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Abstract. With the goal of recovering high-quality image content from
its degraded version, image restoration enjoys numerous applications,
such as in surveillance, computational photography and medical imaging.
Recently, convolutional neural networks (CNNs) have achieved dramatic
improvements over conventional approaches for image restoration task.
Existing CNN-based methods typically operate either on full-resolution
or on progressively low-resolution representations. In the former case,
spatially precise but contextually less robust results are achieved, while
in the latter case, semantically reliable but spatially less accurate outputs
are generated. In this paper, we present an architecture with the collec-
tive goals of maintaining spatially-precise high-resolution representations
through the entire network and receiving strong contextual information
from the low-resolution representations. The core of our approach is a
multi-scale residual block containing several key elements: (a) parallel
multi-resolution convolution streams for extracting multi-scale features,
(b) information exchange across the multi-resolution streams, (c) spatial
and channel attention mechanisms for capturing contextual information,
and (d) attention based multi-scale feature aggregation. In a nutshell,
our approach learns an enriched set of features that combines contextual
information from multiple scales, while simultaneously preserving the
high-resolution spatial details. Extensive experiments on five real image
benchmark datasets demonstrate that our method, named as MIRNet,
achieves state-of-the-art results for image denoising, super-resolution,
and image enhancement. The source code and pre-trained models are
available at https://github.com/swz30/MIRNet.
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1 Introduction

Image content is exponentially growing due to the ubiquitous presence of cameras
on various devices. During image acquisition, degradations are often introduced
because of the physical limitations of cameras and inappropriate lighting condi-
tions. For instance, smartphone cameras have narrow aperture and small sensors
with limited dynamic range. Consequently, they frequently generate noisy and
low-contrast images. Similarly, images captured under unsuitable lighting are
either too dark or too bright. The art of recovering the original image from its
corrupted measurements is studied under the image restoration task.

Recently, deep learning models have made significant advancements for image
restoration and enhancement, as they can learn strong (generalizable) priors from
large-scale datasets. Existing CNNs typically follow one of the two architecture
designs: 1) an encoder-decoder, or 2) high-resolution (single-scale) feature pro-
cessing. The encoder-decoder models [17,59,84,124] first progressively map the
input to a low-resolution representation, and then apply a gradual reverse map-
ping to the original resolution. Although these approaches learn a broad context
by spatial-resolution reduction, on the downside, the fine spatial details are lost,
making it extremely hard to recover them in the later stages. On the other side,
the high-resolution (single-scale) networks [27,50,120,127] do not employ any
downsampling operation, and thereby produce images with spatially more accu-
rate details. However, these networks are less effective in encoding contextual
information due to their limited receptive field.

Image restoration is a position-sensitive procedure, where pixel-to-pixel cor-
respondence from the input image to the output image is needed. Therefore, it is
important to remove only the undesired degraded image content, while carefully
preserving the desired fine spatial details (such as true edges and texture). Such
functionality for segregating the degraded content from the true signal can be
better incorporated into CNNs with the help of large context, e.g., by enlarging
the receptive field. Towards this goal, we develop a new multi-scale approach that
maintains the original high-resolution features along the network hierarchy, thus
minimizing the loss of precise spatial details. Simultaneously, our model encodes
multi-scale context by using parallel convolution streams that process features
at lower spatial resolutions. The multi-resolution parallel branches operate in
a manner that is complementary to the main high-resolution branch, thereby
providing us more precise and contextually enriched feature representations.

The main difference between our method and existing multi-scale image pro-
cessing approaches is the way we aggregate contextual information. First, the
existing methods [37,71,97] process each scale in isolation, and exchange infor-
mation only in a top-down manner. In contrast, we progressively fuse information
across all the scales at each resolution-level, allowing both top-down and bottom-
up information exchange. Simultaneously, both fine-to-coarse and coarse-to-fine
knowledge exchange is laterally performed on each stream by a new selective
kernel fusion mechanism. Different from existing methods that employ a simple
concatenation or averaging of features coming from multi-resolution branches,
our fusion approach dynamically selects the useful set of kernels from each branch
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representations using a self-attention approach. More importantly, the proposed
fusion block combines features with varying receptive fields, while preserving
their distinctive complementary characteristics. Our main contributions include:

– A novel feature extraction model that obtains a complementary set of features
across multiple spatial scales, while maintaining the original high-resolution
features to preserve precise spatial details.

– A regularly repeated mechanism for information exchange, where the features
across multi-resolution branches are progressively fused together for improved
representation learning.

– A new approach to fuse multi-scale features using a selective kernel network
that dynamically combines variable receptive fields and faithfully preserves
the original feature information at each spatial resolution.

– A recursive residual design that progressively breaks down the input signal
to simplify the learning process, and allows building very deep networks.

– Comprehensive experiments are performed on five real image benchmark
datasets for different image processing tasks including, image denoising,
super-resolution and image enhancement. Our method achieves state-of-the-
results on all five datasets. Furthermore, we extensively evaluate our approach
on practical challenges, such as generalization ability across datasets.

2 Related Work

With the rapidly growing image content, there is a pressing need to develop
effective image restoration and enhancement algorithms. In this paper, we pro-
pose a new method capable of performing image denoising, super-resolution and
image enhancement. Unlike existing works for these problems, our approach pro-
cesses features at the original resolution in order to preserve spatial details, while
effectively fuses contextual information from multiple parallel branches. Next,
we briefly describe the representative methods for each of the studied problems.

Image Denoising. Classic denoising methods are mainly based on modifying
transform coefficients [30,90,115] or averaging neighborhood pixels [78,86,91,
98]. Although the classical methods perform well, the self-similarity [31] based
algorithms, e.g., NLM [10] and BM3D [21], demonstrate promising denoising
performance. Numerous patch-based algorithms that exploit redundancy (self-
similarity) in images are later developed [28,38,43,70]. Recently, deep learning-
based approaches [5,9,11,35,39,80,119–121] make significant advances in image
denoising, yielding favorable results than those of the hand-crafted methods.

Super-Resolution (SR). Prior to the deep-learning era, numerous SR algo-
rithms have been proposed based on the sampling theory [53,55], edge-guided
interpolation [4,122], natural image priors [58,110], patch-exemplars [15,33] and
sparse representations [113,114]. Currently, deep-learning techniques are actively
being explored, as they provide dramatically improved results over conventional
algorithms. The data-driven SR approaches differ according to their architecture
designs [6,13,106]. Early methods [26,27] take a low-resolution (LR) image as
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Fig. 1. The proposed network MIRNet is based on a recursive residual design. In the
core of MIRNet is the multi-scale residual block (MRB) whose main branch is dedicated
to maintaining spatially-precise high-resolution representations through the entire net-
work and the complimentary set of parallel branches provide better contextualized
features. It also allows information exchange across parallel streams via selective ker-
nel feature fusion (SKFF) in order to consolidate the high-resolution features with the
help of low-resolution features, and vice versa.

input and learn to directly generate its high-resolution (HR) version. In con-
trast to directly producing a latent HR image, recent SR networks [48,56,94,95]
employ the residual learning framework [42] to learn the high-frequency image
detail, which is later added to the input LR image to produce the final super-
resolved result. Other networks designed to perform SR include recursive learning
[3,41,57], progressive reconstruction [60,105], dense connections [99,104,127],
attention mechanisms [23,125,126], multi-branch learning [22,60,64,66], and
generative adversarial networks (GANs) [63,76,87,104].

Image Enhancement. Oftentimes, cameras generate images that are less
vivid and lack contrast. For image enhancement, histogram equalization is
the most commonly used approach. However, it frequently produces under- or
over-enhanced images. Motivated by the Retinex theory [61], several enhance-
ment algorithms mimicking human vision have been proposed in the literature
[8,54,74,83]. Recently, CNNs have been successfully applied to general, as well
as low-light, image enhancement problems [52]. Notable works employ Retinex-
inspired networks [89,107,124], encoder-decoder networks [18,68,81], and GANs
[19,25,51].

3 Proposed Method

In this section, we first present an overview of the proposed MIRNet for image
restoration and enhancement, illustrated in Fig. 1. We then provide details of
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the multi-scale residual block, which is the fundamental building block of our
method, containing several key elements: (a) parallel multi-resolution convolu-
tion streams for extracting (fine-to-coarse) semantically-richer and (coarse-to-
fine) spatially-precise feature representations, (b) information exchange across
multi-resolution streams, (c) attention-based aggregation of features arriving
from multiple streams, (d) dual-attention units to capture contextual informa-
tion in both spatial and channel dimensions, and (e) residual resizing modules
to perform downsampling and upsampling operations.

Overall Pipeline. Given an image I ∈ R
H×W×3, the network first applies

a convolutional layer to extract low-level features X0 ∈ R
H×W×C . Next, the

feature maps X0 pass through N number of recursive residual groups (RRGs),
yielding deep features Xd ∈ R

H×W×C . We note that each RRG contains several
multi-scale residual blocks, which is described in Sect. 3.1. Next, we apply a
convolution layer to deep features Xd and obtain a residual image R ∈ R

H×W×3.
Finally, the restored image is obtained as Î = I + R. We optimize the proposed
network using the Charbonnier loss [16]:

L(̂I, I∗) =
√

‖Î − I∗‖2 + ε2, (1)

where I∗ denotes the ground-truth image, and ε is a constant which we empiri-
cally set to 10−3 for all the experiments.

3.1 Multi-scale Residual Block (MRB)

In order to encode context, existing CNNs [7,72,73,77,84,109] typically employ
the following architecture design: (a) the receptive field of neurons is fixed in each
layer/stage, (b) the spatial size of feature maps is gradually reduced to generate a
semantically strong low-resolution representation, and (c) a high-resolution rep-
resentation is gradually recovered from the low-resolution representation. How-
ever, it is well-understood in vision science that in the primate visual cortex,
the sizes of the local receptive fields of neurons in the same region are different
[47,49,82,88]. Therefore, such a mechanism of collecting multi-scale spatial infor-
mation in the same layer needs to be incorporated in CNNs [32,46,92,93]. In this
paper, we propose the multi-scale residual block (MRB), as shown in Fig. 1. It is
capable of generating a spatially-precise output by maintaining high-resolution
representations, while receiving rich contextual information from low-resolutions.
The MRB consists of multiple (three in this paper) fully-convolutional streams
connected in parallel. It allows information exchange across parallel streams in
order to consolidate the high-resolution features with the help of low-resolution
features, and vice versa. Next, we describe the individual components of MRB.

Selective Kernel Feature Fusion (SKFF). One fundamental property of
neurons present in the visual cortex is to be able to change their receptive fields
according to the stimulus [65]. This mechanism of adaptively adjusting receptive
fields can be incorporated in CNNs by using multi-scale feature generation (in the
same layer) followed by feature aggregation and selection. The most commonly
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Fig. 2. Schematic for selective kernel feature fusion (SKFF). It operates on features
from multiple convolutional streams, and performs aggregation based on self-attention.

used approaches for feature aggregation include simple concatenation or summa-
tion. However, these choices provide limited expressive power to the network, as
reported in [65]. In MRB, we introduce a nonlinear procedure for fusing features
coming from multiple resolutions using a self-attention mechanism. Motivated
by [65], we call it selective kernel feature fusion (SKFF).

The SKFF module performs dynamic adjustment of receptive fields via two
operations –Fuse and Select, as illustrated in Fig. 2. The fuse operator generates
global feature descriptors by combining the information from multi-resolution
streams. The select operator uses these descriptors to recalibrate the feature
maps (of different streams) followed by their aggregation. Next, we provide
details of both operators for the three-stream case, but one can easily extend it
to more streams. (1) Fuse: SKFF receives inputs from three parallel convolution
streams carrying different scales of information. We first combine these multi-
scale features using an element-wise sum as: L = L1 + L2 + L3. We then apply
global average pooling (GAP) across the spatial dimension of L ∈ R

H×W×C

to compute channel-wise statistics s ∈ R
1×1×C . Next, we apply a channel-

downscaling convolution layer to generate a compact feature representation
z ∈ R

1×1×r, where r = C
8 for all our experiments. Finally, the feature vector z

passes through three parallel channel-upscaling convolution layers (one for each
resolution stream) and provides us with three feature descriptors v1,v2 and v3,
each with dimensions 1 × 1 × C. (2) Select: this operator applies the softmax
function to v1,v2 and v3, yielding attention activations s1, s2 and s3 that we
use to adaptively recalibrate multi-scale feature maps L1,L2 and L3, respec-
tively. The overall process of feature recalibration and aggregation is defined as:
U = s1 · L1 + s2 · L2 + s3 · L3. Note that the SKFF uses ∼ 6× fewer parameters
than aggregation with concatenation but generates more favorable results.

Dual Attention Unit (DAU). While the SKFF block fuses information across
multi-resolution branches, we also need a mechanism to share information within
a feature tensor, both along the spatial and the channel dimensions. Motivated
by the advances of recent low-level vision methods [5,23,125,126] based on the
attention mechanisms [44,103], we propose the dual attention unit (DAU) to
extract features in the convolutional streams. The schematic of DAU is shown in
Fig. 3. The DAU suppresses less useful features and only allows more informative
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Fig. 3. Dual attention unit incorporating spatial and channel attention mechanisms.

(a) Downsampling module (b) Upsampling module

Fig. 4. Residual resizing modules to perform downsampling and upsampling.

ones to pass further. This feature recalibration is achieved by using channel
attention [44] and spatial attention [108] mechanisms. (1) Channel attention
(CA) branch exploits the inter-channel relationships of the convolutional feature
maps by applying squeeze and excitation operations [44]. Given a feature map
M ∈ R

H×W×C , the squeeze operation applies global average pooling across
spatial dimensions to encode global context, thus yielding a feature descriptor
d ∈ R

1×1×C . The excitation operator passes d through two convolutional layers
followed by the sigmoid gating and generates activations d̂ ∈ R

1×1×C . Finally,
the output of CA branch is obtained by rescaling M with the activations d̂.
(2) Spatial attention (SA) branch is designed to exploit the inter-spatial
dependencies of convolutional features. The goal of SA is to generate a spatial
attention map and use it to recalibrate the incoming features M. To generate the
spatial attention map, the SA branch first independently applies global average
pooling and max pooling operations on features M along the channel dimensions
and concatenates the outputs to form a feature map f ∈ R

H×W×2. The map f
is passed through a convolution and sigmoid activation to obtain the spatial
attention map f̂ ∈ R

H×W×1, which we then use to rescale M.

Residual Resizing Modules. MIRNet employs a recursive residual design
(with skip connections) to ease the flow of information during the learning pro-
cess. In order to maintain the residual nature of our architecture, we introduce
residual resizing modules to perform downsampling (Fig. 4a) and upsampling
(Fig. 4b) operations. In MRB, the size of feature maps remains constant along
convolution streams; but across streams it changes depending on the input res-
olution index i and the output resolution index j. If i < j, the feature tensor
is downsampled, and if i > j, the feature map is upsampled. To perform 2×
downsampling (halving the spatial dimension and doubling the channel dimen-
sion), we apply the module in Fig. 4a only once. For 4× downsampling, the
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module is applied twice. Similarly, one can perform 2× and 4× upsampling by
applying the module in Fig. 4b once and twice, respectively. Note in Fig. 4a, we
integrate anti-aliasing downsampling [123] to improve the shift-equivariance of
our network.

4 Experiments

We perform qualitative and quantitative assessment of the results produced by
our MIRNet and compare it with the previous best methods. Next, we describe
the datasets, and then provide the implementation details. Finally, we report
results for (a) image denoising, (b) super-resolution and (c) image enhancement.

4.1 Real Image Datasets

Image Denoising. (1) DND [79] consists of 50 images. Since the images are
of very high-resolution, the dataset providers extract 20 crops of size 512 × 512
from each image, yielding 1000 patches in total. All these patches are used for
testing (as DND does not contain training or validation sets). The ground-truth
noise-free images are not released publicly, therefore the PSNR and SSIM scores
can only be obtained through an online server [24]. (2) SIDD [1] is particularly
collected with smartphone cameras. Due to the small sensor and high-resolution,
the noise levels in smartphone images are much higher than those of DSLRs.
SIDD contains 320 image pairs for training and 1280 for validation.

Super-Resolution. RealSR [14] dataset contains real-world LR-HR image
pairs of the same scene captured by adjusting the focal-length of the cameras.
RealSR has both indoor and outdoor images taken with two cameras. The num-
ber of training image pairs for scale factors ×2, ×3 and ×4 are 183, 234 and 178,
respectively. For each scale factor, 30 test images are also provided in RealSR.

Image Enhancement. (1) LoL [107] is created for low-light image enhance-
ment problem. It provides 485 images for training and 15 for testing. Each image
pair in LoL consists of a low-light input image and its corresponding well-exposed
reference image. (2) MIT-Adobe FiveK [12] contains 5000 images captured
with DSLR cameras. The tonal attributes of all images are manually adjusted by
five trained photographers (labelled as experts A to E). Same as in [45,75,100],
we also consider the enhanced images of expert C as the ground-truth. Moreover,
the first 4500 images are used for training and the last 500 for testing.

4.2 Implementation Details

The proposed architecture is end-to-end trainable and requires no pre-training
of sub-modules. We train three different networks for three different restoration
tasks. The training parameters, common to all experiments, are the following.
We use 3 RRGs, each of which further contains 2 MRBs. The MRB consists of
3 parallel streams with channel dimensions of 64, 128, 256 at resolutions 1, 1

2 , 1
4 ,
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Table 1. Denoising comparisons on the SIDD dataset [1].

Method DnCNN MLP GLIDE TNRD FoE BM3D WNNM NLM KSVD EPLL CBDNet RIDNet VDN MIRNet
[120] [11] [96] [20] [85] [21] [38] [10] [2] [128] [39] [5] [118] (Ours)

PSNR ↑ 23.66 24.71 24.71 24.73 25.58 25.65 25.78 26.76 26.88 27.11 30.78 38.71 39.28 39.72
SSIM ↑ 0.583 0.641 0.774 0.643 0.792 0.685 0.809 0.699 0.842 0.870 0.754 0.914 0.909 0.959

Table 2. Denoising comparisons on the DND dataset [79].

Method EPLL TNRD MLP BM3D FoE WNNM KSVD MCWNNM FFDNet+ TWSC CBDNet RIDNet VDN MIRNet
[128] [20] [11] [21] [85] [38] [2] [112] [121] [111] [39] [5] [118] (Ours)

PSNR ↑ 33.51 33.65 34.23 34.51 34.62 34.67 36.49 37.38 37.61 37.94 38.06 39.26 39.38 39.88
SSIM ↑ 0.824 0.831 0.833 0.851 0.885 0.865 0.898 0.929 0.942 0.940 0.942 0.953 0.952 0.956

26.90 dB 30.91 dB 32.47 dB 33.29
Noisy BM3D [21] NC [62] DnCNN [120]

26.90 dB 33.62 dB 33.89 dB 34.09 dB 34.77 dB
Noisy Image CBDNet [39] VDN [118] RIDNet [5] MIRNet (Ours)

Fig. 5. Denoising example from DND [79].

respectively. Each stream has 2 DAUs. The models are trained with the Adam
optimizer (β1 = 0.9, and β2 = 0.999) for 7 × 105 iterations. The initial learning
rate is set to 2 × 10−4. We employ the cosine annealing strategy [69] to steadily
decrease the learning rate from initial value to 10−6 during training. We extract
patches of size 128 × 128 from training images. The batch size is set to 16 and,
for data augmentation, we perform horizontal and vertical flips.

4.3 Image Denoising

In this section, we demonstrate the effectiveness of the proposed MIRNet for
image denoising. We train our network only on the training set of the SIDD [1]
and directly evaluate it on the test images of both SIDD and DND [79] datasets.
The PSNR and SSIM scores are summarized in Table 1 and Table 2 for SIDD
and DND, respectively. Both tables show that our MIRNet performs favourably
against the data-driven, as well as conventional, denoising algorithms. Specif-
ically, when compared to the recent best method VDN [118], our algorithm
demonstrates a gain of 0.44 dB on SIDD and 0.50 dB on DND. Furthermore, it
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18.25 dB 28.84 dB 35.57 dB 36.39 dB 36.97 dB

18.16 dB 20.36 dB 29.83 dB 30.31 dB 31.36 dB
Noisy CBDNet [39] RIDNet [5] VDN [118] MIRNet (Ours) Reference

Fig. 6. Denoising examples from SIDD [1]. Our method effectively removes real noise
from challenging images, while better recovering structural content and fine texture.

Table 3. Super-resolution evaluation on the RealSR [14] dataset. Compared to the
state-of-the-art, our method consistently yields significantly better image quality scores.

Scale Bicubic VDSR [56] SRResNet [63] RCAN [125] LP-KPN [14] MIRNet (Ours)

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

×2 32.61 0.907 33.64 0.917 33.69 0.919 33.87 0.922 33.90 0.927 34.35 0.935

×3 29.34 0.841 30.14 0.856 30.18 0.859 30.40 0.862 30.42 0.868 31.16 0.885

×4 27.99 0.806 28.63 0.821 28.67 0.824 28.88 0.826 28.92 0.834 29.14 0.843

is worth noting that CBDNet [39] and RIDNet [5] use additional training data,
yet our method provides significantly better results (8.94 dB improvement over
CBDNet [39] on the SIDD dataset and 1.82 dB on DND).

In Fig. 5 and Fig. 6, we present visual comparisons of our results with those
of other competing algorithms. It can be seen that our MIRNet is effective in
removing real noise and produces perceptually-pleasing and sharp images. More-
over, it is capable of maintaining the spatial smoothness of the homogeneous
regions without introducing artifacts. In contrast, most of the other methods
either yield over-smooth images and thus sacrifice structural content and fine
textural details, or produce images with chroma artifacts and blotchy texture.

Generalization Capability. The DND and SIDD datasets are acquired with
different cameras having different noise characteristics. Since the DND bench-
mark does not provide training data, setting a new state-of-the-art on DND with
our SIDD trained network indicates the good generalization of our approach.

4.4 Super-Resolution (SR)

We compare our MIRNet against the state-of-the-art SR algorithms (VDSR [56],
SRResNet [63], RCAN [125], LP-KPN [14]) on the testing images of the
RealSR [14] for upscaling factors of ×2, ×3 and ×4. Note that all the bench-
marked algorithms are trained on the RealSR [14] dataset for a fair comparison.
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LR HR Bicubic SRResNet [63]

Image VDSR [56] RCAN [125] LP-KPN [14] MIRNet (Ours)

Fig. 7. Comparisons for ×4 super-resolution from the RealSR [14] dataset. The image
produced by our MIRNet is more faithful to the ground-truth than other competing
methods (see lines near the right edge of the crops).

HR

LP-KPN
[14]

25.74 dB 20.04 dB 25.48 dB 27.25 dB 24.33 dB

MIRNet
(Ours)

27.22 dB 21.23 dB 27.04 dB 29.49 dB 26.87 dB

Fig. 8. Additional examples for ×4 super-resolution, comparing our MIRNet against
the previous best approach [14]. All example crops are taken from different images.

In the experiments, we also include bicubic interpolation [55], which is the most
commonly used method for generating super-resolved images. Here, we compute
the PSNR and SSIM scores using the Y channel (in YCbCr color space), as it
is a common practice in the SR literature [6,14,106,125]. The results in Table 3
show that the bicubic interpolation provides the least accurate results, thereby
indicating its low suitability for dealing with real images. Moreover, the same
table shows that the recent method LP-KPN [14] provides marginal improve-
ment of only ∼ 0.04 dB over the previous best method RCAN [125]. In contrast,
our method significantly advances state-of-the-art and consistently yields better
image quality scores than other approaches for all three scaling factors. Partic-
ularly, compared to LP-KPN [14], our method provides performance gains of
0.45 dB, 0.74 dB, and 0.22 dB for scaling factors ×2, ×3 and ×4, respectively.
The trend is similar for the SSIM metric as well.

Visual comparisons in Fig. 7 show that our MIRNet recovers content struc-
tures effectively. In contrast, VDSR [56], SRResNet [63] and RCAN [125] repro-
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Table 4. Cross-camera generalization test for super-resolution. Networks trained for
one camera are tested on the other camera. Our MIRNet shows good generalization.

Tested on Scale Bicubic RCAN [125]

Canon

(Trained

on) Nikon

LP-

KPN [14]

Canon

(Trained

on) Nikon

MIRNet

Canon

(Trained

on) Nikon

×2 33.05 34.34 34.11 34.38 34.18 35.41 35.14

Canon ×3 29.67 30.65 30.28 30.69 30.33 31.97 31.56

×4 28.31 29.46 29.04 29.48 29.10 30.35 29.95

×2 31.66 32.01 32.30 32.05 32.33 32.58 33.19

Nikon ×3 28.63 29.30 29.75 29.34 29.78 29.71 30.05

×4 27.28 27.98 28.12 28.01 28.13 28.16 28.37

Table 5. Low-light image enhancement evaluation on the LoL dataset [107]. The pro-
posed method significantly advances the state-of-the-art.

Method BIMEF CRM Dong LIME MF RRM SRIE Retinex-Net MSR NPE GLAD KinD MIRNet
[116] [117] [29] [40] [34] [67] [34] [107] [54] [101] [102] [124] (Ours)

PSNR 13.86 17.20 16.72 16.76 18.79 13.88 11.86 16.77 13.17 16.97 19.72 20.87 24.14
SSIM 0.58 0.64 0.58 0.56 0.64 0.66 0.50 0.56 0.48 0.59 0.70 0.80 0.83

Table 6. Image enhancement comparisons on the MIT-Adobe FiveK dataset [12].

Method HDRNet [36] W-Box [45] DR [75] DPE [19] DeepUPE [100] MIRNet (Ours)

PSNR 21.96 18.57 20.97 22.15 23.04 23.73

SSIM 0.866 0.701 0.841 0.850 0.893 0.925

duce results with noticeable artifacts. Furthermore, LP-KPN [14] is not able to
preserve structures (see near the right edge of the crop). Several more examples
are provided in Fig. 8 to further compare the image reproduction quality of our
method against the previous best method [14]. It can be seen that LP-KPN [14]
has a tendency to over-enhance the contrast (cols. 1, 3, 4) and in turn causes
loss of details near dark and high-light areas. In contrast, the proposed MIR-
Net successfully reconstructs structural patterns and edges (col. 2) and produces
images that are natural (cols. 1, 4) and have better color reproduction (col. 5).

Cross-Camera Generalization. The RealSR [14] dataset consists of images
taken with Canon and Nikon cameras at three scaling factors. To test the cross-
camera generalizability of our method, we train the network on the training
images of one camera and directly evaluate it on the test set of the other camera.
Table 4 demonstrates the generalization of competing methods for four possible
cases: (a) training and testing on Canon, (b) training on Canon, testing on Nikon,
(c) training and testing on Nikon, and (d) training on Nikon, testing on Canon. It
can be seen that, for all scales, LP-KPN [14] and RCAN [125] shows comparable
performance. In contrast, our MIRNet exhibits more promising generalization.
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Input image LIME [40] CRM [116] Retinex-Net [107]

SRIE [34] KinD [124] MIRNet (Ours) Ground-truth

Fig. 9. Comparison of low-light enhancement approaches on the LoL [107] dataset.

Input image HDRNet [36] DPE [19]

DeepUPE [107] MIRNet (Ours) Ground-truth

Fig. 10. Image enhancement results on the MIT-Adobe FiveK [12] dataset. Compared
to the state-of-the-art, MIRNet makes better color and contrast adjustments.

4.5 Image Enhancement

In this section, we demonstrate the effectiveness of our algorithm by evaluating
it for the image enhancement task. We report PSNR/SSIM values of our method
and several other techniques in Table 5 and Table 6 for the LoL [107] and MIT-
Adobe FiveK [12] datasets, respectively. It can be seen that our MIRNet achieves
significant improvements over previous approaches. Notably, when compared
to the recent best methods, MIRNet obtains 3.27 dB performance gain over
KinD [124] on the LoL dataset and 0.69 dB improvement over DeepUPE [100]
on the Adobe-Fivek dataset.

We show visual results in Fig. 9 and Fig. 10. Compared to other techniques,
our method generates enhanced images that are natural and vivid in appearance
and have better global and local contrast.
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Table 7. Impact of individual components
of MRB.

Skip connections � � � �
DAU � � �
SKFF intermediate � � �
SKFF final � � � � �
PSNR (in dB) 27.91 30.97 30.78 30.57 31.16

Table 8. Feature aggregation. Our SKFF
uses ∼ 6× fewer parameters than concat,
but generates better results.

Method Sum Concat SKFF

PSNR (in dB) 30.76 30.89 31.16

Parameters 0 12,288 2,049

Table 9. Ablation study on different layouts of MRB. Rows denote the number of par-
allel resolution streams, and Cols represent the number of columns containing DAUs.

Rows = 1 Rows = 2 Rows = 3

Cols = 1 Cols = 2 Cols = 3 Cols = 1 Cols = 2 Cols = 3 Cols = 1 Cols = 2 Cols = 3

PSNR 29.92 30.11 30.17 30.15 30.83 30.92 30.24 31.16 31.18

5 Ablation Studies

We study the impact of each of our architectural components and design choices
on the final performance. All the ablation experiments are performed for the
super-resolution task with ×3 scale factor. Table 7 shows that removing skip
connections causes the largest performance drop. Without skip connections, the
network finds it difficult to converge and yields high training errors, and con-
sequently low PSNR. Furthermore, the information exchange among parallel
convolution streams via SKFF is helpful and leads to improved performance.
Similarly, DAU also makes a positive influence to the final image quality.

Next, we analyze the feature aggregation strategy in Table 8. It shows that
the proposed SKFF generates favorable results compared to summation and
concatenation. Moreover, our SKFF uses ∼ 6× fewer parameters than concate-
nation. Finally, in Table 9 we study how the number of convolutional streams
and columns (DAU blocks) of MRB affect the image restoration quality. We
note that increasing the number of streams provides significant improvements,
thereby justifying the importance of multi-scale features processing. Moreover,
increasing the number of columns yields better scores, thus indicating the signif-
icance of information exchange among parallel streams for feature consolidation.

6 Concluding Remarks

Conventional image restoration and enhancement pipelines either stick to the
full resolution features along the network hierarchy or use an encoder-decoder
architecture. The first approach helps retain precise spatial details, while the
latter one provides better contextualized representations. However, these meth-
ods can satisfy only one of the above two requirements, although real-world
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image restoration tasks demand a combination of both conditioned on the given
input sample. In this work, we propose a novel architecture whose main branch
is dedicated to full-resolution processing and the complementary set of parallel
branches provides better contextualized features. We propose novel mechanisms
to learn relationships between features within each branch as well as across multi-
scale branches. Our feature fusion strategy ensures that the receptive field can be
dynamically adapted without sacrificing the original feature details. Consistent
achievement of state-of-the-art results on five datasets for three image restora-
tion and enhancement tasks corroborates the effectiveness of our approach.
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