~ Output Data
Output Labels

e (e D) g RA7XT
Fig. 2. Our network for semi-supervised classification of discrete perceived emotions
from gaits. Inputs to the encoder are rotations on each joint at each time step, rep-
resented as 4D unit quaternions. The inputs are pooled bottom-up according to the
kinematic chains of the human body. The embeddings at the end of the encoder are
constrained to lie in the space of the mean affective features R*. For labeled data, the
embeddings are passed through the classifier to predict output labels. The linear layers
in the decoder take in the embeddings and reconstruct the motion on each joint at a
single time-step at the output of the first GRU. The second GRU in the decoder takes
in the reconstructed joint motions at a single time step and predicts the joint motions
for the next time step for T'— 1 steps.

4 Network Architecture and Implementation

Our network for semi-supervised classification of discrete perceived emotions
from gaits, shown in Fig.2, consists of three components, the encoder, the
decoder, and the classifier. We describe each of these components and then sum-
marize the training routine for our network.

4.1 Encoder with Hierarchical Attention Pooling

We first pass the sequences of joint rotations on all the joints through a two-layer
Gated Recurrent Unit (GRU) to obtain feature representations for rotations
at all joints at all time steps. We pass each of these representations through
individual linear units. Following the kinematic chain of the human joints [5],
we pool the linear unit outputs for the two arms, the two legs, and the torso in
five separate linear layers. Thus, each of these five linear layers learns to focus
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attention on a different part of the human body. We then pool the outputs from
these five linear layers into another linear layer, which, by construction, focuses
attention on the motions of the entire body. For pooling, we perform vector
addition as a way of composing the features at the different hierarchies.

Our encoder learns the hierarchy of the joint rotations in a bottom-up man-
ner. We map the output of the last linear layer in the hierarchy to a feature
representation in the embedding space of the encoder through another linear
layer. In our case, the embedding space lies in RE*T with & = 32, which sub-
sumes the space of affective features RA*7 with A = 18, as discussed in Sect. 3.4.

4.2 Decoder with Hierarchical Attention Un-pooling

The decoder takes in the embedding from the encoder, repeats it five times
for un-pooling, and passes the repeated features through five linear layers. The
outputs of these linear layers are features representing the reconstructions on
the five parts, torso, two arms, and two legs. We repeat each of these features
for un-pooling, and then collectively feed them into a GRU, which reconstructs
the rotation on every joint at a single step. A subsequent GRU takes in the
reconstructed joint rotations at a single time step and successively predicts the
joint rotations for the next 7' — 1 time steps.

4.3 Classifier for Labeled Data

Our classifier takes in the embeddings and passes it through a series of three
linear layers, flattening the features between the second and the third linear
layers. The output of the final linear layer, called “Output Labels” in Fig.2,
provides the label probabilities. To make predictions, we set the output for a
class to be 1 if the label probability for that class was more than %, similar to

[OX
the routine for constructing input labels discussed in Sect. 3.3.

4.4 Training Routine

We train using the Adam optimizer [33] with a learning rate of 0.001, which we
decay by a factor of 0.999 per epoch. We apply the ELU activation [14] on all
the linear layers except the output label layer, apply batch normalization [27]
after every layer to reduce internal covariance-shift, and apply a dropout of
0.1 to prevent overfitting. On the second GRU in the decoder, which predicts
joint rotations for T' successive time steps, we use a curriculum schedule [8].
We start with a teacher forcing ratio of 1 on this GRU and at every epoch E,
we decay the teacher forcing ratio by 8 = 0.995, i.e., we either provide this
GRU the input joint rotations with probability 8, or the GRU’s past predicted
joint rotations with probability 1 — #¥. Curriculum scheduling helps the GRU
to gently transition from a teacher-guided prediction routine to a self-guided
prediction routine, thereby expediting the training process.

We train our network for 500 epochs, which takes around 4h on an Nvidia
GeForce GTX 1080Ti GPU with 12 GB memory. We use 80% of the available
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labeled data and all the unlabeled data for training our network, and validate
its classification performance on a separate 10% of the labeled data. We keep
the remaining 10% as the held-out test data. We also observed satisfactory per-
formance when the weights Aquat and Aag (in Eq. 6) lie between 0.5 and 2.5. For
our reported performances in Sect. 5.3, we used a value of 2 for both.

5 Results

We perform experiments with the Emotion-Gait benchmark dataset [9]. It con-
sists of 3D pose sequences of gaits collected from a variety of sources and partially
labeled with perceived emotions. We provide a brief description of the dataset
in Sect. 5.1. We list the methods we compare with in Sect.5.2. We then summa-
rize the results of the experiments we performed with this dataset on all these
methods in Sect. 5.3, and describe how to interpret the results in Sect. 5.4.

Table 2. Average Precision scores. Table 3. Ablation studies. Comparing aver-
Average precision (AP) per class and age precisions of ablated versions of our
the mean average precision (mAP) over method. HP denotes Hierarchical Pooling,
all the classes achieved by all the AL denotes the Affective Loss constraint. AP,
methods on the Emotion Gait dataset. mAP, H, S, A, N are reused from Table 2.
Classes are Happy (H), Sad (S), Angry Bold indicates best, blue indicates second
(A) and Neutral (N). Higher values are  best.

better. Bold indicates best, blue indi-

db Method AP mAP
cates second best. o Is 1a I~
Method AP mAP With only labeled data, [0.920.81{0.51 |0.42(0.67
H S A N no AL or HP
With only labeled data, [0.93[0.81 |0.63 |0.49 |0.72
STGCN [69] 0.98 [0.83 0.42 [0.18 |0.61 HP and no AL
DGNN [59] 0.98 0.88 |0.73 10.37 10.74 With only labeled data, |0.96 [0.86 [0.70 |0.51 0.76
MS-G3D [59] 0.98 [0.88 |0.75 |0.44 [0.76 AL and no HP
LSTM Network [50]]0.96 |0.84 |0.62 |0.51 |0.73 With only labeled data, [0.97 [0.86 |0.72 [0.55 |0.78
STEP [9] 0.97 [0.88 |0.72 [0.52 |0.77 AL and HP
Our method 0.98/0.89/0.81/0.71|0.84 With all data, no AL or [0.94 |0.83 |0.55 |0.48 |0.70
HP
With all data, HP and no |0.96 |0.85 |0.70 |0.60 |0.78
AL
With all data, AL and no |0.97 [0.87 |0.76 |0.65 |0.81
HP
With all data, AL and |0.98/0.89(0.81|0.71/0.84
HP

5.1 Dataset

The Emotion-Gait dataset [9] consists of gaits collected from various sources
of 3D pose sequence datasets, including BML [38], Human3.6M [28], ICT [45],
CMU-MoCap [1] and ELMD [23]. To maintain a uniform set of joints for the pose
models collected from diverse sources, we converted all the models in Emotion-
Gait to the 21 joint pose model used in ELMD [23]. We clipped or zero-padded
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all input gaits to have 240 time steps, and downsampled it to contain every
5t frame. We passed the resultant 48 time steps to our network, we have i.e.,
T = 48. In total, the dataset has 3,924 gaits of which 1,835 have emotion labels
provided by 10 annotators, and the remaining 2,089 are not annotated. Around
58% of the labeled data have happy labels, 32% have sad labels, 23% have angry
labels, and only 14% have neutral labels (more details on the project webpage).

Histograms of Affective Features. We show histograms of the mean values of
6 of the 18 affective features we use in Fig. 3. The means are taken across the T' =
48 time steps in the input gaits and differently colored for inputs belonging to the
different emotion classes as per the annotations. We count the inputs belonging
to multiple classes once for every class they belong to. For different affective
features, different sets of classes have a high overlap of values while values of the
other classes are well-separated. For example, there is a significant overlap in
the values of the distance ratio between right-hand index to the neck and right-
hand index to the root (Fig. 3, bottom left) for gaits belonging to sad and angry
classes, while the values of happy and neutral are distinct from these. Again, for
gaits in happy and angry classes, there is a high overlap in the ratio of the area
between hands to lower back and hands to root (Fig. 3, bottom right), while the
corresponding values for gaits in neutral and sad classes are distinct from these.
The affective features also support observations in psychology corresponding to
perceiving emotions from gaits. For example, slouching is generally considered to
be an indicator of sadness [42]. Correspondingly, we can observe that the values
of the angle between the shoulders at the lower back (Fig. 3, top left) are lowest
for sad gaits, indicating slouching.

i” 2 : fﬁ? Happy 100__toomy T

o
o
38

Sad
Mean

30/——
Angry
0.50
0 500 1000 1500 2089
# Unlabeled Data

Sad

Angry
Zi§ Neutral

1)

Average Precision

o o
2 I
3 3

Fig. 3. Conditional distribution of mean affective Fig.4. AP increases with
features. Distributions of 6 of the 18 affective fea- adding unlabeled data. AP
tures, for the Emotion-Gait dataset, conditioned achieved on each class, as well
on the given classes Happy, Sad, Angry, and Neu- as the mean AP over the
tral. Mean is taken across the number of time classes, increases linearly as
steps. We observe that the different classes have we add more unlabeled data to
different distributions of peaks, indicating that train our network. The incre-
these features are useful for distinguishing between ment is most significant for the
perceived emotions. (Color figure online) neutral class, which has the

fewest labels in the dataset.
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5.2 Comparison Methods

We compare our method with the following state-of-the-art methods for both
emotion recognition and action recognition from gaits. We choose to compare
with action recognition methods because similar to these methods, we aim to
learn a mapping from gaits to a set of labels (emotions instead of actions).

¢ Emotion Recognition. We compare with the network of [50], which com-
bines affective features from gaits with features learned from an LSTM-based
network taking pose sequences of gaits as input, to form hybrid feature vec-
tors for classification. We also compare with STEP [9], which trains a spatial-
temporal graph convolution-based network with gait inputs and affective fea-
tures obtained from the gaits, and then fine-tunes the network with data
generated from a graph convolution-based variational autoencoder.

e Action Recognition. We compare with recent state-of-the-art methods
based on the spatial-temporal graph convolution network (STGCN) [69], the
directed graph neural network (DGNN) [59], and the multi-scale graph con-
volutions with temporal skip connections (MS-G3D) [37]. STGCN computes
spatial neighborhoods as per the bone structure of the 3D poses and temporal
neighborhoods according to the instances of the same joints across time steps
and performs convolutions based on these neighborhoods. DGNN computes
directed acyclic graphs of the bone structure based on kinematic dependen-
cies and trains a convolutional network with these graphs. MS-G3D performs
multi-scale graph convolutions on the spatial dimensions and adds skip con-
nections on the temporal dimension to model long-range dependencies for
various actions.

For a fair comparison, we retrained all these networks from scratch with the
labeled portion of the Emotion-Gait dataset, following their respective reported
training parameters, and the same data split of 8:1:1 as our network.
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