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Abstract. Video Moment Retrieval (VMR) is a task to localize the tem-
poral moment in untrimmed video specified by natural language query.
For VMR, several methods that require full supervision for training
have been proposed. Unfortunately, acquiring a large number of train-
ing videos with labeled temporal boundaries for each query is a labor-
intensive process. This paper explores a method for performing VMR
in a weakly-supervised manner (wVMR): training is performed without
temporal moment labels but only with the text query that describes a
segment of the video. Existing methods on wVMR generate multi-scale
proposals and apply query-guided attention mechanism to highlight the
most relevant proposal. To leverage the weak supervision, contrastive
learning is used which predicts higher scores for the correct video-query
pairs than for the incorrect pairs. It has been observed that a large num-
ber of candidate proposals, coarse query representation, and one-way
attention mechanism lead to blurry attention map which limits the local-
ization performance. To address this issue, Video-Language Alignment
Network (VLANet) is proposed that learns a sharper attention by prun-
ing out spurious candidate proposals and applying a multi-directional
attention mechanism with fine-grained query representation. The Surro-
gate Proposal Selection module selects a proposal based on the proximity
to the query in the joint embedding space, and thus substantially reduces
candidate proposals which leads to lower computation load and sharper
attention. Next, the Cascaded Cross-modal Attention module considers
dense feature interactions and multi-directional attention flows to learn
the multi-modal alignment. VLANet is trained end-to-end using con-
trastive loss which enforces semantically similar videos and queries to
cluster. The experiments show that the method achieves state-of-the-art
performance on Charades-STA and DiDeMo datasets.
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1 Introduction

Video moment retrieval (VMR) is a task to find a temporal moment in
untrimmed video specified by a text description as illustrated in Fig. 1. With
the rising number of videos along with the need for a more detailed and refined
search capability that demand a better understanding of the video, the task of
Video Moment Retrieval is drawing appreciable attention.

A number of fully-supervised methods that learn from a set of videos with
ground-truth time stamps corresponding to a given query have been proposed
[3,6,23,25]. For these methods, a large-scale video dataset that requires the
laborious burden of temporally annotating the boundaries corresponding to each
query is a sine qua non. In general, the performance of a fully-supervised method
hinges on the quality of the dataset; however, for VMR, temporal boundaries
are often ambiguous to annotate and may act as noise in the learning process.

Recently, weakly-supervised VMR (wVMR) [12,14] that does not require
the temporal boundary annotation for each query has been studied. To leverage
the weak supervision, contrastive learning is applied such that higher scores
are predicted for the correct video-query pairs than for incorrect pairs. This
learning process improves the accuracy of the attention mechanism which plays
a vital role in wVMR. Inspired by recent methods [12,14], this paper addresses
two critical challenges: (1) generating appropriate multi-scale video candidate
proposals, and (2) learning the latent alignment between the text query and the
retrieved video segment.

Fig. 1. Illustration of video moment retrieval task. The goal is to search the temporal
boundary of the video moment that is most relevant to the given natural language
query.

The first challenge is that the video segment proposals should be adequate in
number to give high recall without excessive computational load, and the video
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segment should be of appropriate length to have high intersection-of-union (IoU)
with ground truth. Previous methods [3,6,12,14] greedily generated video can-
didate proposals using a pre-defined set of multi-scale sliding windows. As a
consequence, these methods generally produce large number of multi-scale pro-
posals which increase the chance of achieving high recall at the expense of high
computational cost. When an attention mechanism is used thereafter to weigh
the proposals, the attention becomes blurry as there are too many proposals to
attend.

The second challenge is to learn a similarity measure between video segment
and text query without ground truth annotation. In [14], a text-to-video atten-
tion mechanism is incorporated to learn the joint embedding space of video and
text query. More accurate multi-modal similarity could be attained with a text
query representation that is more effective in interacting with video frame fea-
ture. Representing the text query as the last hidden feature of the Gated Recur-
rent Unit (GRU), as used in some previous methods [12,14], is overly simplistic.
In addition, applying one-way attention from query to video is not sufficient to
bring out the most prominent feature in the video and query. Recent studies
in Visual Question Answering [5,9,24] have explored the possibility of apply-
ing multi-directional attention flows that include both inter- and intra-modality
attention. This paper devises an analogous idea for the problem of wVMR, and
validate its effectiveness in retrieving the moment using the weak labels.

To rise to the challenge, this paper proposes a Video-Language Alignment
Network (VLANet) for weakly-supervised video moment retrieval. As a first
step, the word-level query representation is obtained by stacking all intermedi-
ate hidden features of GRU. Video is divided into overlapping multi-scale seg-
ment groups where the segments within each group share a common starting
time. Then, the Surrogate Proposal Selection module selects one surrogate from
each group which reduces the number of effective proposals for more accurate
attention. To consider the multi-directional interactions between each surrogate
proposal and query, the Cascaded Cross-modal Attention (CCA) module per-
forms both intra- and inter-modality attention. The CCA module performs self-
attention on each modality: video to video (V2V) and query to query (Q2Q),
which considers the intra-modal relationships. Thereafter, the CCA module per-
forms cross-modal attention from query to video (Q2V), video to query (V2Q)
and finally attended query to attended video (Q2V). This cross-modal attention
considers the inter-modal relationships that is critical in learning the multi-
modal alignment. To leverage the weak labels of video-query pairs, VLANet is
trained in an end-to-end manner using contrastive loss that enforces semanti-
cally similar videos and queries to cluster in the joint embedding space. The
experiment results show that the VLANet achieves state-of-the-art performance
on Charades-STA and DiDeMo datasets. Extensive ablation study and quali-
tative analyses validate the effectiveness of the proposed method and provide
interpretability.



Video-Language Alignment Network 159

2 Related Work

2.1 Temporal Action Detection

The goal of temporal action detection is to predict the temporal boundary
and category for each action instance in untrimmed videos. Existing works are
divided into two groups: the fully-supervised and weakly-supervised. Zhao et al.
[26] proposed a structured segment network that models the temporal structure
of each action instance by a structured temporal pyramid. Gao et al. [4] pro-
posed Cascaded Boundary Regression which uses temporal coordinate regression
to refine the temporal boundaries of the sliding windows. Lin et al. [11] proposed
Boundary Sensitive Network that first classifies each frame as the start, middle,
or end, then directly combines these boundaries as proposals.

In the weakly-supervised settings, however, only the coarse video-level labels
are available instead of the exact temporal boundaries. Wang et al. [22] pro-
posed UntrimmedNet that couples two components, the classification module,
and the selection module, to learn the action models and reason about the tem-
poral duration of action instances, respectively. Nguyen et al. [15] proposed a
Sparse Temporal Pooling Network that identifies a sparse subset of key segments
associated with the target actions in a video using an attention module and fuse
the key segments using adaptive temporal pooling. Shou et al. [17] proposed
AutoLoc that uses Outer-Inner-Contrastive loss to automatically discover the
required segment-level supervision to train a boundary predictor. Liu et al. [13]
proposed CleanNet that leverages an additional temporal contrast constraint
so that the high-evaluation-score action proposals have a higher probability to
overlap with the ground truth action instances.

2.2 Video Moment Retrieval

The VMR task is focused on localizing the temporal moment that is semantically
aligned with the given natural language query. For this task, various supervised
methods have been proposed [3,6,23,25]. In Gao et al. [3] and Hendricks et al.
[6], candidate moments are sampled using sliding windows of various lengths, and
multi-modal fusion is performed to estimate the correlation between the queries
and video moments. Xu et al. [23] proposed a model that integrates vision and
language features using attention mechanisms and leverages video captioning as
an auxiliary task. Zhang et al. [25] proposed Moment Alignment Network (MAN)
that considers the relationships between proposals as a structured graph, and
devised an iterative algorithm to train a revised graph convolution network.

Recently, the task was studied under the weakly-supervised setting [2,12,14].
Duan et al. [2] proposed to decompose weakly-supervised dense event caption-
ing in videos (WS-DEC) into a pair of dual problems: event captioning and
sentence localization. They proposed a cycle system to train the model based on
the assumption that each caption describes only one temporal segment. Mithun
et al. [14] proposed Text-Guided-Attention (TGA) model that learns a joint rep-
resentation between video and sentence. The attention weight is used to retrieve
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Fig. 2. Illustration of VLANet architecture. The Surrogate Proposal Selection module
prunes out irrelevant proposals based on the similarity metric. Cascaded Cross-modal
Attention considers various attention flows to learn multi-modal alignment. The net-
work is trained end-to-end using contrastive loss.

the relevant moment at test time. Lin et al. [12] proposed Semantic Completion
Network (SCN) that selects the top-K proposals considering exploration and
exploitation, and measures the semantic similarity between the video and query.
As an auxiliary task, SCN takes the masked sentence as input and predicts the
masked words from visual representations.

3 Method

3.1 Method Overview

Figure 2 illustrates the overall VLANet architecture. The input text query is
embedded using GloVe [16] after which each embedded representation is fed
into a GRU [1]. In the meanwhile, the video is embedded based on C3D [21].
Video is divided into overlapping multi-scale segment groups where the proposals
within each group share a common starting time. Given the video and query
representations V and Q, the similarity c between video and query is evaluated
by the Cascaded Cross-modal Attention (CCA) module. The learned attention
weights by CCA are used to localize the relevant moment at test time. A video-
query pair (V,Q) is positive if it is in the training data; otherwise, it is negative.
The network is trained in an end-to-end manner using contrastive loss to enforce
the scores of the positive pairs to be higher than those of the negative pairs. In
practice, the negative pairs are randomly sampled in a batch.

3.2 Input Representation

Query Representation. Gated Recurrent Unit (GRU) [1] is used for encoding
the sentences. Each word of the query is embedded using GloVe and sequentially
fed into a GRU. Prior methods [14] use only the final hidden feature of GRU to
represent the whole sentence, which leads to the loss of information by exclud-
ing the interactions between frame- and word-level features of video and query.
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Motivated by recent works in visual question answering [5,24], this paper uses
all intermediate hidden features of the GRU. The query Q is represented as:

Q = [w1 w2 · · · wM ] (1)

where wm ∈ R
D denotes the m-th GRU hidden feature, and D is the dimen-

sion of the hidden feature. Each wm is L2 normalized to output a unit vector.

Video Representation. Video is encoded using a C3D [21] model pre-trained
on Sports-1M dataset [8] as in [3]. The feature was extracted at every 16 frames
for Charades-STA. The VGG16 model [19] is used for frame-level feature extrac-
tion for DiDeMo dataset following [6]. Both C3D and VGG16 features were
extracted from the penultimate fully-connected layer, which results in the fea-
ture dimension of 4096.

(a) Multi-scale proposal generation (b) Surrogate Proposal Selection

Fig. 3. Comparison between the previous and the proposed proposal generation
method. (a) generates large number of proposals of various lengths. (b) groups the
proposals, and selects the surrogate proposals based on the proximity to the query.

Video Proposal Generation. As depicted in image Fig. 3(a) previous meth-
ods [12,14] generated proposals using multi-scale sliding windows. Meanwhile, as
in Fig. 3(b), VLANet organizes the multi-scale windows in segment groups such
that within a group, all windows start at the same time instance. Each group
will have the same number of windows of fixed scales. The interval between the
starting times of each segment group is regular. With K segment groups and L
multi-scale proposals, the total number of proposals is K · L. Then, the video V
is represented by:

V =

⎡
⎢⎢⎢⎣

p11 p12 · · · p1K

p21 p22 · · · p2K

... · · ·
pL1 pL2 · · · pLK

⎤
⎥⎥⎥⎦ (2)
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where each plk ∈ R
D denotes the proposal feature of the l-th scale in the

k-th segment group, which is the average of the C3D features of the frames
participating in the proposal. Fully-connected layers are used to resize the feature
dimension of Q and V to D. L2 normalization is performed to make each plk a
unit vector.

3.3 Surrogate Proposal Selection Module

To reduce the large number of proposals, [12] proposed a sampling-based selec-
tion algorithm to prune out irrelevant proposals considering the exploration and
exploitation. However, the method is trained using policy gradient algorithm
[20] which suffers from high variance. Instead, as depicted in Fig. 3(b), the Sur-
rogate Proposal Selection module selects the best-matched proposals from each
segment group based on the cosine similarity to the final hidden feature of the
query. A surrogate proposal of the k-th segment group is defined as the proposal
that has the largest cosine similarity to the final hidden feature of the query.
The cosine similarity between each proposal and query is given by

⎡
⎢⎢⎢⎣

p11 · wM p12 · wM · · · p1K · wM

p21 · wM p22 · wM · · · p2K · wM

... · · ·
pL1 · wM pL2 · wM · · · pLK · wM

⎤
⎥⎥⎥⎦ (3)

where wM is the final hidden feature of the query. It is empirically determined
that the final hidden query feature is sufficient in pruning out irrelevant proposals
at a low computational cost. The Surrogate Proposal Selection module pick the
l′-th scale from each k-th segment group which is given by,

l′ = argmax [p1k · wM p2k · wM · · · pLk · wM ] , (4)
sk = pl′k (5)

where sk is the surrogate proposal feature of the k-th segment group. In back-
propagation, only the surrogate proposals sk’s contribute to the weight update
which allows end-to-end learning. Then the video is represented by K surrogate
proposal features:

V = [s1 s2 · · · sK ] (6)

where V is the updated video representation composed of the surrogate pro-
posals.

3.4 Cascaded Cross-Modal Attention Module

Cascaded Cross-modal Attention (CCA) module takes the video and query rep-
resentations as inputs, and outputs a compact attended video representation.
Compared to text-guided attention (TGA) [14], CCA module considers more
diverse multi-modal feature interactions including V2V, Q2Q, V2Q, and Q2V
where each has its own advantages as described below.
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Dense Attention. The basic attention unit of CCA module is referred to
as Dense Attention which calculates the attention between two multi-element
features. Given Y = [y1 . . .yM ]T ∈ R

M×D and X = [x1 . . .xN ]T ∈ R
N×D, the

Dense Attention A(X,Y ) : RN×D × R
M×D → R

N×D attends X using Y and is
defined as follows:

E(xn, Y ) =
∑M

m=1 tanh(W1xn · W2ym), (7)
A(X,Y ) = Softmax([E(x1, Y ) E(x2, Y ) · · · E(xN , Y )])X, (8)

where W1,W2 are learnable parameters. Here, E : R
D × R

M×D → R is
referred to as the Video-Language Alignment (VLA) function that performs the
multi-modal alignment.

Self-attention. Based on the Dense Attention defined above, the CCA module
initially performs a type of self-attention that attends V and Q using V and Q
respectively as given below,

V ← A(V,V), (9)
Q ← A(Q,Q). (10)

The intra-attention allows each element of itself to be attended by its global
contextual information. The attention from V to V is capable of highlighting the
salient proposals by considering the innate temporal relationships. The attention
from Q to Q updates the each word-level feature by considering the context of
the whole sentence.

Cross Modal Attention. Following self-attention defined above, the CCA
module is used to cross-attend V and Q using Q and V respectively such that
cross-modal attention is defined as follows:

V ← A(V, Q), (11)
Q ← A(Q,V). (12)

The above attention is critical in learning the latent multi-modal alignment. It
has been empirically observed that cross-modal attention applied in series several
times until near-saturation can be conducive in producing better performance.
Finally, a compact attended video representation vcomp is obtained by taking
the sum of all elements of V, and video-level similarity c is obtained by the VLA
function between vcomp and Q as given below:

c = E(vcomp, Q). (13)

The network is trained using the following contrastive loss:

Lcontrastive = max[0,Δ − E(vcomp, Q
+) + E(vcomp, Q

−)] (14)

where E is the VLA function defined above in Sect. 3.4 and Δ is the margin.
Q+ and Q− is positive and negative query features.
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4 Experiment

4.1 Datasets

Charades-STA. The Charades dataset was originally introduced in [18]. It
contains temporal activity annotation and multiple video-level descriptions for
each video. Gao et al. [3] generated temporal boundary annotations for sentences
using a semi-automatic way and released the Charades-STA dataset that is for
video moment retrieval. The dataset includes 12,408 video-sentence pairs with
temporal boundary annotations for training and 3,720 for testing. The average
length of the query is 8.6 words, and the average duration of the video is 29.8 s.

DiDeMo. The Distinct Describable Moments (DiDeMo) dataset [6] consists
of over 10,000 unedited, personal videos in diverse visual settings with pairs of
localized video segments and referring expressions. The videos are collected from
Flickr and each video is trimmed to a maximum of 30 s. The dataset includes
8,395, 1,065 and 1,004 videos for train, validation, and test, respectively. The
videos are divided into 5-s segments to reduce the complexity of annotation,
which results in 21 possible moments per video. The dataset contains a total
of 26,892 moments with over 40,000 text descriptions. The descriptions in the
DiDeMo dataset are natural language sentences that contain activities, camera
movement, and temporal transition indicators. Moreover, the descriptions in
DiDeMo are verified to refer to a single moment.

Evaluation Metric. For Charades-STA, the evaluation metric proposed by [3]
is adopted to compute “R@n, IoU=m”. For the test set predictions, the recall
R@n calculates the percentage of samples for which the correct result resides
in the top-n retrievals to the query. If the IoU between the prediction and the
ground truth is greater than or equal to m, the prediction is correct. The overall
performance is the average recall on the whole test set.

For DiDeMo, the evaluation metric proposed by [6] is adopted. The evaluation
metric is also R@n with different criteria for correct prediction. If the ground
truth moment is in the top-n predictions, the prediction for the sample is counted
as correct. The mIoU metric is computed by taking the average of the IoU
between the predicted moment and the ground truth moment.

4.2 Quantitative Result

Table 1 shows the performance comparison between VLANet and the related
methods on Charades-STA. The first section indicates random baseline, the sec-
ond section indicates fully-supervised methods, and the third section indicates
weakly-supervised methods. VLANet achieves state-of-the-art performance on
Charades-STA among weakly-supervised methods. It outperforms the random
baseline, VSA-RNN, and VSA-STV by a large margin. Compared to the other
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Table 1. Performance comparison of VLANet to the related methods on Charades-STA

Type Method R@1 R@5

IoU = 0.3 IoU = 0.5 IoU = 0.7 IoU = 0.3 IoU = 0.5 IoU = 0.7

Baseline Random 19.78 11.96 4.81 73.62 52.79 21.53

Fully VSA-RNN [3] – 10.50 4.32 – 48.43 20.21

VSA-STV [3] – 16.91 5.81 – 53.89 23.58

CTRL [3] – 23.63 8.89 – 58.92 29.52

EFRC [23] 53.00 33.80 15.00 94.60 77.30 43.90

MAN [25] – 46.53 22.72 – 86.23 53.72

Weakly TGA [14] 32.14 19.94 8.84 86.58 65.52 33.51

SCN [12] 42.96 23.58 9.97 95.56 71.80 38.87

VLANet (ours) 45.24 31.83 14.17 95.70 82.85 33.09

Table 2. Performance comparison of VLANet to the related methods on DiDeMo

Type Method R@1 R@5 mIoU

Baseline Upper bound 74.75 100 96.05

Random 3.75 22.50 22.64

LSTM-RGB-Local [6] 13.10 44.82 25.13

Fully Txt-Obj-Retrieval [7] 16.20 43.94 27.18

EFRC [23] 13.23 46.98 27.57

CCA [10] 18.11 52.11 37.82

MCN [6] 28.10 78.21 41.08

MAN [25] 27.02 81.70 41.16

Weakly TGA [14] 12.19 39.74 24.92

VLANet (ours) 19.32 65.68 25.33

fully-supervised methods such as CTRL and EFRC, its performance is compara-
ble. Besides, compared to the other weakly-supervised methods TGA and SCN,
VLANet outperforms others by a large margin.

Table 2 shows the performance comparison on DiDeMo. The first section
contains the baselines, the second section contains fully-supervised methods,
and the third section contains weakly-supervised methods. VLANet achieves
state-of-the-art performance among the weakly-supervised methods. In the R@5
based test, especially, its performance is 25.94 higher than the runner-up model
TGA. It is comparable to some fully-supervised methods such as CCA1 and Txt-
Obj-Retrieval. These indicate that even without the full annotations of tempo-
ral boundary, VLANet has the potential to learn latent multi-modal alignment
between video and query, and to localizing semantically relevant moments.

1 Here, CCA refers to a previous method [10], but not Cascaded Cross-modal Attention
proposed in this paper.
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Table 3. Performance of model variants and ablation study of VLANet on Charades-
STA. The unit of stride and window size is frame.

Method R@1 R@5

IoU = 0.3 IoU = 0.5 IoU = 0.7 IoU = 0.3 IoU = 0.5 IoU = 0.7

stride 4, window(176, 208, 240) 44.76 31.53 14.78 77.04 63.17 31.80

stride 6, window(176, 208, 240) 42.17 28.60 12.98 88.76 74.91 34.70

stride 8, window(176, 208, 240) 45.03 31.82 14.19 95.72 82.82 33.33

stride 6, window(128, 256) 42.39 28.03 13.09 94.70 73.06 30.69

stride 6, window(176, 240) 42.92 30.24 13.57 95.72 82.80 33.46

w/o cross-attn 43.41 30.08 13.23 95.72 82.41 33.06

w/o self-attn 42.31 30.81 15.38 95.38 80.02 33.76

w/o surrogate 35.81 25.30 12.26 80.61 64.57 31.31

Full model 45.03 31.82 14.19 95.72 82.82 33.33

4.3 Model Variants and Ablation Study

Table 3 summarizes the performance of model variants and the ablation study
conducted on VLANet. The first section shows the performance variation by
varying stride and window sizes, and the second section shows the performance
drop without core components. The strides and the sizes of the windows were
determined by considering the average video length. The first three rows show
that the network performs best with the stride of 8. While the proposals with
stride 4 have finer granularity, the large number of proposals decreases the per-
formance. The networks with three multi-scale proposals tend to achieve higher
performance than the networks with two multi-scale proposals. This shows the
importance of stride and the number of scales. After finding the best hyper-
parameters of ‘stride 8, window(176, 208, 240)’ these values were fixed for the
subsequent experiments and analyses. The network without cross-attention, self-
attention show a decrease in performance, demonstrating the importance of
the attention mechanisms. We generally notice a drop in performance with an
increasing IoU metric. The drop is more drastic without cross-attention than
without self-attention. This observation indicates that cross-modal attention has
a larger influence on performance than self-attention. The performance of w/o
surrogate is decreased significantly across all metrics. This indicates that select-
ing probable proposals in the early stage is critical to the performance.

4.4 Analysis of Multi-modal Similarity

Figure 4 shows similarity predicted by the network on the whole test set of
Charades-STA while training. The x-axis indicates the epoch of training, and
the y-axis indicates the similarity. It is observed that the similarity scores of the
positive pairs (blue) increase and reach a high plateau of about 0.9, while those
of the negative pairs (red) keep a low value of about 0.15. These demonstrate
that contrastive learning was successfully conducted.
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Fig. 4. The multi-modal similarity prediction by VLANet on the positive and negative
pairs while training. The similarity gap increases as epoch increases. (Color figure
online)

Fig. 5. Visualization of Cascaded Cross-modal Attention. The attention map is cal-
culated by the outer-product of video and query features that are obtained after the
Cascaded Cross-modal Attention module and before the pooling layer.

4.5 Visualization of Attention Map

Figure 5 visualizes the attention map of the proposed Cascaded Cross-modal
Attention. The x-axis indicates the words in the query and the y-axis indicates
the time. In the left example, the attention weight of the “put the sandwich
down” is high when the person is putting the sandwich down. Similarly in the
right example, important words such as action or object have high attention
weight with the related moment of the video. The high attention weights are
biased on the right side in Fig. 5 as the final GRU feature has the context
information about the whole sentence. The above example demonstrates that
VLANet can learn the latent multi-modal alignment.

4.6 Visualization of Inference

Figure 6 provides a visualization of the inference of VLANet. Only a subset of
total proposals were depicted whose color indicates the attention strength. In the
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Fig. 6. At inference time, VLANet successfully retrieves the moment described by the
query. Due to the limited space, only some proposals are visualized. The color indicates
the attention strength. The top-2 predicted moments are visualized with the temporal
boundaries. (Color figure online)

first example, both top-1 and top-2 predictions by VLANet have high overlaps
with the ground truth moment. In the second example, the network localizes
the moment when the person actually opens the refrigerator. Similarly in the
third example, the network localizes the moment when person puts the pillow.
This shows that the network successfully captures the moment when a certain
action is taken or an event occurs. The inference visualization demonstrates the
moment retrieval ability of VLANet and suggests its applicability to real-world
scenarios.

5 Conclusions

This paper considers Video-Language Alignment Network (VLANet) for weakly-
supervised video moment retrieval. VLANet is able to select appropriate can-
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didate proposals using a more detailed query representation that include inter-
mediate hidden features of the GRU. The Surrogate Proposal Selection mod-
ule reduces the number of candidate proposals based on the similarity between
each proposal and the query. The ablation study reveals that it has the largest
influence on performance. The Cascaded Cross-modal Attention module per-
forms a modified self-attention followed by a cascade of cross-attention based on
the Dense Attention defined. It also has a significant influence on performance.
VLANet is trained in an end-to-end manner using contrastive loss which enforces
semantically similar videos and queries to cluster in the joint embedding space.
The experiments shows that VLANet achieves state-of-the-art performance on
Charades-STA and DiDeMo datasets.
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