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Abstract. We present a new method for vectorization of technical line
drawings, such as floor plans, architectural drawings, and 2D CAD
images. Our method includes (1) a deep learning-based cleaning stage to
eliminate the background and imperfections in the image and fill in miss-
ing parts, (2) a transformer-based network to estimate vector primitives,
and (3) optimization procedure to obtain the final primitive configura-
tions. We train the networks on synthetic data, renderings of vector line
drawings, and manually vectorized scans of line drawings. Our method
quantitatively and qualitatively outperforms a number of existing tech-
niques on a collection of representative technical drawings.

Keywords: Transformer network · Vectorization · Floor plans ·
Technical drawings

1 Introduction

Vector representations are often used for technical images, such as architectural
and construction plans and engineering drawings. Compared to raster images,
vector representations have a number of advantages. They are scale-independent,
much more compact, and, most importantly, support easy primitive-level edit-
ing. These representations also provide a basis for higher-level semantic struc-
ture in drawings (e.g ., with sets of primitives hierarchically grouped into semantic
objects).

However, in many cases, technical drawings are available only in raster form.
Examples include older drawings done by hand, or for which only the hard copy
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Fig. 1. An overview of our vectorization method. First, the input image is cleaned with
a deep CNN. Then, the clean result is split into patches, and primitive placement in
each patch is estimated with a deep neural network. After that, the primitives in each
patch are refined via iterative optimization. Finally, the patches are merged together
into a single vector image.

is available, and the sources were lost, or images in online collections. When the
vector representation of a drawing document is unavailable, it is reconstructed,
typically by hand, from scans or photos. Conversion of a raster image to a vector
representation is usually referred to as vectorization.

While different applications have distinct requirements for vectorized draw-
ings, common goals for vectorization are:

– approximate the semantically or perceptually important parts of the input
image well;

– remove, to the extent possible, the artifacts or extraneous data in the images,
such as missing parts of line segments and noise;

– minimize the number of used primitives, producing a compact and easily
editable representation.

We note that the first and last requirements are often conflicting. E.g ., in
the extreme case, for a clean line drawing, 100% fidelity can be achieved by
“vectorizing” every pixel with a separate line.

In this paper, we aim for geometrically precise and compact reconstruction
of vector representations of technical drawings in a fully automatic way. Dis-
tinctive features of the types of drawings we target include the prevalence of
simple shapes (line segments, circular arcs, etc.) and relative lack of irregular-
ities (such as interruptions and multiple strokes approximating a single line)
other than imaging flaws. We develop a system which takes as input a technical
drawing and vectorizes it into a collection of line and curve segments (Fig. 1).
Its elements address vectorization goals listed above. The central element is a
deep-learning accelerated optimization method that matches geometric primi-
tives to the raster image. This component addresses the key goal of finding a
compact representation of a part of the raster image (a patch) with few vector
primitives. It is preceded by a learning-based image preprocessing stage, that
removes background and noise and performs infill of missing parts of the image,
and is followed by a simple heuristic postprocessing stage, that further reduces
the number of primitives by merging the primitives in adjacent patches.
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Our paper includes the following contributions:

1. We develop a novel vectorization method. It is based on a learnable deep
vectorization model and a new primitive optimization approach. We use the
model to obtain an initial vector approximation of the image, and the opti-
mization produces the final result.

2. Based on the proposed vectorization method, we demonstrate a complete
vectorization system, including a preprocessing learning-based cleaning step
and a postprocessing step aiming to minimize the number of primitives.

3. We conduct an ablation study of our approach and compare it to several
state-of-the-art methods.

2 Related Work

Vectorization. There is a large number of methods for image and line drawing
vectorization. However, these methods solve somewhat different, often impre-
cisely defined versions of the problem and target different types of inputs and
outputs. Some methods assume clean inputs and aim to faithfully reproduce all
geometry in the input, while others aim, e.g ., to eliminate multiple close lines
in sketches. Our method is focused on producing an accurate representation of
input images with mathematical primitives.

One of the widely used methods for image vectorization is Potrace [33]. It
requires a clean, black-and-white input and extracts boundary curves of dark
regions, solving a problem different from ours (e.g ., a single line or curve segment
is always represented by polygon typically with many sides). Recent works [21,27]
use Potrace as a stage in their algorithms.

Another widely used approach is based on curve network extraction and
topology cleanup [3,5,6,11,17,28,29]. The method of [11] creates the curve
network with a region-based skeleton initialization followed by morphological
thinning. It allows to manually tune the simplicity of the result trading off its
fidelity. The method of [3] uses a polyvector field (crossfield) to guide the ori-
entation of primitives. It applies a sophisticated set of tuneable heuristics which
are difficult to tune to produce clean vectorizations of technical drawings with a
low number of primitives. The authors of [28] focus on speeding up sketch vec-
torization without loss of accuracy by applying an auxiliary grid and a summed
area table. We compare to [3] and [11] which we found to be the best-performing
methods in this class.

Neural Network-based Vectorization. To get the optimal result, the meth-
ods like [3,11] require manual tuning of hyper-parameters for each individual
input image. In contrast, the neural network-based approach that we opt for is
designed to process large datasets without tuning.

The method of [24] generates vectorized, semantically annotated floor plans
from raster images using neural networks. At vectorization level, it detects a
limited set of axis-aligned junctions and merges them, which is specific to a
subset of floor plans (e.g ., does not handle diagonal or curved walls).



Deep Vectorization of Technical Drawings 585

In [10] machine learning is used to extract a higher-level representation from
a raster line drawing, specifically a program generating this drawing. This app-
roach does not aim to capture the geometry of primitives faithfully and is
restricted to a class of relatively simple diagrams.

A recent work [13] focuses on improving the accuracy of topology recon-
struction. It extracts line junctions and the centerline image with a two headed
convolutional neural network, and then reconstructs the topology at junctions
with another neural network.

The algorithm of [12] has similarities to our method: it uses a neural network-
based initialization for a more precise geometry fit for Bézier curve segments.
Only simple input data (MNIST characters) are considered for line drawing
reconstruction. The method was also applied to reconstructing 3D surfaces of
revolution from images.

An interesting recent direction is generation of sketches using neural net-
works that learn a latent model representation for sketch images [14,18,39]. In
principle, this approach can be used to approximate input raster images, but
the geometric fidelity, in this case, is not adequate for most applications. In [38]
an algorithm for generating collections of color strokes approximating an input
photo is described. While this task is related to line drawing vectorization it is
more forgiving in terms of geometric accuracy and representation compactness.

We note that many works on vectorization focus on sketches. Although the
line between different types of line drawings is blurry, we found that methods
focusing exclusively on sketches often produce less desirable results for technical
line drawings (e.g ., [11] and [9]).

Vectorization Datasets. Building a large-scale real-world vectorization
dataset is costly and time-consuming [23,35]. One may start from raster dataset
and create a vector ground-truth by tracing the lines manually. In this case, both
location and the style may be difficult to match to the original drawing. Another
way is to start from the vector image and render the raster image from it. This
approach does not necessarily produce realistic raster images, as degradation suf-
fered by real-world documents are known to be challenging to model [20]. As a
result, existing vectorization-related datasets either lack vector annotation (e.g .,
CVC-FP [16], Rent3D [25], SydneyHouse [7], and Raster-to-Vector [24] all pro-
vide semantic segmentation masks for raster images but not the vector ground
truth) or are synthetic (e.g ., SESYD [8], ROBIN [34], and FPLAN-POLY [31]).

Image Preprocessing. Building a complete vectorization system based on our
approach requires the initial preprocessing step that removes imaging artefacts.
Preprocessing tools available in commonly used graphics editors require manual
parameter tuning for each individual image. For a similar task of conversion of
hand-drawn sketches into clean raster line drawings the authors of [32,35] use
convolutional neural networks trained on synthetic data. The authors of [23]
use a neural network to extract structural lines (e.g ., curves separating image
regions) in manga cartoon images. The general motivation behind the network-
based approach is that a convolutional neural network automatically adapts to
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different types of images and different parts of the image, without individual
parameter tuning. We build our preprocessing step based on the ideas of [23,35].

Other Related Work. Methods solving other vectorization problems include,
e.g ., [19,37], which approximate an image with adaptively refined constant color
regions with piecewise-linear boundaries; [26] which extracts a vector represen-
tation of road networks from aerial photographs; [4] which solves a similar prob-
lem and is shown to be applicable to several types of images. These methods use
strong build-in priors on the topology of the curve networks.

3 Our Vectorization System

Our vectorization system, illustrated in Fig. 1, takes as the input a raster tech-
nical drawing cleared of text and produces a collection of graphical primitives
defined by the control points and width, namely line segments and quadratic
Bézier curves. The processing pipeline consists of the following steps:

1. We preprocess the input image, removing the noise, adjusting its contrast,
and filling in missing parts;

2. We split the cleaned image into patches and for each patch estimate the initial
primitive parameters;

3. We refine the estimated primitives aligning them to the cleaned raster;
4. We merge the refined predictions from all patches.

3.1 Preprocessing of the Input Raster Image

The goal of the preprocessing step is to convert the raw input data into a raster
image with clear line structure by eliminating noise, infilling missing parts of
lines, and setting all background/non-ink areas to white. This task can be viewed
as semantic image segmentation in that the pixels are assigned the background
or foreground class. Following the ideas of [23,35], we preprocess the input image
with U-net [30] architecture, which is widely used in segmentation tasks.We train
our preprocessing network in the image-to-image mode with binary cross-entropy
loss.

3.2 Initial Estimation of Primitives

To vectorize a clean raster technical drawing, we split it into patches and for each
patch independently estimate the primitives with a feed-forward neural network.
The division into patches increases efficiency, as the patches are processed in
parallel, and robustness of the trained model, as it learns on simple structures.

We encode each patch Ip ∈ [0, 1]64×64 with a ResNet-based [15] feature
extractor X im = ResNet (Ip), and then decode the feature embeddings of the
primitives Xpr

i using a sequence of ndec Transformer blocks [36]

Xpr
i = Transformer

(
Xpr

i−1,X
im

) ∈ R
nprim×demb , i = 1, . . . , ndec. (1)
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Each row of a feature embedding represents one of the nprim estimated prim-
itives with a set of demb hidden parameters. The use of Transformer architecture
allows to vary the number of output primitives per patch. The maximum num-
ber of primitives is set with the size of the 0th embedding Xpr

0 ∈ R
nprim×demb ,

initialized with positional encoding, as described in [36]. While the number of
primitives in a patch is a priori unknown, more than 97% of patches in our data
contain no more than 10 primitives. Therefore, we fix the maximum number of
primitives and filter out the excess predictions with an additional stage. Specif-
ically, we pass the last feature embedding to a fully-connected block, which
extracts the coordinates of the control points, the widths of the primitives
Θ = {θk = (xk,1, yk,1, . . . , wk)}nprim

k=1 , and the confidence values p ∈ [0, 1]nprim .
The latter indicate that the primitive should be discarded if the value is lower
than 0.5. We detail more on the network in supplementary.

Loss Function. We train the primitive extraction network with the multi-task
loss function composed of binary cross-entropy of the confidence and a weighted
sum of L1 and L2 deviations of the parameters

L
(
p, p̂, Θ, Θ̂

)
=

1
nprim

nprim∑

k=1

(
Lcls (pk, p̂k) + Lloc

(
θk, θ̂k

))
, (2)

Lcls (pk, p̂k) = −p̂k log pk − (1 − p̂k) log (1 − pk), (3)

Lloc

(
θk, θ̂k

)
= (1 − λ) ‖θk − θ̂k‖1 + λ‖θk − θ̂k‖22. (4)

The target confidence vector p̂ is all ones, with zeros in the end indicating
placeholder primitives, all target parameters θ̂k of which are set to zero. Since
this function is not invariant w.r.t. to permutations of the primitives and their
control points, we sort the endpoints in each target primitive and the target
primitives by their parameters lexicographically.

3.3 Refinement of the Estimated Primitives

We train our primitive extraction network to minimize the average deviation of
the primitives on a large dataset. However, even with small average deviation,
individual estimations may be inaccurate. The purpose of the refinement step is
to correct slight inaccuracies in estimated primitives.

To refine the estimated primitives and align them to the raster image, we
design a functional that depends on the primitive parameters and raster image
and iteratively optimize it w.r.t. the primitive parameters

Θref = argmin
Θ

E (Θ, Ip) . (5)

We use physical intuition of attracting charges spread over the area of the prim-
itives and placed in the filled pixels of the raster image. To prevent alignment of
different primitives to the same region, we model repulsion of the primitives.
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We define the optimized functional as the sum of three terms per primitive

E
(
Θpos, Θsize, Ip

)
=

nprim∑

k=1

Esize
k + Epos

k + Erdn
k , (6)

where Θpos = {θpos
k }nprim

k=1
are the primitive position parameters, Θsize ={

θsize
k

}nprim

k=1
are the size parameters, and θk =

(
θpos

k ,θsize
k

)
.

We define the position of a line segment by the coordinates of its midpoint
and inclination angle, and the size by its length and width. For a curve arc, we
define the midpoint at the intersection of the curve and the bisector of the angle
between the segments connecting the middle control point and the endpoints.
We use the lengths of these segments, and the inclination angles of the segments
connecting the “midpoint” with the endpoints.

Charge Interactions. We base different parts of our functional on the energy of
interaction of unit point charges r1, r2, defined as a sum of close- and far-range
potentials

ϕ (r1, r2) = e
− ‖r 1−r 2‖2

R2
c + λfe

− ‖r 1−r 2‖2

R2
f , (7)

parameters Rc, Rf , λf of which we choose experimentally. The energy of interac-
tion of the uniform positively charged area of the kth primitive Ωk and a grid of
point charges q = {qi}npix

i=1 at the pixel centers ri is then defined by the following
equation, that we integrate analytically for lines

Ek (q) =
npix∑

i=1

qi

∫∫

Ωk

ϕ (r, ri) dr2. (8)

We approximate it for curves as the sum of integrals over the segments of the
polyline flattening this curve.

In our functional we use three different charge grids, encoded as vectors
of length npix: q̂ represents the raster image with charge magnitudes set to
intensities of the pixels, qk represents the rendering of the kth primitive with its
current values of parameters, and q represents the rendering of all the primitives
in the patch. The charge grids qk and q are updated at each iteration.

Energy Terms. Below, we denote the componentwise product of vectors with �,
and the vector of ones of an appropriate size with 1.

The first term is responsible for growing the primitive to cover filled pixels
and shrinking it if unfilled pixels are covered, with fixed position of the primitive:

Esize
k = Ek ([q − q̂] � ck + qk � [1 − ck]) . (9)

The weighting ck,i ∈ {0, 1} enforces coverage of a continuous raster region fol-
lowing the form and orientation of the primitive. We set ck,i to 1 inside the
largest region aligned with the primitive with only shaded pixels of the raster,
as we detail in supplementary. For example, for a line segment, this region is a
rectangle centered at the midpoint of the segment and aligned with it.
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The second term is responsible for alignment of fixed size primitives

Epos
k = Ek ([q − qk − q̂] � [1 + 3ck]) . (10)

The weighting here adjusts this term with respect to the first one, and subtrac-
tion of the rendering of the kth primitive from the total rendering of the patch
ensures that transversal overlaps are not penalized.

The last term is responsible for collapse of overlapping collinear primitives;
for this term, we use λf = 0:

Erdn
k = Ek

(
qrdn

k

)
, qrdnk,i = exp

(
− [|lk,i · mk,i| − 1]2 β

)
‖mk,i‖, (11)

where lk,i is the direction of the primitive at its closest point to the ith pixel,
mk,i =

∑
j �=k lj,iqj,i is the sum of directions of all the other primitives weighted

w.r.t. their “presence”, and β = (cos 15◦ − 1)−2 is chosen experimentally.
As our functional is based on many-body interactions, we can use an approxi-

mation well-known in physics—mean field theory. This translates into the obser-
vation that one can obtain an approximate solution of (5) by viewing interactions
of each primitive with the rest as interactions with a static set of charges, ı.e.,
viewing each energy term Epos

k , Esize
k , Erdn

k as depending only on the param-
eters of the kth primitive. This enables very efficient gradient computation for
our functional, as one needs to differentiate each term w.r.t. a small number of
parameters only. We detail on this heuristic in supplementary.

We optimize the functional (6) by Adam. For faster convergence, every few
iterations we join lined up primitives by stretching one and collapsing the rest,
and move collapsed primitives into uncovered raster pixels.

3.4 Merging Estimations from All Patches

To produce the final vectorization, we merge the refined primitives from the
whole image with a straightforward heuristic algorithm. For lines, we link two
primitives if they are close and collinear enough but not almost parallel. After
that, we replace each connected group of linked primitives with a single least-
squares line fit to their endpoints. Finally, we snap the endpoints of intersecting
primitives by cutting down the “dangling” ends shorter than a few percent of the
total length of the primitive. For Bézier curves, for each pair of close primitives
we estimate a replacement curve with least squares and replace the original pair
with the fit if it is close enough. We repeat this operation for the whole image
until no more pairs allow a close fit. We detail on this process in supplementary.

4 Experimental Evaluation

We evaluate two versions of our vectorization method: one operating with lines
and the other operating with quadratic Bézier curves. We compare our method
against FvS [11], CHD [9], and PVF [3]. We evaluate the vectorization perfor-
mance with four metrics that capture artefacts illustrated in Fig. 2.
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Fig. 2. (a) Ground-truth vector image, and artefacts w.r.t. which we evaluate the
vectorization performance (b) skeleton structure deviation, (c) shape deviation, (d)
overparameterization.

Intersection-over-Union (IoU) reflects deviations in two raster shapes
or rasterized vector drawings R1 and R2 via IoU(R1, R2) = R1∩R2

R1∪R2
. It does

not capture deviations in graphical primitives that have similar shapes but are
slightly offset from each other.

Hausdorff distance

dH (X,Y ) = max

{
sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)

}
, (12)

and Mean Minimal Deviation

dM (X,Y ) =
1
2

(
d̃M (X → Y ) + d̃M (Y → X)

)
, (13a)

d̃M (X → Y ) =
∫

x∈X

inf
y∈Y

d(x, y)dX

/ ∫

x∈X

dX (13b)

measure the difference in skeleton structures of two vector images X and Y ,
where d(x, y) is Euclidean distance between a pair of points x, y on skeletons.
In practice, we densely sample the skeletons and approximate these metrics on
a pair of point clouds.

Number of Primitives #P measures the complexity of the vector drawing.

4.1 Clean Line Drawings

To evaluate our vectorization system on clean raster images with precisely known
vector ground-truth we collected two datasets.

To demonstrate the performance of our method with lines, we compiled PFP
vector floor plan dataset of 1554 real-world architectural floor plans from a
commercial website [2].

To demonstrate the performance of our method with curves, we compiled
ABC vector mechanical parts dataset using 3D parametric CAD models
from ABC dataset [22]. They have been designed to model mechanical parts
with sharp edges and well defined surface. We prepared ≈ 10k vector images via
projection of the boundary representation of CAD models with the open-source
software Open Cascade [1].

We trained our primitive extraction network on random 64 × 64 crops, with
random rotation and scaling. We additionally augmented PFP with synthetic
data, illustrated in Fig. 3.
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Fig. 3. Examples of synthetic training data for our primitive extraction network.

Fig. 4. Sample from DLD dataset: (a) raw input image, (b) the image cleaned from
background and noise, (c) final target with infilled lines.

For evaluation, we used 40 hold-out images from PFP and 50 images from
ABC with resolution ∼ 2000×3000 and different complexity per pixel. We specify
image size alongside each qualitative result. We show the quantitative results of
this evaluation in Table 1 and the qualitative results in Figs. 5 and 6. Since
the methods we compare with produce widthless skeleton, for fair comparison
w.r.t. IoU we set the width of the primitives in their outputs equal to the average
on the image.

There is always a trade-off between the number of primitives in the vectorized
image and its precision, so the comparison of the results with different number
primitives is not to fair. On PFP, our system outperforms other methods w.r.t. all
metrics, and only loses in primitive count to FvS. On ABC, PVF outperforms our
full vectorization system w.r.t. IoU, but not our vectorization method without
merging, as we discuss below in ablation study. It also produces much more
primitives than our method.

4.2 Degraded Line Drawings

To evaluate our vectorization system on real raster technical drawings, we com-
piled Degraded line drawings dataset (DLD) out of 81 photos and scans
of floor plans with resolution ∼ 1300 × 1000. To prepare the raster targets, we
manually cleaned each image, removing text, background, and noise, and refined
the line structure, inpainting gaps and sharpening edges (Fig. 4).

To train our preprocessing network, we prepared the dataset consisting of
20000 synthetic pairs of images of resolution 512× 512. We rendered the ground
truth in each pair from a random set of graphical primitives, such as lines,
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Table 1. Quantitative results of vectorization. For our method we report two values
of IoU: with the average primitive width and with the predicted.

PFP ABC DLD

IoU,% dH, px dM, px #P IoU,% dH, px dM, px #P IoU,% #P

FvS [11] 31 381 2.8 696 65 38 1.7 63

CHD [9] 22 214 2.1 1214 60 9 1 109 47 329

PVF [3] 60 204 1.5 38k 89 17 0.7 7818

Our 86/88 25 0.2 1331 77/77 19 0.6 97 79/82 452

FvS [11]
29% / 415px
4.2px / 615

CHD [9]
21% / 215px
1.9px / 1192

PVF [3]
64% / 140px
0.9px / 35k

Our method
89% / 28px
0.2px / 1286

Ground truth,
#P 1634

1
7
7
0

p
x

2
5
6

p
x

Fig. 5. Qualitative comparison on a PFP image, and values of IoU / dH / dM / #P
with best in bold. Endpoints of the primitives are shown in orange (Color figure online).

FvS [11]
67%/ 32px
1.1px/ 79

CHD [9]
67%/ 7px
1.0px/ 108

PVF [3]
95%/ 4px
0.2px/ 9.5k

Our method
86%/ 5px
0.4px/ 139

Ground truth,
#P 139

2
6
8
6

p
x

3
8
6

p
x

Fig. 6. Qualitative comparison on an ABC image, and values of IoU / dH / dM /#Pwith
best in bold. Endpoints of the primitives are shown in orange (Color figure online).
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Input image CHD [9], 52% / 349 Our method, 78% / 368

8
5
0

p
x

8
3

p
x

1
1
0

p
x

Fig. 7. Qualitative comparison on a real noisy image, and values of IoU / #P with best
in bold. Primitives are shown in blue with endpoints in orange on top of the cleaned
raster image.

Table 2. Quantitative evaluation of the preprocessing step.

IoU,% PSNR

MS [35] 49 15.7

Our 92 25.5

curves, circles, hollow triangles, etc. We generated the input image via rendering
the ground truth on top of one of 40 realistic photographed and scanned paper
backgrounds selected from images available online, and degrading the rendering
with random blur, distortion, noise, etc. After that, we fine-tuned the prepro-
cessing network on DLD.

For evaluation, we used 15 hold-out images from DLD. We show the quan-
titative results of this evaluation in Table 1 and the qualitative results in Fig.
7. Only CHD allows for degraded input so we compare with this method only.
Since this method produces widthless skeleton, for fair comparison w.r.t. IoU we
set the width of the primitives in its outputs equal to the average on the image,
that we estimate as the sum of all nonzero pixels divided by the length of the
predicted primitives.

Our vectorization system outperforms CHD on the real floor plans w.r.t. IoU
and produces similar number of primitives.

Evaluation of Preprocessing Network. We separately evaluate our prepro-
cessing network comparing with public pre-trained implementation of MS [35].
We show the quantitative results of this evaluation in Table 2 and qualitative
results in Fig. 8. Our preprocessing network keeps straight and repeated lines
commonly found in technical drawing while MS produces wavy strokes and tends
to join repeated straight lines, thus harming the structure of the drawing.
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Fig. 8. Example of preprocessing results: (a) raw input image, (b) output of MS [35],
(c) output of our preprocessing network. Note the tendency of MS to combine close
parallel lines.

Table 3. Ablation study on ABC dataset. We compare the results of our method with
and without refinement and postprocessing

IoU,% dH, px dM, px #P

NN 65 52 1.4 309

NN + Refinement 91 19 0.3 240

NN + Refinement + Postprocessing 77 19 0.6 97

4.3 Ablation Study

To assess the impact of individual components of our vectorization system on
the results, we obtained the results on the ABC dataset with the full system, the
system without the postprocessing step, and the system without the postpro-
cessing and refinement steps. We show the quantitative results in Table 3 and
the qualitative results in Fig. 9.

While the primitive extraction network produces correct estimations on aver-
age, some estimations are severely inaccurate, as captured by dH. The refinement
step improves all metrics, and the postprocessing step reduces the number of
primitives but deteriorates other metrics due to the trade-off between number
of primitives and accuracy.

We note that our vectorization method without the final merging step out-
performs other methods on ABC dataset in terms of accuracy metrics.
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NN
54%/ 11px
0.9px/ 109

NN + Refinement
93%/ 5px
0.2px/ 69

Full
67%/ 5px
0.5px/ 25

Ground truth,
#P 57

8
9
8

p
x

Fig. 9. Results of our method on an ABC image with and without refinement and
postprocessing, and values of IoU / dH / dM / #P with best in bold. The endpoints
of primitives are shown in orange (Color figure online).

5 Conclusion

We presented a four-part system for vectorization of technical line drawings,
which produces a collection of graphical primitives defined by the control points
and width. The first part is the preprocessing neural network that cleans the
input image from artefacts. The second part is the primitive extraction network,
trained on a combination of synthetic and real data, which operates on patches
of the image. It estimates the primitives approximately in the right location
most of the time, however, it is generally geometrically inaccurate. The third
part is iterative optimization, which adjusts the primitive parameters to improve
the fit. The final part is heuristic merging, which combines the primitives from
different patches into single vectorized image. The evaluation shows that our
system, in general, performs significantly better compared to a number of recent
vectorization algorithms.

Modifications of individual parts of our system would allow it to be applied to
different, related tasks. For example, adjustment of the preprocessing network
and the respective training data would allow for application of our system to
extraction of wireframe from a photo. Modification of the optimized functional
and use of the proper training data for primitive extraction network would allow
for sketch vectorization. Integration with an OCR system would allow for sepa-
ration and enhancement of text annotations.
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