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Abstract. Image generation from scene description is a cornerstone
technique for the controlled generation, which is beneficial to applica-
tions such as content creation and image editing. In this work, we aim
to synthesize images from scene description with retrieved patches as
reference. We propose a differentiable retrieval module. With the dif-
ferentiable retrieval module, we can (1) make the entire pipeline end-
to-end trainable, enabling the learning of better feature embedding for
retrieval; (2) encourage the selection of mutually compatible patches with
additional objective functions. We conduct extensive quantitative and
qualitative experiments to demonstrate that the proposed method can
generate realistic and diverse images, where the retrieved patches are
reasonable and mutually compatible.

1 Introduction

Image generation from scene descriptions has received considerable attention.
Since the description often requests multiple objects in a scene with complicated
relationships between objects, it remains challenging to synthesize images from
scene descriptions. The task requires not only the ability to generate realistic
images but also the understanding of the mutual relationships among different
objects in the same scene. The usage of the scene description provides flexible
user-control over the generation process and enables a wide range of applications
in content creation [18] and image editing [24] (Fig. 1).

Taking advantage of generative adversarial networks (GANs) [5], recent
research employs conditional GAN for the image generation task. Various con-
ditional signals have been studied, such as scene graph [13], bounding box [40],

H.-Y. Tseng, H.-Y. Lee—Equal contribution. Work done during their internships at
Google Research.

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-58598-3 15) contains supplementary material, which is
available to authorized users.

c© Springer Nature Switzerland AG 2020
A. Vedaldi et al. (Eds.): ECCV 2020, LNCS 12353, pp. 242–257, 2020.
https://doi.org/10.1007/978-3-030-58598-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58598-3_15&domain=pdf
https://doi.org/10.1007/978-3-030-58598-3_15
https://doi.org/10.1007/978-3-030-58598-3_15
https://doi.org/10.1007/978-3-030-58598-3_15


RetrieveGAN: Image Synthesis via Differentiable Patch Retrieval 243

Fig. 1. Image synthesize from retrieved examples. We propose the RetrieveGAN
model that takes as input the scene graph description and learns to 1) select mutually
compatible image patches via a differentiable retrieval process and 2) synthesize the
output image from the retrieved patches.

semantic segmentation map [24], audio [19], and text [36]. A stream of work has
been driven by parametric models that rely on the deep neural network to cap-
ture and model the appearance of objects [13,36]. Another stream of work has
recently emerged to explore the semi-parametric model that leverages a memory
bank to retrieve the objects for synthesizing the image [25,37].

In this work, we focus on the semi-parametric model in which a memory
bank is provided for the retrieval purpose. Despite the promising results, existing
retrieval-based image synthesis methods face two issues. First, the current models
require pre-defined embeddings since the retrieval process is non-differentiable.
The pre-defined embeddings are independent of the generation process and thus
cannot guarantee the retrieved objects are suitable for the surrogate genera-
tion task. Second, oftentimes there are multiple objects to be retrieved given a
scene description. However, the conventional retrieval process selects each patch
independently and thus neglect the subtle mutual relationship between objects.

We propose RetrieveGAN, a conditional image generation framework with a
differentiable retrieval process to address the issues. First, we adopt the Gumbel-
softmax [11] trick to make the retrieval process differentiable, thus enable opti-
mizing the embedding through the end-to-end training. Second, we design an
iterative retrieval process to select a set of compatible patches (i.e., objects) for
synthesizing a single image. Specifically, the retrieval process operates iteratively
to retrieve the image patch that is most compatible with the already selected
patches. We propose a co-occurrence loss function to boost the mutual compat-
ibility between the selected patches. With the proposed differentiable retrieval
design, the proposed RetrieveGAN is capable of retrieving image patches that
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1) considers the surrogate image generation quality, and 2) are mutually com-
patible for synthesizing a single image.

We evaluate the proposed method through extensive experiments conducted
on the COCO-stuff [2] and Visual Genome [16] datasets. We use three met-
rics, Fréchet Inception Distance (FID) [9], Inception Score (IS) [26], and the
Learned Perceptual Image Patch Similarity (LPIPS) [39], to measure the real-
ism and diversity of the generated images. Moreover, we conduct the user study
to validate the proposed method’s effectiveness in selecting mutually compatible
patches.

To summarize, we make the following contributions in this work:

• We propose a novel semi-parametric model to synthesize images from the
scene description. The proposed model takes advantage of the complementary
strength of the parametric and non-parametric techniques.

• We demonstrate the usefulness of the proposed differentiable retrieval module.
The differentiable retrieval process can be jointly trained with the image
synthesis module to capture the relationships among the objects in an image.

• Extensive qualitative and quantitative experiments demonstrate the effi-
cacy of the proposed method to generate realistic and diverse images where
retrieved objects are mutually compatible.

2 Related Work

Conditional Image Synthesis. The goal of the generative models is to model
a data distribution given a set of samples from that distribution. The data
distribution is either modeled explicitly (e.g., variational autoencoder [15]) or
implicitly (e.g., generative adversarial networks [5]). On the basis of uncon-
ditional generative models, conditional generative models target synthesizing
images according to additional context such as image [4,17,23,30,41], segmenta-
tion mask [10,24,33,43], and text. The text conditions are often expressed in two
formats: natural language sentences [36,38] or scene graphs [13]. Particularly, the
scene graph description is in a well-structured format (i.e., a graph with a node
representing objects and edges describing their relationship), which mitigates
the ambiguity in natural language sentences. In this work, we focus on using the
scene graph description as our input for the conditional image synthesis.
Image Synthesis from Scene Descriptions. Most existing methods employ
parametric generative models to tackle this task. The appearance of objects and
relationships among objects are captured via a graph convolution network [13,21]
or a text embedding network [20,29,36,38,42], then images are synthesized with
the conditional generative approach. However, current parametric models syn-
thesize objects at pixel-level, thus failing to generate realistic images for compli-
cated scene descriptions. More recent frameworks [25,37] adopt semi-parametric
models to perform generation at patch-level based on reference object patches.
These schemes retrieve reference patches from an external bank and use them
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to synthesize the final images. Although the retrieval module is a crucial com-
ponent, existing works all use predefined retrieval modules that cannot be opti-
mized during the training stage. In contrast, we propose a novel semi-parametric
model with a differentiable retrieval process that is end-to-end trainable with the
conditional generative model.
Image Retrieval. Image retrieval has been a classical vision problem with
numerous applications such as product search [1,6,22], multimodal image
retrieval [3,32], image geolocalization [7], event detection [12], among others.
Solutions based on deep metric learning use the triplet loss [8,31] or softmax
cross-entropy objective [32] to learn a joint embedding space between the query
(e.g., text, image, or audio) and the target images. However, there is no prior
work studying learning retrieval models for the image synthesis task. Differ-
ent from the existing semi-parametric generative models [29,37] that use the
pre-defined (or fixed) embedding to retrieve image patches, we propose a dif-
ferentiable retrieval process that can be jointly optimized with the conditional
generative model.

Fig. 2. Method overview. (a) Our model takes as input the scene graph description
and sequentially performs scene graph encoding, patch retrieval, and image generation
to synthesize the desired image. (b) Given a set of candidate patches, we first extract
the features using the patch embedding function. We then randomly select a patch
feature as the query feature for the iterative retrieval process. At each step of the iter-
ative procedure, we select the patch that is most compatible with the already selected
patches. The iteration ends as all the objects are assigned with a selected patch.
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3 Methodology

3.1 Preliminaries

Our goal is to synthesize an image x ∈ R
H×W×3 from the input scene graph g

by compositing appropriate image patches retrieved from the image patch bank.
As the overview shown in Fig. 2, the proposed RetrieveGAN framework consists
of three stages: scene graph encoding, patch retrieval, and image generation.
The scene graph encoding module processes the input scene graph g, extracts
features, and predicts bounding box coordinates for each object oi defined in
the scene graph. The patch retrieval module then retrieves an image patch for
each object oi from the image patch bank. The goal of the retrieval module is to
maximize the compatibility of all retrieved patches, thus improving the quality
of the image synthesized by the subsequent image generation module. Finally,
the image generation module takes as input the selected patches along with the
predicted bounding boxes to synthesize the final image.
Scene Graph. Serving as the input data to our framework, the scene graph
representation [14] describes the objects in a scene and the relationships between
these objects. We denote a set of object categories as C and relation categories as
R. A scene graph g is then defined as a tuple ({oi}n

i=1, {ei}m
i=1), where {oi|oi ∈

C}n
i=1 is a set of objects in the scene. The notation {ei}m

i=1 denotes a set of direct
edges in the form of ei = (oj , rk, ot) where oj , ot ∈ C and rk ∈ R.
Image Patch Bank. The second input to our model is the memory bank con-
sisting of all available real image patches for synthesizing the output image.
Following PasteGAN [37], we use the ground-truth bounding box to extract the
images patches M = {pi ∈ R

h×w×3} from the training set. Note that we relax
the assumption in PasteGAN and do not use the ground-truth mask to segment
the image patches in the COCO-Stuff [2] dataset.

3.2 Scene Graph Encoding

The scene graph encoding module aims to process the input scene graph and
provides necessary information for the later patch retrieval and image generation
stages. We detail the process of scene graph encoding as follows:
Scene Graph Encoder. Given an input scene graph g = ({oi}n

i=1, {ei}m
i=1),

the scene graph encoder Eg extracts the object features, namely {vi}n
i=1 =

E(({oi}n
i=1, {ei}m

i=1)). Adopting the strategy in sg2im [13], we construct the scene
graph encoder with a series of graph convolutional networks (GCNs). We further
discuss the detail of the scene graph encoder in the supplementary document.
Bounding Box Predictor. For each object oi, the bounding box predictor
learns to predict the bounding box coordinates b̂i = (x0, y0, x1, y1) from the
object features vi. We use a series of fully-connected layers to build the predictor.
Patch Pre-filtering. Since there are a large number of image patches in
the image patch bank, performing the retrieval on the entire bank online is
intractable in practice due to the memory limitation. We address this problem
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by pre-filtering a set of k candidate patches M(oi) = {p1i , p
2
i , · · · , pk

i } for each
object oi. And the later patch retrieval process is conducted on the pre-filtered
candidate patches as opposed to the entire patch bank. To be more specific, we
use the pre-trained GCN in sg2im [13] to obtain the candidate patches for each
object. We use the corresponding scene graph to compute the GCN feature. The
computed GCN feature is used to select similar candidate patches M(oi) with
respect to the negative �2 distance.

3.3 Patch Retrieval

The patch retrieval aims to select a number of mutually compatible patches for
synthesizing the output image. We illustrate the overall process on the bottom
side of Fig. 2. Given the pre-filtered candidate patches {M(oi)}n

i=1, we first use
a patch embedding function Ep to extract the patch features. Starting with a
randomly sampled patch feature as a query, we propose an iterative retrieval pro-
cess to select compatible patches for all objects. In the following, we 1) describe
how a single retrieval is operated, 2) introduce the proposed iterative retrieval
process, and 3) discuss the objective functions used to facilitate the training of
the patch retrieval module.
Differentiable Retrieval for a Single Object. Given the query feature fqry,
we aim to sample a single patch from the candidate set M(o) = {p1, p2, · · · , pk}
for object o. Let π ∈ R

k
>0 be the categorical variable with probabilities P (x =

i) ∝ πi which indicates the probability of selecting the i-th patch from the
bank. To compute πi, we calculate the �2 distance between the query feature
and the corresponding patch feature, namely πi = e−‖fqry−Ep(p

i;θEp )‖2 , where
Ep is the embedding function and θEp

is the learnable mode parameter. The
intuition is that the candidate patch with smaller feature distance to the query
feature should be sampled with higher probability. By optimizing θEp

with our
loss functions, we hope our model is capable of retrieving compatible patches. As
we are sampling from a categorical distribution, we use the Gumbel-Max trick
[11] to sample a single patch:

arg max
i

[P (x = i)] = arg max
i

[gi + log πi] = arg max
i

[π̂i], (1)

where gi = − log(− log(ui)) is the re-parameterization term and ui ∼
Uniform(0, 1). To make the above process differentiable, the argmax operation
is approximated with the continuous softmax operation:

s = softmax(π̂) =
exp(π̂i/τ)

∑k
q=1 exp(π̂q/τ)

, (2)

where τ is the temperature controlling the degree of the approximation.1

1 When τ is small, we found it is useful to make the selection variable s uni-modal. This
can also be achieved by post-processing (e.g., thresholding) the softmax outputs.
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Iterative Differentiable Retrieval for Multiple Objects. Rather than
retrieving only a single image patch, the proposed framework needs to select
a subset of n patches for the n objects defined in the input scene graph. There-
fore, we adopt the weighted reservoir sampling strategy [35] to perform the subset
sampling from the candidate patch sets. Let M = {pi|i = 1, . . . , n × k} denote a
multiset (with possible duplicated elements) consisting of all candidates patches
in which n is the number of objects and k is the size of each candidate patch
set. We leave the preliminaries on weighted reservoir sampling in the supplemen-
tary materials. In our problem, we first compute the vector π̂i defined in (1) for
all patches. We then iteratively apply n softmax operations over π̂ to approxi-
mate the top-k selection. Let π̂

(j)
i denote the probability of sampling patch pi

at iteration j and π̂
(1)
i ← π̂i. The probability is iteratively updated by:

π̂
(j+1)
i ← π̂

(j)
i + log(1 − s

(j)
i ), (3)

where s
(j)
i = softmax(π̂(j))i computed by (2). Essentially, (3) sets the probability

of the selected patch to negative infinity, thus ensures this patch will not be cho-
sen again. After n iterations, we compute the relaxed n-hot vector s =

∑n
j=1 s(j),

where si ∈ [0, 1] indicates the score of selecting the i-th patch and
∑|M |

i=1 si = n.
The entire process is differentiable with respect to the model parameters.

We make two modifications to the above iterative process based on practical
consideration. First, our candidate multiset M = {pi}n×k

i=1 is formed by n groups
of pre-filtered patches where every object has a group k patches. Since we are
only allowed to retrieve a single patch from a group, we modify (3) by:

π̂
(j+1)
i ← π̂

(j)
i + log(1 − max

t
[s(j)t ]) ∀t such that m−1(pi) = t, (4)

where we denote m−1(pj) = i if patch pj in M is pre-fetched by the object oi. (4)
uses max pooling to disable selecting multiple patches from the same group. Sec-
ond, to incorporate the prior knowledge that compatible images patches tend to
lie closer in the embedding space, we use a greedy strategy to encourage selecting
image patches that are compatible with the already selected ones. We detail this
process in Fig. 2(b). To be more specific, at each iteration, the features of the
selected patches are aggregated by average pooling to update the query fqry.
π and π̂ is also recomputed accordingly after the query update. This leads to
a greedy strategy encouraging the selected patches to be visually or semanti-
cally similar in the feature space. We summarize the overall retrieval process in
Algorithm 1.

As the retrieval process is differentiable, we can optimize the retrieval mod-
ule (i.e., patch embedding function Ep) with the loss functions (e.g., adversarial
loss) applied to the following image generation module. Moreover, we incorporate
two additional objectives to facilitate the training of iterative retrieval process:
ground-truth selection loss Lsel

gt and co-occurrence loss Lsel
occur.

Ground-Truth Selection Loss. As the ground-truth patches are available at
the training stage, we add them to the candidate set M . Given one of the ground-
truth patch features as the query feature fqry, the ground-truth selection loss
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Algorithm 1. Iterative Differential Retrieval
Input : Candidate patches M = {pi}n×k

i=1 for n objects and each object has k
pre-filtered patches.

Output: relaxed n-hot vector s where
∑|M|

i=1 si = n and 0 ≤ si ≤ 1.

1 for i = 1, . . . , |M | do fi = Ep(pi) // Get patch features

2 Randomly select a patch feature to initialize the query fqry

// Iterative patch retrieval

3 for t = 1, . . . , n do
4 for i = 1, . . . , |M | do
5 πi = e−‖fi−fqry‖2 // Calculate π according to the query

// Gumbel-Max trick

6 ui ← Uniform(0, 1)
7 π̂i ← − log(− log(ui)) + log(πi)

// Disable other patches in the selected group

8 π̂i ← π̂i + log(1 − maxj [s
(t−1)
j ]) ∀j such that m−1(pi) = j

9 end

10 for i = 1, . . . , |M | do s
(t)
i = exp(π̂i/τ)

∑|M|
q=1 exp(π̂q/τ)

// Softmax operation

11 fqry = avg(fqry,
∑|M|

i=1 s
(t)
i fi) // Update the query

12 end

13 return the relaxed n-hot vector s(n)

Lsel
gt encourages the retrieval process to select the ground-truth patches for the

other objects in the input scene graph.
Co-occurrence Penalty. We design a co-occurrence loss to ensure the mutual
compatibility between the retrieved patches. The core idea is to minimize the
distances between the retrieved patches in a co-occurrence embedding space.
Specifically, we first train a co-occurrence embedding function Foccur using the
patches cropped from the training images with the triplet loss [34]. The distance
on the co-occurrence embedding space between the patches sampled from the
same image is minimized, while the distance between the patches cropped from
the different images is maximized. Then the proposed co-occurrence loss is the
pairwise distance between the retrieved patches on the co-occurrence embedding
space:

Lsel
occur =

∑

i,j

d(Foccur(pi), Foccur(pj)), (5)

where pi and pj are the patches retrieved by the iterative retrieval process.
Limitations vs. Advantages. The size of the candidate patches considered by
the proposed retrieval process is currently limited by the GPU memory. There-
fore, we cannot perform the differentiable retrieval over the entire memory bank.
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Nonetheless, the differentiable mechanism and iterative design enable us to train
the retrieval process using the abovementioned loss functions that maximize the
mutual compatibility of the selected patches.

3.4 Image Generation

Given selected patches after the differentiable patch retrieval process, the image
generation module synthesizes the realistic image with the selected patches as
reference. We adopt a similar architecture to PasteGAN [37] as our image genera-
tion module. Please refer to the supplementary materials for details regarding the
image generation module. We use two discriminators Dimg and Dobj to encour-
age the realism of the generated images on the image-level and object-level,
respectively. Specifically, the adversarial loss can be expressed as:

Limg
adv = Ex[log Dimg(x)] + Ex̂[log (1 − Dimg(x̂))],

Lobj
adv = Ep[log Dobj(p)] + Ep̂[log (1 − Dobj(p̂))],

(6)

where x and p denote the real image and patch, whereas x̂ and p̂ represent the
generated image and the patch crop from the generated image, respectively.

3.5 Training Objective Functions

In addition to the abovementioned loss functions, we use the following loss func-
tions during the training phase:
Bounding Box Regression Loss. We penalize the prediction of the bounding
box coordinates with �1 distance Lbbx =

∑n
i=1‖bi − b̂i‖1.

Image Reconstruction Loss. Given the ground-truth patches and the ground-
truth bounding box coordinates, the image generation module should recover the
ground-truth image. The loss Limg

recon is an �1 distance measuring the difference
between the recovered and ground-truth images.
Auxiliary Classification Loss. We adopt the auxiliary classification loss Lobj

ac

to encourage the generated patches to be correctly classified by the object dis-
criminator Dobj .
Perceptual Loss. The perceptual loss is computed as the distance in the pre-
trained VGG [27] feature space. We apply the perceptual losses Limg

p , Lobj
p on

both image and object levels to stabilize the training procedure.
The full loss functions for training our model is:

L = λsel
gt Lsel

gt + λsel
occurL

sel
occur + λimg

advL
img
adv + λimg

reconL
img
recon + λimg

p Limg
p +

λobj
advL

obj
adv + λobj

ac Lobj
ac + λobj

p Lobj
p + λbbxLbbx,

(7)

where λ controls the importance of each loss term. We describe the implemen-
tation detail of the proposed approach in the supplementary document.
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4 Experimental Results

Datasets. The COCO-Stuff [2] and Visual Genome [16] datasets are standard
benchmark datasets for evaluating scene generation models [13,37,40]. We use
the image resolution of 128×128 for all the experiments. Except for the image res-
olution, we follow the protocol in sg2im [13] to pre-process and split the dataset.
Different from the PasteGAN [37] approach, we do not access the ground-truth
mask for segmenting the image patches.
Evaluated Methods. We compare the proposed approach to three parametric
generation models and one semi-parametric model in the experiments:

– sg2im [13]: The sg2im framework takes as input a scene graph and learns to
synthesize the corresponding image.

– AttnGAN [36]: As the AttnGAN method synthesizes the images from text,
we convert the scene graph to the corresponding text description. Specifically,
we convert each relationship in the graph into a sentence, and link every
sentence via the conjunction word “and”. We train the AttnGAN model on
these converted sentences.

– layout2im [40]: The layout2im scheme takes as input the ground-truth
bounding boxes to perform the generation. For a fair comparison, we use the
ground-truth bounding box coordinate as the input data for other methods,
which we denote GT in the experimental results.

– PasteGAN [37]: The PasteGAN approach is most related to our work as it
uses the pre-trained embedding function to retrieve candidate patches.

Evaluation Metrics. We use the following metrics to measure the realism and
diversity of the generated images:

Table 1. Quantitative Comparisons. We evaluate all methods on the COCO-Stuff
and Visual Genome datasets using the FID, IS, and DS metrics. The first row shows the
results of models that predict bounding boxes during the inference time. The second
row shows the results of models that take ground-truth bounding as inputs during the
inference time.

Datasets COCO-stuff Visual genome

FID ↓ IS ↑ DS ↑ FID ↓ IS ↑ DS ↑
sg2im [13] 136.8 4.1±0.1 0.02±0.0 126.9 5.1±0.1 0.11±0.1

AttnGAN [36] 72.8 8.4±0.2 0.14±0.1 114.6 10.4±0.2 0.27±0.2

PasteGAN [37] 59.8 8.8±0.3 0.43±0.1 81.8 6.7±0.2 0.30±0.1

RetrieveGAN (Ours) 43.2 10.6±0.6 0.34±0.1 70.3 7.7±0.1 0.24±0.1

sg2im (GT) 79.9 8.5±0.1 0.02±0.0 111.9 5.8±0.1 0.13±0.1

layout2im [40] 45.3 10.2±0.6 0.29±0.1 44.0 9.3±0.4 0.29±0.1

PasteGAN (GT) 54.9 9.6±0.2 0.38±0.1 68.1 6.7±0.1 0.28±0.1

RetrieveGAN (GT) 42.7 10.7±0.1 0.21±0.1 46.3 9.1±0.1 0.23±0.1

Real data 6.8 24.3±0.3 - 6.9 24.1±0.4 -
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Table 2. Ablation studies. We conduct ablation studies on two loss functions added
upon the proposed retrieval module.

Datasets Lsel
gt Lsel

occur COCO-stuff

FID ↓ IS ↑ DS ↑
RetrieveGAN - - 56.8 8.8±0.3 0.30±0.1

RetrieveGAN � - 47.8 9.7±0.2 0.36±0.1

RetrieveGAN - � 52.8 9.8±0.2 0.29±0.1

RetrieveGAN � � 43.2 10.6±0.6 0.34±0.1

Real data 6.8 24.3±0.3 -

– Inception Score (IS). Inception Score [26] uses the Inception V3 [28] model
to measure the visual quality of the generated images.

– Fréchet Inception Distance (FID). Fréchet Inception Distance [9] mea-
sures the visual quality and diversity of the synthesized images. We use the
Inception V3 model as the feature extractor.

– Diversity (DS). We use the AlexNet model to explicitly evaluate the diver-
sity by measuring the distances between the features of the images using the
Learned Perceptual Image Patch Similarity (LPIPS) [39] metric.

Fig. 3. User study. We conduct the user study to evaluate the mutual compatibility
of the selected patches.

4.1 Quantitative Evaluation

Realism and Diversity. We evaluate the realism and diversity of all methods
using the IS, FID, and DS metrics. To have a fair comparison with different
methods, we conduct the evaluation using two different settings. First, bounding
boxes of objects are predicted by models. Second, ground-truth bounding boxes
are given as inputs in addition to the scene graph. The results of these two
settings are shown in the first and second row of Table 1, respectively. Since the
patch retrieval process is optimized to consider the generation quality during the
training stage, our approach performs favorably against the other algorithms in
terms of realism. On the other hand, as we can sample different query features
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Fig. 4. Sample generation results. We show example results on the COCO-
Stuff (left) and Visual Genome (right) datasets. The object locations in each image
are predicted by models.

for the proposed retrieval process, our model synthesizes comparably diverse
images compared to the other schemes.

Moreover, there are two noteworthy observations. First, the proposed
RetrieveGAN has similar performance in both settings on the COCO-Stuff
dataset, but has significant improvement using ground-truth bounding boxes
on the Visual Genome dataset. The reason for the inferior performance on the
Visual Genome dataset without using ground-truth bounding boxes is due to the
existence of lots of isolated objects (i.e., objects that have no relationships to
other objects) in the scene graph annotation (e.g., the last scene graph in Fig. 6),
which greatly increase the difficult of predicting reasonable bounding boxes. Sec-
ond, on the Visual Genome dataset, AttnGAN outperforms the proposed method
on the IS and DS metrics, while performs significantly worse than the proposed
method on the FID metric. Compared to the FID metric, the IS score has the
limitation that it is less sensitive to the mode collapse problem. The DS met-
ric only measures the feature distance without considering visual quality. The
results from AttnGAN shown in Fig. 4 also support our observation.
Patch Compatibility. The proposed differentiable retrieval process aims to
improve the mutual compatibility among the selected patches. We conduct a
user study to evaluate the patch compatibility. For each scene graph, we present
two sets of patches selected by different methods, and ask users “which set of
patches are more mutually compatible and more likely to coexist in the same
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image?”. Figure 3 presents the results of the user study. The proposed method
outperforms PasteGAN, which uses a pre-defined patch embedding function for
retrieval. The results also validate the benefits of the proposed ground-truth
selection loss and co-occurrence loss.
Ablation Study. We conduct an ablation study on the COCO-Stuff dataset to
understand the impact of each component in the proposed design. The results
are shown in Table 2. As the ground-truth selection loss and the co-occurrence
penalty maximize the mutual compatibility of the selected patches, they both
improve the visual quality of the generated images.

4.2 Qualitative Evaluation

Image Generation. We qualitatively compare the visual results generated by
different methods. We show the results on the COCO-Stuff (left column) and
the Visual Genome (right column) datasets under two settings of using predicted
(Fig. 4) and ground-truth (Fig. 5) bounding boxes. The sg2im and layout2im
methods can roughly capture the appearance of objects and mutual relationships
among objects. However, the quality of generated images in complicated scenes
is limited. Similarly, the AttnGAN model cannot handle scenes with complex
relationships well. The overall image quality generated by the PasteGAN scheme
is similar to that by the proposed approach, yet the quality is affected by the
compatibility of the selected patches (e.g., the third result on COCO-Stuff in
Fig. 5).

Fig. 5. Sample generation results. We show example results on the COCO-
Stuff (left) and Visual Genome (right) datasets. The object locations in each image
are given as additional inputs.
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Fig. 6. Retrieved patches. For each sample, we show the retrieved patches which
are used to guide the following image generation process. We also show the original
image of each selected patch for more clear visualization.

Patch Retrieval. To better visualize the source of retrieved patches, we present
the generated images as well as the original images of selected patches in Fig. 6.
The proposed method can tackle complex scenes where multiple objects are
present. With the help of selected patches, each object in the generated images
has a clear and reasonable appearance (e.g., the boat in the second row and the
food in the third row). Most importantly, the retrieved patches are mutually
compatible, thanks to the proposed iterative and differentiable retrieval process.
As shown in the first example in Fig. 6, the selected patches are all related to
baseball, while the PasteGAN method, which uses random selection, has chances
to select irrelevant patches (i.e., the boy on the soccer court).

5 Conclusions and Future Work

In this work, we present a differentiable retrieval module to aid the image synthe-
sis from the scene description. Qualitative and quantitative evaluations validate
that the synthesized images are realistic and diverse, while the retrieved patches
are reasonable and compatible. The proposed approach points out a new direc-
tion in the content creation research field. It can be trained with the image
generation or manipulation models to learn to select real reference patches that
improves the generation or manipulation quality.
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