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Abstract. Tables are information-rich structured objects in document
images. While significant work has been done in localizing tables as
graphic objects in document images, only limited attempts exist on table
structure recognition. Most existing literature on structure recognition
depends on extraction of meta-features from the pdf document or on
the optical character recognition (ocr) models to extract low-level lay-
out features from the image. However, these methods fail to generalize
well because of the absence of meta-features or errors made by the ocr
when there is a significant variance in table layouts and text organization.
In our work, we focus on tables that have complex structures, dense con-
tent, and varying layouts with no dependency on meta-features and/or
ocr.

We present an approach for table structure recognition that combines
cell detection and interaction modules to localize the cells and predict
their row and column associations with other detected cells. We incorpo-
rate structural constraints as additional differential components to the
loss function for cell detection. We empirically validate our method on the
publicly available real-world datasets - icdar-2013, icdar-2019 (ctdar)
archival, unlv, scitsr, scitsr-comp, tablebank, and pubtabnet. Our
attempt opens up a new direction for table structure recognition by
combining top-down (table cells detection) and bottom-up (structure
recognition) cues in visually understanding the tables.

Keywords: Document image · Table detection · Table cell detection ·
Row and column association · Table structure recognition

1 Introduction

Deep neural networks have shown promising results in understanding document
layouts [1–3]. However, more needs to be done for structural and semantic under-
standing. Among these, the problem of table structure recognition has been of
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Fig. 1. The figure depicts the problem of recognizing table structure from it’s image.
This opens up many applications including information retrieval, graphical represen-
tation and digitizing for editing.

high interest in the community [4–20]. Table structure recognition refers to rep-
resentation of a table in a machine-readable format, where its layout is encoded
according to a pre-defined standard [10–14,17]. It can be represented in the form
of either physical [10,12,14,17] or logical formats [11,13]. While logical structure
contains every cells’ row and column spanning information, physical structure
additionally contains bounding box coordinates. Table structure recognition is
a precursor to contextual table understanding, which has a myriad of appli-
cations in business document analysis, information retrieval, visualization, and
human-document interactions, as motivated in Fig. 1.

Table structure recognition is a challenging problem due to complex struc-
tures and high variability in table layouts [4–17]. Early attempts in this space
are dependent on extraction of hand-crafted features and meta-data extracted
from the pdfs on top of heuristic/rule-based algorithms [21–24] to locate tables
and understanding tables by predicting/recognizing structures. These methods,
however, fail to extend to scanned documents as they rely on meta-data infor-
mation contained in the pdfs. They also make strong assumptions about the
structure of the tables. Some of these methods are also dependent on textual
information analysis which make them domain dependent. While textual fea-
tures are useful, visual analysis becomes imperative for analysis of complex page
objects. Inconsistency of size and density of tables, presence and location of
table cell borders, variation in table cells’ shapes and sizes, table cells spanning
multiple rows and/or columns and multi-line content are some challenges (refer
Fig. 2 for some examples) that need to be addressed to solve the problem using
visual cues [4,5,21–24].

We pose the table structure recognition problem as the generation of xml
containing table’s physical structure in terms of bounding boxes along with span-
ning information and, additionally, digitized content for every cell (see Fig. 1).
Since our method aims to predict this table structure given the table image
only (without using any meta-information), we employ a two-step process—(a)
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Fig. 2. Examples of complex table images from unlv and icdar-2013 datasets. Com-
plex tables are ones which contain partial or no ruling lines, multi-row/column spanning
cells, multi-line content, many empty dense cells.

top-down: where we decompose the table image into fundamental table objects,
which are table cells using a cell detection network and (b) bottom-up: where
we re-build the entire table as a collection of all the table cells localized from
the top-down process, along with their row and column associations with every
other cell. We represent row and column associations of table cells using row and
column adjacency matrices.

Though table detection has observed significant success [11,25–28], detection
of table cells remains a challenging problem. This is because of (i) large varia-
tion in sizes and aspect ratios of different cells present in the same table, (ii)
cells’ inherent alignment despite high variance in text amount and text justi-
fication, (iii) lack of linguistic context in cells’ content, (iv) presence of empty
cells and (v) presence of cells with multi-line content. To overcome these chal-
lenges, we introduce a novel loss function that models the inherent alignment
of cells in the cell detection network; and a graph-based problem formulation to
build associations between the detected cells. Moreover, as detection of cells and
building associations between them depend highly on one another, we present a
novel end-to-end trainable architecture, termed as tabstruct-net, for cell detec-
tion and structure recognition. We evaluate our model for physical structure
recognition on benchmark datasets: scitsr [14], scitsr-comp [14], icdar-2013
table recognition [18], icdar-2019 (ctdar) archival [19], and unlv [29]. Further,
we extend the comparative analysis of the proposed work for logical structure
recognition on tablebank [11] dataset. Our method sets up a new direction for
table structure recognition as a collaboration of cell detection, establishing an
association between localized cells and, additionally, cells’ content extraction.

Our main contributions can be summarised as follows:

– We demonstrate how the top-down (cell detection) and bottom-up (structure
recognition) cues can be combined visually to recognize table structures in
document images.

– We present an end-to-end trainable network, termed as tabstruct-net for
training cell detection and structure recognition networks in a joint manner.
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– We formulate a novel loss function (i.e., alignment loss) to incorporate struc-
tural constraints between every pair of table cells and modify Feature Pyra-
mid Network (fpn) to capture better low-level and long-range features for
cell detection.

– We enhance the visual features representation for structure recognition (built
on top of model [9]) through lstm.

– We unify results from previously published methods on table structure recog-
nition for a thorough comparison study.

Fig. 3. Block diagram of our approach. Table detection is a precursor to table structure
recognition and our method assumes that table is already localized from the input
document image. The end-to-end architecture predicts cell bounding boxes and their
associations jointly. From the outputs of cell detection and association predictions, xml
is generated using a post-processing heuristic.

2 Related Work

In the space of document images, researchers have been working on understand-
ing equations [30,31], figures [32,33] and tables [6–17]. Diverse table layouts,
tables with many empty cells and multi-row/column spanning cells are some
challenges that make table structure recognition difficult. Research in the domain
of table understanding through its structure recognition from document images
dated back to the early 1990s when algorithms based on heuristics were pro-
posed [21–24,34–36]. These methods were primarily dependent on hand-crafted
features and heuristics (horizontal and vertical ruling lines, spacing and geo-
metric analysis). To avoid heuristics, Wang et al. [5] proposed a method for
table structure analysis using optimization methods similar to the x-y cut algo-
rithm. Another technique based on column segmentation, header detection, and
row segmentation to identify the table structure was proposed by Hu et al. [4].
These methods make strong assumptions about table layouts for a domain agnos-
tic algorithm.

Many cognitive methods [6–12,14–16,37–43] have also been presented to
understand table structures as they are robust to the input type (whether being
scanned images or native digital). These also do not make any assumptions
about the layouts, are data-driven, and are easy to fine-tune across different
domains. Minghao et al. [11] proposed one class of deep learning methods to
directly predict an xml from the table image using the image-to-markup model.
Though this method worked well for small tables, it was not robust enough
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to dense and complex tables. Another set of methods is invoice specific table
extraction [39,40], which were not competent for a more generic use-cases. To
overcome this challenge, a combination of heuristics and cognitive methods has
also been presented in [12]. Chris et al. [10] presented another interesting deep
model, called splerge, which is based on the fundamental idea of first splitting
the table into sub-cells, and then merging semantically connected sub-cells to
preserve the complete table structure. Though this algorithm showed consider-
able improvements over earlier methods, it was still not robust to skew present
in the table images. Another interesting direction was presented by Vine et
al. [42], where they used conditional generative adversarial networks to obtain
table skeleton and then fit a latent table structure into the skeleton using a
genetic algorithm. Khan et al. [15], through their gru based sequential mod-
els, showed improvements over several cnn based methods for table structure
extraction. Recently, many works have preferred a graph-based formulation of
the problem as the graph is inherently an ideal data structure to model structural
associativity. Qasim et al. [9] proposed a solution where they used graph neural
networks to model table-level associativity between words. The authors validate
their method on synthetic table images. Chi et al. [14] proposed another graph-
based problem formulation and solution using a graph attention mechanism.
While these methods made significant progress towards understanding complex
structured tables, they made certain assumptions like availability of accurate
word bounding boxes, accurate document text, etc. as additional inputs [6,9,14].
Our method does not make any such assumptions. We use the table image as
the input and produce xml output without any other information. We demon-
strate results on complex tables present in unlv, icdar-2013, icdar-2019 ctdar
archival, scitsr, scitsr-comp tablebank, and pubtabnet datasets.

Fig. 4. Visual illustration of cell spanning information along rows and columns of a
table from unlv dataset. Left Image: shows original table image in unlv and Right
Image: illustrates ground-truth cell spanning information.

3 TabStruct-Net

Our solution for table structure recognition progresses in three steps—(a)
detection of table cells; (b) establishing row/column relationships between the
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detected cells, and (c) post-processing step to produce the xml output as desired.
Figure 3 depicts the block diagram of our approach.

Fig. 5. Our tabstruct-net. Modified rpn in cell detection network, which consists of
both top-down and bottom-up pathways to better capture low-level visual features. P2
layer of the optimized feature pyramid is used in the structure recognition network to
extract visual features.

3.1 Top-Down: Cell Detection

The first step of our solution for table structure recognition is localization of
individual cells in a table image, for which we use the popular object detection
paradigm. The difference from natural scene images, however, is an inherent
association between table cells. Recent success of r-cnns [44] and its improved
modifications (Fast r-cnn [45], Faster r-cnn [46], Mask r-cnn [47]) have shown
significant success in object detection in natural scene images. Hence, we employ
Mask r-cnn [47] for our solution with additional enhancements—(a) we augment
the Region Proposal Network (rpn) with dilated convolutions [48,49] to better
capture long-range row and column visual features of the table. This improves
detection of multi-row/column spanning and multi-line cells; (b) inspired by [50],
we append the feature pyramid network with a top-down pathway, which prop-
agates high-level semantic information to low-level feature maps. This allows
the network to work better for cells with varying scales; and (c) we append
additional losses during the training phase in order to model the inherent struc-
tural constraints. We formulate two ways of incorporating this information—(i)
through an end-to-end training of cell detection and the structure recognition
networks (explained next), and (ii) through a novel alignment loss function. For
the latter, we make use of the fact that every pair of cells is aligned horizontally
if they span the same row and aligned vertically if they span the same column.
For the ground truth, where tight bounding boxes around the cells’ content are
provided [13,14,18], we employ an additional ground truth pre-processing step to
ensure that bounding boxes of cells in the same row and same column are aligned
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vertically and horizontally, respectively. We model these constraints during the
training in the following manner:

L1 =
∑

r∈SR

∑
ci,cj∈r ||y1ci − y1cj ||22, L2 =

∑
r∈ER

∑
ci,cj∈r ||y2ci − y2cj ||22

L3 =
∑

c∈SC

∑
ci,cj∈c ||x1ci − x1cj ||22 and L4 =

∑
c∈EC

∑
ci,cj∈c ||x2ci − x2cj ||22

Here, SR, SC, ER and EC represent starting row, starting column, ending row
and ending column indices as shown in Fig. 4. Also, ci and cj denote two cells in
a particular row r or column c; x1ci , y1ci , x2ci and y2ci represent bounding box
coordinates X-start, Y-start, X-end and Y-end respectively of the cell ci. These
losses (L1, L2, L3, L4) can be interpreted as constraints that enforce proper
alignment of cells beginning from same row, ending on same row, beginning
from same column and ending on same column respectively. Alignment loss is
defined as

Lalign = L1 + L2 + L3 + L4. (1)

3.2 Bottom-Up: Structure Recognition

We formulate the table structure recognition using graphs similar to [9]. We
consider each cell of the table as a vertex and construct two adjacency matrices
- a row matrix Mrow and a column matrix Mcol which describe the association
between cells with respect to rows and columns. Mrow,Mcol ∈ R

Ncells×Ncells .
Mrowi,j

= 1 or Mcoli,j = 1 if cells i, j belong to the same row or column, else 0.
The structure recognition network aims to predict row and column relation-

ships between the cells predicted by the cell detection module during training
and testing. During training, only those predicted table cells are used for struc-
ture recognition which overlap with the ground truth table cells having an IoU
greater than or equal to 0.5. This network has three components:

– Visual Component: We use visual features from P2 layer (refer Fig. 5) of
the feature pyramid based on the linear interpolation of cell bounding boxes
predicted by the cell detection module. In order to encode cells’ visual char-
acteristics across their entire height and width, we pass the gathered P2
features for every cell along their centre horizontal and centre vertical lines
using lstm [51] to obtain the final visual features (refer Fig. 5) (as opposed
to visual features corresponding to cells’ centroids only as in [52]).

– Interaction Component: We use the dgcnn architecture based on graph neu-
ral networks used in [52] to model the interaction between geometrically
neighboring detected cells. It’s output, termed as interaction features, is a
fixed dimensional vector for every cell that has information aggregated from
its neighbouring table cells.

– Classification Component: For a pair of table cells, the interaction features
are concatenated and appended with difference between cells’ bounding box
coordinates. This is fed as an input to the row/column classifiers to predict
row/column associations. Please note that we use the same [52] Monte Carlo
based sampling to ensure efficient training and class balancing. During testing
time, however, predictions are made for every unique pair of table cells.
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We train the cell detection and structure recognition networks in a joint man-
ner (termed as tabstruct-net) to collectively predict cell bounding boxes along
with row and column adjacency matrices. Further, the two structure recognition
pathways for row and column adjacency matrices are put together in parallel.
The visual features prepared using lstms for every vertex are duplicated for both
the pathways, after which they work in a parallel manner. The overall empirical
loss of tabstruct-net is given by:

L = Lbox + Lcls + Lmask + Lalign + Lgnn, (2)

where Lbox, Lcls and Lmask are bounding box regression loss, classification loss
and mask loss, respectively defined in Mask r-cnn [47], Lalign is alignment loss
which is modeled as a regularizer (defined in Eq. 1) and Lgnn is the cross-entropy
loss back propagated from the structure recognition module of tabstruct-net.
The additional loss components help the model in better alignment of cells
belonging to same rows/columns during training, and in a sense fine-tunes the
predicted bounding boxes that makes it easier for post-processing and structure
recognition in the subsequent step.

3.3 Post-Processing

Once all the cells and their row/column adjacency matrices are predicted, we
create the xml interpretable output as a post-processing step. From the cell
coordinates along with row and column adjacency matrix, SR, SC, ER and EC
indexes are assigned to each cell, which indicate spanning of that cell along rows
and columns. We use Tesseract [53] to extract the content of every predicted cell.
The xml output for every table image finally contains coordinates of predicted
cell bounding boxes and along with cell spanning information and its content.

4 Experiments

4.1 Datasets

We use various benchmark datasets—scitsr [14], scitsr-comp [14], icdar-2013
table recognition [18], icdar-2019 (ctdar) archival [19], unlv [29], Marmot
extended [12], tablebank [11] and pubtabnet [13] datasets for extracting struc-
ture information of tables. Statistics of these datasets are listed in Table 1.

Table 1. Statistics of the datasets used for our experiments.

scitsr scitsr

comp

icdar

2013

icdar-

2013

-partial

icdar

2019

unlv unlv-

partial

Marmot

extended

table

bank

pubtabnet

Train 12000 12000 - 124 600 - 446 1016 145K 339K

Test 3000 716 158 34 150 558 112 - 1000 114K
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4.2 Baseline Methods

We compare the performance of our tabstruct-net against seven benchmark
methods—deepdesrt [7], tablenet [12], graphtsr [14], splerge [10], dgcnn [9],
Bi-directional gru [15] and Image-to-Text [11].

4.3 Implementation Details

tabstruct-net1 has been trained and evaluated with table images scaled to a fixed
size of 1536 × 1536 while maintaining the original aspect ratio as the input. While
training, cell-level bounding boxes along with row and column adjacency matri-
ces (prepared from start-row, start-column, end-row and end-column indices) are
used as the ground truth. We use nvidia titan x gpu with 12 gb memory for our
experiments and a batch-size of 1. Instead of using 3× 3 convolution on the output
feature maps from the fpn, we use a dilated convolution with filter size of 2× 2 and
dilation parameter of 2. Also, we use the resnet-101 backbone that is pre-trained
on ms-coco [54] dataset. Dilated convolution blocks of filter size 7 are used in the
fpn. To compute region proposals, we use 0.5, 1 and 2 as the anchor scale and
anchor box sizes of 8, 16, 32, 64 and 128. lstms used to gather visual features have
a depth of 128. The final memory state of the lstm layers is concatenated with
the cell’s coordinates to prepare features for the interaction network. Further, for
generation of the row/column adjacency matrices, we use 2400 as the maximum
number of vertices keeping in mind dense tables. Next, features from 40 neighbor-
ing vertices are aggregated using an edge convolution layer followedby adense layer
of size 64 with ReLu activation. Since every input table may contain hundreds of
table cells, training can be a time consuming process. To achieve faster training,
we employ a two-stage training process. In the first stage, we use 2014 anchors and
512 rois, and in the second stage, we use with 3072 anchors and 2048 rois. During
both the stages, we use 0.001 as the learning rate, 0.9 as the momentum and 0.0001
as the weight decay regularisation.

Table 2. Shows the performance of our tabstruct-net for physical table structure
recognition on various benchmark datasets.

Test dataset Train dataset S-A S-B

P↑ R↑ F1↑ P↑ R↑ F1↑
icdar-2013 scitsr 0.915 0.897 0.906 0.976 0.985 0.981

icdar-2013-partial scitsr 0.930 0.908 0.919 0.991 0.993 0.992

scitsr scitsr 0.927 0.913 0.920 0.989 0.993 0.991

scitsr-comp scitsr 0.909 0.882 0.895 0.981 0.987 0.984

unlv-partial scitsr 0.849 0.828 0.839 0.992 0.994 0.993

icdar-2019 scitsr 0.595 0.572 0.583 0.924 0.899 0.911

icdar-2019 icdar-2019 0.803 0.768 0.785 0.975 0.957 0.966

icdar-2019 scitsr+icdar-2019 0.822 0.787 0.804 0.975 0.958 0.966

1 Our code is available at https://github.com/sachinraja13/TabStructNet.git.

https://github.com/sachinraja13/TabStructNet.git
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Table 3. Shows the performance of our tabstruct-net for logical table structure recog-
nition on various benchmark datasets.

Test dataset Train dataset Metric Score

tablebank-word scitsr bleu 0.914

tablebank-latex scitsr bleu 0.937

tablebank-word+latex scitsr bleu 0.916

pubtabnet scitsr teds 0.901

4.4 Evaluation Measures

We use various existing measures—precision, recall and F1 [14,18,29] to evaluate
the performance of our model for recognition of physical structure of tables.
For recognition of logical structure of tables, we use bleu [55] score as used
in [11] and Tree-Edit-Distance-based similarity (teds) [13]. Since xml is our
final output for table structure recognition, we also use bleu [55], cider [56] and
rouge [57] scores to compare generated xml and ground truth xml on spanning
information and content of every cell. We first calculate these scores separately
on each table and then compute both micro-averaged score and macro-averaged
score as the final result. We consistently use an IoU threshold of 0.6 to compute
the confusion matrix. Please note that only non-empty table cells are considered
similar to [18] for the evaluation.

4.5 Experimental Setup

One major challenge in the comparison study with the existing methods is the
inconsistent use of additional information (e.g., meta-features extracted from
the pdfs [10], content-level bounding boxes from ground truths [12,14] and cell’s
location features generated from synthetic dataset [9]). Hence, we do experiments
in two different setups

– Setup-A (S-A): using only table image as the input
– Setup-B (S-B): using table image along with additional information (e.g.,

cell bounding boxes) as the input. For this, instead of removing the cell detec-
tion component from the network, we ignore the predicted boxes and use the
ground truth ones as input for structure recognition.

5 Results on Table Structure Recognition

Tables 2 and 3 summarize the performance of our model on standard datasets
used in the space of table structure recognition.
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5.1 Analysis of Results

Table 4 presents results on icdar-2013 dataset. In S-A, we observe that our
model outperforms deepdesrt [7] method by a 27.5% F1 score. This is because
cell coordinates for the latter are obtained by row and column intersections,
making it unable to recognize cells that span multiple rows/columns. For dense
tables (small inter-row spacing), row segmentation results of deepdesrt com-
bined multiple rows into one in several instances. split+heuristic [10] method
outperforms tabstruct-net by a small margin, however, it requires icdar-2013
dataset-specific cell merging heuristics and is trained on a considerably larger set
of images. Therefore, a direct comparison of (split+heuristic) with our method is
not fair. Nevertheless, comparable results of tabstruct-net indicates its robust-
ness to icdar-2013 dataset, without using any kind of dataset-specific post-
processing. However, if compared under the same training environment and no
post-processing, our model outperforms splerge with a 3% average F1 score.
splerge works well for datasets where ground truth bounding boxes are anno-
tated at the content-level instead of cell-level. This is because it allows for a wider
area for a prospective prediction of a row/column separator. Further, since it is
based on cell detection through the row and column separators, it is not agnostic
to input image noise such as skew and rotations. This method is susceptible to
dataset-specific post-processing as opposed to ours, where no post-processing is
needed.

Table 4. Comparison of results for physical structure recognition on icdar-2013
dataset. #Images: indicates number of table images in the training set. Heuristic:
indicates dataset specific cell merging rules for various models in [10].

Method Training Experimental P↑ R↑ F1↑
Dataset #Images Setup

deepdesrt [7] scitsr 12K S-A 0.631 0.619 0.625

splerge [10] scitsr 12K S-A 0.883 0.875 0.879

split+heuristic [10] Private [10] 83K S-A 0.938 0.922 0.930

tabstruct-net (our) scitsr 12K S-A 0.915 0.897 0.906

tablenet [12] Marmot Extended 1K S-B 0.922 0.899 0.910

graphtsr [14] scitsr 12K S-B 0.885 0.860 0.872

split-pdf [10] Private [10] 83K S-B 0.920 0.913 0.916

split-pdf+heuristic [10] Private [10] 83K S-B 0.959 0.946 0.953

dgcnn [9] scitsr 12K S-B 0.972 0.983 0.977

tabstruct-net (our) scitsr 12K S-B 0.976 0.985 0.981

In S-B, tabstruct-net sets up a state-of-the-art benchmark on the icdar-
2013 dataset, outperforming all the existing methods [9,10,12,14]. It is further
interesting to note that our technique outperforms split-pdf+heuristic model
also without needing any post-processing. It is because our enhancements to
the dgcnn [9] model can capture the visual characteristics of a cell across a
larger span through lstms. We observe that our model achieves significantly
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improved performance when content-level bounding boxes are used instead of
cell-level, which are much easier to obtain with the help of ocr tools and pdf
meta-information.

Table 5. Physical structure recognition results on icdar-2013 dataset for varying IoU
thresholds to demonstrate tabstruct-net’s robustness. ES: Experimental Setup, CD:
Cell Detection, TH: IoU threshold value, SR: Structure Recognition, P2: using visual
features from P2 layer of the fpn instead of using separate convolution blocks, lstm:
use of lstms to model visual features along center-horizontal and center-vertical lines
for every cell, td+bu: use of Top-Down and Bottom-Up pathways in the fpn, AL:
addition of alignment loss as a regularizer to tabstruct-net.

CD Network SR Network IoU CD Scores SR Scores

TH P↑ R↑ F1↑ P↑ R↑ F1↑
Mask r-cnn+td+bu+al dgcnn+p2+lstm 0.5 0.935 0.942 0.938 0.927 0.911 0.919

0.6 0.921 0.926 0.923 0.915 0.897 0.906

0.7 0.815 0.820 0.817 0.797 0.785 0.791

0.8 0.638 0.653 0.645 0.629 0.615 0.622

0.9 0.275 0.312 0.292 0.247 0.236 0.241

Table 5 shows the performance of our technique under the varying IoU thresh-
olds. It can be inferred from the table that our model achieves an F1 score of
79.1% on structure recognition with an IoU threshold value of as high as 0.7.
For the IoU values of 0.5 and 0.6, our model’s performance is 91.9% and 90.6%,
respectively. It demonstrates the robustness of our model. Figures 6 and 7 display
some qualitative outputs of our method on the datasets discussed in Sect. 4.1.
Figure 8 shows some of the failure cases of cell detection by our method. It can
be seen that our model fails for table images that have large amounts of empty
spaces. Supplementary material has (i) more quantitative results, (ii) more qual-
itative examples, (iii) specific implementation details, (iv) detailed comparative
analysis, IoU variation results, and ablation study on all the datasets.

5.2 Ablation Study

Table 6 shows the outcome of our enhancements to Mask r-cnn [47] and
dgcnn [9] models for both cell detection and structure recognition networks
under S-A and S-B. From the table, it can be observed that our additions to the
networks result in a significant increase of 4% average F1 scores on cell detection
and structure recognition tasks. The novel alignment loss, along with the use of
top-down and bottom-up pathways in the fpn results in an improvement of 2.3%
F1 score for cell detection and 2.4% on structure recognition. Use of lstms and
P2 layer output to prepare visual features for structure recognition results in a
2.1% improvement of F1 scores. Interestingly, because both models are trained
together in an end-to-end fashion, cell detection’s effect is also observed in the
form of a 1.5% average F1 score. This empirically bolsters our claim of using an
end-to-end architecture for cell detection and, in turn, structure recognition.
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Fig. 6. Sample intermediate cell detection results of tabstruct-net on table images
of icdar-2013, icdar-2019 ctdar and unlv, scitsr, scitsr-comp and tablebank
datasets.

Table 6. Ablation study for physical structure recognition on icdar-2013 dataset. ES:
Experimental Setup, CD: Cell Detection, SR: Structure Recognition, P2: using visual
features from P2 layer of the fpn instead of using separate convolution blocks, lstm:
use of lstms to model visual features along center-horizontal and center-vertical lines
for every cell, td+bu: use of Top-Down and Bottom-Up pathways in the fpn, AL:
addition of alignment loss as a regularizer to tabstruct-net.

ES CD Network SR Network CD Scores SR Scores

P↑ R↑ F1↑ P↑ R↑ F1↑
S-A Mask r-cnn dgcnn 0.885 0.890 0.887 0.871 0.860 0.865

Mask r-cnn dgcnn+P2 0.886 0.892 0.889 0.877 0.863 0.870

Mask r-cnn dgcnn+P2+lstm 0.898 0.904 0.901 0.885 0.879 0.882

Mask r-cnn+td+bu dgcnn 0.895 0.899 0.897 0.883 0.867 0.875

Mask r-cnn+td+bu dgcnn+p2 0.895 0.901 0.898 0.886 0.870 0.878

Mask r-cnn+td+bu dgcnn+p2+lstm 0.904 0.910 0.907 0.892 0.884 0.888

Mask r-cnn+td+bu+al dgcnn 0.905 0.911 0.908 0.891 0.879 0.885

Mask r-cnn+td+bu+al dgcnn+p2 0.914 0.920 0.917 0.906 0.885 0.895

Mask r-cnn+td+bu+al dgcnn+p2+lstm 0.921 0.926 0.924 0.915 0.897 0.906

S-B -na- dgcnn -na- -na- -na- 0.972 0.983 0.977

-na- dgcnn+p2 -na- -na- -na- 0.973 0.983 0.978

-na- dgcnn+p2+lstm -na- -na- -na- 0.976 0.985 0.981
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Fig. 7. Sample structure recognition output of tabstruct-net on table images of icdar-
2013, icdar-2019 ctdar archival and unlv datasets. First Row: prediction of cells
which belong to the same row. Second Row: prediction of cells which belong to the
same column. Cells marked with orange colour represent the examine cells and cells
marked with green colour represent those which belong to the same row/column of the
examined cell. (Color figure online)

Fig. 8. Sample intermediate cell detection results of tabstruct-net on table images of
icdar-2013, icdar-2019 ctdar, unlv, scitsr, scitsr-comp and tablebank datasets
illustrate failure of tabstruct-net.

6 Summary

We formulate the problem of table structure recognition as a combination of
cell detection (top-down) and structure recognition (bottom-up) tasks. For cell
detection, we make a modification to the rpn of original Mask r-cnn and intro-
duce a novel alignment loss function (formulated for every pair of table cells)
to enforce structural constraints. For structure recognition, we improve input
representation for the dgcnn network by using lstm, pre-trained ResNet-101
backbone and rpn of cell detection network. Further, we propose an end-to-end
trainable architecture to collectively predict cell bounding boxes along with their
row and column adjacency matrices to predict structure. We demonstrate our
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results on multiple public datasets on both digital scanned as well as archival
handwritten table images. We observe that our approach fails to handle tables
containing a large number of empty cells along both horizontal and vertical
directions. In conclusion, we encourage further research in this direction.
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