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Abstract. 3D shape interpretation and reconstruction are closely
related to each other but have long been studied separately and often end
up with priors that are highly biased towards the training classes. In this
paper, we present an algorithm, Generalizable 3D Shape Interpretation
and Reconstruction (GSIR), designed to jointly learn these two tasks to
capture generic, class-agnostic shape priors for a better understanding
of 3D geometry. We propose to recover 3D shape structures as cuboids
from partial reconstruction and use the predicted structures to further
guide full 3D reconstruction. The unified framework is trained simulta-
neously offline to learn a generic notion and can be fine-tuned online for
specific objects without any annotations. Extensive experiments on both
synthetic and real data demonstrate that introducing 3D shape interpre-
tation improves the performance of single image 3D reconstruction and
vice versa, achieving the state-of-the-art performance on both tasks for
objects in both seen and unseen categories.
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1 Introduction

Single image 3D geometry has attracted much attention in recent years due to
its numerous applications, such as robotics, medicine and film industry. To fully
understand 3D geometry, it is essential to know structure properties (e.g., sym-
metry, compactness, planarity, and part to part relations) [8,30,43] and surface
properties (e.g., texture and curvature). In this paper, we address these problems
simultaneously, i.e., 3D shape interpretation and reconstruction, in which these
two tasks have been known to be closely related to each other [28,55].

For single image 3D reconstruction, the difficulty is mainly reflected in two
aspects: how to extract geometric information from high dimensional images
and how to utilize prior shape knowledge to pick the most reasonable prediction
from many 3D explanations. Recent research tackles these problems through
deep learning [13,18,56], since it has shown great success in image information
distillation tasks like classification [27], detection [24] and segmentation [22].
Many algorithms have explored ways to utilize shape prior knowledge. For exam-
ple, ShapeHD [61] integrated deep generative models with adversarially learned
shape priors and penalized the model only if its outputs were unrealistic.
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Fig. 1. We present Generalizable 3D Shape Interpretation and Reconstruction (GSIR)
to learn 3D shape interpretation and reconstruction jointly

Many existing methods do not enforce explicit 3D representation in the
model, which leads to overfitting. As a result, they suffer when reconstruct-
ing the unobservable parts of objects, especially under self-occlusions. Recently,
methods that encode shapes in a function [38,40] take a step toward better gen-
eralization. In this paper, we approach the problem by enforcing explicit 3D
representation in the model. Inspired by pose-guided person generation [7,34],
we propose a structure-guided shape generation that explicitly uses the struc-
ture to guide shape completion and reconstruction. The key idea of our approach
is to guide the reconstruction process explicitly by an appropriate representa-
tion of the object structure to enable direct control over the generation process.
More specifically, we propose to condition the reconstruction network on both
the observable parts of the object and a predicted structure. From the observable
parts, the model obtains sufficient information about the visible surface of the
object. The guidance given by the predicted structure is both explicit and flexi-
ble. There are many other interesting downstream applications. For example, we
later show that we can design new objects by keeping the original surface details
and manipulate the size and orientation of each part of the object by changing
the guidance.

On the other hand, single image 3D structure interpretation itself is chal-
lenging and often inaccurate. Therefore, the derived structure information does
not always help reconstruction. More specifically, when an image is captured
from accidental views, the structure interpretation methods are not effective to
predict landmarks positions [3] or primitive orientations [39]. To overcome this
problem, we bring reconstructed 3D information to help the algorithm predict
more accurate interpretations (cuboid position, orientation, and size in our case).

Based on the above observations, we propose to jointly reason about single
image generalizable 3D shape interpretation and reconstruction (GSIR). Build-
ing upon GenRe [64], we first project a predicted 2.5D sketch into a par-
tial 3D model. We then generate geometrically interpretable representations
of the partial 3D model through oriented cuboids, where symmetry, compact-
ness, planarity, and part-to-part relations are taken into consideration. Instead of
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performing shape completion in the 3D voxel grid, our method completes the
shape based on spherical maps since mapping a 2D image/2.5D sketch to a 3D
shape involves complex but deterministic geometric projections. Using spherical
map, our neural modules only need to model object geometry, without having
to learn projections, which enhances generalizability. Unlike GenRe, we perform
the completion in a structure-guided manner. Fusing information from both the
visible object surfaces and the projected spherical maps of oriented cuboids and
edges, we can further complete non-visible parts of the object.

Our model consists of four learnable modules: single-view depth estima-
tion module, structure interpretation module, structure-guided spherical map
inpainting module, and voxel refinement module. In addition, geometric pro-
jections form the links between those modules. Furthermore, we propose an
interpretation consistency between the predicted structure and the partial 3D
reconstruction.

Our approach offers three unique advantages. First, our estimated 3D struc-
ture encodes symmetry, compactness, planarity, and part-to-part relations of the
given objects explicitly, which help us understand the reconstruction in a more
transparent way. Second, we reason about 3D structure from partial observable
voxel grid to alleviate the burden on domain transfer in previous single image
3D structure interpretation algorithms [39,59], which enhances generalizability.
Third, our interpretation consistency can be used to fine-tune the system for
specific objects without any annotations, which further enables the communica-
tion between two branches (the consistency can be jointly optimized with the
model).

We evaluate our method on both synthetic images of objects from the
ShapeNet dataset, and real images from the PASCAL 3D+ dataset. We show
that our method performs well on 3D shape reconstruction, both qualitatively
and quantitatively on novel objects from unseen categories. We also show the
method’s capacity to generate new objects given modified shape guidance.

To summarize, this paper makes four contributions: we propose an end-
to-end trainable model (GSIR) to jointly reason 3D shape interpretation and
reconstruction; we develop a structure-guided 3D reconstruction algorithm; we
develop a novel end-to-end trainable loss that ensures consistency between esti-
mated structure and partially reconstructed model; we demonstrate that exploit-
ing symmetry, compactness, planarity, and part-to-part relations inside object
can significantly improve both shape interpretation and reconstruction accuracy
and help with generalization.

2 Related Work

Single Image 3D Reconstruction. Lots of work have been done on 3D reconstruc-
tion from single images. Early works can be traced back to Hoiem et al. [26]
and Saxena et al. [49]. Theoretically, recovering 3D shapes from single-view
images is an ill-posed problem. To alleviate the ill-posedness, these methods rely
heavily on the knowledge of shape priors, which require large amount of data.
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With the releasing of IKEA [32] and ShapeNet [9], many learning-based meth-
ods begin to dominate the trend. Choy et al. [13] apply a CNN to the input
image, then pass the resulting features to a 3D deconvolutional network, that
maps them to an occupancy grid of 323 voxels. Girdhar et al. [18] and Wu et al.
[60] proceed similarly, but pre-train a model to encode or generate 3D shapes
respectively, and regress images to the latent features of the model. Instead
of directly producing voxels, Arsalan Soltani et al. [2], Shin et al. [50], Wu
et al. [58] and Richter et al. [44] output multiple depth-maps and/or silhou-
ettes, which are subsequently fused for voxel reconstruction. Although we focus
on reconstructing 3D voxels, there are many other works that reconstruct 3d
objects using pointcloud [16,29,35], meshes [21,25,33,55,57], octrees [45,46,54],
and functions [14,38,51,63]. [25] presents a general framework to learn recon-
struction and generation of 3D shapes with 2D supervision, using an assembly
from cuboidal primitives as a compact representation. To encode both geometry
and appearance, [51] encodes a feature and RGB representation for each point
and predicts the surface location with a ray marching LSTM network. [63] com-
bines 3D point features with image features from the projected query patch and
significantly improves on 3D reconstruction. [38] represents the 3D surface as
continuous decision boundaries and shows robust results.

3D Structure Interpretation. Different from 3D reconstruction, 3D structure
interpretation focuses on understanding structure properties instead of dense
representations, which is broadly defined based on positions and relationships
among semantic (the vertical part), functional (support and stability), economic
(repeatable and easy to fabricate) parts. Among all ways to abstract object struc-
tures, a 3d skeleton is most common in use because of its simplicity, especially
in human pose estimation [1,6,42,65]. 3D-INN [59] estimate 3D object skele-
tons through 2D keypoints and achieve a promising result on chairs and cars.
Another way is to represent the method using volumetric primitives, which can
date to the very beginnings of the computer vision. There are many attempts to
represent shapes as a collection of components or primitives, such as geons [5],
block world [47] and cylinders [36]. Recently, more compact and parametric rep-
resentations are introduced using LSTM [66] or set of primitives [55].

Structure-Aware Shape Processing Previous studies have recognized the value of
structure-guided shape processing, editing, and synthesis, mainly in computer
graphics [17] and geometric modeling [19]. For shape synthesis, many approaches
have been proposed based on fixed relationships such as regular structures [41],
symmetries [52], probabilistic assembly-based modeling [10]. Wu et al. [62]
encode the structure into an embedding vector. The work that is most simi-
lar to ours is probably SASS proposed by Balashova et al. [3]. SASS extracts
landmarks from a 3D shape and adds a shape-structure consistency loss to bet-
ter align shape with predicted landmarks. Our model has two advantages over
SASS. First, instead of using a fixed number of landmarks, we abstract primitives
of any given object. This gives more freedom to the objects that can be con-
structed. Second, our proposed method deeply integrates shape interpretation
and reconstruction through structure-guided inpainting and the interpretation
consistency other than just force the alignment.
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Depth Prediction. The ability to learn depth using a deep learning framework
was introduced by [15], who uses a dataset of ground truth depth and RGB
image pairs to train a network to predict depth. This has been further improved
through better architecture [11,31] and larger datasets [37].

3 Approach

Fig. 2. Our model contains four learnable functions and five deterministic projection
functions.

Our whole model (Fig. 2) consists of four learnable functions (f) connected by
five deterministic projection functions (p). The model is summarized below and
each module is discussed in details in the subsections:

1. The model begins with a single-view depth estimation module: with
a color image (RGB) as input, the module estimates its depth map D =
f(RGB). We then convert the depth estimation D into partial reconstructed
voxel grid Vp = p(D), which reflects only visible surfaces.

2. Our second learnable function is the structure interpretation module:
the partial voxel grid (Vp) is taken as input and parsed by the module
into compact cuboid-based representations S = f(Vp). We then project
the resulting structure surfaces and edges into spherical maps: Mss =
p(surface(S)),Mse = p(egde(S)).

3. Along with projected spherical maps from depth estimation Mp = p(D), the
structure-guided shape completion module can predict the inpainted
spherical map Mi = f(Mp,Mss,Mse), which is then projected back into voxel
space Vi = p(Mi).

4. Since spherical maps only capture the outermost surface towards the sphere,
they cannot handle self-occlusion along the sphere’s radius. To mitigate this
problem, we adopt the voxel refinement module that takes all predicted
voxels as input and outputs the final reconstruction V = f(Vp, Vi, S).
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3.1 Single-View Depth Estimation Module

Since depth estimation is a class-agnostic task, we use depth as an intermediate
representation like many other methods [44,58]. Previous research shows that
depth estimation can be generalized well into different classes despite their dis-
tinct visual appearances and can even be applied in the wild [11]. Our module
takes a color image (RGB) as input and estimates its depth map (D) through
an encoder-decoder network. More details can be viewed in Sect. 3.6.

3.2 Structure Interpretation Module

To better represent the symmetry, compactness, planarity, and part-to-part rela-
tions, we adopt a recursive neural network as the 3D structure interpreter like
in [28]. However, unlike [39], we encode the structure embedding from Vp to
alleviate the domain adaptation. The encoder is achieved by a 3D convolutional
network that encodes Vp into a bottleneck feature, then the decoder recursively
decodes it into a hierarchy of part boxes.

Starting from the root feature code, the RNN recursively decodes it into a
hierarchy of features until reaching the leaf nodes which each can be further
decoded into a vector of box parameters. There are three types of nodes in our
hierarchy: leaf node, adjacency node, and symmetry node. During the decoding,
two types of part relations are recovered as the class of internal nodes: adjacency
and symmetry. Thus, each node can be decoded by one of the three decoders
below, based on its type (adjacency node, symmetry node or box node):

Adjacency Decoder. The adjacency decoder split a single part into two adjacent
parts. Formally, it splits a parent n-D code p into two child n-D codes c1 and
c2, using the mapping function with a weight matrix Wad ∈ R

2n×n and a bias
vector bad ∈ R

2n:
[c1, c2] = tanh(Wad · p + bad) (1)

Symmetry Decoder. The symmetry decoder recovers a n-D code for a symmetry
group g in the form of a n-D code for the symmetry generator s and a m-D
code for the symmetry parameters z. The transformation has a weight matrix
Wsd ∈ R

n×(n+m) and a bias vector bsd ∈ R
n+m:

[s, z] = tanh(Wsd · g + bsd) (2)

The symmetry parameters are represented as a 8-dim vector (m = 8) contain-
ing: symmetry type (1D); number of repetitions for rotation and translation
symmetries (1D); and the reflection plane for reflection symmetry, rotation axis
for rotation symmetry, or position and displacement for translation symmetry
(6D).

Box Decoder. The box decoder converts the n-D code of a leaf node l to a 12-D
box parameters defining the center, axes, and sizes of a 3D oriented box. It has
a weight matrix Wld ∈ R

12×n and a bias vector bld ∈ R
12:

[x] = tanh(Wld · l + bld) (3)
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These decoders are recursively applied during decoding. We also need to
distinguish p, g and l since they require different decoders. This is achieved by
learning a node classifier where the ground-truth box structure is known. The
node classifier is jointly trained with the three decoders. We refer the readers
to [28] for a better understanding.

3.3 Structure-Guided Shape Completion Module

The problem of 3D surface completion was first cast into 2D spherical map
inpainting by GenRe [64], showing better performance than surface completion in
the voxel space. However, the original spherical inpainting network takes only the
partially observable depth map Mp as input and encode the shape prior implicitly
in their neural network. We use an encoder-decoder network and concatenate
Mp,Mss,Mse channel-wise as input: structure surface map Mss provides the
reference depth as it shows the planar tilt; structure edges Mse handles self-
occlusion as edges do not have volume. Thus, structure information is explicitly
embedded into the network. Note both structure and depth map are viewer-
centered and are automatically aligned.

3.4 Voxel Refinement Module

We adopt a voxel refinement module to recover the lost information caused
by spherical projection, similar to GenRe. This module takes all voxels (one
projected from the estimated depth map Vp and the other from the inpainted
spherical map Vi) as well as the voxelized structure S as input, and predict the
final reconstruction.

3.5 Interpretation Consistency

There have been works attempting to enforce the consistency between estimated
3D shape and 2D representations or 2.5D sketches [58] in a neural network. Here,
we propose a consistency loss between structure interpretation S and partial
reconstruction Vp.

Similar to [55], our consistency loss contains both sub loss and super loss. The
former evaluates if the interpretation cuboids are completely inside the target
object, the latter evaluates if the target object is completely covered by the
interpretation cuboids.

Formally, sub loss Lsub and super loss Lsup are defined as

Lsub = Ep∼Vp
‖C(p;S)‖2 (4)

Lsup = Ep∼S‖C(p;Vp)‖2 (5)

L = Lsub + Lsup (6)
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where the points p are sampled from either the structure interpretation or
the partial reconstruction, and C(·;O) computes the distance to the closest point
on the object and equals to zero in the object interior.

C(p;O) = min
p′∈O

‖p − p′‖2 (7)

Note that the reconstruction Vp only contains observable parts, so it is not
reasonable to force consistency in the occluded region. Therefore, we only calcu-
late the consistency loss of structure primitive where the volume occupied by Vp

is larger than a threshold α. We fix the three decoders mentioned in Sect. 3.2 dur-
ing testing and only fine-tune the node codes and parameters. During inference,
our method can be self-supervised.

3.6 Technical Details

Network Parameters. Following GenRe [64], we use a U-Net structure [48] for
both single-view depth estimation module and structure-guided shape comple-
tion module. The encoder is a ResNet-18 [23], encoding a 256 × 256 image into
512 feature maps of size 1× 1. The decoder is a mirrored version of the encoder,
replacing all convolution layers with transposed convolution layers. The decoder
outputs the depth map/inpainted map in the original view at the resolution of
256× 256. We use a L2 loss between predicted and target images. Our structure
interpretation module takes the 128 × 128 × 128 dimensional Vp as input and
output a 128D latent vector, which is then fed into the RNN decoder. The node
classifier and the decoders for both adjacency and symmetry are two-layer net-
works, with the hidden layer and output layer having 256 and 128 units, respec-
tively. Our voxel refinement module is also a U-Net, which takes a three-channel
128 × 128 × 128 voxel grid (Vp, Vi, S) as input, encode it into a 320D latent
vector and then decode the latent vector into the 128 × 128 × 128 dimensional
final reconstruction.

Geometric Projections. We use five deterministic projection functions: a depth
to voxel projection, a depth to spherical map projection, a structure surfaces to
spherical map projection, a structure edges to spherical map projection, and
a spherical map to voxel projection. We use the same method as described
in GenRe. All projections are differentiable, thus the pipeline is end-to-end
trainable.

Training. We first train each module separately with fully labelled ground truth
for 250 epochs, all rendered with synthetic ShapeNet objects [9]. We then jointly
fine-tune our whole model together with both 3D shape and 3D structure super-
vision for another 250 epochs. In practice, we fine-tuned our model using con-
sistency loss on each image for 30 iterations. We used adam optimizer with a
learning rate of 1 × 10−4.
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4 Experiments

4.1 3D Shape Interpretation

Table 1. Comparison of performance on the structure recovery task.

Method Hausdorff Error Thresholded Acc.

δ < 0.2 δ < 0.1

im2struct (Mask + VGG-19) [39] 0.1096 91.2% 66.7%

GSIR (without consistency) 0.0798 93.3% 79.6%

GSIR (With consistency) 0.0731 97.4% 84.8%

Fig. 3. Example results of 3D shape interpretation. From left to right: RGB input
image, partial voxel grid, im2struct, Ours(GSIR).

We present results on 3D shape interpretation for generalizing to novel objects
unseen in training. All models are trained on cars, chairs, airplanes, tables, and
motorcycles and tested on unseen objects from the same categories. Same as
in im2struct [39], we use two measures to evaluate the performance of our 3D
Shape Interpretation: Hausdorff Error and Thresholded Accuracy. The results
are presented in Table 1. We compare our method with the current best method
(im2struct). In “GSIR without consistency”, the structure is estimated using
only the structure interpretation module. In “GSIR with consistency”, the struc-
ture is esimated using the structure interpretation module followed by a refine-
ment using the proposed interpretation consistency. The result demonstrates
that recovering structure significantly benefits from infusing information of par-
tially reconstructed voxel grid. Figure 3 gives a visual comparison of our method
and im2struct, which directly recover 3D shape from single-view RGB image.
As can be seen, our method produces part structures that are more faithful to
the input. This is because 1) we reason about 3D structure from predicted 3D
voxels, which alleviates the domain adaptation, and 2) our model is end-to-end
trainable, the performance of structure recovery gets better as richer information
gets distilled for 3D reconstruction.
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4.2 Structure-Guided Shape Completion

Fig. 4. Visualization of example spherical maps at each stage of our method, with a
comparison of structure guided inpainting and normal inpainting. From left to right:
RGB (original), partial map from depth estimation, surface map from structure predic-
tion, edge map from structure prediction, inpainted map without structure guidance,
inpainted map with structure guidance, ground truth. (Color figure online)

We present qualitative results on structure-guided shape completion in Fig. 4.
The contribution of each element in our method is visualized in the figure. We
show that with structure guidance, the missing or unobservable parts can be
well completed, hence leading a more faithful reconstruction. However, without
structure information, the inpainting network can only recover incomplete unob-
servable parts (e.g., the wing of the airplane bounded by the green boxes) or even
ignore the unobservable parts directly (e.g., the engine of the airplane and the leg
of the table bounded by the red boxes). In contrast, structure guidance enables
the model to fully reconstruct unobservable parts. More quantitative results are
shown in Sect. 4.3.

4.3 3D Shape Reconstruction

In Table 2, we present results on generalizing to novel objects from both training
and testing classes. All models are trained on ShapeNet cars, chairs, airplanes,
tables, and motorcycles while tested on novel objects from the same categories
(denoted as Seen) and unseen categories (denoted as Unseen) including benches,
sofa, beds and vessels. Since our model only focuses on surface voxel recon-
struction, we evaluate reconstruction quality using Chamfer distance (CD) [4].
We sweep voxel thresholds from 0.3 to 0.7 with a step size of 0.05 for isosur-
faces, compute CD with 1,024 points sampled from all isosurfaces, and report
the best average CD for each object class. For seen categories, our method beats
all other viewer-centered methods, performing on par with most object-centered
methods. For unseen objects, our model outperforms all objected-centered and
viewer-centered methods by a large margin, demonstrating its capacity to gen-
eralize to objects with new shapes from completely unseen classes.
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Fig. 5. Example results of 3D shape reconstruction for novel objects from training
categories. From left to right: RGB image, GenRe, Ours(GSIR), Ground Truth. The red
bounding boxes surround key areas that suffer from self-occlusion/symmetry in GenRe
but are successfully reconstructed by the proposed method. (Color figure online)

Fig. 6. Example results of 3D shape reconstruction for novel objects from testing cate-
gories. From left to right: RGB image, structural interpretation, GenRe (Best Baseline),
Ours(GSIR), Ground Truth.

We give a visual comparison of our method and the state-of-the-art method
on novel objects from seen categories in Fig. 5. The red bounding boxes sur-
round key areas that suffer from self-occlusion/symmetry in GenRe but are
successfully reconstructed by the proposed method. These results show that
our method significantly improves the reconstruction performance under self-

Table 2. Comparison of performance on the shape reconstruction task.

Method CD

Seen Unseen

Object-Centered IM-NET [12] 0.055 0.119

ONet [38] 0.060 0.128

DeepSDF [40] 0.053 0.115

AtlasNet [20] 0.063 0.126

Viewer-Centered DRC [56] 0.097 0.127

MarrNet [58] 0.081 0.116

GenRe [64] 0.068 0.108

Ours 0.057 0.099
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occlusion/symmetry. We also present some visualizations on novel objects from
unseen categories in Fig. 6. It can be observed that compared to the best previ-
ous method, our method better preserves the structural properties of the objects
in the input images and closely reconstructs various details of the objects (e.g.,
the middle leg of the bench, the armrest of the sofa, and the ceiling of the vessel,
etc).

4.4 Shape Interpretation with Consistency

By reasoning the consistency between the partial voxel grid and object structure,
we can obtain better structure interpretation by fine-tuning on one object while
preserving good shape prior knowledge. As shown in Fig. 7, the tilt and size of
each cuboid can be rectified even if the initial structure interpretation is coarse
and distorted (as shown in the red boxes). Furthermore, since our structure
model utilizes symmetry explicitly, the unobservable parts can also be better
reconstructed through forcing consistency with observable parts.

Fig. 7. Example results that demonstrates the efficacy of the proposed interpretation
consistency. From left to right: partial voxel grid (Vp), coarsely reconstructed structure
(Structure), fine-tuned structure with consistency (Fine-tuned).

4.5 Generalization to Real Images

In this subsection, we extend our experiments from rendered images to real
images. Our experiments show that the proposed network’s capability to robustly
reconstruct objects of unseen classes from real images, both qualitatively and
quantitatively. For example, all models are trained on rendered images of chairs,
airplanes, and cars from ShapeNet, while tested on real images of beds, book-
cases, desks, sofas, tables, and wardrobes from another dataset, Pix3D [53].
Quantitative results evaluated by Chamfer Distance are presented in Table 3.
While AtlasNet achieves a smaller error on seen objects (chairs & tables), our
model outperforms both other methods across all novel classes, which demon-
strate its generalization abilities on cross-domain shape interpretation and recon-
struction. We also present qualitative visualizations in Fig. 8. Both our inter-
pretation network and reconstruction network produce high-fidelity results, pre-
serving both the overall structure and fine-grained details.
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Fig. 8. Example results of 3D shape interpreta-
tion and reconstruction on real images of objects
from unseen classes in Pix3D (the model is
trained on ShapeNet).

Table 3. Reconstruction errors
(in CD) for seen (chairs, tables)
and unseen classes (beds, bookcases,
sofas, wardrobes) on real images from
Pix3D.

AtlasNet GenRe Ours

Chair 0.083 0.095 0.091

Table 0.092 0.099 0.094

Bed 0.115 0.111 0.107

Bookcase 0.137 0.101 0.095

Desk 0.124 0.107 0.100

Sofa 0.096 0.085 0.083

Wardrobe 0.119 0.111 0.103

Fig. 9. Examples of structure-guided shape manipulation. We change the leg number
of a swivel chair from five to six and shorten the length of a table.

4.6 Ablation Study

To investigate the effectiveness of each module in our model design, we per-
form an ablation study to quantify the performance of different module design
configurations.

Table 4. Ablation Study. All annotations are consistent with Sect. 3.

Method Seen Unseen

Encoder Decoder 0.127 0.196

Depth + Decoder 0.088 0.131

Depth + Multi-view + Vi 0.075 0.123

Depth + Multi-view + Guided + Vi 0.072 0.121

Depth + Spherical Map + Vi 0.073 0.119

Depth + Spherical Map + Guided + Vi 0.069 0.113

Depth + Spherical Map + Guided + Vi + Vp 0.064 0.106

Ours (w.o. consistency loss) 0.060 0.103

Ours (w. consistency loss) 0.057 0.099
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For each projection representation in our model, there could be alternative
choices: instead of using spherical map, we can instead use a multi-view repre-
sentation: e.g., six views depth projection as proposed by MatryoshkaNet [44].
Then we can apply structure-guided depth map inpainting on all six views
(denoted as Multi-view in Table 4).

In the ablation study, we gradually add more representations and more pro-
jective losses. The baseline method is a single vanilla 3D autoencoder (denoted
as Encoder Decoder). Then, each module added sequentially, bearing the same
name as mentioned in Sect. 3. We adopt the same experimental settings as in
Sect. 4.3 and the results are shown in Table 4. Results suggest that spherical
maps lead to better performance than multi-view ensemble, which justify our
choice of design. This ablation study also suggests that each module in our
model contributes to the improved performance. Our full model design benefits
from joint learning of interpretation and reconstruction, significantly improving
the baseline network performance.

4.7 Shape Manipulation

Another unique advantage of our method is that it provides explicit and flexi-
ble ways to manipulate the underlying objects while maintaining good surface
details. We can modify the symmetry groups (e.g., changing the number of legs
of a chair from five to six) in structure-guided shape completion step (as shown
in the first row of Fig. 9), and/or apply rotation, translation or scaling to the
primitives (as shown in the second row of Fig. 9). As shown in Fig. 9, our model
smoothly modifies the output of reconstruction according to the structure guid-
ance.

5 Conclusion

We jointly learned single image 3D shape interpretation and reconstruction. We
propose GSIR, an novel end-to-end trainable viewer-centered model that inte-
grates both shape structure and surface details, for a better understanding of 3D
geometry. Extensive experiments on both synthetic and real data demonstrate
that with this joint structure, both interpretation and reconstruction results can
be improved. We hope our work will inspire future research in this direction.
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