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Abstract. Recent studies have shown that DNNs can be compromised
by backdoor attacks crafted at training time. A backdoor attack installs
a backdoor into the victim model by injecting a backdoor pattern into
a small proportion of the training data. At test time, the victim model
behaves normally on clean test data, yet consistently predicts a specific
(likely incorrect) target class whenever the backdoor pattern is present
in a test example. While existing backdoor attacks are effective, they
are not stealthy. The modifications made on training data or labels are
often suspicious and can be easily detected by simple data filtering or
human inspection. In this paper, we present a new type of backdoor
attack inspired by an important natural phenomenon: reflection. Using
mathematical modeling of physical reflection models, we propose reflec-
tion backdoor (Refool) to plant reflections as backdoor into a victim
model. We demonstrate on 3 computer vision tasks and 5 datasets that,
Refoolcan attack state-of-the-art DNNs with high success rate, and is
resistant to state-of-the-art backdoor defenses.

Keywords: Backdoor attack · Natural reflection · Deep neural
networks

1 Introduction

Deep neural networks (DNNs) are a family of powerful models that have been
widely adopted to achieve state-of-the-art performance on a variety of tasks
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Fig. 1. Comparison of successful backdoor attacks. Our reflection backdoors (right-
most column) are crafted based on the natural reflection phenomenon, thus need not
to mislabel the poisoned samples on purpose (A–D, mislabels are in red texts), nor
rely on obvious patterns (A–C, E), unpleasant blending (D), or suspicious stripes (F).
Therefore, our reflection backdoor attacks are stealthier. A [19]: black-white squares at
the bottom right corner; B [7]: small image at the center; C [52]: one malicious pixel;
D [7]: a fixedly blended image; and E [53]: adversarial noise plus black-white squares
at the bottom right corner; F [2]: fixed and sinusoidal strips. (Color figure online)

in computer vision [21], machine translation [49] and speech recognition [18].
Despite great success, DNNs have been found vulnerable to several attacks
crafted at different stages of the development pipeline: adversarial examples
crafted at the test stage, and data poisoning attacks and backdoor attacks crafted
at the training stage. These attacks raise security concerns for the development
of DNNs in safety-critical scenarios such as face recognition [45], autonomous
driving [11,13], and medical diagnosis [15,33,39,40]. The study of these attacks
has thus become crucial for secure and robust deep learning.

One well-known test time attack is the construction of adversarial exam-
ples, which appear imperceptibly different (to human eyes) from their origi-
nal versions, yet can fool state-of-the-art DNNs with high success rate [17,50].
Adversarial examples can be constructed against a wide range of DNNs, and
remain effective even in physical world scenarios [11,14]. Different from test-
time attacks, training time attacks have also been demonstrated to be possible.
DNNs often require large amounts of training data to achieve good performance.
However, the collection process of large datasets is error-prone and susceptible
to untrusted sources. Thus, a malicious adversary may poison a small number of
training examples to corrupt the model, decreasing its test accuracy. This type
of attack is known as the data poisoning attack [4,26,47].

More recently, backdoor attacks (also known as Trojan attacks) [3,8,19,28,
32,42,52,64] highlight an even more sophisticated threat to DNNs. By altering a
small set of training examples, a backdoor attack can plant a backdoor into the
victim model so as to control the model’s behavior at test time [19]. Backdoor
attacks arise when users download pre-trained models from untrusted sources.
Figure 1 illustrates a few examples of successful backdoor attacks by existing
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Table 1. Attack settings of existing methods and ours.

Badnets [19] Chen et al. [7] Barni et al. [2] Turner et al. [53] Ours

Label Poison Poison Clean Clean Clean

Trainer Adversary Adversary User User User

Trigger Fixed Fixed Sinusoidal Fixed & Advs Reflection

methods (A–F). A backdoor attack does not degrade the model’s accuracy on
normal test inputs, yet can control the model to make a prediction (which is in
the attacker’s interest) consistently for any test input that contains the backdoor
pattern. This means it is difficult to detect a backdoor attack by evaluating the
model’s performance on a clean holdout set.

There exist two types of backdoor attacks: 1) poison-label attack which also
modifies the label to the target class [7,19,35,52], and 2) clean-label attack
which does not change the label [2,44,53,64]. Although poison-label attacks are
effective, they often introduce clearly mislabeled examples into the training data,
and thus can be easily detected by simple data filtering [53]. A recent clean-label
(CL) attack proposed in [53] disguises the backdoor pattern using adversarial
perturbations (E in Fig. 1). The signal (SIG) attack by Barni et al. [2] takes a
superimposed sinusoidal signal as the backdoor trigger. However, these backdoor
attacks can be easily erased by defense methods, as we will show in Sect. 4.4.

In this paper, we present a new type of backdoor pattern inspired by one
natural phenomenon: reflection. Reflection is a common phenomenon existing in
scenarios wherever there are glasses or smooth surfaces. Reflections often influ-
ence the performance of computer vision models [22], as illustrated in Fig. 7 (see
Appendix). Here, we exploit reflections as backdoor patterns and show that a
natural phenomenon like reflection can be manipulated by an adversary to per-
form backdoor attack on DNN models. Table 1 compares the different settings
adopted by 4 state-of-the-art backdoor attacks and our proposed reflection back-
door. Two examples of our proposed reflection backdoor are illustrated in the
rightmost column of Fig. 1. Our main contributions are:

– We investigate the use of a natural phenomenon, i.e., reflection, as the back-
door pattern, and propose the reflection backdoor (Refool) attack to install
stealthy and effective backdoor into DNN models.

– We conduct experiments on 5 datasets, and show that Refoolcan control state-
of-the-art DNNs to make desired predictions ≥75.16% of the time by injecting
reflections into less than 3.27% of the training data. Moreover, the injection
causes almost no accuracy degradation on the clean holdout set.

– We demonstrate that, compared to the existing clean-label backdoor attack,
our Refool is more resistant to state-of-the-art backdoor defenses.

2 Related Work

We briefly review backdoor attacks and defenses for deep neural networks.
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Backdoor Attack. A backdoor attack tricks the model to associate a backdoor
pattern with a specific target label, so that, whenever this pattern appears,
the model predicts the target label, otherwise, behaves normally. The backdoor
attack on DNNs was first explored in [19]. It was further characterized by having
the following goals: 1) high attack success rate, 2) high backdoor stealthiness,
and 3) low performance impact on clean test data [32].

Poison-label Backdoor Attack. Several backdoor patterns have been proposed
to inject a backdoor by poisoning the images from the non-target classes and
changing their labels to the target class. For example, a small black-white square
at one corner of the image [19], an additional image attached onto or blended
into the image [7], a fixed watermark on the image [47], one fixed pixel on
the image for low-resolution (32 × 32) images. The backdoor trigger can also
be implanted into the target model without knowing the original training data.
For example, Liu et al. [35] proposed a reverse engineering method to generate
a trigger pattern and a substitute input set, which are then used to finetuning
some layers of the network to implant the trigger. Recently, Yao et al. [59] show
that such backdoor attack can even be inherited via transfer-learning. While
the above methods can install backdoors into the victim model effectively, they
contain perceptually suspicious patterns and wrong labels, thus are susceptible
to detection or removal by simple data filtering [53]. Note that, although reverse
engineering does not require access to the training data which makes it stealthier,
it still needs to present the trigger pattern to activate the attack at test time.

Clean-label Backdoor Attack. Recently, Turner et al. [53] (CL) and Barni et al.[2]
(SIG) proposed the clean-label backdoor attack that can plant backdoor into
DNNs without altering the label. Zhao et al. [64] proposed a clean-label backdoor
attack on video recognition models. However, for clean-label backdoor patterns
to be effective against the filtering effect of deep cascade convolutions, it often
requires more perturbations that significantly reduce image quality, especially for
high resolution images. Furthermore, we will show empirically in Sect. 4 that these
backdoor patterns can be easily erased by backdoor defense methods. Different to
these methods, in this paper, we propose a natural reflection backdoor, which is
stealthy, effective and hard to erase.

Backdoor attacks have also been found possible in federated learning [1,
48,58] and graph neural networks (GNNs) [63]. Latent backdoor patterns and
properties of backdoor triggers have also been explored in recent works [29,30,
41,60].

Backdoor Defense. Liu et al. [34] proposed a fine-pruning algorithm to prune
the abnormal units in a backdoored DNN. Wang et al. [55] proposed to use
anomaly index to detect backdoored models. Xiang et al. [57] proposed a cluster
impurity based scheme to effectively detect single-pixel backdoor attacks. Bag-
dasaryan et al. [1] developed a generic constrain-and-scale technique that incor-
porates the evasion of defenses into the attacker’s loss function during training.
Chen et al. [6] proposed an activation clustering based method for backdoor
detection and removal in DNNs. Doan et al. [10] presented Februus, which is a
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plug-and-play defensive system architecture for backdoor defense. Gao et al. [16]
proposed a strong intentional perturbation (STRIP) based model to detect run-
time backdoor attacks. Input denoising [20] and mixup training [61] are also
effective defenses against backdoor attacks. We will evaluate the resistance of
our proposed backdoor attack to some of the most effective defense methods.

3 Reflection Backdoor Attack

In this section, we first define the backdoor attack problem, then introduce the
mathematical modeling of reflection and our proposed reflection backdoor attack.

3.1 Problem Definition

Given a K-class image dataset D = {(x, y)(i)}ni=1, with x ∈ X ⊂ R
d denoting

a sample in the d-dimensional input space and y ∈ Y = {1, · · · ,K} its true
label, classification learns a function f(x,θ) (as represented by a DNN) with
parameters θ to map the input space to the label space: f : X → Y. We denote
the subset of data used for training and testing as Dtrain and Dtest respectively.
The goal of a backdoor attack is to install a backdoor into the victim model,
so that the model will predict the adversarial class yadv whenever the backdoor
pattern presents on an input image. This is done by first generating then inject-
ing a backdoor pattern into a small injection set Dinject ⊂ Dtrain of training
examples (without changing their labels). In this clean-label setting, Dinject is a
subset of training examples from class yadv. We denote the poisoned training set
by Dadv

train, and measure the injection rate by the percentage of poisoned samples
in Dadv

train. The problem is how to generate effective backdoor patterns. Next, we
will introduce the use of natural reflection as the backdoor pattern.

3.2 Mathematical Modeling of Reflection

Reflection occurs when taking a photo of objects behind a glass window. Real
scene like image with reflection can be a composition of multiple layers [38].
Specifically, we denote a clean background image by x, a reflection image by xR,
and the reflection poisoned image as xadv. Under reflection, the image formation
process can be expressed as:

xadv = x + xR ⊗ k, (1)

where k is a convolution kernel. The output of xR ⊗k is referred to as the reflec-
tion. We will use adversarial images generated in this way as backdoor attacks.
According to the principle of camera imaging and the law of reflection, reflection
models in physical world scenarios can be divided into three categories [54], as
illustrated in Fig. 2 (a).

(I) Both layers are in the same depth of field (DOF). The main objects
(blue circle) behind the glass and the virtual image of reflections are in the
same DOF, i.e., they are approximately in the same focal plane. In this case,
k in Eq. (1) reduces to a intensity number α, and empirically α ∼ U [0.05, 0.4].
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Fig. 2. (a) The physical models for three types of reflections. (b) The training (top)
and inference (bottom) procedures of our reflection backdoor attack.

(II) Reflection layer is out of focus. It is reasonable to assume that
the reflections (gray triangles) and the objects (blue circle) behind the glass
have different distances to the camera [31], and the objects behind the
glass is often focused (type (II) in Fig. 2(a)). In this case, the observed
image xadv is an additive mixture of the background image and the blurred
reflections. The kernel k in Eq. (1) depends on the point spread function
of the camera which is parameterized by a 2D Gaussian kernel g, i.e.,
g(|x − xc|) = exp (−|x − xc|2/(2 ∗ σ)2), where xc is the center of kernel, and
we set σ ∼ U [1, 5].
(III) Ghost effect. The above two types of reflections assume that the
thickness of the glass is tiny such that the refractive effect of the glass is
negligible. However, this is often not true in practice. It is thus also necessary
to consider the thickness of the glass. As illustrated in Fig. 2(a) (III), since
the glass is semi-reflective, light rays from the reflected objects (dark gray
triangle) will reflect off the glass pane producing more than one reflections—a
ghost effect. In this case, the convolutional kernel k of Eq. 1 can be modelled
as a two-pulse kernel k(α, δ), where δ is a spatial shift of α with different
coefficients. Empirically, we set α ∼ U [0.15, 0.35] and δ ∼ U [3, 8].

3.3 Proposed Reflection Backdoor Attack

Attack Pipeline. The training and inference procedures of our proposed reflec-
tion backdoor Refool is illustrated in Fig. 2(b). The first step is reflection gen-
eration, which is to generate backdoor images by adding reflections to clean
images in the injection set Dinject, following the 3 reflection models described
in Sect. 3.2. The victim model is then trained on the poisoned training set
(e.g. Dadv

train), which consists of an adversary set of backdoor images (crafted at
the first step) plus the clean images. At the inference stage (bottom subfigure in
Fig. 2(b)), the reflection patterns can be blended into any input image to achieve
the target prediction.

In contrast to existing methods that generate a fixed pattern, here, we pro-
pose to generate a variety of reflections as the backdoor trigger. This is because
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reflection varies from scene to scene in real-world scenarios. Using diverse reflec-
tions can help improve the stealthiness of the attack.

Candidate Reflection Images from the Wild. The candidate reflection
images are not restricted to the target dataset to attack, and can be selected
from the wild, for example, a public dataset. Even more, these reflection images
can be used to invade a wide range of target datasets that consist of completely
different types of images, as we will show in the experiments (Sect. 4).

Assume the adversarial class is yadv and the adversary is allowed to inject m
examples. We first create a candidate set of reflection images by selecting a set
(more than m) of images randomly from a public image dataset PascalVOC [12]
and denote it by Rcand. These reflection images are just normal images but from
a dataset that is different from the training data. The next step is to select the
top-m most effective reflection images from Rcand for backdoor attack.

Adversarial Reflection Image Selection. Not all reflection images are
equally effective for backdoor attack, because 1) when the reflection image is
too small, it may be hard to be planted as a backdoor trigger; and 2) when the
intensity of the reflection image is too strong, it will become less stealthy. There-
fore, we propose an iterative selection process to find the top-m most effective
reflection images from Rcand as the adversarial reflection set Radv, only which
will be used for the next step’s backdoor injection. To achieve this, we main-
tain a list of effectiveness scores for reflection images in the candidate set Rcand.
We denote this effectiveness score list as W . The complete selection algorithm
is described in Appendix B. The selection process includes T iterations with
each iteration consisting of 4 steps: 1) select the top-m most effective reflection
images from Rcand as the Radv, according to their effectiveness scores in W ;
2) inject the reflection images in Radv into the injection set Dinject randomly
following the reflection models described in Sect. 3.2; 3) train a model on the
poisoned training set; and 4) update the effectiveness scores in W according
to the model’s predictions on a validation set Dval. The validation set is not
used for model training, and is randomly selected from Dtrain after removing
the yadv class samples. This is because a backdoor attack causes other classes
be misclassified into class yadv not the other way around, in other words, class
yadv samples are not useful for effectiveness evaluation here. For step 1), at the
first iteration where the effectiveness scores are uniformly initialized with con-
stant value one, we just randomly select m reflection images from Rcand into the
adversarial set Radv. We empirically set m = 200 in our experiments. For step
2), each reflection image Radv is randomly injected into only one image in the
injection set Dinject. For step 3), we use a standard training strategy to train a
model. Note that, the model trained in step 3) is only used for reflection image
selection, not the final victim model (see experimental settings in Sect. 4). For
step 4), the effectiveness scores in W are updated as follows:

Wi =
∑

xi
R

∈Radv,x∈Dval

{
1, if f(x + xi

R ⊗ k, θ) = yadv,

0, otherwise,
(2)



Reflection Backdoor Attack on Deep Neural Networks 189

where, y is the class label of x, xi
R is the i-th reflection image in Radv, and k is

a randomly selected kernel. For those reflection images not selected into Radv,
we set their scores to the median value of the updated W . This is to increase
their probability of being selected in the next iteration.

The candidate set Rcand are selected out of a wild public dataset, and more
importantly, the selection of Radv can be done on a dataset that is complete
different from the target dataset. We will show empirically in Sect. 4 that,
once selected, reflection images in Radv can be directly applied to invade a wide
range of datasets. This makes our proposed reflection backdoor more malicious
than many existing backdoor attacks [7,19,53] that require access to the tar-
get datasets to generate or enhance their backdoor patterns. We find that these
reflection images even do not need any enhancements such as adversarial per-
turbation [53] to achieve high attack success rates.

Attack with Reflection Images (Backdoor Injection). The above step will
produce a set of effective reflection images Radv, which can then be injected into
the target dataset by poisoning a small portion of the data from the target class
(clean-label attack only needs to poison data from the target class). Note that,
although the selection of Radv does not require access to the target dataset, the
attack still needs to inject the backdoor pattern into training data, which is an
essential step for any backdoor attacks.

Given a clean image from the target class, we randomly select one reflection
image from Radv, then use one of the 3 reflection models introduced in Sect. 3.2 to
fuse the reflection image into the clean image. This injection process is iteratively
done until a certain proportion of the target class images are contaminated with
reflections. The victim model will remember the reflection backdoor when trained
on the poisoned training set using a classification loss such as the commonly used
cross entropy loss:

θ = arg min
θ

− 1
n

∑

xi∈Dadv
train

K∑

j=1

yij log(p(j|xi,θ)), (3)

where, xi is the i-th training sample, yij is the class indicator of xi belonging
to class j, and p(j|xi,θ) is the model’s probability output with respect to class
j conditioned on the input xi, and current parameter θ. We denote the learned
victim model as fadv.

Inference and Attack. At the inference stage, the model is expected to cor-
rectly predict the clean samples (i.e.fadv(x,θ) = y for any test input x ∈ Dtest).
However, it consistently predicts the adversarial class for any input that contains
a reflection: fadv(x+xR⊗k,θ) = yadv for any test input x ∈ Dtest and reflection
image xR ∈ Radv. The attack success rate is measured by the percentage of test
samples that are predicted as the target class yadv, after adding reflections.
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4 Experiments

In this section, we first evaluate the effectiveness and stealthiness of our
Refool attack, then provide a comprehensive understanding of Refool. We also
test the resistance of our Refool attack to state-of-the-art backdoor defense
methods.

4.1 Experimental Setup

Datasets and DNNs. We consider 3 image classification tasks: 1) traffic sign
recognition, 2) face recognition, and 3) object classification. For traffic sign recog-
nition, we use 3 datasets: GTSRB [46], BelgiumTSC [51] and CTSRD [24]. For
the 3 traffic sign datasets, we remove those low-resolution images of height or
width smaller than 100 pixels. Then, we augment the training set using random
crop and rotation, as [43]. For face recognition, we use the PubFig [27] dataset
with extracted face regions, which is also augmented using random crop and
rotation. For object classification, we randomly sample a subset of 12 classes of
images from ImageNet [9]. We use ResNet-34 [21] for traffic sign recognition and
face recognition. While for object classification, we consider two different DNN
models: ResNet-34 and DenseNet [23]. The statistics of the datasets and DNN
models can be found in Appendix C.

Table 2. Attack success rates (%) of baselines and our proposed Refool backdoor,
and the victim model’s test accuracy (%) on the clean test set. † denotes the model is
replaced by a DenseNet. Note that we are poisoning 20% images in the target classes,
the injection rate (%) is computed with respect to the entire dataset.

Dataset Test accuracy (%) Attack success rate (%) Injection rate (%)

Badnets CL SIG Refool Badnets CL SIG Refool

GTSRB 83.33 84.61 82.64 86.30 24.12 78.03 73.26 91.67 3.16

BelgiumTSC 99.70 97.56 99.13 99.51 11.40 46.25 51.89 85.70 2.31

CTSRD 90.00 94.44 93.97 95.01 25.24 63.63 57.39 91.70 0.91

PubFig 91.67 78.50 91.70 91.12 42.86 78.67 69.01 81.30 0.57

ImageNet 91.97 92.07 91.41 90.32 15.77 55.38 63.84 82.11 3.27

ImageNet† 91.99 92.12 92.23 92.63 20.14 67.43 68.00 75.16 3.27

Attack Setting. For all datasets, we set the adversarial target class to the
first class (i.e., class id 0), and randomly select clean training samples from the
target class as the injection set Dinject under various injection rates. The adver-
sarial reflection set Radv is generated based on the GTSRB dataset, following
the algorithm described in Sect. 3.3. We randomly choose a small number of
5000 images from PascalVOC [12] as the candidate reflection set Rcand, and 100
training samples from each of the non-target classes as the validation set Dval,
for adversarial reflection image selection. Once selected, Radv is directly applied
to all other datasets, that is, these reflection images selected based on one sin-
gle dataset can be effectively applied to invade a wide range of other datasets.
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Fig. 3. (a–b) The prediction confusion matrix of the victim model trained on GTSRB
dataset with only 3.16% training data poisoned by our Refool attack: (a) predictions on
clean test images; (b): predictions on test images with reflections. (c–d) Attack success
rates versus injection rate or iteration: (c) attack success rate and test accuracy versus
in-class (the target class) injection rate; (d) attack success rate and the model’s test
accuracy on classes 3, 4, and 11, at different iterations of our reflection generation
process. These experiments were all run on GTSRB dataset.

The adversarial reflection images are selected against a ResNet-34 model. When
injecting a reflection image into a clean image, we randomly choose one of the
3 reflection models described in Eq. (1), but we also test using fixed reflection
models. When applying the attack at the inference stage, the reflection images
from Radv are randomly injected into the clean test images.

DNN Training. All DNN models are trained using Stochastic Gradient Descent
(SGD) optimizer with momentum 0.9, weight decay of 5e−4, and an initial
learning rate 0.01, which is divided by 10 for every 105 training steps. We use
batch size 32 and train all models for 200 epochs. All images are normalized to
[0, 1].

4.2 Effectiveness and Stealthiness of Our RefoolAttack

Attack Success Rate Comparison. We compare our Refool attack with
three existing backdoor attacks: Badnets [19], clean-label backdoor (CL) [53],
and signal backdoor (SIG) [2]. We use the default settings as reported in their
papers (implementation details can be found in Appendix C). The attack success
rates and the corresponding injection rates on the 5 datasets are reported in
Table 2. We also report the test accuracy of the victim model on the clean test
set, and the “original test accuracy” for models trained on the original clean
data.

As shown in Table 2, by poisoning only a small proportion of the training
data, our proposed Refool attack can successfully invade the state-of-the-art
DNN models, achieving higher success rates than existing backdoor attacks.
With lower than 3.27% injection rate, Refool can reach a high attack success
rate >75% across the five datasets and different networks (e.g. ResNet and
DenseNet). Meanwhile, the victim models still perform well on clean test data,
with less than 3% accuracy decrease (compared to the original accuracies) across
all test scenarios. On some datasets, take CTSRD for example, one only needs to
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Fig. 4. Stealthiness of CL [53] and SIG [2] and our Refool : MSE and L2 distances
between the original and the backdoor images are shown at the top corners.

contaminate <1% of training data to successfully control the model over 91% of
the time. We further show, in Fig. 3 (a–b), the prediction confusion matrix of the
victim model on GTSRD dataset. The victim model can correctly predict the
clean images most of the time, yet can be controlled to only predict the target
class (e.g. class 0, results on more target classes are reported in Appendix E)
when reflections are added to the test images, a clear demonstration of successful
backdoor attack. These results show that natural phenomena like reflection can
be manipulated as a backdoor pattern to attack DNNs. Considering that reflec-
tion backdoors are visually very similar to natural reflections which commonly
exist in the real world, this poses a new type of threat to deep learning models.

Stealthiness Comparison. We show in Fig. 4 an example of the backdoored
images crafted to attack the CTSRD dataset. We compute the mean square
error (MSE) and L2 distances between the original image and the backdoored
image crafted by CL, SIG and our Refool backdoor attacks. As shown in this
example, our reflection attack is stealthier in terms of smooth surface and hidden
shadows. More visual inspections and the average distortions (e.g. MSE and L2
distances) over 500 randomly backdoored images can be found in Appendix F.

Attack Success Rate Versus Injection Rate. We next show, on the GTSRB
dataset, how different injection rates influence the attack success rate of CL and
our Refool attacks. As shown in Fig. 3(c), we vary the in-class injection rate
from [0, 0.8]. The corresponding injection rate with respect to the entire dataset
is only 0.032, 0.063, 0.126 for in-class injection rate 0.2, 0.4, 0.8 respectively. Poi-
soning more data can steadily improve attack success rate until 40% of the data
in target class are poisoned, after which, the attack stabilizes. Our Refool attack
outperforms the CL attack under all injection rates. Note that increasing injec-
tion rate has a minimal impact on the model’s accuracy on clean examples.

4.3 Understandings of Reflection Backdoor Attack

Efficiency of Adversarial Reflection Image Selection. Here, we evaluate
the efficiency of our adversarial reflection image selection in Appendix B. We
test the inference-time attack effectiveness of the adversarial reflection images
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Fig. 5. Understandings of Refool with Grad-CAM [43] with two samples from PubFig
(left) and GTSRB (right). In each group, the images at the top are the original input,
CL [53], SIG [2] and our Refool (left to right), while images at the bottom are their
corresponding attention maps.

(e.g. Radv) selected at each iteration for a total of 14 (0–13) iterations, on
GTSRB dataset. The attack success rate on three classes and the model’s test
accuracy are shown in Fig. 3(d). For each of the 3 tested classes (e.g. class 3, 4
and 11), we inject reflection images generated at the current iteration randomly
into the clean test images of the class. We then measure the class-wise attack
success rate. In detail, we record the proportion of examples in the class (after
injection) that are predicted by the current model as the target class 0. The
proposed generation algorithm can find effective reflections efficiently within 9
iterations. Note that, once these adversarial reflections are found, they can be
applied to install backdoor into any DNN models that are trained on the dataset,
as we have shown with the ResNet/DenseNet models on ImageNet dataset in
Table 2.

Table 3. Attack success rate versus test accuracy for different types of reflections.

Reflection type Attack success rate Test accuracy Similarity

SSIM PSNR MSE

(I) 87.30% 83.59% 0.883 26.68 62.11

(II) 90.46% 85.00% 0.896 27.45 60.54

(III) 90.33% 85.63% 0.786 23.01 95.87

Mix 91.67% 86.30% 0.828 24.98 73.44

Performance Under Different Types of Reflections. We then show how
the 3 types of reflections introduced in Sect. 3.2 influence the attack success
rate. The experiments were also conducted on the GTSRB dataset. The adver-
sarial reflection images (e.g. Radv) used here are the same as those selected for
previous experiments. The difference here is that we test 2 different injection
strategies: 1) using fixed reflection, or 2) using randomly mixed reflections (as
was used in previous experiments). We also measure the average similarity of
training images (4772 in total) before and after injection, using 3 popular simi-
larity metrics: peak-signal-to-noise-ratio (PSNR) [25], structural similarity index
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(SSIM) [56] and mean square error (MSE). The numeric results are reported in
Table 3. In terms of attack success rate and test accuracy, type (II) and type (III)
demonstrate higher attack success rates with less model corruptions (higher test
accuracies) than type (I) reflection. When combined, the three types of reflection
achieved the best attack success rate and least model corruption (highest test
accuracy). It was also observed that type (II) injection has the minimum distor-
tion (e.g. highest SSIM/PSNR and lowest MSE) to the original data, while type
(III) reflection causes the largest distortion, as a consequence of the ghost effect
(see Fig. 2(a)). The relatively small distortion of type (II) reflection is due to its
smoothness effect. Overall, a random mixture of the three reflections yields the
best attack strength with moderate distortion.

Effect of Reflection Trigger on Network Attention. We further investigate
how reflection backdoor affects the attention of the network. Visual inspections
on a few examples are shown in Fig. 5. The attention maps are computed using
the Gradient-weighted Class Activation Mapping (Grad-CAM) technique [43],
which finds the critical regions in the input images that mostly activate the
victim model’s output. We find that the reflection backdoor only slightly shifts
the model’s attention off the correct regions, whereas CL and SIG significantly
shift the model’s attention either completely off the target or in a striped man-
ner, especially in the traffic sign example. This suggests the stealthiness of our
reflection backdoor from a different perspective.

4.4 Resistance to State-of-the-art Backdoor Defenses

Resistance to Finetuning. We compare the our Refool to CL [53] and SIG [2],
in terms of the resistance to clean-data-based finetuning [34,55]. We train a vic-
tim model on GTSRB dataset separately under the three attacks, while leaving
10% of the clean training data out as the finetuning set. We then fine-tune the
model on the finetuning set for 20 epochs using the same SGD optimizer but
smaller learning rate 0.0001. We fix the shallow layers of the network and only
fine-tune the last dense layer. The comparison results are illustrated in the left
of Fig. 6. As can be seen, the attack success rate of CL drops from 78.3% to
20% after just one epoch of finetuning and SIG drops from 73.0% to 25% after
4 epochs, while our Refool attack is still above 60% after 15 epochs. The reason
why is that reflections are a natural and fundamental type of feature, rather
than random patterns that can be easily erased by finetuning on clean data.

Resistance to Neural Pruning. We then test the resistance of the three
attacks to the state-of-the-art backdoor defense method Fine-pruning [34]
(experimental settings are in Appendix G). The comparison results are shown
in the middle subfigure of Fig. 6. The attack success rate of CL drops drastically
from 76% to 8.3% when 60% of neurons are removed, while SIG drops from 73%
to 16.5% when 50% of neurons are removed. Compared to CL or SIG, our reflec-
tion backdoor is more resistance to neural pruning, with much higher success
rates until 80% of neurons are removed.
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Fig. 6. Left: Attack success rates during finetuning on clean data. Middle: Test accu-
racy (on clean inputs) and attack success rate against the neural pruning defense. These
experiments were run on GTSRB dataset. Right: Backdoor detection using Neural
Cleanse [55]. Anomaly index >2 indicates a detected backdoored model.

Table 4. Attack success rates (%) before/after white-box trigger removal on GTSRB.

Badnets [19] CL [53] SIG [2] Refool

Before 24.12 78.03 73.26 91.67

After 15.38 � 8.74 18.18 � 59.85 17.29 � 55.97 85.01 � 6.65

Resistance to Neural Cleanse. Neural Cleanse [55] detects whether a trained
model has been planted backdoor, in which case it assumes the training samples
will require minimal modifications to be manipulated by the attacker. Here, we
apply Neural Cleanse to detect a backdoored ResNet-34 model by our Refool on
GTSRB dataset. As shown in the right subfigure of Fig. 6, Neural Cleanse fails
to detect the backdoored model, i.e., anomaly index < 2. More results on other
datasets can be found in Appendix G.

Resistance to White-box Trigger Removal. We apply trigger removal meth-
ods in a white-box setting (the defender has identified the trigger pattern). For
our Refool, many reflection removal methods [36,37,62] can be applied. In our
experiment, we adopt the state-of-the-art reflection removal method [62] to
clean the poisoned data. For Badnets, we simply replace the value of the trigger
by the mean pixel value of their three adjacent patches. For CL, we use the
non-Local means denoising technique [5]. For SIG, we add −v(i, j) (defined in
Eq. (??) in Appendix G) to backdoored images to remove the trigger. The attack
success rates before and after trigger removal are reported in Table 4. Existing
attacks Badnets, CL, and SIG rely on fixed backdoor patterns, thus can be easily
removed by white-box trigger removal methods, i.e., success rate drops to <20%.
Conversely, our Refool uses reflection images randomly selected from the wild,
thus can still maintain a high success rate of 85% after reflection removal. Over-
all, we believe backdoor attack is still a challenging task to successfully attack
a model while evade white-box trigger removal. Detailed experimental settings



196 Y. Liu et al.

and more results on other defenses including input denoising and mixup data
augmentation can be found in Appendix G.

5 Conclusion

In this paper, we have explored the natural phenomenon of reflection, for use
in backdoor attack on DNNs. Based on the mathematical modeling of physical
reflections, we proposed the reflection backdoor (Refool ) approach. Refool plants
a backdoor into a victim model by generating and injecting reflections into a
small set of training data. Empirical results across 3 computer vision tasks and
5 datasets demonstrate the effectiveness of Refool. It can attack state-of-the-art
DNNs with high success rate and small degradation in clean accuracy. Reflec-
tion backdoors can be generated efficiently, and are resistant to state-of-the-art
defense methods. It is an open question as to whether new types of training
strategies can be developed that are robust to this kind of natural backdoors.
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