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Abstract. We present an effective method to progressively integrate
and refine the cross-modality complementarities for RGB-D salient
object detection (SOD). The proposed network mainly solves two chal-
lenging issues: 1) how to effectively integrate the complementary infor-
mation from RGB image and its corresponding depth map, and 2) how
to adaptively select more saliency-related features. First, we propose a
cross-modality feature modulation (cmFM) module to enhance feature
representations by taking the depth features as prior, which models the
complementary relations of RGB-D data. Second, we propose an adap-
tive feature selection (AFS) module to select saliency-related features
and suppress the inferior ones. The AFS module exploits multi-modality
spatial feature fusion with the self-modality and cross-modality inter-
dependencies of channel features are considered. Third, we employ a
saliency-guided position-edge attention (sg-PEA) module to encourage
our network to focus more on saliency-related regions. The above mod-
ules as a whole, called cmMS block, facilitates the refinement of saliency
features in a coarse-to-fine fashion. Coupled with a bottom-up inference,
the refined saliency features enable accurate and edge-preserving SOD.
Extensive experiments demonstrate that our network outperforms state-
of-the-art saliency detectors on six popular RGB-D SOD benchmarks.
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1 Introduction

Depth maps provide useful cues such as depth of field, shape, and boundary to
complement RGB images for SOD [3,4,6,32,33,39,46]. However, depth maps are
inherently noisy and the cues provided can be inconsistent or misaligned with
the RGB modality. The issues make designing an RGB-D algorithm challenging.
Contemporary RGB-D SOD detectors, CPFP [46] (Fig. 1(d)) and A2dele [33]
(Fig. 1(e)), could still miss salient objects due to cluttered backgrounds or yield
incomplete or serrated boundaries of saliency maps.

(a) RGB (b) Depth (c) GT (d) CPFP (e) A2dele (f) Ours

Fig. 1. Two motivating examples of SOD. (a)–(c) represent the input images, the cor-
responding depth maps, and the ground truth (GT), respectively. (d) and (e) are the
results of state-of-the-art RGB-D SOD detectors CPFP (CVPR’19) [46] and A2dele
(CVPR’20) [33], respectively. (f) are our results. Compared with the latest CPFP
and A2dele, our method can yield more complete, sharp, and edge-preserving saliency
detection results by effectively integrating cross-modality complementaries and adap-
tively selecting saliency-related features.

In this work, we consider addressing the aforementioned problem through
more careful investigation on the integration of cross-modality complementaries
from RGB image and depth map as well as the selection of saliency-related
features. To this end, we present an effective network that achieves complete,
sharp, and edge-preserving saliency detection, as shown in Fig. 1(f).

First, we propose a cross-modality feature modulation (cmFM) module that
enhances RGB feature representations by taking the corresponding depth fea-
tures as prior. This is in contrast to popular strategies that perform either input
fusion [30], early fusion [19], or late fusion [18], that crudely concatenate or
add the multi-modality information. The proposed modulation design enables
effective integration of multi-modality information through feature transforma-
tion, distinctly models the inseparable cross-modality relations, and reduces the
interference caused by the inherent inconsistency of multi-modality data.

Second, we devise an adaptive feature selection (AFS) module that highlights
the importance of different channel features in self- and cross-modalities, while
fusing multi-modality spatial features in a gated manner. This is different from
previous RGB-D SOD algorithms [3–6,22,46] that treat channel features from
different modalities equally and independently. Relaxing such assumptions allows
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our method to adaptively select more saliency-related features and suppress the
inferior ones from both spatial features and channel features. It also mitigates
the negative influence of poorly captured depth maps. Hence, our network equips
additional flexibility in dealing with different information. We also emphasize the
saliency-related positions and edges by introducing a saliency-guided position-
edge attention (sg-PEA) module, which collects its attention weights from the
predicted saliency maps and saliency edge maps.

Our method is unique in that the feature modulation and attention mecha-
nism are closely coupled in a coarse-to-fine manner. Specifically, fusion is first
performed by the cmFM module to provide rich features representations. Coor-
dinated with our AFS module, saliency-related features are emphasized while
redundant features are suppressed. The saliency-related features are further
refined by the sg-PEA module. A careful design to place the cmFM, AFS,
and sg-PEA modules allows the cross-modality complementarities to go through
modulation, selection, and refinement in a coarse-to-fine fashion, providing our
network with precise saliency features. Coupled with a bottom-up inference, the
precise saliency features enable us to perform more accurate and robust SOD.
Contributions. We present an effective approach for RGB-D SOD. Cross-
modality complementarities are effectively integrated and saliency-related fea-
tures are adaptively selected. This is made possible by designing a coarse-to-
fine fusion that consists of 1) a cross-modality feature modulation module that
enhances RGB feature representations by taking the corresponding depth fea-
tures as prior, and 2) an adaptive feature selection module that progressively
emphasizes the importance of channel features in self- and cross-modalities while
fusing the significant multi-modality spatial features. Our method consistently
outperforms state-of-the-art SOD methods on six popular RGB-D SOD bench-
marks.

2 Related Work

Salient Object Detection. SOD methods range from bottom-up [25,29,42] to
top-down models [14,17,19,26,34,47]. In addition to the color appearance, depth
maps can provide useful cues such as depth of field, shape, and boundary. The
depth map is implicitly used in the unsupervised methods [9,10,21,27,30,37,48].
Whereas for the supervised methods, the discriminative and complementary fea-
tures are learned from RGB-D images [3–6,12,16,18,22,32,35,43,44,46]. Our
work differs from recent works [12,16,32,33,43,44,46], mainly in two aspects: 1)
we use depth features as prior to learn optimal affine transformation parame-
ters, which can flexibly modulate multi-level RGB features, and 2) we consider
both self-modality and cross-modality channel features as well as multi-modality
spatial features, thus effectively capturing relations among different modalities.
Feature Modulation. Inspired by FiLM [31] that first applies linear feature
modulation for visual reasoning, feature modulation has been used in few-shot
learning [28] and image super-resolution [40]. In our studies, we modulate the
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Fig. 2. Overview of our network architecture. The inputs are the RGB image
and its depth map. The cmMS block consists of a cmFM module, an AFS module, and
an sg-PEA module. Here, the sg-PEA module further contains an S-Pre unit and an
E-Pre unit. ‘Conv n’ represents the convolutional layer that outputs n feature maps,
where n is the half number of input feature maps. ‘A’, ‘M’, and ‘C’ represent element-
wise addition, element-wise multiplication, and concatenation along with the channel
dimension, respectively. ‘Up’ represents the up-sampling block. Pink line indicates 2×
linear interpolation. Fs represent the refined features after the cmMS block while Fsup

are the up-sampled Fs by the ‘Up’ block. In this figure, each convolutional layer is
followed by the ReLU activation. Our network finally produces five saliency maps
(SmapL) and five saliency edge maps (SedgeL) with the resolutions, ranging from
14 × 14 to 224 × 224 by a scale of 2. L indicates the level. We treat Smap1 as the final
result.

multi-level feature representations conditioned on the corresponding depth fea-
tures. Besides, we design the cross-modality feature modulation in a pixel-wise
manner, which provides elaborate and fine-grained control to the features.
Attention Mechanism. Attention mechanism is increasingly applied in diverse
forms such as spatial attention [7], dual-attention [15], self-attention [38], multi-
level attention [41], and channel attention [45]. In contrast, we employ the atten-
tion mechanism in our adaptive feature selection module, which explores the
interdependencies of channel features in the self- and cross-modalities while fus-
ing the significant multi-modality spatial features in a gated manner.

3 Our Method

We first present an overview of our network architecture. Then, we describe
the key components including the cross-modality feature modulation module,
adaptive feature selection module, and saliency-guided position-edge attention
module. At last, we introduce the loss functions.

3.1 Overview of Network Architecture

The overview of our network architecture is illustrated in Fig. 2. After the top-
down features extraction from VGG-16 backbone [36], the multi-level RGB fea-
tures and depth features are fed to a convolutional layer for halving the number



RGB-D SOD with Cross-Modality Modulation and Selection 229

of feature maps, respectively. Then, the dimension reduced RGB-D features are
forwarded to the corresponding cmMS block. In each cmMS block, the RGB-D
features go through cmFM module, AFS module, and sg-PEA module for fea-
ture modulation, selection, and refinement, respectively. Specifically, we intro-
duce modulated features by using our proposed cross-modality feature modula-
tion (cmFM) module. The purpose of cmFM module is to effectively integrate
the cross-modality complementarities in a flexible and trainable fashion. After
that, RGB features, depth features, modulated features, and up-sampled fea-
tures from the higher level (if any) are independently forwarded to our proposed
adaptive feature selection (AFS) module for selectively emphasizing the informa-
tive channel features and fusing the significant spatial features. The AFS module
models the relations between different levels and accelerates task-oriented fea-
ture integration. Meanwhile, the concatenation of RGB features, depth features,
modulated features, and up-sampled features (if any) is applied to predict the
saliency edge map via a saliency edge prediction (E-Pre) unit. Then, with the
saliency map up-sampled from the higher level (if any) and saliency edge map,
we highlight the saliency position and edge regions of the features after the
AFS module. After that, we predict the saliency map in the current level via
a saliency map prediction (S-Pre) unit by using the refined features. At last,
in the bottom-up inference, we progressively integrate and highlight multi-level
features to predict the fine-scaled saliency map (i.e., the Smap1 in Fig. 2). We
adopt 3× 3 kernels for all convolutional layers in our network, except the cmFM
module that employs the multi-scale convolutions to enlarge receptive field.

3.2 Cross-Modality Feature Modulation (cmFM)

Inspired by the unsupervised RGB-D SOD algorithms [10,13] which take the
depth map as prior information to enrich the saliency cues, we propose a cmFM
module conditioned on the depth features. The cmFM module learns pixel-wise
affine transformation parameters from the conditioning depth features then mod-
ulates the corresponding RGB feature representations in each level of our net-
work. The detailed cmFM module is illustrated in Fig. 3.

Depth Features

RGB Features Modulated Features

Feature 
Extractor

Depth Map

RGB Image

Cross-modality Feature Modulation (cmFM)

Conv n
ReLU

Conv n
ReLU

Conv n
ReLU

Conv n
ReLU

Conv n
ReLU

Conv n

Conv n
ReLU

Conv n
ReLU

Conv n
ReLU

Conv n

Feature 
Extractor

Fig. 3. The proposed cmFM module. For the estimation of both γ and β, the
kernels of convolutional layers are 7 × 7, 5 × 5, 3 × 3, and 3 × 3. The feature extractor
represents VGG-16 backbone. The feature maps are illustrated as heatmaps.
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Given the dimension halved RGB features Frgb
L ∈ R

N×H×W and depth fea-
tures Fdepth

L ∈ R
N×H×W , the cmFM module learns a mapping function M con-

ditioned on the depth features to yield a set of affine transformation parameters
(γL,βL) ∈ R

N×H×W . Here, N is the number of feature maps; H and W are the
height and width of the feature maps, respectively. It can be expressed as:

(γL,βL) = M(Fdepth
L ), (1)

where the superscript indicates the modality while the subscript represents the
level. The mapping function M is built on two parallel stacked convolutional
layers as shown in Fig. 3. With the estimated affine transformation parameters
(γL,βL), we conduct pixel-wise scaling and shifting on the RGB feature repre-
sentations, which can be expressed as:

Fmod
L = Frgb

L ⊗ γL ⊕ βL, (2)

where Fmod
L represent the modulated features; ⊗ and ⊕ indicate the element-

wise multiplication and element-wise addition, respectively. As shown in Fig. 3,
the cluttered backgrounds of RGB features become clear and the salient object
is highlighted with the modulation of depth features.

3.3 Adaptive Feature Selection (AFS)

To make our network focus more on informative features, we propose an AFS
module to progressively re-scale channel-wise features. Simultaneously, the AFS
module fuses significant spatial features of multi-modalities. To be specific, we
first explore the interdependencies of channel features in the self-modality, then
further determine the relevance in the cross-modality. After squeezing by a con-
volutional layer that reduces the redundant features, we achieve the channel
attention-on-channel attention features. Such a self-modality and cross-modality
channel attention mechanism can model relations of the channel features among
different modalities well and adaptively select the informative channel features.
The advantages of our channel attention-on-channel attention than the conven-
tional channel attention are verified in the ablation studies.

We simultaneously fuse the multi-modality features to achieve the enhanced
feature representations based on a gated spatial fusion mechanism, where the
pixel-wise confidence map for each input feature is calculated. In this way, the
significant multi-modality spatial features are preserved. As a result, we achieve
saliency-related features and filter out irrelevant or misleading features from
both spatial and channel aspects. The detail of AFS module is shown in Fig. 4.

Given the features (Frgb
L , Fdepth

L , Fmod
L , FsupL+1), we first perform global aver-

age pooling on each set of features separately, leading to a channel descriptor
z ∈ R

N×1 for each one, which is an embedded global distribution of channel-wise
feature responses. FsupL+1 indicate 2× up-sampled features from the L + 1 level
by using the ‘Up’ block that consists of one 2× linear interpolation followed by
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Fig. 4. The detail of AFS module. ‘Cat’ represents the concatenation operation.
‘SE-Net’ is the squeeze-and-excitation network.

two convolutional layers, where each convolutional layer is followed by the ReLU
activation and outputs n feature maps. The k-th entry of z is expressed as:

zk =
1

H × W

H∑

i

W∑

j

Fk(i, j), (3)

where k ∈ [1, N ]. Then, a self-gating mechanism is used to fully capture channel-
wise dependencies s ∈ R

N×1:

s = σ(W2 ∗ (δ(W1 ∗ z))), (4)

where σ(·) represents the Sigmoid activation, δ(·) represents the ReLU activa-
tion, ∗ denotes the convolution operation, and W1 and W2 are the weights of
two fully-connected layers with their numbers of output channels being N

16 and
N , respectively. At last, these weights are applied to each set of input features
F to generate re-scaled features U ∈ R

N×H×W : U = F ⊗ s. This processing
is mathematically expressed as an SE mapping function in this paper and can
also be implemented by the squeeze-and-excitation network [20]. However, the
highlighted channel features may become relatively useless among all channel
attention results from multi-modalities.

To emphasize the informative channel features, we first halve the number of
feature maps in each channel attention result by a convolutional layer, then con-
catenate them: VL = Cat{Urgb

L ,Udepth
L ,Umod

L ,UsupL+1}. After that, we further
explore the interdependencies of channel features by YL = SE(VL). We finally
squeeze the number of channel features by a convolutional layer and achieve the
results of channel attention-on-channel attention Ycaca

L .
Meanwhile, we fuse the multi-modality input features to achieve enhanced

spatial feature representations. First, the input features are concatenated Fcat
L =

Cat{Frgb
L ,Fdepth

L ,Fmod
L ,FsupL+1}, and fed to a plain CNN network (indicated as

G) to estimate their pixel-wise confidence maps:

(Crgb
L ,Cdepth

L ,Cmod
L ,Cup

L+1) = G(Fcat
L ), (5)
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where Crgb
L , Cdepth

L , Cmod
L , and Cup

L+1 ∈ R
N×H×W represent the confidence maps.

The G is built on six stacked convolutional layers as shown in Fig. 4. The achieved
features in the level L can be expressed as:

Fgated
L = Frgb

L ⊗ Crgb
L ⊕ Fdepth

L ⊗ Cdepth
L ⊕ Fmod

L ⊗ Cmod
L ⊕ FsupL+1 ⊗ Cup

L+1 (6)

Then, we pass these features to a convolutional layer and achieve the gated fusion
features Fgated′

L . At last, we combine the enhanced spatial feature representations
with the enhanced channel feature representations by:

FAFS
L = Cat{Fgated′

L ,Ycaca
L }, (7)

where the final results FAFS
L enjoy the most informative features towards saliency

detection, called saliency-related features in this paper. The visual examples are
presented in Fig. 5. As shown, the saliency-related spatial features and channel
features are preserved and highlighted.

Depth MapRGB Image GT

Fig. 5. Visual results of the intermediate features in our AFS module. ‘CA-
on-CA Features’ indicates the features after our channel selection while ‘Gated Fusion
Features’ represents the features after our spatial selection.

3.4 Saliency-Guided Position-Edge Attention (sg-PEA)

After selecting the saliency-related features, we also encourage the network to
focus on those positions and edges most essential to the nature of salient objects.
The benefits are illustrated as follows: 1) the saliency position attention can
better locate the salient objects and accelerate the network convergence, and 2)
the saliency edge attention can alleviate the problem of edge blur caused by the
repeated pooling operations, which is vital for the pixel-wise saliency prediction.

To the end, we propose a saliency-guided position-edge attention (sg-PEA)
module to locate and sharpen salient objects. The sg-PEA module further
includes a saliency map prediction (S-Pre) unit and a saliency edge prediction
(E-Pre) unit as shown in Fig. 2. The details are provided in Fig. 6, where S-Pre
unit and E-Pre unit share the same structure, but different weights.
Position Attention. We employ the up-sampled saliency map from the higher
level as the attention weights. Here, the up-sampling is implemented by the
simple 2× linear interpolation. In our method, the saliency map is predicted by
the S-Pre unit in each level in a supervised learning manner. The benefits of such
a side supervision manner lie in four aspects: 1) the convolutional layers in each
level have explicit objective towards saliency detection, 2) the side supervision
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can accelerate gradient back-propagation, 3) the predicted saliency map works
as a guidance and can steer the convolutional layers of lower level to focus more
on saliency positions in a low-computational manner, and 4) the multiple side
outputs can provide diverse choices based on accuracy and inference speed. We
provide more analysis on the side outputs in the supplementary material.

RGB Image

Depth Map Saliency Edge Maps

Conv n
Sigmoid

Saliency Maps

Conv n
ReLU

Conv n
ReLU Saliency-related Features

Posi�on-Edge A�en�on Features
               (Refined Features)

Fig. 6. Visual results of sg-PEA module. Left panel shows the structure of S-
Pre/E-Pre unit, and the predicted saliency maps and saliency edge maps in different
levels. Right panel shows the intermediate features before and after the sg-PEA module.
After the sg-PEA module, the background of features are suppressed, and the edge and
position details are assigned more focuses.

To be specific, with the saliency-related features FAFS
L and the up-sampled

saliency map SmapupL+1, the position attention results Fpoa
L can be expressed as:

Fpoa
L = FAFS

L ⊕ FAFS
L ⊗ SmapupL+1 (8)

In contrast to treating all positions of saliency features equally, the position
attention can quickly and efficiently employ the saliency property of higher level
and enhance the saliency representations of the current level. To avoid gradient
diffusion induced by successive attention (the values of feature maps are close
to zero), we adopt an identical mapping manner as shown in Eq. (8).
Edge Attention. To obtain the edge attention weights, we first concatenate
the RGB-D features, the modulated features, and up-sampled features, then
forward them to the E-Pre unit to predict the saliency edge map in each level.
The saliency edge maps, also estimated by supervised learning, can be used to
emphasize the salient edges of the features by simple element-wise multiplication.
For level L, the output features of edge attention can be expressed as:

FsL = Fpoa
L ⊕ Fpoa

L ⊗ SedgeL, (9)

where SedgeL is the predicted saliency edge map in the level L. We call FsL
as the refined features. At last, with the refined features, the final result (i.e.,
Smap1) with the same size as the input RGB image can be achieved in a bottom-
up manner. In Fig. 6, we present the changes of features before and after sg-PEA
module. As shown, the features increasingly focus on the saliency position and
edge details, while the cluttered backgrounds are concurrently reduced.
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3.5 Loss Function

We employ the standard cross-entropy (SCE) loss [1] to jointly optimize our
network for the saliency prediction and saliency edge prediction:

Loss =
L∑

i=1

(λiSCESPre
i + ηiSCEEPre

i ), (10)

where L indicates the level, SCESPre
i and SCEEPre

i represent the losses for
predicting the saliency map and saliency edge map in the level i, respectively. λ
and η are the corresponding weights.

4 Experiments

4.1 Benchmark Datasets and Evaluation Metrics

We conduct experiments on six popular RGB-D SOD datasets, including NJUD
[21] (1985 RGB-D images), NLPR [30] (1000 RGB-D images), STEREO [27]
(797 RGB-D images), LFSD [24] (100 RGB-D images), SSD [23] (80 RGB-D
images), and DUT [32] (1200 RGB-D images). For quantitative evaluations,
Precision-Recall (P-R) curve, F-measure [2], MAE score [8], and S-measure [11]
are employed. P-R curve depicts the different combinations of precision and
recall scores; the closer the P-R curve is to (1, 1), the better the performance of
the method. F-measure is the weighted harmonic mean of precision and recall;
it is a comprehensive measurement, with a larger value indicating a better per-
formance. MAE score measures the difference between the continuous saliency
map and ground truth; a smaller value indicates a smaller gap hence better.
S-measure calculates the structural similarity between the saliency map and
ground truth; a larger value indicates a better performance. Additionally, we
compare the model sizes of different methods in the supplementary material.

4.2 Implementation Details

We adopt the same training, validation, and testing sets as described in [32,33].
The ground truth of saliency edge map prediction is obtained by using the Canny
edge detector on the saliency mask. We implement our network with TensorFlow
on a PC with an Nvidia Tesla V100 GPU. During training, the batch size is set
to 4, the filter weights of each layer are initialized by Gaussian distribution, and
the bias is initialized as a constant. We use ADAM and fix the learning rate to
1e−4. The weight λ1 for predicting the final saliency map is set to 1.2 while other
weights are set to 1 in Eq. (10). For a pair of RGB-D images of size 224 × 224,
the average runtime of our method is 0.037 s on the aforementioned PC.
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Fig. 7. Visual examples of different methods.
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Fig. 8. P-R curves of different methods on the testing datasets. (a)-(f) correspond to
STEREO, NLPR-Test, NJUD-Test, LFSD, SSD, and DUT-Test datasets.

4.3 Comparisons with State-of-the-art Methods

We compare our method with 12 state-of-the-art learning-based SOD methods,
including two latest RGB-induced SOD methods (i.e., PoolNet [26] and EGNet
[47]), and ten RGB-D SOD methods (i.e., DF [35], CTMF [18], MMCI [6], PCFN
[3], TAN [4], CPFP [46], DCFF [5], DMRA [32], ASIF-Net [22], and A2dele [33]).
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Table 1. Quantitative comparisons on six testing datasets. The bold numbers are
performance of our method, also the best across all datasets

STEREO dataset NLPR-test dataset NJUD-test dataset

Fβ ↑ MAE ↓ Sm ↑ Fβ ↑ MAE ↓ Sm ↑ Fβ ↑ MAE ↓ Sm ↑
PoolNet [26] 0.8757 0.0655 0.8359 0.8627 0.0448 0.8573 0.8740 0.0676 0.8600

EGNet [47] 0.8717 0.0671 0.8363 0.8452 0.0504 0.8497 0.8667 0.0704 0.8562

DF [35] 0.6961 0.1738 0.6279 0.6480 0.1079 0.6710 0.6355 0.1987 0.5930

CTMF [18] 0.8265 0.1023 0.8230 0.8407 0.0561 0.8549 0.8572 0.0847 0.8493

PCFN [3] 0.8838 0.0606 0.8722 0.8635 0.0437 0.8592 0.8875 0.0592 0.8768

MMCI [6] 0.8610 0.0796 0.8504 0.8412 0.0591 0.8524 0.8684 0.0789 0.8588

TAN [4] 0.8865 0.0591 0.8701 0.8765 0.0410 0.8736 0.8882 0.0605 0.8785

CPFP [46] 0.8856 0.0537 0.8702 0.8878 0.0359 0.8760 0.7994 0.0794 0.7984

DCFF [5] 0.8867 0.0638 0.8706 0.8779 0.0439 0.8695 0.8910 0.0646 0.8774

DMRA [32] 0.8953 0.0474 0.8778 0.8870 0.0339 0.8646 0.9003 0.0529 0.8804

ASIF-Net [22] 0.8939 0.0493 0.8686 0.9002 0.0298 0.8844 0.9007 0.0471 0.8887

A2dele [33] 0.8997 0.0431 0.8713 0.8976 0.0285 0.8770 0.8939 0.0510 0.8704

Ours 0.9084 0.0422 0.8895 0.9137 0.0273 0.8999 0.9149 0.0442 0.9040

LFSD dataset SSD dataset DUT-test dataset

Fβ ↑ MAE ↓ Sm ↑ Fβ ↑ MAE ↓ Sm ↑ Fβ ↑ MAE ↓ Sm ↑
PoolNet [26] 0.8474 0.0945 0.8217 0.7644 0.1099 0.7491 0.8828 0.0669 0.8392

EGNet [47] 0.8445 0.0871 0.8300 0.7040 0.1351 0.7072 0.8876 0.0641 0.8439

DF [35] 0.8534 0.1424 0.7791 0.7631 0.1511 0.7422 0.7747 0.1455 0.7051

CTMF [18] 0.8147 0.1202 0.7883 0.7550 0.1003 0.7757 0.8417 0.0971 0.8226

PCFN [3] 0.8290 0.1118 0.7919 0.8447 0.0627 0.8427 0.8094 0.0999 0.7878

MMCI [6] 0.8128 0.1318 0.7793 0.8230 0.0820 0.8133 0.8044 0.1125 0.7818

TAN [4] 0.8275 0.1108 0.7935 0.8350 0.0629 0.8393 0.8236 0.0926 0.7948

CPFP [46] 0.8495 0.0881 0.8200 0.8014 0.0818 0.8067 0.7866 0.0995 0.7335

DCFF [5] 0.8220 0.1191 0.7917 0.8388 0.0769 0.8316 0.8141 0.1014 0.7835

DMRA [32] 0.8723 0.0754 0.8391 0.8579 0.0583 0.8569 0.9082 0.0477 0.8637

ASIF-Net [22] 0.8584 0.0896 0.8144 0.8633 0.0562 0.8566 0.8574 0.0725 0.8141

A2dele [33] 0.8577 0.0740 0.8306 0.8248 0.0691 0.8093 0.9145 0.0426 0.8611

Ours 0.8882 0.0720 0.8465 0.8650 0.0524 0.8615 0.9328 0.0366 0.8853

Visual comparisons are shown in Fig. 7. Our method achieves more compet-
itive performance than the compared methods. First, the salient objects in our
results are more complete and accurate, and the object boundaries are sharper. In
the first image, only our method can accurately and completely detect the salient
toy in front, while the competing methods incorrectly reserve the background
regions (e.g., Android doll and checkerboard). In the fourth image that comes
with an unsatisfactory depth map, our method can still accurately locate salient
target with a complete structure and clear boundaries. Second, our method
preserves more details in the saliency result. In the sixth image, more details of
plant leaves are better conserved. Third, our method can address some challeng-
ing cases, such as a complex background and small object. In the third image,
the cat dolls in the back row are successfully suppressed by our method, the
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w/o cmFM w/ cmFA w/ cmFC

w/o PEw/o PAw/o PEAw/o AFS w/o GFF w/o CACA w/ CA

RGB Image Depth Map Full Model GT

cmFM module

AFS module sg-PEA module

Fig. 9. Visual comparison with different baselines. (1) The baseline w/o cmFM rep-
resents our full model without the cmFM module (i.e., no modulated features); and
the baselines w/cmFA and w/cmFC refer to that the cmFM module is replaced by
the cmFA or cmFC module (i.e., the depth and RGB features are integrated by the
element-wise addition or concatenation). (2) The baseline w/o AFS represents our
full model without the AFS module (i.e., the features after cmFM module are directly
concatenated with the up-sampled saliency-related features); the baselines w/o GFF
and w/o CACA correspond to removing the fused spatial features and the channel
attention-on-channel attention features, respectively; and the baseline w/CA refers to
that the AFS module is replaced by the conventional channel attention module [20]. (3)
The baselines w/o PEA, w/o PA, and w/o PE correspond to our full model without the
sg-PEA module, the position attention unit, and the edge attention unit, respectively.

detected salient boundaries are sharper, and the structure is more complete. In
the fifth image illustrating a case of complex background, our method can still
completely detect a small salient object (i.e., the human).

The P-R curves of different methods are shown in Fig. 8. Our method (i.e., the
red solid line) achieves the highest precision compared to other methods on all
datasets. The numerical results are reported in Table 1. Our method achieves the
best quantitative results across all metrics, outperforming all competing meth-
ods. Compared with the second best method on the NJUD-Test dataset, the
percentage gain reaches 1.6% for F-measure, 6.2% for MAE score, and 1.7% for
S-measure. On the DUT-test dataset, the minimum percentage gain reaches
2.0% for F-measure, 14.1% for MAE score, and 2.5% for S-measure. All these
measures demonstrate the superiority and effectiveness of our method.

4.4 Ablation Studies

To verify the impact of our key modules, we conduct experiments on the
STEREO dataset and DUT-Test dataset. The quantitative results are shown
in Table 2. An example of visual comparison is illustrated in Fig. 9.
Cross-Modality Feature Modulation (cmFM). We compare three variants:
w/o cmFM, w/cmFA, and w/cmFC. In Fig. 9, the baseline w/o cmFM cannot
effectively detect the salient object while the baselines w/cmFA and w/cmFC
achieve the similar detection result. The same quantitative trend also reflects in
Table 2. Compared with the full model, the results indicate that the proposed



238 C. Li et al.

Table 2. Quantitative comparisons of ablated models

Modules Baselines STEREO dataset DUT-test dataset

Fβ ↑ MAE ↓ Sm ↑ Fβ ↑ MAE ↓ Sm ↑
full model 0.9084 0.0422 0.8895 0.9328 0.0366 0.8853

cmFM w/o cmFM 0.8727 0.0722 0.8573 0.8968 0.0616 0.8599

w/cmFA 0.9020 0.0479 0.8820 0.9237 0.0429 0.8771

w/cmFC 0.8995 0.0480 0.8825 0.9221 0.0617 0.8789

AFS w/o AFS 0.8990 0.0546 0.8762 0.9165 0.0503 0.8666

w/o GFF 0.9012 0.0690 0.8826 0.9212 0.0458 0.8777

w/o CACA 0.9017 0.0517 0.8797 0.9276 0.0470 0.8742

w/CA 0.9027 0.0503 0.8780 0.9216 0.0468 0.8747

sg-PEA w/o PEA 0.9057 0.0450 0.8854 0.9205 0.0427 0.8796

w/o PA 0.9064 0.0442 0.8857 0.9234 0.0409 0.8827

w/o PE 0.9065 0.0481 0.8862 0.9296 0.0385 0.8806

cmFM module is important for improving the SOD performance. Besides, the
simple addition and concatenation can only boost a little performance.
Adaptive Feature Selection (AFS). We compare with four baselines: w/o
AFS, w/o GFF, w/o CACA, and w/CA. Observing Fig. 9 and Table 2, we found
that the performance of the baseline w/o AFS is obviously worse than the base-
lines w/o GFF, w/o CACA, and w/CA. The visual results reflect that the base-
line w/o GFF produces incomplete salient object while the baseline w/o CACA
yields the result with an unclear boundary. Collectively, these results underscore
the importance of progressive self-modality and cross-modality channel attention
while fusing important spatial features of multi-modalities.
Saliency-guided Position-Edge Attention (sg-PEA). We compare with
three baselines: w/o PEA, w/o PA, and w/o EA. In Fig. 9, the baseline w/o
PEA fails to highlight the position and edge of salient object. The baseline w/o
PA has a sharper boundary of partial complete object while the baseline w/o PE
shows a more complete object but unclear boundary. In contrast, our full model
achieves better performance than these three baselines as presented in Table 2.

In summary, the ablation studies demonstrate the effectiveness and advan-
tages of the proposed three modules qualitatively and quantitatively. In addition,
the ablation studies also demonstrate that careful feature modulation, selection,
and refinement can effectively improve the performance of RGB-D SOD.

5 Conclusion

We propose an RGB-D SOD network equipped with cross-modality feature
modulation and adaptive feature selection. The former effectively integrates
the multi-modality complementarities while the latter adaptively highlights
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saliency-related features. We demonstrate that both elaborate integration of
cross-modality features and adaptive selection of multi-modality spatial and
channel features can boost the performance of SOD. Experiment results also
demonstrate that our method achieves new state-of-the-art performance on six
benchmarks.

Acknowledgments. This research was supported by SenseTime-NTU Collaboration
Project, Singapore MOE AcRF Tier 1 (2018-T1-002-056), NTU NAP, in part by the
Fundamental Research Funds for the Central Universities under Grant 2019RC039,
and in part by China Postdoctoral Science Foundation Grant 2019M660438.

References

1. Boer, P.T.D., Kroese, D.P., Mannor, S., Rubinstein, R.Y.: A tutorial on the cross-
entropy method. Ann. Oper. Res. 134(1), 19–67 (2005)

2. Borji, A., Cheng, M.M., Jiang, H., Li, J.: Salient object detection: a benchmark.
IEEE Trans. Image Process. 24(12), 5706–5722 (2015)

3. Chen, H., Li, Y.: Progressively complementarity-aware fusion network for RGB-D
salient object detection. In: CVPR, pp. 3051–3060 (2018)

4. Chen, H., Li, Y.: Three-stream attention-aware network for RGB-D salient object
detection. IEEE Trans. Image Process. 28(6), 2825–2835 (2019)

5. Chen, H., Li, Y., Su, D.: Discriminative cross-modal transfer learning and densely
cross-level feedback fusion for RGB-D salient object detection. IEEE Trans.
Cybern., 1–13 (2019)

6. Chen, H., Li, Y., Su, D.: Multi-modal fusion network with multiscale multi-path
and cross-modal interactions for RGB-D salient object detection. Pattern Recognit.
86, 376–385 (2019)

7. Chen, L., et al.: SCA-CNN: spatial and channel-wise attention in convolutional
networks for image captioning. In: CVPR, pp. 5659–5667 (2017)

8. Cong, R., Lei, J., Fu, H., Cheng, M.M., Lin, W., Huang, Q.: Review of visual
saliency detection with comprehensive information. IEEE Trans. Circuits Syst.
Video Technol. 29(10), 2941–2959 (2019)

9. Cong, R., Lei, J., Fu, H., Hou, J., Huang, Q., Kwong, S.: Going from RGB to RGBD
saliency: a depth-guided transformation model. IEEE Trans. Cybern. 50(8), 3627–
3639 (2020)

10. Cong, R., Lei, J., Zhang, C., Huang, Q., Cao, X., Hou, C.: Saliency detection for
stereoscopic images based on depth confidence analysis and multiple cues fusion.
IEEE Sig. Process. Lett. 23(6), 819–823 (2016)

11. Fan, D.P., Cheng, M.M., Liu, Y., Li, T., Borji, A.: Structure-measure: a new way
to evaluate foreground maps. In: ICCV, pp. 4548–4557 (2017)

12. Fan, D.P., Zhai, Y., Borji, A., Yang, J., Shao, L.: BBS-Net: RGB-D salient object
detection with a bifurcated backbone strategy network. In: Vedaldi, A., Bischof,
H., Brox, T., Frahm, J.M. (eds.) ECCV 2020. LNCS, vol. 12357. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-58610-2 17

13. Feng, D., Barnes, N., You, S., McCarthy, C.: Local background enclosure for RGB-
D salient object detection. In: CVPR, pp. 2343–2350 (2016)

14. Feng, M., Lu, H., Ding, E.: Attentive feedback network for boundary-aware salient
object detection. In: CVPR, pp. 1623–1632 (2019)

https://doi.org/10.1007/978-3-030-58610-2_17


240 C. Li et al.

15. Fu, J., Liu, J., Tian, H., Li, Y.: Dual attention network for scene segmentation. In:
CVPR, pp. 3146–3154 (2019)

16. Fu, K.F., Fan, D.P., Ji, G.P., Zhao, Q.: JL-DCF: joint learning and densely-
cooperative fusion framework for RGB-D salient object detection. In: CVPR, pp.
3052–3062 (2020)

17. Guan, W., Wang, T., Qi, J., Zhang, L., Lu, H.: Edge-aware convolutional neural
network based salient object detection. IEEE Sig. Process. Lett. 26, 114–118 (2018)

18. Han, J., Chen, H., Liu, N., Yan, C., Li, X.: CNNs-based RGB-D saliency detection
via cross-view transfer and multiview fusion. IEEE Trans. Cybern. 48(11), 3171–
3183 (2018)

19. Hou, Q., Cheng, M.M., Hu, X., Borji, A., Tu, Z., Torr, P.H.: Deeply supervised
salient object detection with short connections. IEEE Trans. Pattern Anal. Mach.
Intell. 41(4), 815–828 (2019)

20. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR, pp. 7132–
7141 (2018)

21. Ju, R., Liu, Y., Ren, T., Ge, L., Wu, G.: Depth-aware salient object detection using
anisotropic center-surround difference. Sig. Process. Image Commun. 38, 115–126
(2015)

22. Li, C., et al.: ASIF-Net: attention steered interweave fusion network for RGBD
salient object detection. IEEE Trans. Cybern., 1–13 (2020)

23. Li, G., Zhu, C.: A three-pathway psychobiological framework of salient object
detection using stereoscopic technology. In: ICCVW, pp. 3008–3014 (2017)

24. Li, N., Ye, J., Ji, Y., Ling, H., Yu, J.: Saliency detection on light field. In: CVPR,
pp. 2806–2813 (2014)

25. Li, X., Lu, H., Zhang, L., Ruan, X., Yang, M.H.: Saliency detection via dense and
sparse reconstruction. In: ICCV, pp. 2976–2983 (2013)

26. Liu, J., Hou, Q., Cheng, M.M., Feng, J., Jiang, J.: A simple pooling-based design
for real-time salient object detection. In: CVPR, pp. 3917–3926 (2019)

27. Niu, Y., Geng, Y., Li, X., Liu, F.: Leveraging stereopsis for saliency analysis. In:
CVPR, pp. 454–461 (2012)

28. Oreshkin, B.N., Rodriguez, P., Lacoste, A.: TADAM: task dependent adaptive
metric for improved few-shot learning. In: NeurIPS, pp. 721–731 (2018)

29. Peng, H., Li, B., Ling, H., Hu, W., Xiong, W., Maybank, S.J.: Salient object
detection via structured matrix decomposition. IEEE Trans. Pattern Anal. Mach.
Intell. 39(4), 818–832 (2017)

30. Peng, H., Li, B., Xiong, W., Hu, W., Ji, R.: RGBD salient object detection: a
benchmark and algorithms. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T.
(eds.) ECCV 2014. LNCS, vol. 8691. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-10578-9 7

31. Perez, E., Strub, F., de Vries, H., Dumoulin, V., Courville, A.: FiLM: Visual rea-
soning with a general conditioning layer. In: AAAI, pp. 3942–3951 (2018)

32. Piao, Y., Ji, W., Li, J., Zhang, M., Lu, H.: Depth-induced multi-scale recurrent
attention network for saliency detection. In: ICCV, pp. 7254–7263 (2019)

33. Piao, Y., Rong, Z., Zhang, M., Ren, W., Lu, H.: A2dele: adaptive and attentive
depth distiller for efficient RGB-D salient object detection. In: CVPR, pp. 9060–
9069 (2020)

34. Qin, X., Zhang, Z., Huang, C., Gao, C., Dehghan, M., Jagersand, M.: BASNet:
boundary-aware salient object detection. In: CVPR, pp. 7479–7489 (2019)

35. Qu, L., He, S., Zhang, J., Tian, J., Tang, Y., Yang, Q.: RGBD salient object
detection via deep fusion. IEEE Trans. Image Process. 26(5), 2274–2285 (2017)

https://doi.org/10.1007/978-3-319-10578-9_7
https://doi.org/10.1007/978-3-319-10578-9_7


RGB-D SOD with Cross-Modality Modulation and Selection 241

36. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

37. Song, H., Liu, Z., Du, H., Sun, G., Le Meur, O., Ren, T.: Depth-aware salient
object detection and segmentation via multiscale discriminative saliency fusion
and bootstrap learning. IEEE Trans. Image Process. 26(9), 4204–4216 (2017)

38. Vaswani, A., et al.: Attention is all you need. In: NeurIPS, pp. 5998–6008 (2017)
39. Wang, W., Lai, Q., Fu, H., Shen, J., Ling, H.: Salient object detection in the deep

learning era: An in-depth survey. arXiv preprint arXiv:1904.09146 (2019)
40. Wang, X., Yu, K., Dong, C., Loy, C.C.: Recovering realistic texture in image super-

resolution by deep spatial feature transform. In: CVPR, pp. 606–615 (2018)
41. Yu, D., Fu, J., Mei, T., Rui, Y.: Multi-level attention networks for visual question

answering. In: CVPR, pp. 4709–4717 (2017)
42. Yuan, Y., Li, C., Kim, J., Cai, W., Feng, D.D.: Reversion correction and regularized

random walk ranking for saliency detection. IEEE Trans. Image Process. 27(3),
1311–1322 (2018)

43. Zhang, J., et al.: UC-Net: uncertainty inspired RGB-D saliency detection via con-
ditional variational autoencoders. In: CVPR, pp. 8582–8591 (2020)

44. Zhang, M., Ren, W., Piao, Y., Rong, Z., Lu, H.: Select, supplement and focus for
RGB-D saliency detection. In: CVPR, pp. 3472–3481 (2020)

45. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution
using very deep residual channel attention networks. In: Ferrari, V., Hebert, M.,
Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-01234-2 18

46. Zhao, J., Cao, Y., Fan, D.P., Cheng, M.M., Li, X.Y., Zhang, L.: Contrast prior
and fluid pyramid integration for RGBD salient object detection. In: CVPR, pp.
3927–3936 (2019)

47. Zhao, J., Liu, J., Fan, D.P., Cao, Y., Yang, J., Cheng, M.M.: EGNet: edge guidance
network for salient object detection. In: ICCV, pp. 8779–8788 (2019)

48. Zhu, C., Li, G.: A multilayer backpropagation saliency detection algorithm and its
applications. Multimed. Tools Appl. 77(19), 25181–25197 (2018). https://doi.org/
10.1007/s11042-018-5780-4

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1904.09146
https://doi.org/10.1007/978-3-030-01234-2_18
https://doi.org/10.1007/s11042-018-5780-4
https://doi.org/10.1007/s11042-018-5780-4

	RGB-D Salient Object Detection with Cross-Modality Modulation and Selection
	1 Introduction
	2 Related Work
	3 Our Method
	3.1 Overview of Network Architecture
	3.2 Cross-Modality Feature Modulation (cmFM)
	3.3 Adaptive Feature Selection (AFS)
	3.4 Saliency-Guided Position-Edge Attention (sg-PEA)
	3.5 Loss Function

	4 Experiments
	4.1 Benchmark Datasets and Evaluation Metrics
	4.2 Implementation Details
	4.3 Comparisons with State-of-the-art Methods
	4.4 Ablation Studies

	5 Conclusion
	References




