
Explaining Image Classifiers Using
Statistical Fault Localization

Youcheng Sun1(B) , Hana Chockler2 , Xiaowei Huang3 ,
and Daniel Kroening4

1 Queen’s University Belfast, Belfast, Northern Ireland
youcheng.sun@qub.ac.uk

2 King’s College London, London, England
3 University of Liverpool, Liverpool, England

4 University of Oxford, Oxford, England

Abstract. The black-box nature of deep neural networks (DNNs) makes
it impossible to understand why a particular output is produced, creat-
ing demand for “Explainable AI”. In this paper, we show that statisti-
cal fault localization (SFL) techniques from software engineering deliver
high quality explanations of the outputs of DNNs, where we define an
explanation as a minimal subset of features sufficient for making the
same decision as for the original input. We present an algorithm and
a tool called DeepCover, which synthesizes a ranking of the features
of the inputs using SFL and constructs explanations for the decisions
of the DNN based on this ranking. We compare explanations produced
by DeepCover with those of the state-of-the-art tools gradcam, lime,
shap, rise and extremal and show that explanations generated by Deep-
Cover are consistently better across a broad set of experiments. On a
benchmark set with known ground truth, DeepCover achieves 76.7%
accuracy, which is 6% better than the second best extremal.

Keywords: Deep learning · Explainability · Statistical fault
localization · Software testing

1 Introduction

Deep neural networks (DNNs) are increasingly used in place of traditionally
engineered software in many areas. DNNs are complex non-linear functions with
algorithmically generated (and not engineered) coefficients, and therefore are
effectively “black boxes”. They are given an input and produce an output, but the
calculation of these outputs is difficult to explain [26]. The goal of explainable AI
is to create artifacts that provide a rationale for why a neural network generates
a particular output for a particular input. This is argued to enable stakeholders
to understand and appropriately trust neural networks.

A typical use-case of DNNs is classification of highly dimensional inputs,
such as images. DNNs are multi-layered networks with a predefined structure

c© Springer Nature Switzerland AG 2020
A. Vedaldi et al. (Eds.): ECCV 2020, LNCS 12373, pp. 391–406, 2020.
https://doi.org/10.1007/978-3-030-58604-1_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58604-1_24&domain=pdf
http://orcid.org/0000-0002-1893-6259
http://orcid.org/0000-0003-1219-0713
http://orcid.org/0000-0001-6267-0366
http://orcid.org/0000-0002-6681-5283
https://doi.org/10.1007/978-3-030-58604-1_24

392 Y. Sun et al.

that consists of layers of neurons. The coefficients for the neurons are deter-
mined by a training process on a data set with given classification labels. The
standard criterion for the adequacy of training is the accuracy of the network on
a separate validation data set. This criterion is clearly only as comprehensive as
the validation data set. In particular, this approach suffers from the risk that the
validation data set is lacking an important instance [36]. Explanations provide
additional insight into the decision process of a neural network [9,23].

In traditional software development, SFL measures have a substantial track
record of helping engineers to debug sequential programs [19]. These measures
rank program locations by counting the number of times a particular loca-
tion is visited in passing and in failing executions for a given test suite and
applying statistical formulae. The ranked list is presented to the engineer. The
main advantage of SFL measures is that they are comparatively inexpensive
to compute. There are more than a hundred of measures in the literature [33].
Some of the most widely used measures are Zoltar, Ochiai, Tarantula and Wong-
II [8,14,21,34].

Our Contribution. We propose to apply the concept of explanations intro-
duced by Halpern and Pearl in the context of actual causality [11]. Specifically,
we define an explanation as a subset of features of the input that is sufficient
(in terms of explaining the cause of the outcome), minimal (i.e., not containing
irrelevant or redundant elements), and not obvious.

Using this definition and SFL measures, we have developed DeepCover –
a tool that provides explanations for DNNs that classify images. DeepCover
ranks the pixels using four well-known SFL measures (Zoltar, Ochiai, Tarantula
and Wong-II) based on the results of running test suites constructed from random
mutations of the input image. DeepCover then uses this ranking to efficiently
construct an approximation of the explanation (as explained below, the exact
computation is intractable).

We compare the quality of the explanations produced by DeepCover with
those generated by the state-of-the-art tools gradcam, lime, shap, rise and
extremal in several complementary scenarios. First, we measure the size of the
explanations as an indication of the quality of the explanations. To complement
this setup, we further apply the explanation tools to the problem of weakly
supervised object localization (WSOL). We also create a “chimera” benchmark,
consisting of images with a known ground truth. DeepCover exhibits consis-
tently better performance in these evaluations. Finally, we investigate the use
of explanations in a DNN security application, and show that DeepCover suc-
cessfully identifies the backdoors that trigger Trojaning attacks.

2 Related Work

There is a large number of methods for explaining DNN decisions. Our app-
roach belongs to a category of methods that compute local perturbations. Such
methods compute and visualize the important features of an input instance to

Explaining Image Classifiers Using Statistical Fault Localization 393

explain the corresponding output. Given a particular input, lime [27] samples
the neighborhood of this input and creates a linear model to approximate the
model’s local behavior; owing to the high computational cost of this approach,
the ranking uses super-pixels instead of individual pixels. In [4], the natural dis-
tribution of the input is replaced by a user-defined distribution and the Shapley
Value method is used to analyze combinations of input features and to rank
their importance. In [3], the importance of input features is estimated by mea-
suring the flow of information between inputs and outputs. Both the Shapley
Value and the information-theoretic approaches are computationally expensive.
In RISE [25], the importance of a pixel is computed as the expectation over
all local perturbations conditioned on the event that the pixel is observed. More
recently, the concept of “extreme perturbations” has been introduced to improve
the perturbation analysis by the extremal algorithm [6].

On the other hand, gradient-based methods only need one backward pass.
gradcam [29] passes the class-specific gradient into the final convolutional layer
of a DNN to coarsely highlight important regions of an input image. In [30],
the activation of each neuron is compared with some reference point, and its
contribution score for the final output is assigned according to the difference. The
work of [4,18,27,30] is similar: an approximation of the model’s local behavior
using a simpler linear model and an application of the Shapley Value theory to
solve this model.

Our algorithm for generating explanations is inspired by the statistical
fault localization (SFL) techniques in software testing [19] (see Sect. 3.2 for an
overview). SFL measures have the advantage of being simple and efficient. They
are widely used for localizing causes of software failures. Moreover, there are
single-bug optimal measures [15] that guarantee that the fault is localized when
it is the single cause for the program failure. While it is not always possible to
localize a single best feature to explain a DNN image classifier, single-bug optimal
measures often perform well even when there is more than one fault in the pro-
gram [16]. From the software engineering perspective, our work can be regarded
as applying SFL techniques for diagnosing the neural network’s decision. This
complements recent works on the testing and validation of AI [20,22,31,32], for
which a detailed survey can be found in [13].

3 Preliminaries

3.1 Deep Neural Networks (DNNs)

We briefly review the relevant definitions of deep neural networks. Let f : I → O
be a deep neural network N with N layers. For a given input x ∈ I, f(x) ∈ O
calculates the output of the DNN, which could be, for instance, a classification
label. Images are among the most popular inputs for DNNs, and in this paper
we focus on DNNs that classify images. Specifically, we have

f(x) = fN (. . . f2(f1(x;W1, b1);W2, b2) . . . ;WN , bN) (1)

394 Y. Sun et al.

where Wi and bi for i = 1, 2, . . . , N are learnable parameters, and
fi(zi−1;Wi−1, bi−1) is the layer function that maps the output of layer (i − 1),
i.e., zi−1, to the input of layer i. The combination of the layer functions yields a
highly complex behavior, and the analysis of the information flow within a DNN
is challenging. There is a variety of layer functions for DNNs, including fully
connected layers, convolutional layers and max-pooling layers. Our algorithm is
independent of the specific internals of the DNN and treats a given DNN as a
black box.

3.2 Statistical Fault Localization (SFL)

Statistical fault localization techniques (SFL) [19], have been widely used in soft-
ware testing to aid in locating the causes of failures of programs. SFL techniques
rank program elements (e.g., statements or assignments) based on their suspi-
ciousness scores. Intuitively, a program element is more suspicious if it appears
in failed executions more frequently than in correct executions (the exact formu-
las for ranking differ). Diagnosis of the faulty program can then be conducted
by manually examining the ranked list of elements in descending order of their
suspiciousness until the culprit for the fault is found.

The SFL procedure first executes the program under test using a set of
inputs. It records the program executions together with a set of Boolean flags
that indicate whether a particular element was executed by the current test.
The task of a fault localization tool is to compute a ranking of the program
elements based on the values of these flags. Following the notation in [19], the
suspiciousness score of each program statement s is calculated from a set of
parameters 〈as

ep , as
ef , a

s
np , as

nf 〉 that give the number of times the statement s is
executed (e) or not executed (n) on passing (p) and on failing (f) tests. For
instance, as

ep is the number of tests that passed and executed s.
A large number of measures have been proposed to calculate the suspicious-

ness scores. In Eq. 2 we list the most widely used ones [8,14,21,34]; those are
also the measures that we use in our ranking procedure.

Ochiai:
as
ef√

(as
ef + as

nf)(a
s
ef + as

ep)
(2a)

Tarantula:

as
ef

as
ef +as

nf

as
ef

as
ef +as

nf
+ as

ep

as
ep+as

np

(2b)

Zoltar:
as
ef

as
ef + as

nf + as
ep +

10000as
nf a

s
ep

as
ef

(2c)

Wong-II: as
ef − as

ep (2d)

There is no single best measure for fault localization. Different measures perform
better on different applications, and best practice is to use them together.

Explaining Image Classifiers Using Statistical Fault Localization 395

4 What Is an Explanation?

An explanation of an output of an automated procedure is essential in many
areas, including verification, planning, diagnosis and the like. A good explana-
tion can increase a user’s confidence in the result. Explanations are also useful
for determining whether there is a fault in the automated procedure: if the expla-
nation does not make sense, it may indicate that the procedure is faulty. It is
less clear how to define what a good explanation is. There have been a num-
ber of definitions of explanations over the years in various domains of computer
science [2,7,24], philosophy [12] and statistics [28]. The recent increase in the
number of machine learning applications and the advances in deep learning led
to the need for explainable AI, which is advocated, among others, by DARPA [9]
to promote understanding, trust, and adoption of future autonomous systems
based on learning algorithms (and, in particular, image classification DNNs).
DARPA provides a list of questions that a good explanation should answer and
an epistemic state of the user after receiving a good explanation. The description
of this epistemic state boils down to adding useful information about the output
of the algorithm and increasing trust of the user in the algorithm.

In this paper, we are loosely adopting the definition of explanations by
Halpern and Pearl [11], which is based on their definition of actual causality [10].
Roughly speaking, they state that a good explanation gives an answer to the
question “why did this outcome occur”, which is similar in spirit to DARPA’s
informal description. As we do not define our setting in terms of actual causal-
ity, we omit the parts of the definition that refer to causal models and causal
settings. The remaining parts of the definition of explanation are:

1. an explanation is a sufficient cause of the outcome;
2. an explanation is a minimal such cause (that is, it does not contain irrelevant

or redundant elements);
3. an explanation is not obvious; in other words, before being given the explana-

tion, the user could conceivably imagine other explanations for the outcome.

In image classification using DNNs, the non-obviousness holds for all but
extremely trivial images. Translating 1) and 2) into our setting, we get the
following definition.

Definition 1. An explanation in image classification is a minimal subset of
pixels of a given input image that is sufficient for the DNN to classify the image,
where “sufficient” is defined as containing only this subset of pixels from the
original image, with the other pixels set to the background colour.

We note that (1) the explanation cannot be too small (or empty), as a too small
subset of pixels would violate the sufficiency requirement, and (2) there can be
multiple explanations for a given input image.

The precise computation of an explanation in our setting is intractable, as
it is equivalent to the earlier definition of explanations in binary causal models,
which is DP-complete [5]. A brute-force approach of checking all subsets of pixels

396 Y. Sun et al.

of the input image is exponential in the size of the image. In Sect. 5 we describe an
efficient linear-time approach to computing an approximation of an explanation
and argue that for practical purposes, this approximation is sufficiently close to
an exact explanation as defined above.

5 SFL Explanation for DNNs

We propose a black-box explanation technique based on statistical fault localiza-
tion. In traditional software development, SFL measures are used for ranking
program elements that cause a failure. In our setup, the goal is different: we are
searching for an explanation of why a particular input to a given DNN yields
a particular output; our technique is agnostic to whether the output is correct.
We start with describing our algorithm on a high level and then present the
pseudo-code and technical details.

Generating the Test Suite. SFL requires test inputs. Given an input image x
that is classified by the DNN N as y = N [x], we generate a set of images by
randomly mutating x. A legal mutation masks a subset of the pixels of x, i.e.,
sets these pixels to the background color. The DNN computes an output for each
mutant; we annotate it with “y” if that output matches that of x, and with “¬y”
to indicate that the output differs. The resulting test suite T (x) of annotated
mutants is an input to the DeepCover algorithm.

Ranking the Pixels of x. We assume that the original input x consists of n pixels
P = {p1, . . . , pn}. Each test input t ∈ T (x) exhibits a particular spectrum for
the pixel set, in which some pixels are the same as in the original input x and
others are masked. The presence or masking of a pixel in x may affect the output
of the DNN.

We use SFL measures to rank the set of pixels of x by slightly abusing the
notions of passing and failing tests. For a pixel pi of x, we compute the vector
〈ai

ep , ai
ef , a

i
np , ai

nf 〉 as follows:

– ai
ep is the number of mutants in T (x) labeled y in which pi is not masked;

– ai
ef is the number of mutants in T (x) labeled ¬y in which pi is not masked;

– ai
np is the number of mutants in T (x) labeled y in which pi is masked;

– ai
nf is the number of mutants in T (x) labeled ¬y in which pi is masked.

Once we construct the vector 〈ai
ep , ai

ef , a
i
np , ai

nf 〉 for every pixel, we apply the
SFL measures discussed in Sect. 3.2 to rank the pixels of x for their importance
regarding the DNN’s output (the importance corresponds to the suspiciousness
score computed by SFL measures).

Constructing an Explanation. An explanation is constructed by iteratively
adding pixels to the set in the descending order of their ranking (that is, we
start with the highest-ranked pixels) until the set becomes sufficient for the
DNN to classify the image. This set is presented to the user as an explanation.

Explaining Image Classifiers Using Statistical Fault Localization 397

Algorithm 1. SFL Explanation for DNNs

INPUT: DNN N , image x, SFL measure M
OUTPUT: a subset of pixels Pexp

1: T (x) ← test inputs gen(N , x)
2: for each pixel pi ∈ P do
3: calculate ai

ep , a
i
ef , a

i
np , a

i
nf from T (x)

4: valuei ← M(ai
ep , a

i
ef , a

i
np , a

i
nf)

5: end for
6: pixel ranking ← pixels in P from high value to low
7: Pexp ← ∅
8: for each pixel pi ∈ pixel ranking do
9: Pexp ← Pexp ∪ {pi}

10: xexp ← mask pixels of x that are not in Pexp

11: if N [xexp] = N [x] then
12: return Pexp

13: end if
14: end for

5.1 SFL Explanation Algorithm

We now present our algorithms in detail. Algorithm1 starts by calling procedure
test inputs gen to generate the set T (x) of test inputs (Line 1). It then computes
the vector 〈ai

ep , ai
ef , a

i
np , ai

nf 〉 for each pixel pi ∈ P using T (x) (Lines 2–5). Next,
the algorithm computes the ranking of each pixel according to the specified
measure M (Line 6). Formulas for measures are as in Eq. (2a)–(2d). The pixels
are sorted in descending order of their ranking (from high value to low value).

From Line 7 onward in Algorithm 1, we construct a subset of pixels Pexp to
explain N ’s output on this particular input x as follows. We add pixels to Pexp,
while N ’s output on Pexp does not match N [x]. This process terminates when
N ’s output is the same as on the whole image x. Finally, Pexp is returned as
the explanation. At the end of this section we discuss why Pexp is not a precise
explanation according to Definition 1 and argue that it is a good approximation
(coinciding with a precise explanation in most cases).

As the quality of the ranked list computed by SFL measures inherently
depends on the quality of the test suite, the choice of the set T (x) of mutant
images plays an important role in our SFL explanation algorithm for DNNs.
While it is beyond the scope of this paper to identify the best set T (x), we pro-
pose an effective method for generating T (x) in Algorithm 2. The core idea of
Algorithm 2 is to balance the number of test inputs annotated with “y” (that
play the role of the passing traces) with the number of test inputs annotated with
“¬y” (that play the role of the failing traces). Its motivation is that, when apply-
ing fault localisation in software debugging, the rule of thumb is to maintain a
balance between passing and failing cases.

The fraction σ of the set of pixels of x that are going to be masked in a
mutant is initialized by a random or selected number between 0 and 1 (Line 2)

398 Y. Sun et al.

Algorithm 2. test inputs gen(N , x)

INPUT: DNN N , image x (with n pixels)
OUTPUT: test suite T (x)
PARAMETERS: σ, ε, test suite size m

1: T (x) ← ∅
2: σ ← sample in the range (0, 1)
3: while |T (x)| < m do
4: x′ ← randomly select and mask σ · n pixels in x
5: T (x) ← T (x) ∪ {x′}
6: if N [x′] �= N [x] then
7: σ ← max{σ − ε, 0}
8: else
9: σ ← min{σ + ε, 1}

10: end if
11: end while
12: return T (x)

and is later updated at each iteration according to the decision of N on the
previously constructed mutant. In each iteration of the algorithm, a randomly
chosen set of (σ ·n) pixels in x is masked and the resulting new input x′ is added
to T (x) (Lines 4–5). Roughly speaking, if a mutant is not classified with the
same label as x, we decrease the fraction of masked pixels by a pre-defined small
number ε; if the mutant is classified with the same label as x, we increase the
fraction of masked pixels by the same ε.

5.2 Relationship Between Pexp and Definition 1

Recall that Definition 1 requires an explanation to be sufficient, minimal, and not
obvious (see Sect. 4). As we argued above, the non-obviousness requirement holds
for all but very simple images. It is also easy to see that Pexp is sufficient, since
this is a stopping condition for adding pixels to this set (Line 11 in Algorithm 1).

The only condition that might not hold is minimality. The reason for possi-
ble non-minimality is that the pixels of x are added to the explanation in the
order of their ranking, with the highest-ranking pixels being added first. It is
therefore possible that there is a high-ranked pixel that was added in one of
the previous iterations, but is now not necessary for the correct classification of
the image (note that the process of adding pixels to the explanation stops when
the DNN successfully classifies the image; this, however, shows minimality only
with respect to the order of addition of pixels). We believe that the redundancy
resulting from our approach is likely to be small, as higher-ranked pixels have a
larger effect on the DNN’s decision. In fact, even if our explanation is, strictly
speaking, not minimal, it might not be a disadvantage, as it was found that
humans prefer explanations with some redundancy [35].

Explaining Image Classifiers Using Statistical Fault Localization 399

Another advantage of our algorithm is that its running time is linear in the
size of the set T (x) and the size of the image, hence it is much more efficient
than the brute-force computation of all explanations as described in Sect. 4 (and
in fact, any algorithm that computes a precise explanation, as the problem is
intractable). One hypothetical advantage of the enumeration algorithm is that it
can produce all explanations; however, multiple explanations do not necessarily
provide better insight into the decision process.

6 Experimental Evaluation

We have implemented the SFL explanation algorithm for DNNs presented in
Sect. 5 in the tool DeepCover1. We now present the experimental results. We
tested DeepCover on a variety of DNN models for ImageNet and we compare
DeepCover with the most popular and most recent work in AI explanation:
lime [27], shap [18], gradcam [29], rise [25] and extremal [6].2

6.1 Experimental Setup

We configure the heuristic test generation in Algorithm 2 with σ = 1
5 and ε = 1

6 ,
and the size m of the test set T (x) is 2,000. These values have been chosen
empirically and remain the same through all experiments. It is possible that they
are not appropriate for all input images, and that for some inputs increasing m
or tuning σ and ε produces a better explanation. All experiments are run on a
laptop with a 3.9 GHz Intel i7-7820HQ and 16 GB of memory.

6.2 Are the Explanations from DeepCover Useful?

Figure 1 showcases representative output from DeepCover on the Xception
model. We can say that explanations are indeed useful and meaningful. Each
subfigure in Fig. 1 provides the original input and the output of DeepCover. We
highlight misclassifications and counter-intuitive explanations in red. One of the
more interesting examples is the “cowboy hat”image. Although Xception labels
the input image correctly, an explanation produced by DeepCover indicates
that this decision is not based on the correct feature (the hat in the image), but
on the face, which is an unexpected feature for the label ‘cowboy hat’. While this
image was not, technically speaking, misclassified, the explanation points to a
flaw in the DNN’s reasoning. The “wool” and “whistle” are two misclassifications
by Xception, and the explanations generated by DeepCover can help us to
understand why the misclassification happens: there are similarities between the
features that are used for the correct and the incorrect labels.

1 https://github.com/theyoucheng/deepcover.
2 lime version 0.1.33; shap version 0.29.1; gradcam, rise and extremal are from

https://github.com/facebookresearch/TorchRay (commit 6a198ee61d229360a3def59
0410378d2ed6f1f06).

https://github.com/theyoucheng/deepcover
https://github.com/facebookresearch/TorchRay

400 Y. Sun et al.

‘cowboy hat’ ‘dog’ ‘numbfish’ ‘sheep’

‘hare’ ‘mushroom’ ‘wool’ ‘turnstile’

‘langur’ ‘whistle’ ‘unicycle’ ‘fire engine’

‘traffic light’ ‘ballpoint’ ‘bolo tie’ ‘projector’

Fig. 1. Input images and explanations from
DeepCover for Xception (red labels high-
light misclassification or counter-intuitive
explanations) (Color figure online)

Original It. 1 It. 5 It. 10 It. 20

Fig. 2. Explanations of the DNN at
different training stages: the 1st col-
umn are the original images and the
subsequent columns give the explana-
tions for a particular training itera-
tion (CIFAR-10 validation data set)

Furthermore, we apply DeepCover after each training iteration to the inter-
mediate DNN. In Fig. 2 we showcase some representative results at different
stages of the training. Overall, as the training procedure progresses, explanations
of the DNN’s decisions focus more on the “meaningful” part of the input image,
e.g., those pixels contributing to the interpretation of image (see, for example,
the progress of the training reflected in the explanations of DNN’s classification
of the first image as a ‘cat’). This result reflects that the DNN is being trained to
learn features of different classes of inputs. Interestingly, we also observed that
the DNN’s feature learning is not always monotonic, as demonstrated in the
bottom row of Fig. 2: after the 10th iteration, explanations for the DNN’s classi-
fication of an input image as an ‘airplane’ drift away from the intuitive parts of
the input towards pixels that may not fit human interpretation (we repeated the
experiments multiple times to minimize the uncertainty because of the random-
ization in our SFL algorithm). The explanations generated by DeepCover may
thus be useful for assessing the adequacy of the DNN training: they allow us to
check, whether the DNN is aligned with the developer’s intent during training.
Additionally, the results in Fig. 2 satisfy the “sanity” requirement postulated
in [1]: the explanations from DeepCover evolve when the model parameters
change during the training.

6.3 Comparison with the State-of-the-art

We compare DeepCover with state-of-the-art DNN explanation tools. The
DNN is VGG16 and we randomly sample 1,000 images from ILSVRC2012 as

Explaining Image Classifiers Using Statistical Fault Localization 401

inputs. We evaluate the effect of highly ranked features by different methods
following an addition/deletion style experiment [6,25].

An explanation computed by Algorithm 1 is a subset Pexp of top-ranked
pixels out of the set P of all 224×224 pixels that is sufficient for the DNN to
classify the image correctly. We define the size of the explanation as |Pexp|

|P| . We
use the size of an explanation as a proxy for its quality.

Fig. 3. Comparison in the size of gener-
ated explanations by different tools

Fig. 4. Misclassification vs percentage of
masked pixels for different tools

Figure 3 compares DeepCover and its competitors with respect to the size
of the generated explanations. The position on the x-axis is the size of the
explanation, and the position on the y-axis gives the accumulated percentage of
explanations: that is, all generated explanations with smaller or equal size.

The data in Fig. 3 suggests that explanations based on SFL ranking are
superior in terms of their size. For example, nearly 40% of the DNN inputs can
be explained via DeepCover using no more than 10% of the total input pixels,
which is two times as good as the second best explanation method extremal.

We quantify the degree of redundancy in the generated explanations as fol-
lows. We mask pixels following the ranking generated by the different methods
until we obtain a different classification. The smaller the number of pixels that
have to be masked, the more important the highest-ranked features are. We
present the number of pixels changed (normalized over the total number of pix-
els) in Fig. 4. Again, DeepCover dominates the others. Using DeepCover’s
ranking, the classification is changed after masking no more than 2% of the total
pixels in 60% of the images. To achieve the same classification outcomes, the sec-
ond best method extremal requires changing 4% of the total number of pixels,
and that is twice the number of pixels needed by DeepCover.

Discussion. We have refrained from using human judges to assess the quality
of the explanations, and instead use size as a proxy measure to quantify the
quality of explanation. However, a smaller explanation is not necessarily a bet-
ter explanation—in fact, “people have a preference for explanations with some

402 Y. Sun et al.

redundancy” [35]. We therefore complement our evaluation with further experi-
ments. Figure 5 gives the results of using the explanations for the weakly super-
vised object localization (WSOL). We measure the intersection of union (IoU)
between the object bounding box and the equivalent number of top-ranked pix-
els. The IoU is a standard measure of success in object detection and a higher IoU
is better. The results confirm again that the top-ranked pixels from DeepCover
perform better than those generated by other tools.

Comparison with Rise. The rise tool generates random masks and calculates
a ranking of the input pixels using the expected confidence of the classification
of the masked images. A rank of a pixel p by rise depends only on the confi-
dence of the images in which p is unmasked. By contrast, DeepCover uses a
binary classification (a mutant image is either classified the same as the orig-
inal image or not) and takes into account both the images where p is masked
and where it is unmasked. Figures 3 and 4 demonstrate that DeepCover out-
performs rise, producing smaller and more intuitive explanations. Furthermore,
the DeepCover approach is more general and does not depend on a particu-
lar sampling distribution as long as its mutant test suite is balanced (Sect. 5.1).
Moreover, the DeepCover approach is less sensitive to the size of the mutant
test suite (Fig. 6). When the size of the test suite decreased from 2,000 to 200,
the size of the generated explanation only increased by 3% of the total pixels on
average.

Fig. 5. Results for weakly
supervised object localisation

Original n=2,000 n=200 n=2,000 n=200

DeepCover rise

Fig. 6. Explanations for the ‘Welsh springer spaniel’

by DeepCover and rise with varying number of
samples (i.e. n)

Next, we present a synthetic benchmark (Sect. 6.4) and a security application
(Sect. 6.5).

6.4 Generating “ground Truth” with a Chimera Benchmark

The biggest challenge in evaluating explanations for DNNs (and even for human
decision making) is the lack of the ground truth. Human evaluations of the expla-
nations remain the most widely accepted measure, but are often subjective. In

Explaining Image Classifiers Using Statistical Fault Localization 403

Fig. 7. Examples of embedding
the red panda (Color figure online)

Table 1. IoUs between the embedded red
panda and the highest ranked pixels for four
different tools

IoU ≥ 0.5 IoU ≥ 0.6 IoU ≥ 0.7

DeepCover 76.7% 54.9% 9.8%

extremal 70.7% 21.5% 2.2%

rise 55.8% 42.9% 25.7%

gradcam 0% 0% 0%

the experiment we describe below, we synthesize a Chimera benchmark3 by ran-
domly superimposing a “red panda” explanation (a part of the image of the red
panda) onto a set of randomly chosen images. The benchmark consists of 1, 000
composed (aka “Chimera”) images that retain the “red panda” label when using
both the MobileNet and the VGG16 classifiers. Figure 7 gives several examples
of the Chimera images. The rationale is that if such an image is indeed classified
as “red panda” by the DNN, then the explanation of this classification must be
contained among the pixels we have superimposed onto the original image.

For each image from the Chimera benchmark, we rank its pixels using Deep-
Cover and other tools. We then check whether any of their top-π highest ranked
pixels are part of the “red panda”. In Table 1, we measure the IoU (intersection
of union) between the ground truth explanation and the top-π highest ranked
pixels, where π ranges from 1% to 100%. Assuming that an IoU ≥ 0.5 is a suc-
cessful detection, DeepCover successfully detects the ground truth planted in
the image in 76.7% of the total cases and it is 6% better than the second best
extremal. The benefit provided by DeepCover is even more substantial when
requiring 0.6 IoU. Overall, the results in Table 1 are consistent with the addi-
tion/deletion experiment (Figs. 3 and 4) and the WSOL experiment (Fig. 5),
with DeepCover topping the list. Interestingly, when rise succeeds to find
the explanation, it seems to localize it better (with IoU ≥ 0.7). gradcam fails
to detect the embedded red panda in all cases. These observations support the
hypothesis that a benchmark like Chimera is a good approximation for ground
truth, and helps us to compare algorithmic alternatives.

6.5 Trojaning Attacks

The authors of [17] say that a DNN is “trojaned” if it behaves correctly on
ordinary input images but exhibits malicious behavior when a “Trojan trigger”
is part of the input. Thus, we can treat this trigger as a ground truth explanation
for the Trojaned behavior of the DNN. We have applied DeepCover to identify
the embedded trigger in the input image for the Trojaned VGG Face [17]. The
result is illustrated in Fig. 8. This use case suggests that there is scope for the
application of DeepCover in DNN security.
3 The benchmark images are publicly available at http://www.roaming-panda.com/.

http://www.roaming-panda.com/

404 Y. Sun et al.

Fig. 8. Applying DeepCover to Trojaning attacks on VGG Face. The Trojan trigger
is the square shape in the lower right corner of the image; the DeepCover explanation
for the Trojan behaviour is on the right.

When applying DeepCover to the Trojaned data set in [17], the top 8%
highest ranked pixels have an average IoU value of 0.6 with the Trojan trigger.
According to DeepCover, the Trojaning output for each input is caused by a
small part of its embedded trigger. This black-box discovery by DeepCover is
consistent with and further optimizes the theory of DNN Trojaning [17]. Finally,
as many as 80% of the (ground truth) Trojan triggers are successively localized
(with IoU ≥ 0.5) by only π = 8% of the pixels top-ranked by DeepCover.
DeepCover is thus very effective.

6.6 Threats to Validity

In this part, we highlight several threats to the validity of our evaluation.
Lack of Ground Truth. We have no ground truth for evaluating the generated
explanations for Xception on ImageNet images, hence we use the size of an
explanation as a proxy. We have the ground truth for the Chimera images of red
panda (Fig. 7) and for the Trojaning attacks (Fig. 8), and the results support
our claims of the high quality of DeepCover explanations.

Selection of SFL Measures. We have only evaluated four SFL measures (Ochiai,
Zoltar, Tarantula and Wong-II). There are hundreds more such measures, which
may reveal new observations.

Selection of Parameters When Generating Test Inputs. When generating the
test suite T (x), we empirically configure the parameters in the test generation
algorithm. The choice of parameters affects the results of the evaluation and
they may be overfitted.

7 Conclusions

This paper advocates the application of statistical fault localization (SFL) for
the generation of explanations of the output of neural networks. Our defini-
tion of explanations is inspired by actual causality, and we demonstrate that
we can efficiently compute a good approximation of a precise explanation using
a lightweight ranking of features of the input image based on SFL measures.
The algorithm is implemented in the tool DeepCover. Extensive experimental

Explaining Image Classifiers Using Statistical Fault Localization 405

results demonstrate that DeepCover consistently outperforms other explana-
tion tools and that its explanations are accurate when compared to ground truth
(that is, the explanations of the images have a large overlap with the explanation
planted in the image).

References

1. Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., Kim, B.: Sanity
checks for saliency maps. In: Advances in Neural Information Processing Systems,
pp. 9505–9515 (2018)

2. Chajewska, U., Halpern, J.Y.: Defining explanation in probabilistic systems. In:
Uncertainty in Artificial Intelligence (UAI), pp. 62–71. Morgan Kaufmann (1997)

3. Chen, J., Song, L., Wainwright, M., Jordan, M.: Learning to explain: an
information-theoretic perspective on model interpretation. In: International Con-
ference on Machine Learning (ICML), vol. 80, pp. 882–891. PMLR (2018)

4. Datta, A., Sen, S., Zick, Y.: Algorithmic transparency via quantitative input influ-
ence: theory and experiments with learning systems. In: Security and Privacy
(S&P), pp. 598–617. IEEE (2016)

5. Eiter, T., Lukasiewicz, T.: Complexity results for explanations in the structural-
model approach. Artif. Intell. 154(1–2), 145–198 (2004)

6. Fong, R., Patrick, M., Vedaldi, A.: Understanding deep networks via extremal
perturbations and smooth masks. In: International Conference on Computer Vision
(ICCV), pp. 2950–2958. IEEE (2019)

7. Gärdenfors, P.: Knowledge in Flux. MIT Press, Cambridge (1988)
8. Gonzalez-Sanchez, A.: Automatic error detection techniques based on dynamic

invariants. M.S. thesis, Delft University of Technology, The Netherlands (2007)
9. Gunning, D.: Explainable artificial intelligence (XAI) - program information.

Defense Advanced Research Projects Agency (2017). https://www.darpa.mil/
program/explainable-artificial-intelligence

10. Halpern, J.Y., Pearl, J.: Causes and explanations: a structural-model approach.
Part I: causes. Br. J. Philos. Sci. 56(4), 843–887 (2005)

11. Halpern, J.Y., Pearl, J.: Causes and explanations: a structural-model approach.
Part II: explanations. Br. J. Philos. Sci. 56(4), 889–911 (2005)

12. Hempel, C.G.: Aspects of Scientific Explanation. Free Press, New York (1965)
13. Huang, X., et al.: A survey of safety and trustworthiness of deep neural networks:

verification, testing, adversarial attack and defence, and interpretability. Comput.
Sci. Rev. 37, 100270 (2020)

14. Jones, J.A., Harrold, M.J.: Empirical evaluation of the Tarantula automatic fault-
localization technique. In: Proceedings of ASE, pp. 273–282. ACM (2005)

15. Landsberg, D., Chockler, H., Kroening, D., Lewis, M.: Evaluation of measures for
statistical fault localisation and an optimising scheme. In: Egyed, A., Schaefer,
I. (eds.) FASE 2015. LNCS, vol. 9033, pp. 115–129. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46675-9 8

16. Landsberg, D., Sun, Y., Kroening, D.: Optimising spectrum based fault localisation
for single fault programs using specifications. In: Russo, A., Schürr, A. (eds.) FASE
2018. LNCS, vol. 10802, pp. 246–263. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-89363-1 14

17. Liu, Y., et al.: Trojaning attack on neural networks. In: Network and Distributed
System Security Symposium (NDSS). The Internet Society (2018)

https://www.darpa.mil/program/explainable-artificial-intelligence
https://www.darpa.mil/program/explainable-artificial-intelligence
https://doi.org/10.1007/978-3-662-46675-9_8
https://doi.org/10.1007/978-3-319-89363-1_14
https://doi.org/10.1007/978-3-319-89363-1_14

406 Y. Sun et al.

18. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions.
In: Advances in Neural Information Processing Systems, pp. 4765–4774 (2017)

19. Naish, L., Lee, H.J., Ramamohanarao, K.: A model for spectra-based software
diagnosis. ACM TOSEM 20(3), 11 (2011)

20. Noller, Y., Păsăreanu, C.S., Böhme, M., Sun, Y., Nguyen, H.L., Grunske, L.: HyD-
iff: hybrid differential software analysis. In: Proceedings of the International Con-
ference on Software Engineering (ICSE) (2020)

21. Ochiai, A.: Zoogeographic studies on the soleoid fishes found in Japan and its
neighbouring regions. Bull. Jpn. Soc. Sci. Fish. 22, 526–530 (1957)

22. Odena, A., Olsson, C., Andersen, D., Goodfellow, I.: TensorFuzz: debugging neural
networks with coverage-guided fuzzing. In: International Conference on Machine
Learning, pp. 4901–4911 (2019)

23. Olah, C., et al.: The building blocks of interpretability. Distill 3, e10 (2018)
24. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann,

Burlington (1988)
25. Petsiuk, V., Das, A., Saenko, K.: RISE: randomized input sampling for explanation

of black-box models. In: British Machine Vision Conference (BMVC). BMVA Press
(2018)

26. Rahwan, I., et al.: Machine behaviour. Nature 568(7753), 477 (2019)
27. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should I trust you? Explaining the

predictions of any classifier. In: Knowledge Discovery and Data Mining (KDD),
pp. 1135–1144. ACM (2016)

28. Salmon, W.C.: Four Decades of Scientific Explanation. University of Minnesota
Press, Minneapolis (1989)

29. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-
CAM: visual explanations from deep networks via gradient-based localization. In:
International Conference on Computer Vision (ICCV), pp. 618–626. IEEE (2017)

30. Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through
propagating activation differences. In: International Conference on Machine Learn-
ing (ICML), vol. 70, pp. 3145–3153. PMLR (2017)

31. Sun, Y., Wu, M., Ruan, W., Huang, X., Kwiatkowska, M., Kroening, D.: Con-
colic testing for deep neural networks. In: Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ASE, pp. 109–119
(2018)

32. Sun, Y., Zhou, Y., Maskell, S., Sharp, J., Huang, X.: Reliability validation of
learning enabled vehicle tracking. In: International Conference on Robotics and
Automation (ICRA). IEEE (2020)

33. Wong, W.E., Gao, R., Li, Y., Abreu, R., Wotawa, F.: A survey on software fault
localization. IEEE TSE 42(8), 707–740 (2016)

34. Wong, W.E., Qi, Y., Zhao, L., Cai, K.: Effective fault localization using code
coverage. In: Computer Software and Applications Conference (COMPSAC), pp.
449–456 (2007)

35. Zemla, J.C., Sloman, S., Bechlivanidis, C., Lagnado, D.A.: Evaluating everyday
explanations. Psychon. Bull. Rev. 24(5), 1488–1500 (2017). https://doi.org/10.
3758/s13423-017-1258-z

36. Ziegler, C.: A Google self-driving car caused a crash for the first time.
The Verge (2016). https://www.theverge.com/2016/2/29/11134344/google-self-
driving-car-crash-report

https://doi.org/10.3758/s13423-017-1258-z
https://doi.org/10.3758/s13423-017-1258-z
https://www.theverge.com/2016/2/29/11134344/google-self-driving-car-crash-report
https://www.theverge.com/2016/2/29/11134344/google-self-driving-car-crash-report

	Explaining Image Classifiers Using Statistical Fault Localization
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Deep Neural Networks (DNNs)
	3.2 Statistical Fault Localization (SFL)

	4 What Is an Explanation?
	5 SFL Explanation for DNNs
	5.1 SFL Explanation Algorithm
	5.2 Relationship Between Pexp and Definition1

	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 Are the Explanations from DeepCover Useful?
	6.3 Comparison with the State-of-the-art
	6.4 Generating ``ground Truth'' with a Chimera Benchmark
	6.5 Trojaning Attacks
	6.6 Threats to Validity

	7 Conclusions
	References

