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Abstract. Real-world image noise removal is a long-standing yet very
challenging task in computer vision. The success of deep neural network in
denoising stimulates the research of noise generation, aiming at synthesiz-
ingmore clean-noisy image pairs to facilitate the training of deep denoisers.
In this work, we propose a novel unified framework to simultaneously deal
with the noise removal and noise generation tasks. Instead of only infer-
ring the posteriori distribution of the latent clean image conditioned on the
observed noisy image in traditionalMAP framework, our proposedmethod
learns the joint distribution of the clean-noisy image pairs. Specifically,
we approximate the joint distribution with two different factorized forms,
which can be formulated as a denoiser mapping the noisy image to the clean
one and a generator mapping the clean image to the noisy one. The learned
joint distribution implicitly contains all the information between the noisy
and clean images, avoiding the necessity of manually designing the image
priors and noise assumptions as traditional. Besides, the performance of
our denoiser can be further improved by augmenting the original training
dataset with the learned generator. Moreover, we propose two metrics to
assess the quality of the generated noisy image, for which, to the best of
our knowledge, such metrics are firstly proposed along this research line.
Extensive experiments have been conducted to demonstrate the superior-
ity of our method over the state-of-the-arts both in the real noise removal
and generation tasks. The training and testing code is available at https://
github.com/zsyOAOA/DANet.
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1 Introduction

Image denoising is an important research problem in low-level vision, aiming at
recovering the latent clean image x from its noisy observation y. Despite the
significant advances in the past decades [8,14,56,57], real image denoising still
remains a challenging task, due to the complicated processing steps within the
camera system, such as demosaicing, Gamma correction and compression [46].

Fig. 1. Illustration of our proposed dual adversarial framework. The solid lines denote
the forward process, and the dotted lines mark the gradient interaction between the
denoiser and generator during the backword.

From the Bayesian perspective, most of the traditional denoising meth-
ods can be interpreted within the Maximum A Posteriori (MAP) framework,
i.e., maxx p(x|y) ∝ p(y|x)p(x), which involves one likelihood term p(y|x) and
one prior term p(x). Under this framework, there are two methodologies that
have been considered. The first attempts to model the likelihood term with
proper distributions, e.g., Gaussian, Laplacian, MoG [33,55,59] and MoEP [10],
which represents different understandings for the noise generation mechanism,
while the second mainly focuses on exploiting better image priors, such as
total variation [40], non-local similarity [8], low-rankness [15,17,47,53] and spar-
sity [31,52,58]. Despite better interpretability led by Bayesian framework, these
MAP-based methods are still limited by the manual assumptions on the noise
and image priors, which may largely deviate from the real images.

In recent years, deep learning (DL)-based methods have achieved impressive
success in image denoising task [4,56,57]. However, as is well known, training
a deep denoiser requires large amount of clean-noisy image pairs, which are
time-consuming and expensive to collect. To address this issue, several noise
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generation1 approaches were proposed to simulate more clean-noisy image pairs
to facilitate the training of deep denoisers. The main idea behind them is to
unfold the in-camera processing pipelines [7,19], or directly learn the distribution
p(y) as in [11,25] using generative adversarial network (GAN) [16]. However, the
former methods involve many hyper-parameters needed to be carefully tuned for
specific cameras, and the latter ones suffer from simulating very realistic noisy
image with high-dimensional signal-dependent noise distributions. Besides, to
the best of our knowledge, there is still no metric to quantitatively assess the
quality of the generated noisy images w.r.t. the real ones.

Against these issues, we propose a new framework to model the joint dis-
tribution p(x,y) instead of only inferring the conditional posteriori p(x|y)
as in conventional MAP framework. Specifically, we firstly factorize the
joint distribution p(x,y) from two opposite directions, i.e., p(x|y)p(y) and∫
z

p(y|x,z)p(x)p(z)dz, which can be well approximated by a image denoiser
and a noise generator. Then we simultaneously train the denoiser and genera-
tor in a dual adversarial manner as illustrated in Fig. 1. After that, the learned
denoiser can either be directly used for the real noise removal task, or further
enhanced with new clean-noisy image pairs simulated by the learned generator.
In summary, the contributions of this work can be mainly summarized as:

– Different from the traditional MAP framework, our method approximates
the joint distribution p(x,y) from two different factorized forms in a dual
adversarial manner, which subtlely avoids the manual design on image priors
and noise distribution. What’s more, the joint distribution theoretically con-
tains more complete information underlying the data set comparing with the
conditional posteriori p(x|y).

– Our proposed method can simultaneously deal with both the noise removal
and noise generation tasks in one unified Bayesian framework, and achieves
superior performance than the state-of-the-arts in both these two tasks.
What’s more, the performance of our denoiser can be further improved after
retraining on the augmented training data set with additional clean-noisy
image pairs simulated by our learned generator.

– In order to assess the quality of the simulated noisy images by a noise gen-
eration method, we design two metrics, which, to the best of our knowledge,
are the first metrics to this aim.

2 Related Work

2.1 Noise Removal

Image denoising is an active research topic in computer vision. Under the MAP
framework, rational priors are necessary to be pre-assumed to enforce some
desired properties of the recovered image. Total variation [40] was firstly intro-
duced to deal with the denoising task. Later, the non-local similarity prior,
1 The phrase “noise generation” indicates the generation process of noisy image from

clean image throughout this paper.
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meaning that the small patches in a large non-local area may share some similar
patterns, was considered in NLM [8] and followed by many other denoising meth-
ods [14,15,28,30]. Low-rankness [15,17,53,54] and sparsity [30,31,50,52,58] are
another two well-known image priors, which are often used together within the
dictionary learning methods. Besides, discriminative learning methods also rep-
resent another research line, mainly including Markov random field (MRF) meth-
ods [6,41,44], cascade of shrinkage fields (CSF) methods [42,43] and the trainable
nonlinear reaction diffusion (TNRD) [12] method. Different from above priors-
based methods, noise modeling approaches focus on the other important com-
ponent of MAP, i.e., likelihood or fidelity term. E.g., Meng and De La Torre [33]
proposed to model the noise distribution as mixture of Gaussians (MoG), while
Zhu et al. [59] and Yue et al. [55] both introduced the non-parametric Dirichlet
Process to MoG to expand its flexibility. Furthermore, Cao et al. [10] proposed
the mixture of expotential power (MoEP) distributions to fit more complex noise.

In recent years, DL-based methods achieved significant advances in the image
denoising task. Jain and Seung [23] firstly adopted a five-layer network to deal
with the denoising task. Then Burger et al. [9] obtained the comparable perfor-
mance with BM3D using one plain multi-layer perceptron (MLP). Later, some
auto-encoder based methods [2,49] were also immediately proposed. It is wor-
thy mentioning that Zhang et al. [57] proposed the convolutional denoising net-
work DnCNN and achieved the state-of-the-art performance on Gaussian denois-
ing. Following DnCNN, many different network architectures were designed to
deal with the denoising task, including RED [32], MemNet[45], NLRN [29],
N3Net [37], RIDNet [4] and VDN [56].

2.2 Noise Generation

As is well known, the expensive cost of collecting pairs of training data is a
critical limitation for deep learning based denoising methods. Therefore, several
methods were proposed to explore the generation mechanism of image noise to
facilitate an easy simulation of more training data pairs. One common idea was
to generate image pairs by “unprocessing” and “processing” each step of the
in-camera processing pipelines, e.g., [7,19,24]. However, these methods involve
many hyper-parameters to be tuned for specifi camera. Another simpler way
was to learn the real noise distribution directly using GAN [16] as demonstrated
in [11] and [25]. Due to the complexity of real noise and the instability of training
GAN, it is very difficult to train a good generator for simulating realistic noise.

3 Proposed Method

Like most of the supervised deep learning denoising methods, our approach is
built on the given training data set containing pairs of real noisy image y and
clean image x, which are accessible thanking to the contributions of [1,3,51].
Instead of forcely learning a mapping from y to x, we attempt to approximate
the underlying joint distribution p(x,y) of the clean-noisy image pairs. In the
following, we present our method from the Bayesian perspective.
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3.1 Two Factorizations of Joint Distribution

In this part, we factorize the joint distribution p(x,y) from two different per-
spectives, and discuss their insights respectively related to the noise removal and
noise generation tasks.

Noise Removal Perspective: The noise removal task can be considered as
inferring the conditional distribution p(x|y) under the Bayesian framework. The
learned denoiser R in this task represents an implicit distribution pR(x|y) to
approximate the true distribution p(x|y). The output of R can be seen as an
image sampled from this implicit distribution pR(x|y). Based on such under-
standing, we can obtain a pseudo clean image pair (x̂,y) as follows2, i.e.,

y ∼ p(y), x̂ = R(y) =⇒ (x̂,y), (1)

which can be seen as one example sampled from the following pseudo joint
distribution:

pR(x,y) = pR(x|y)p(y). (2)

Obviously, the better denoiser R is, the more accurately that the pseudo joint
distribution pR(x,y) can approximate the true joint distribution p(x,y).

Noise Generation Perspective: In real camera system, image noise is derived
from multiple hardware-related random noises (e.g., short noise, thermal noise),
and further affected by in-camera processing pipelines (e.g., demosaicing, com-
pression). After introducing an additional latent variable z, representing the
fundamental elements conducting the hardware-related random noises, the gen-
eration process from x to y can be depicted by the conditional distribu-
tion p(y|x,z). The generator G in this task expresses an implicit distribution
pG(y|x,z) to approximate the true distribution p(y|x,z). The output of G can
be seen as an example sampled from pG(y|x,z), i.e., G(x,z) ∼ pG(y|x,z).
Similar as Eq. (1), a pseudo noisy image pair (x, ŷ) is easily obtained:

z ∼ p(z), x ∼ p(x), ŷ = G(x,z) =⇒ (x, ŷ), (3)

where p(z) denotes the distribution of the latent variable z, which can be easily
set as an isotropic Gaussian distribution N (0, I).

Theoretically, we can marginalize the latent variable z to obtain the following
pseudo joint distribution pG(x,y) as an approximation to p(x,y):

pG(x,y) =
∫

z

pG(y|x,z)p(x)p(z)dz ≈ 1
L

L∑

i

pG(y|x,zi)p(x), (4)

where zi ∼ p(z). As suggested in [27], the number of samples L can be set as
1 as long as the minibatch size is large enough. Under such setting, the pseudo
noisy image pair (x, ŷ) obtained from the generation process in Eq. (3) can be
roughly regarded as an sampled example from pG(x,y).
2 We mildly assume that y ∼ p(y) is easily implemented by sampling y from the

empirical distribution p(y) of the training data set, and so does as x ∼ p(x).
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3.2 Dual Adversarial Model

In the previous subsection, we have derived two pseudo joint distributions from
the perspectives of noise removal and noise generation, i.e., pR(x,y) and pG(x,y).
Now the problem becomes how to effectively train the denoiser R and the genera-
tor G, in order to well approximate the joint distribution p(x,y). Fortunately, the
tractability of sampling process defined inEqs. (1) and (3)makes such training pos-
sible in an adversarial manner as GAN [16], which gradually pushes pR(x,y) and
pG(x,y) toward the true distribution p(x,y). Specifically, we formulate this idea
as the following dual adversarial problem inspired by Triple-GAN [13],

min
R,G

max
D

Lgan(R,G,D) = E(x,y)[D(x,y)] − αE(x̂,y)[D(x̂,y)]

− (1 − α)E(x,ŷ)[D(x, ŷ)], (5)

where x̂ = R(y), ŷ = G(x,z), and D denotes the discriminator, which tries
to distinguish the real clean-noisy image pair (x,y) from the fake ones (x̂,y)
and (x, ŷ). The hyper-parameter α controls the relative importance between
the denoiser R and generator G. As in [5], we use the Wassertein-1 distance to
measure the difference between two distributions in Eq. (5).

The working mechanism of our dual adversarial network can be intuitively
explained in Fig. 1. On one hand, the denoiser R, delivering the knowledge of
pR(x|y), is expected to conduct the joint distribution pR(x,y) of Eq. (2), while
the noise generator G, conveying the information of pG(y|x,z), is expected to
derive the joint distribution pG(x,y) of Eq. (4). Through the adversarial effect of
discriminator D, the denoiser R and generator G are both gradually optimized
so as to pull pR(x,y) and pG(x,y) toward the true joint distribution p(x,y)
during training. On the other hand, the capabilities of R and G are mutually
enhanced by their dual regularization between each other. Given any real image
pair (x,y) and one pseudo image pair (x, ŷ) from generator G or (x̂,y) from
denoiser R, the discriminator D will be updated according to the adversarial
loss. Then D is fixed as a criterion to update both R and G simultaneously
as illustrated by the dotted lines in Fig. 1, which means R and G are keeping
interactive and guided by each other in each iteration.

Previous researches [22,60] have shown that it is benefical to mix the adver-
sarial objective with traditional losses, which would speed up and stabilize the
training of GAN. For noise removal task, we adopt the L1 loss, i.e., ||x̂ − x||1,
which enforces the output of denoiser R to be close to the groundtruth. For the
generator G, however, the direct L1 loss would not be benefical because of the
randomness of noise. Therefore, we propose to apply the L1 constrain on the
statistical features of noise distribution:

||GF(ŷ − x) − GF(y − x)||1, (6)

where GF(·) represents the Gaussian filter used to extract the first-order statis-
tical information of noise. Intergrating these two regularizers into the adversarial
loss of Eq. (5), we obtain the final objective:

min
R,G

max
D

Lgan(R,G,D) + τ1||x̂ − x||1 + τ2||GF(ŷ − x) − GF(y − x)||1, (7)
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Algorithm 1. Daul adversarial network.
Input: hyper-parameters: τ1, τ2, α, ncritic

1: while θ had not converged do
2: for i = 1, 2, . . . , ncritic do
3: Sample a batch of pairs (x,y) from p(x,y)
4: Sample a batch of pairs (x̂,y) from pR(x,y) and (x, ŷ) from pG(x,y)
5: Update discriminator D with fixed R and G
6: end for
7: Update denoiser R with fixed G and D
8: Update generator G with fixed R and D
9: end while

where τ1 and τ2 are hyper-parameters to balance different losses. More sense-
tiveness analysis on them are provided in Sect. 5.2.

3.3 Training Strategy

In the dual adversarial model of Eq. (7), we have three objects to be optimized,
i.e., the denoiser R, generator G and discriminator D. As in most of the GAN-
related papers [5,13,16], we jointly train R, G and D but update them in an
alternating manner as shown in Algorithm1. In order to stabilize the training,
we adopt the gradient penalty technology in WGAN-GP [18], enforcing the dis-
criminator to satisfy 1-Lipschitz constraint by an extra gradient penalty term.

After training, the generator G is able to simulate more noisy images given
any clean images, which are easily obtained from the original training data set
or by downloading from internet. Then we can retrain the denoiser R by adding
more synthetic clean-noisy image pairs generated by G to the training data set.
As shown in Sect. 5, this strategy can further improve the denoising performance.

3.4 Network Architecture

The denoiser R, generator G and discriminator D in our framework are all
parameterized as deep neural networks due to their powerful fitting capability.
As shown in Fig. 1, the denoiser R takes noisy image y as input and outputs
denoised image x̂, while the generator G takes the concatenated clean image x
and latent variable z as input and outputs the simulated noisy image ŷ. For
both R and G, we use the UNet [39] architecture as backbones. Besides, the
residual learning strategy [57] is adopted in both of them. The discriminator
D contains five stride convolutional layers to reduce the image size and one
fully connected layer to fuse all the information. More details about the network
architectures are provided in the supplementary material due to page limitation.
It should be noted that our proposed method is a general framework that does
not depend on the specific architecture, therefore most of the commonly used
networks architectures [4,32,57] in low-level vision tasks can be substituted.
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4 Evaluation Metrics

For the noise removal task, PSNR and SSIM [48] can be readily adopted to
compare the denoising performance of different methods. However, to the best of
our knowledge, there is still no any quantitative metric having been designed for
noise generation task. To address this issue, we propose two metrics to compare
the similarity between the generated and the real noisy images as follows:

– PGap (PSNR Gap): The main idea of PGap is to compare the synthetic and
real noisy images indirectly by the performance of the denoisers trained on
them. Let D = {(xi,yi)}Ni=1, T = {(x̃j , ỹj)}Sj=1 denote the available training
and testing sets, whose noise distributions are same or similar. Given any one
noisy image generator G, we can synthesize another training set:

DG = {(xi, ỹi)|ỹi = G(xi,zi),zi ∼ p(z)}Ni=1. (8)

After training two denoisers R1 on the original data set D and R2 on the
generated data set DG under the same conditions, we can define PGap as

PGap = PSNR(R1(T )) − PSNR(R2(T )), (9)

where PSNR(Ri(T ))(i = 1, 2) represents the PSNR result of denoiser Ri on
testing data set T . It is obvious that, if the generated noisy images in DG

are close to the real noisy ones in D, the performance of R2 would be close
to R1, and thus the PGap would be small.

– AKLD (Average KL Divergence): The noise generation task aims at synthe-
sizing fake noisy image yf from the real clean image xr to match the real
noisy image yr in distribution. Therefore, the KL divergence between the con-
ditional distributions pyf (y|x) on the fake image pair (xr,yf ) and pyr (y|x)
on the real image pair (xr,yr) can serve as a metric. To make this conditional
distribution tractable, we utlize the pixel-wisely Gaussian assumption for real
noise in recent work VDN [56], i.e.,

pyc(y|x) = N (y|[xr],diag([V c])), c ∈ {f, r}, (10)

where
V c = GF((yc − xr)2), c ∈ {f, r}, (11)

[·] denotes the reshape operation from matrix to vector, GF(·) denotes the
Gaussian filter, and the square of (yc −xr)2 is pixel-wise operation. Based on
such explicit distribution assumption, the KL divergence between pyf (y|x)
and pyr (y|x) can be regarded as an intuitive metric. To reduce the influence
of randomness, we randomly generate L synthetic fake noisy images:

yfj = G(xr,zj), zj ∼ p(z), j = 1, 2, · · · , L, (12)

for any real clean image xr, and define the following average KL divergence
as our metric, i.e.,

AKLD =
1
L

L∑

j=1

KL[pyfj p(y|x)||pyr (y|x)]. (13)

Evidently, the smaller AKLD is, the better the generator G is. In the following
experiments, we set L = 50.
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Table 1. The PGap and AKLD performances of
different compared methods on the SIDD valida-
tion data set. And the best results are highlighted
in bold.

Metrics Methods

CBDNet ULRD GRDN DANet

PGap↓ 8.30 4.90 2.28 2.06

AKLD↓ 0.728 0.545 0.443 0.212

0 10 20 30 40 50 60 70

30

31

32
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34

35

36

37

38

39

Real
DANet
GRDN
ULRD
CBDNet

PGap

Fig. 2. PSNR results of different
methods during training.

5 Experimental Results

In this section, we conducted a series of experiments on several real-world denois-
ing benchmarks. In specific, we considered two groups of experiments: the first
group (Sect. 5.2) is designed for evaluating the effectiveness of our method on
both of the noise removal and noise generation tasks, which is implemented
on one specific real benchmark containing training, validation and testing sets;
while the second group (Sect. 5.3) is conducted on two real benchmarks that only
consist of some noisy images as testing set, aiming at evaluating its performance
on general real-world denoising tasks.

In brief, we denote the jointly trained Dual Adversarial Network following
Algorithm 1 as DANet. As discussed in Sect. 3.3, the learned generator G in
DANet is able to augment the original training set by generating more synthetic
clean-noisy image pairs, and the retrained denoiser R on this augmented training
data set under L1 loss is denoted as DANet+.

5.1 Experimental Settings

Parameter Settings and Network Training: In the training stage of DANet,
the weights of R and G were both initialized according to [20], and the weights
of D were initialized from a zero-centered Normal distribution with standard
deviation 0.02 as [38]. All the three networks were trained by Adam optimizer [26]
with momentum terms (0.9, 0.999) for R and (0.5, 0.9) for both G and D. The
learning rates were set as 1e-4, 1e-4 and 2e-4 for R, G and D, respectively, and
linearly decayed in half every 10 epochs.

In each epoch, we randomly cropped 16 × 5000 patches with size 128 × 128
from the images for training. During training, we updated D three times for
each update of R and G. We set τ1 = 1000, τ2 = 10 throughout the experiments,
and the sensetiveness analysis about them can be found in Sect. 5.2. As for α,
we set it as 0.5, meaning the denoiser R and generator G contribute equally in
our model. The penalty coefficient in WGAN-GP [18] is set as 10 following its
default settings. As for DANet+, the denoiser R was retrained with the same
settings as that in DANet. All the models were trained using PyTorch [35].



50 Z. Yue et al.

(a) Real (b) CBDNet (c) ULRD (d) GRDN (e) DANet

Fig. 3. Illustration of one typical generated noisy images (1st row) by different methods
and their corresponding noise (2nd row) and variance map (3rd row) estimated by
Eq. (11). The first column represents the real ones in SIDD validation set.

5.2 Results on SIDD Benchmark

In this part, SIDD [1] benchmark is employed to evaluate the denoising per-
formance and generation quality of our proposed method. The full SIDD data
set contains about 24000 clean-noisy image pairs as training data, and the rest
6000 image pairs are held as the benchmark for testing. For fast training and
evaluation, one medium training set (320 image pairs) and validation set (40
image pairs) are also provided, but the testing results can only be obtained by
submission. We trained DANet and DANet+ on the medium version training
set, and evaluated on the validation and testing sets.

Noise Generation: The generator G in DANet is mainly used to synthesize
the corresponding noisy image given any clean one. As introduced in Sect. 4, two
metrics PGap and AKLD are designed to assess the generated noisy image. Based
on these two metrics, we compared DANet with three recent methods, including
CBDNet [19], ULRD [7] and GRDN [25]. CBDNet and ULRD both attempted
to generate noisy images by simulating the in-camera processing pipelines, while
GRDN directly learned the noise distribution using GAN [16].

Table 1 lists the PGap values of different methods on SIDD validation set.
For the calculation of PGap, SIDD validation set is regarded as the testing set
T in Eq. (9). Obviously, DANet achieves the best performance. Figure 2 displays
the PSNR curves of different denoisers trained on the real training set or only the
synthetic training sets generated by different methods, which gives an intuitive
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Table 2. The PSNR and SSIM results of different methods on SIDD validation and
testing sets. The best results are highlighted in bold.

Datasets Metrics Methods

CBM3D WNNM DnCNN CBDNet RIDNet VDN DANet DANet+

Testing PSNR↑ 25.65 25.78 23.66 33.28 - 39.26 39.25 39.43

SSIM↑ 0.685 0.809 0.583 0.868 - 0.955 0.955 0.956

Validation PSNR↑ 25.29 26.31 38.56 38.68 38.71 39.29 39.30 39.47

SSIM↑ 0.412 0.524 0.910 0.909 0.913 0.911 0.916 0.918

(a): Noisy

(f ): CBDNet

(d): WNNM

(i): DANet

(e): DnCNN

(j): DANet+

(b): GroundTruth

(g): RIDNet

(c): BM3D

(h): VDN

Fig. 4. One typical denoising example in the SIDD validation dataset.

illustration for PGap. It can be seen that all the methods tend to gradually
overfit to their own synthetic training set, especially for CBDNet. However,
DANet performs not only more stably but also better than other methods.

The average AKLD results calculated on all the images of SIDD validation set
are also listed in Table 1. The smallest AKLD of DANet indicates that it learns a
better implicit distribution to approximate the true distribution p(y|x). Figure 3
illustrates one typical example of the real and synthetic noisy images generated
by different methods, which provides an intuitive visualization for the AKLD
metric. In summary, DANet outperforms other methods both in quantization
and visualization, even though some of them make use of additional metadata.

Noise Removal: To verify the effectiveness of our proposed method on real-
world denoising task, we compared it with several state-of-the-art methods,
including CBM3D [14], WNNM [17], DnCNN [57], CBDNet [19], RIDNet [4]
and VDN [56]. Table 2 lists the PSNR and SSIM results of different methods on
SIDD validation and testing sets. It should be noted that the results on test-
ing sets are cited from official website3, but the results on validation set are
calculated by ourself. For fair comparison, we retrained DnCNN and CBDNet

3 https://www.eecs.yorku.ca/∼kamel/sidd/benchmark.php.

https://www.eecs.yorku.ca/~kamel/sidd/benchmark.php
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Table 3. The PSNR and SSIM
results of DANet under different
τ1 values on SIDD validation data
set.

Metrics τ1

1e+2 1e+3 1e+4 +∞
PSNR↑ 38.66 39.30 39.33 39.39

SSIM↑ 0.901 0.916 0.916 0.917

Table 4. The PGap and AKLD
results of DANet under different
τ2 values on SIDD validation data
set.

Metrics τ2

0 5 10 50 +∞
PGap↓ 5.33 3.10 2.06 4.17 15.14

AKLD↓ 0.386 0.216 0.212 0.177 0.514

(a) (b) (c) (d) (e) (f )

Fig. 5. This figure displays the real or generated noisy images (the 1st row) by DANet
under different τ2 value and the corresponding noise (the 2nd row). From left to right:
(a) real case, (b) τ2 = 0, (c) τ2 = 5, (d) τ2 = 10, (e) τ2 = 50, (f) τ2 = +∞.

on SIDD training set. From Table 2, it is easily observed that: 1) deep learn-
ing methods obviously performs better than traditional methods CBM3D and
WNNM due to the powerful fitting capability of DNN; 2) DANet and DANet+
both outperform the state-of-the-art real-world denoising methods, substantiat-
ing their effectiveness; 3) DANet+ surpasses DANet about 0.18dB PSNR, which
indicates that the synthetic data by G facilitates the training of the denoiser R.

Figure 4 illustrates the visual denoising results of different methods. It can
be seen that CBM3D and WNNM both fail to remove the real-world noise.
DnCNN tends to produce over-smooth edges and textures due to the L2 loss.
CBDNet, RIDNet and VDN alleviate this phenomenon to some extent since they
adopt more robust loss functions. DANet recovers sharper edges and more details
owning to the adversarial loss. After retraining with more generated image pairs,
DANet+ obtains the closer denoising results to the groundtruth.

Hyper-parameter Analysis: Our proposed DANet involves two hyper-
parameters τ1 and τ2 in Eq. (7). The pamameter τ1 mainly influences the per-
formance of denoiser R, while τ2 directly affects the generator G.

Table 3 lists the PSNR/SSIM results of DANet under different τ1 settings,
where τ1 = +∞ represents the results of the denoiser R trained only with L1
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Table 5. The comparison results of
BaseD and DANet on SIDD validation
set.

Metrics Methods

BaseD DANet

PSNR↑ 39.19 39.30

SSIM↑ 0.907 0.916

Table 6. The comparison results of
BaseG and DANet on SIDD validation
set.

Metrics Methods

BaseG DANet

PGap↓ 4.07 2.06

AKLD↓ 0.223 0.212

Table 7. The PSNR and SSIM results of different methods on DND benchmark. The
best results are highlighted as bold.

Metrics Methods

CBM3D WNNM DnCNN CBDNet RIDNet VDN GDANet GDANet+

PSNR↑ 34.51 34.67 32.43 38.06 39.26 39.38 39.47 39.58

SSIM↑ 0.8244 0.8646 0.7900 0.9421 0.9528 0.9518 0.9548 0.9545

loss. As expected, small τ1 value, meaning that the adversarial loss plays more
important role, leads to the decrease of PSNR and SSIM performance to some
extent. However, when τ1 value is too large, the L1 regularizer will mainly dom-
inates the performance of denoiser R. Therefore, we set τ1 as a moderate value
1e+3 throughout all the experiments, which makes the denoising results more
realistic as shown in Fig. 4 even sacrificing a little PSNR performance.

The PGap and average AKLD results of DANet under different τ2 values are
shown in Table 4. Note that τ2 = +∞ represents the results of the generator G
trained only with the regularizer of Eq. (6). Figure 5 also shows the corresponding
visual results of one typical example. As one can see, G fails to simulate the real
noise with τ2 = 0, while it is also difficult to be trained only with the regularizer
of Eq. (6). Taking both the quantitative and visual results into consideration, τ2
is constantly set as 10 in our experiments.

Ablation Studies: To verify the marginal benefits brought up by our dual
adversarial loss, two groups of ablation experiments are designed in this part. In
the first group, we train DANet without the generator and denote the trained
model as BaseD. On the contrary, we train DANet without the denoiser and
denote the trained model as BaseG. And the comparison results of these two
baselines with DANet on noise removal and noise generation tasks are listed
in Table 5 and Table 6, respectively. It can be easily seen that DANet achieves
better performance than both the two baselines in noise removal and noise gen-
eration tasks, especially in the latter, which illustrates the mutual guidance and
amelioration between the denoiser and the generator.
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5.3 Results on DND and Nam Benchmarks

In this section, we evaluate the performance of our method on two real-world
benchmarks, i.e., DND [36] and Nam [34]. Following the experimental setting
in RIDNet [4], we trained another model using images from SIDD [1], Poly [51]
and RENOIR [3] for fair comparison. To be distinguished from the model of
Sect. 5.2, the trained models under this setting are denoted as GDANet and
GDANet+, aiming at dealing with the general denoising task in real application.
For the training of GDANet+, we employed the images of MIR Flickr [21] as clean
images to synthesize more training pairs using G. Note that the experimental
results on Nam benchmark are put into supplementary material due to page
limitation.

(a): Noisy

(e): RIDNet

(b): BM3D

(f ): VDN

(c): DnCNN

(g): GDANet

(d): CBDNet

(h): GDANet+

Fig. 6. Denoising results of different methods on DND benchmark.

DND Benchmark: This benchmark contains 50 real noisy and almost noise-
free image pairs. However, the almost noise-free images are not publicly released,
thus the PSNR/SSIM results can only be obtained through online submission
system. Table 7 lists the PSNR/SSIM results released on the official DND bench-
mark website4. From Table 7, we have the following observations: 1) GDANet+
outperforms the state-of-the-art VDN about 0.2dB PSNR, which is a large
improvement in the field of real-world denoising; 2) GDANet obtains the highest
SSIM value, which means that it preserves more structural information than
other methods as that can be visually observed in Fig. 6; 3) DnCNN cannot
remove most of the real noise because it overfits to the Gaussian noise case;
4) the classical CBM3D and WNNM methods cannot handle the complex real
noise.
4 https://noise.visinf.tu-darmstadt.de/benchmark/.

https://noise.visinf.tu-darmstadt.de/benchmark/
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6 Conclusion

We have proposed a new Bayesian framework for real-world image denoising. Dif-
ferent from the traditional MAP framework relied on subjective pre-assumptions
on the noise and image priors, our proposed method focuses on learning the joint
distribution directly from data. To estimate the joint distribution, we attempt
to approximate it by its two different factorized forms using an dual adver-
sarial manner, which correspondes to two tasks, i.e., noise removal and noise
generation. For assessing the quality of synthetic noisy image, we have designed
two applicable metrics, to the best of our knowledge, for the first time. The
proposed DANet intrinsically provides a general methodology to facilitate the
study of other low-level vision tasks, such as super-resolution and deblurring.
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