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Abstract. When learning to sketch, beginners start with simple and
flexible shapes, and then gradually strive for more complex and accu-
rate ones in the subsequent training sessions. In this paper, we design
a “shape curriculum” for learning continuous Signed Distance Function
(SDF) on shapes, namely Curriculum DeepSDF. Inspired by how humans
learn, Curriculum DeepSDF organizes the learning task in ascending
order of difficulty according to the following two criteria: surface accu-
racy and sample difficulty. The former considers stringency in supervising
with ground truth, while the latter regards the weights of hard training
samples near complex geometry and fine structure. More specifically,
Curriculum DeepSDF learns to reconstruct coarse shapes at first, and
then gradually increases the accuracy and focuses more on complex local
details. Experimental results show that a carefully-designed curriculum
leads to significantly better shape reconstructions with the same training
data, training epochs and network architecture as DeepSDF. We believe
that the application of shape curricula can benefit the training process
of a wide variety of 3D shape representation learning methods.

1 Introduction

In recent years, 3D shape representation learning has aroused much attention
[16,26,30,31,33]. Compared with images indexed by regular 2D grids, there has
not been a single standard representation for 3D shapes in the literature. Existing
3D shape representations can be cast into several categories including: point-
based [1,10,31,33,34,49], voxel-based [7,26,32,51], mesh-based [16,17,42,48],
and multi-view [32,43,45].

More recently, implicit function representations have gained an increasing
amount of interest due to their high fidelity and efficiency. An implicit function
depicts a shape through assigning a gauge value to each point in the object
space [6,27,28,30]. Typically, a negative, a positive or a zero gauge value repre-
sents that the corresponding point lies inside, outside or on the surface of the
3D shape. Hence, the shape is implicitly encoded by the iso-surface (e.g., zero-
level-set) of the function, which can then be rendered by Marching Cubes [24] or
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Fig. 1. 3D reconstruction results of shapes with complex local details. From top to
bottom: ground truth, DeepSDF [30], and Curriculum DeepSDF. We observe that
the network benefits from the designed shape curriculum so as to better reconstruct
local details. It is worth noting that the training data, training epochs and network
architecture are the same for both methods.

similar methods. Implicit functions can also be considered as a shape-conditioned
binary classifier whose decision boundary is the surface of the 3D shape. As each
shape is represented by a continuous field, it can be evaluated at arbitrary res-
olution, irrespective of the resolution of the training data and limitations in the
memory footprint.

One of the main challenges in implicit function learning lies in accurate
reconstruction of shape surfaces, especially around complex or fine structure.
Figure 1 shows some 3D shape reconstruction results where we can observe that
DeepSDF [30] fails to precisely reconstruct complex local details. Note that the
implicit function is less smooth in these areas and hence difficult for the network
to parameterize precisely. Furthermore, as the magnitudes of SDF values inside
small parts are usually close to zero, a tiny mistake may lead to a wrong sign,
resulting in inaccurate surface reconstruction.

Inspired by the works on curriculum learning [3,11], we aim to address this
problem in learning SDF by starting small : starting from easier geometry and
gradually increasing the difficulty of learning. In this paper, we propose a Cur-
riculum DeepSDF method for shape representation learning. We design a shape
curriculum where we first teach the network using coarse shapes, and gradually
move on to more complex geometry and fine structure once the network becomes
more experienced. In particular, our shape curriculum is designed according to
two criteria: surface accuracy and sample difficulty. We consider these two cri-
teria both important and complementary to each other for shape representation
learning: surface accuracy cares about the stringency in supervising with train-
ing loss, while sample difficulty focuses on the weights of hard training samples
containing complex geometry.
Surface Accuracy. We design a tolerance parameter ε that allows small errors
in estimating the surfaces. Starting with a relatively large ε, the network aims
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for a smooth approximation, focusing on the global structure of the target shape
and ignoring hard local details. Then, we gradually decrease ε to expose more
shape details until ε = 0. We also use a shallow network to reconstruct coarse
shapes at the beginning and then progressively add more layers to learn more
accurate details.
Sample Difficulty. Signs greatly matter in implicit function learning. The
points with incorrect sign estimations lead to significant errors in shape recon-
struction, suggesting that we treat these as hard samples during training. We
gradually increase the weights of hard and semi-hard1 training samples to make
the network more and more focused on difficult local details.

One advantage of curriculum shape representation learning is that, it provides
a training path for the network to start from coarse shapes and finally reach
fine-grained geometries. At the beginning, it is substantially more stable for
the network to reconstruct coarse surfaces with the complex details omitted.
Then, we continuously ask for more accurate shapes which are relatively simple
tasks, benefiting from the previous reconstruction results. Lastly, we focus on
hard samples to obtain complete reconstruction with precise shape details. This
training process can help avoid poor local minima as compared with learning to
reconstruct the precise complex shapes directly. Figure 1 shows that Curriculum
DeepSDF obtains better reconstruction accuracy than DeepSDF. Experimental
results illustrate the effectiveness of the designed shape curriculum. Code will
be available at https://github.com/haidongz-usc/Curriculum-DeepSDF.

In summary, the key contributions of this work are:

1) We design a shape curriculum for shape representation learning, starting from
coarse shapes to complex details. The curriculum includes two aspects of
surface accuracy and sample difficulty.

2) For surface accuracy, we introduce a tolerance parameter ε in the training
objective to control the smoothness of the learned surfaces. We also progres-
sively grow the network according to different training stages.

3) For sample difficulty, we define hard, semi-hard and easy training samples for
SDF learning based on sign estimations. We re-weight the samples to make
the network gradually focus more on hard local details.

2 Related Work

Implicit Function. Different from point-based, voxel-based, mesh-based and
multi-view methods which explicitly represent shape surfaces, implicit func-
tions aim to learn a continuous field and represent the shape with the iso-
surface. Conventional implicit function based methods include [4,29,41,46,47].
For example, Carr et al. [4] used polyharmonic Radial Basis Functions (RBFs)
to implicitly model the surfaces from point clouds. Shen et al. [41] created

1 Here, semi-hard samples are with the correct sign estimations but close to the bound-
ary. In practice, we also decrease the weights of easy samples to avoid overshooting.

https://github.com/haidongz-usc/Curriculum-DeepSDF
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implicit surfaces by moving least squares. In recent years, several deep learn-
ing based methods have been proposed to capture more complex topolo-
gies [6,12,13,15,22,23,27,28,30,36,52]. For example, Park et al. [30] proposed
DeepSDF by learning an implicit field where the magnitude represents the dis-
tance to the surface and the sign shows whether the point lies inside or outside
of the shape. Mescheder et al. [27] presented Occupancy Networks by approx-
imating the 3D continuous occupancy function of the shape, which indicates
the occupancy probability of each point. Chen and Zhang [6] proposed IM-
NET by only encoding the signs of SDF, which can be used for representation
learning (IM-AE) and shape generation (IM-GAN). Saito et al. [36] and Liu
et al. [23] learned implicit surfaces of 3D shapes from 2D images. These meth-
ods show promising results in 3D shape representation. However, the challenges
still remains to reconstruct the local details accurately. Instead of proposing new
implicit functions, our approach studies how to design a curriculum of shapes
for more effective model training.

Curriculum Learning. The idea of curriculum learning can be at least traced
back to [11]. Inspired by the learning system of humans, Elman [11] demon-
strated the importance of starting small in neural network training. Sanger [37]
extended the idea to robotics by gradually increasing the difficulty of the task.
Bengio et al. [3] further formalized this training strategy and explored curricu-
lum learning in various cases including vision and language tasks. They intro-
duced one formulation of curriculum learning by using a family of functions
Lμ(θ), where L0 is the highly smoothed version and L1 is the real objective.
One could start with L0 and gradually increase μ to 1, keeping θ at a local
minimum of Lμ(θ). They also explained the advantage of curriculum learning
as a continuation method [2], which could benefit the optimization of a non-
convex training criterion to find better local minima. Graves et al. [14] designed
an automatic curriculum learning method by automatically selecting the train-
ing path to address the sensitivity of progression mode. Recently, curriculum
learning has been successfully applied to varying tasks [8,18–21,38,40,50]. For
example, deep metric learning methods learn hierarchical mappings by gradu-
ally selecting hard training samples [9,25,44]. FaceNet [38] proposed an online
negative sample mining strategy for face recognition, which was improved by
DE-DSP [8] to learn a discriminative sampling policy. Progressive growing of
GANs [21,40] learned to sequentially generate images from low-resolution to
high-resolution, and also grew both generator and discriminator symmetrically.
Although curriculum learning has improved the performance of many tasks, the
problem of how to design a curriculum for 3D shape representation learning still
remains. Unlike 2D images where the pixels are regularly arranged, 3D shapes
usually have irregular structures, which makes the effective curriculum design
more challenging.
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3 Proposed Approach

Our shape curriculum is designed based on DeepSDF [30], which is a popular
implicit function based 3D shape representation learning method. In this section,
we first review DeepSDF and then describe the proposed Curriculum DeepSDF
approach. Finally, we introduce the implementation details.

3.1 Review of DeepSDF [30]

DeepSDF is trained on a set of N shapes {Xi}, where K points {xj} are sampled
around each shape Xi with the corresponding SDF values {sj} precomputed.
This results in K (point, SDF value) pairs:

Xi := {(xj , sj) : sj = SDF i(xj)}, (1)

A deep neural network fθ(zi, x) is trained to approximate SDF values of points
x, with an input latent code zi representing the target shape.

The loss function given zi, xj and sj is defined by the L1-norm between the
estimated and ground truth SDF values:

L(fθ(zi, xj), sj) = |clampδ(fθ(zi, xj)) − clampδ(sj)|, (2)

where clampδ(s) := min(δ,max(−δ, s)) uses a parameter δ to clamp an input
value s. For simplicity, we use s̄ to represent a clamping function with δ = 0.1
in the rest of the paper.

DeepSDF also designs an auto-decoder structure to directly pair a latent code
zi with a target shape Xi without an encoder. Please refer to [30] for more details.
At training time, zi is randomly initialized from N (0, 0.012) and optimized along
with the parameters θ of the network through back-propagation:

arg min
θ,zi

N∑

i=1

⎛

⎝
K∑

j=1

L(fθ(zi, xj), sj) +
1
σ2

||zi||22

⎞

⎠ , (3)

where σ = 10−2 is the regularization parameter.
At inference time, an optimal z can be estimated with the network fixed:

ẑ = arg min
z

K∑

j=1

L(fθ(z, xj), sj) +
1
σ2

||z||22. (4)

3.2 Curriculum DeepSDF

Different from DeepSDF which trains the network with a fixed objective all the
time, Curriculum SDF starts from learning smooth shape approximations and
then gradually strives for more local details. We carefully design the curriculum
from the following two aspects: surface accuracy and sample difficulty.
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Fig. 2. The comparison between original SDF and SDF with the tolerance parameter ε.
With the tolerance parameter ε, all the surfaces inside the tolerance zone are considered
correct. The training of Curriculum DeepSDF starts with a relative large ε and then
gradually reduces it until ε = 0.

Surface Accuracy. A smoothed approximation for a target shape could cap-
ture the global shape structure without focusing too much on local details, and
thus is a good starting point for the network to learn. With a changing smooth-
ness level at different training stages, more and more local details can be exposed
to improve the network. Such smoothed approximations could be generated by
traditional geometry processing algorithms. However, the generation process is
time-consuming, and it is also not clear whether such fixed algorithmic routines
could meet the needs of network training. In this paper, we address the problem
from another view by introducing surface error tolerance ε which represents the
upper bound of the allowed errors in the predicted SDF values. We observe that
starting with relatively high surface error tolerance, the network tends to omit
complex details and aims for a smooth shape approximation. Then, we gradually
reduce the tolerance to expose more details.

More specifically, we allow small mistakes for the SDF estimation within
the range of [−ε, ε] for Curriculum DeepSDF. In other words, all the estimated
SDF values whose errors are smaller than ε are considered correct without any
punishment, and we can control the difficulty of the task by changing ε. Figure 2
illustrates the physical meaning of the tolerance parameter ε. Compared with
DeepSDF which aims to reconstruct the exact surface of the shape, Curriculum
DeepSDF provides a tolerance zone with the thickness of 2ε, and the objective
becomes to reconstruct any surface in the zone. At the beginning of network
training, we set a relatively large ε which allows the network to learn general
and smooth surfaces in a wide tolerance zone. Then, we gradually decrease ε to
expose more details and finally set ε = 0 to predict the exact surface.

We can formulate the objective function with ε as follows:

Lε(fθ(zi, xj), sj) = max{|f̄θ(zi, xj) − s̄j | − ε, 0}, (5)

where (5) will degenerate to (2) if ε = 0.
Unlike most recent curriculum learning methods that rank training samples

by difficulty [18,50], our designed curriculum on shape accuracy directly modifies
the training loss. It follows the formulation in [3] and also has a clear physical



Curriculum DeepSDF 57

Fig. 3. The network architecture of Curriculum DeepSDF. We apply the same final
network architecture with DeepSDF for fair comparisons, which contains 8 fully con-
nected layers followed by hyperbolic tangent non-linear activation to obtain SDF value.
The input is the concatenation of latent vector z and 3D point x, which is also con-
catenated to the output of the fourth layer. When ε decreases during training, we add
one more layer to learn more precise shape surface.

meaning for the task of SDF estimation. It is also relevant to label smooth-
ing methods, where our curriculum has clear geometric meanings by gradually
learning more precise shapes. We summarize the two advantages of the tolerance
parameter based shape curriculum as follows:

1) We only need to change the hyperparameter ε to control the surface accuracy,
instead of manually creating series of smooth shapes. The network automat-
ically finds the surface that is easy to learn in the tolerance zone.

2) For any ε, the ground truth surface of the original shape is always an optimal
solution of the objective, which has good optimization consistency.

In addition to controlling the surface accuracy by the tolerance parameter, we
also use a shallow network to learn coarse shapes with a large ε, and gradually
add more layers to improve the surface accuracy when ε decreases. This idea is
mainly inspired by [21]. Figure 3 shows the network architecture of the proposed
Curriculum DeepSDF, where we employ the same network as DeepSDF for fair
comparisons. After adding a new layer with random initialization to the network,
the well-trained lower layers may suffer from sudden shocks if we directly train
the new network in an end-to-end manner. Inspired by [21], we treat the new
layer as a residual block with a weight of α, where the original link has a weight
of 1 − α. We linearly increase α from 0 to 1, so that the new layer can be faded
in the original network smoothly.

Sample Difficulty. In DeepSDF, the sampled points {xj} in Xi all share the
same weights in training, which presumes that every point is equally impor-
tant. However, this assumption may result in the following two problems for
reconstructing complex local details:

1) Points depicting local details are usually undersampled, and they could be
ignored by the network during training due to their small population. We
take the second lamp in Fig. 1 as an example. The number of sampled points
around the lamp rope is nearly 1/100 of all the sampled points, which is too
small to affect the network training.
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Fig. 4. Examples of hard, semi-hard and easy samples for (a) s > 0, and (b) s < 0.
In the figure, s is the ground truth SDF, and we define the difficulty of each sample
according to its estimation fθ(z, x).

2) In these areas, the magnitudes of SDF values are small as the points are
close to surfaces (e.g. points inside the lamp rope). Without careful empha-
sis, the network could easily predict the wrong signs. Followed by a surface
reconstruction method like Marching Cubes, the wrong sign estimations will
further lead to inaccurate surface reconstructions.

To address these issues, we weight the sampled points differently during
training. An intuitive idea is to locate all the complex local parts at first, and
then weight or sort the training samples according to some difficulty measure-
ment [3,18,50]. However, it is difficult to detect complex regions and rank the
difficulty of points exactly. In this paper, we propose an adaptive difficulty mea-
surement based upon the SDF estimation of each sample and re-weight the
samples to gradually emphasize more on hard and semi-hard samples on the fly.

Most deep embedding learning methods judge the difficulty of samples
according to the loss function [8,38]. However, the L1-norm loss can be very
small for the points with wrong sign estimations. As signs play an important
role in implicit representations, we directly define the hard and semi-hard sam-
ples based on their sign estimations. More specifically, we consider the points
with wrong sign estimations as hard samples, with the estimated SDF values
between zero and ground truth values as semi-hard samples, and the others as
easy samples. Figure 4 shows the examples. For the semi-hard samples, although
currently they obtain correct sign estimations, they are still at high risk of becom-
ing wrong as their predictions are closer to the boundary than the ground truth
positions.

To increase the weights of both hard and semi-hard samples, and also decrease
the weights of easy samples, we formulate the objective function as below:

Lε,λ(fθ(zi, xj), sj) =
(
1 + λsgn(s̄j)sgn(s̄j − f̄θ(zi, xj))

)
Lε(fθ(zi, xj), sj), (6)

where 0 ≤ λ < 1 is a hyperparameter controlling the importance of the hard
and semi-hard samples, sgn(v) = 1 if v ≥ 0 and −1 otherwise.

The physical meaning of (6) is that we increase the weights of hard and
semi-hard samples to 1 + λ, and also decrease the weights of easy samples to
1 − λ. Although we treat hard and semi-hard samples similarly, their properties
are different due to the varying physical meanings as we will demonstrate in the
experiments. Our hard sample mining strategy always targets at the weakness
of the current network rather than using the predefined weights. Still, (6) will
degenerate to (5) if we set λ = 0. Another understanding of (6) is that sgn(s̄j)
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Table 1. The training details of our method. Layer shows the number of fully connected
layers. Residual represents whether we use a residual block to add layers smoothly.

Epoch 0–200 200–400 400–600 600–800 800–1000 1000–1200 1200–2000

Layer 5 6 6 7 7 8 8

Residual × � × � × � ×
ε 0.025 0.01 0.01 0.0025 0.0025 0 0

λ 0 0.1 0.1 0.2 0.2 0.5 0.5

shows the ground truth sign while sgn(s̄j − f̄θ(zi, xj)) indicates the direction of
optimization. We increase the weights if this direction matches the ground truth
sign and decrease the weights otherwise.

We also design a curriculum for sample difficulty by controlling λ at different
training stages. At the beginning of training, we aim to teach the network global
structures and allow small errors in shape geometry. To this end, we set a rela-
tively small λ to make the network equally focused on all training samples. Then,
we gradually increase λ to emphasize more on hard and semi-hard samples, which
helps the network to address its weaknesses and reconstruct better local details.
Strictly speaking, the curriculum of sample difficulty is slightly different from
the formulation in [3], as it starts from the original task and gradually increases
the difficulty to a harder objective. However, they share similar thoughts and
the ablation study also shows the effectiveness of the designed curriculum.

3.3 Implementation Details

In order to make fair comparisons, we applied the same training data, training
epochs and network architecture as DeepSDF [30]. More specifically, we prepared
the input samples Xi from each shape mesh which was normalized to a unit
sphere. We sampled 500,000 points from each shape. The points were sampled
more aggressively near the surface to capture more shape details. The learning
rate for training the network was set as Nb × 10−5 where Nb is the batch size
and 10−3 for the latent vectors. We trained the models for 2,000 epochs. Table 1
presents the training details, which will degenerate to DeepSDF if we train all
the 8 fully connected layers by setting ε = λ = 0 from beginning to the end.

4 Experiments

In this section, we perform a thorough comparison of our proposed Curricu-
lum DeepSDF to DeepSDF along with comprehensive ablation studies for the
shape reconstruction task on the ShapeNet dataset [5]. We use the missing part
recovery task as an application to demonstrate the usage of our method.

Following [30], we report the standard distance metrics of mesh reconstruc-
tion including the mean and the median of Chamfer distance (CD), mean Earth
Mover’s distance (EMD) [35], and mean mesh accuracy [39]. For evaluating CD,
we sample 30,000 points from mesh surfaces. For evaluating EMD, we follow [30]
by sampling 500 points from mesh surfaces due to a high computation cost. For
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evaluating mesh accuracy, following [30,39], we sample 1,000 points from mesh
surfaces and compute the minimum distance d such that 90% of the points lie
within d of the ground truth surface.

4.1 Shape Reconstruction

We conducted experiments on the ShapeNet dataset [5] for the shape recon-
struction task. In the following, we will introduce quantitative results, ablation
studies and visualization results.
Quantitative Results. We compare our method to the state-of-the-art meth-
ods, including AtlasNet [16] and DeepSDF [30] in Table 2. We also include sev-
eral variants of our own method for ablation studies. Ours, representing the
proposed Curriculum DeepSDF method, performs a complete curriculum learn-
ing considering both surface accuracy and sample difficulty. As variants of our
method, ours-sur and ours-sur w/o only employ the surface accuracy based cur-
riculum learning with/without progressively growth of the network layers, where
ours-sur w/o uses the fixed architecture with the deepest size; ours-sam only
employs sample difficulty based curriculum learning. For a fair comparison, we
evaluated all SDF-based methods following the same training and testing pro-
tocols as DeepSDF, including training/test split, the number of training epochs,
and network architecture, etc. For AtlasNet-based methods, we directly report
the numbers from [30]. Here are the three key observations from Table 2:

1) Compared to vanilla DeepSDF, curriculum learning on either surface accu-
racy or sample difficulty can lead to a significant performance gain. The best
performance is achieved by simultaneously performing both curricula.

2) In general, the curriculum of sample difficulty helps more on lamp and plane
as these categories suffer more from reconstructing slender or thin structures.
The curriculum of surface accuracy is more effective for the categories of chair,
sofa and table where shapes are more regular.

3) As we only sample 500 points for computing EMD, even the ground truth
mesh has non-zero EMD to itself rising from the randomness in point sam-
pling. Our performance is approaching the upper bound on plane and sofa.

Hard Sample Mining Strategies. We conducted ablation studies for a more
detailed analysis of different hard sample mining strategies on the lamp category
due to its large variations and complex shape details. In the curriculum of sample
difficulty, we gradually increase λ to make the network more and more focused
on the hard samples. We compared it with the simple strategy by fixing a single
λ. Table 3 shows that the performance improves as λ increases until reaching a
sweet spot, after which further increasing λ could hurt the performance. The best
result is achieved by our method which gradually increases λ as it encourages
the network to focus more and more on hard details.

For hard sample mining, we increase the weights of hard and semi-hard sam-
ples to 1 + λ and also decrease the weights of easy samples to 1 − λ. As various
similar strategies can be used, we demonstrate the effectiveness of our design in
Table 4. We observe that both increasing the weights of semi-hard samples and
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Table 2. Reconstructing shapes from the ShapeNet test set. Here we report
shape reconstruction errors in term of several distance metrics on five ShapeNet classes.
Note that we multiply CD by 103 and mesh accuracy by 101. The average column shows
the average distance and the relative column shows the relative distance reduction
compared to DeepSDF. For all metrics except for relative, the lower, the better.

CD, mean Lamp Plane Chair Sofa Table Average Relative

AtlasNet-Sph 2.381 0.188 0.752 0.445 0.725 0.730 -

AtlasNet-25 1.182 0.216 0.368 0.411 0.328 0.391 -

DeepSDF 0.776 0.143 0.243 0.117 0.424 0.319 -

Ours-Sur w/o 0.743 0.109 0.162 0.110 0.343 0.257 19.4%

Ours-Sur 0.639 0.086 0.157 0.108 0.327 0.239 25.1%

Ours-Sam 0.592 0.078 0.175 0.113 0.342 0.246 22.9%

Ours 0.473 0.070 0.156 0.105 0.304 0.216 32.3%

CD, median

AtlasNet-Sph 2.180 0.079 0.511 0.330 0.389 0.490 -

AtlasNet-25 0.993 0.065 0.276 0.311 0.195 0.267 -

DeepSDF 0.178 0.061 0.098 0.081 0.052 0.078 -

Ours-Sur w/o 0.172 0.048 0.071 0.077 0.047 0.066 15.4%

Ours-Sur 0.147 0.045 0.064 0.077 0.051 0.063 19.2%

Ours-Sam 0.139 0.040 0.066 0.080 0.050 0.063 19.2%

Ours 0.105 0.033 0.064 0.069 0.048 0.056 28.2%

EMD, mean

GT 0.034 0.026 0.041 0.044 0.041 0.039 -

AtlasNet-Sph 0.085 0.038 0.071 0.050 0.060 0.060 -

AtlasNet-25 0.062 0.041 0.064 0.063 0.073 0.064 -

DeepSDF 0.066 0.035 0.055 0.051 0.057 0.053 -

Ours-Sur w/o 0.057 0.032 0.048 0.046 0.049 0.046 13.2%

Ours-Sur 0.055 0.027 0.048 0.046 0.048 0.045 15.1%

Ours-Sam 0.055 0.027 0.053 0.050 0.051 0.048 9.4%

Ours 0.052 0.026 0.048 0.044 0.048 0.044 17.0%

Mesh acc, mean

AtlasNet-Sph 0.540 0.130 0.330 0.170 0.320 0.290 -

AtlasNet-25 0.420 0.130 0.180 0.170 0.140 0.172 -

DeepSDF 0.155 0.044 0.104 0.041 0.120 0.097 -

Ours-Sur w/o 0.133 0.035 0.089 0.040 0.104 0.083 14.4%

Ours-Sur 0.121 0.034 0.082 0.039 0.098 0.078 19.6%

Ours-Sam 0.135 0.031 0.083 0.036 0.087 0.074 23.7%

Ours 0.103 0.031 0.080 0.036 0.087 0.071 26.8%
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Table 3. Experimental comparisons with using fixed λ for hard sample mining. The
method degenerates to ours-sur when λ = 0. CD is multiplied by 103.

λ 0 0.05 0.10 0.25 0.50 0.75 Ours

CD, mean 0.639 0.606 0.549 0.538 0.508 0.567 0.473

Table 4. Experimental comparisons of different hard sample mining strategies. In the
table, H, S and E are the hard, semi-hard and easy samples, respectively. For the
symbols, ↑ is to increase the weights to 1 + λ, ↓ is to decrease the weights to 1 − λ
and - is to maintain the weights. H(↑)S(↑)E(↓) is the sampling strategy used in our
method, while H(-)S(-)E(-) degenerates to ours-sur. CD is multiplied by 103.

Strategy H(-)S(-)E(-) H(-)S(-)E(↓) H(-)S(↑)E(-) H(-)S(↑)E(↓)

CD, mean 0.639 0.563 0.587 0.508

Strategy H(↑)S(-)E(-) H(↑)S(-)E(↓) H(↑)S(↑)E(-) H(↑)S(↑)E(↓)

CD, mean 0.676 0.661 0.512 0.473

decreasing the weights of easy samples can boost the performance. However, it
is risky to only increase weights for hard samples excluding semi-hard ones in
which case the performance drops. One possible reason is that focusing too much
on hard samples may lead to more wrong sign estimations for the semi-hard ones
as they are close to the boundary. Hence, it is necessary to increase the weights
of semi-hard samples as well to maintain their correct sign estimations. The best
performance is achieved by simultaneously increasing the weights of hard and
semi-hard samples and decreasing the weights of easy ones.
Number of Points for EMD. In Table 2, we followed [30] by sampling 500
points to compute accurate EMD, which would lead to relatively large distance
even for ground truth meshes. To this end, we increase the number of sampled
points during EMD computation and tested the performance on lamps. Results
in Table 5 show that the number of sampled points can affect EMD due to the

Table 5. Comparison of mean of EMD on the lamp category of the ShapeNet dataset
with varying numbers of sampled points.

Number of points 500 2000 5000 10000

GT 0.034 0.008 0.008 0.004

DeepSDF 0.066 0.056 0.052 0.051

Ours-Sur w/o 0.057 0.053 0.050 0.048

Ours-Sur 0.055 0.052 0.049 0.048

Ours-Sam 0.055 0.053 0.050 0.048

Ours 0.052 0.051 0.047 0.046
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Fig. 5. The visualization of shape reconstruction at the end of each training stage. From
left to right: ground truth, 200 epochs, 600 epochs, 1000 epochs, and 2000 epochs.

Table 6. Experimental comparisons under different ratios of removed points. CD and
mesh accuracy are multiplied by 103 and 101, respectively.

Method 5% 10% 15% 20% 25%

\Metric CD Mesh CD Mesh CD Mesh CD Mesh CD Mesh

Plane

DeepSDF 0.163 0.056 0.229 0.066 0.217 0.067 0.224 0.069 0.233 0.080

Ours 0.095 0.032 0.124 0.044 0.149 0.052 0.163 0.062 0.192 0.072

Sofa

DeepSDF 0.133 0.045 0.137 0.047 0.149 0.050 0.169 0.058 0.196 0.066

Ours 0.110 0.037 0.120 0.041 0.143 0.046 0.165 0.053 0.196 0.061

Lamp

DeepSDF 2.08 0.230 3.10 0.241 3.50 0.286 4.18 0.307 4.79 0.331

Ours 1.96 0.167 2.87 0.195 3.27 0.231 3.52 0.277 4.07 0.320

randomness in sampling, and the EMD of resampled ground truth decreases
when using more points. Our method continuously obtains better results.
Visualization Results. We visualize the shape reconstruction results in Fig. 1
to qualitatively compare DeepSDF and Curriculum DeepSDF. We observe that
Curriculum DeepSDF reconstructs more accurate shape surfaces. The curricu-
lum of surface accuracy helps to better capture the general structure, and sample
difficulty encourages the recovery of complex local details. We also provide the
reconstructed shapes at key epochs in Fig. 5. Curriculum DeepSDF learns coarse
shapes at early stages which omits complex details. Then, it gradually refines
local parts based on the learned coarse shapes. This training procedure improves
the performance of the learned shape representation.

4.2 Missing Part Recovery

One of the main advantages of the DeepSDF framework is that we can optimize a
shape code based upon a partial shape observation, and then render the complete
shape through the learned network. In this subsection, we compare DeepSDF
with Curriculum DeepSDF on the task of missing part recovery.
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Fig. 6. The visualization results of missing part recovery. The green points are the
remaining points that we use to recover the whole mesh. From top to bottom: ground
truth, DeepSDF, and Curriculum DeepSDF. (Color figure online)

To create partial shapes with missing parts, we remove a subset of points
from each shape Xi As random point removal may still preserve the holistic
structures, we remove all the points in a local area to create missing parts.
More specifically, we randomly select a point from the shape and then remove
a certain quantity of its nearest neighbor points including itself, so that all the
points within a local range can be removed. We conducted the experiments on
three ShapeNet categories: plane, sofa and lamp. In these categories, plane and
sofa have more regular and symmetric structures, while lamp is more complex
and contains large variations. Table 6 shows that part removal largely affects the
performance on the lamp category compared with plane and sofa, and Curricu-
lum DeepSDF continuously obtains better results than DeepSDF under different
ratios of removed points. A visual comparison is provided in Fig. 6.

5 Conclusion

In this paper, we have proposed Curriculum DeepSDF by designing a shape
curriculum for shape representation learning. Inspired by the learning principle
of humans, we organize the learning task into a series of difficulty levels from
surface accuracy and sample difficulty. For surface accuracy, we design a tol-
erance parameter to control the global smoothness, which gradually increases
the accuracy of the learned shape with more layers. For sample difficulty, we
define hard, semi-hard and easy training samples in SDF learning, and grad-
ually re-weight the samples to focus more and more on difficult local details.
Experimental results show that our method largely improves the performance of
DeepSDF with the same training data, training epochs and network architecture.
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